
BIROn - Birkbeck Institutional Research Online

Kikot, Stanislav and Kurucz, Agi and Podolskii, Vladimir V. and
Zakharyaschev, Michael (2021) Deciding Boundedness of Monadic Sirups.
In: PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Virtual Event, China, June
20-25, 2021.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/44865/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/44865/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Deciding Boundedness of Monadic Sirups
Stanislav Kikot

Institute for Information Transmission Problems
Moscow, Russia

staskikotx@gmail.com

Agi Kurucz
King’s College London

London, UK
agi.kurucz@kcl.ac.uk

Vladimir V. Podolskii
HSE University
Moscow, Russia

vpodolskii@hse.ru

Michael Zakharyaschev
Birkbeck, University of London, UK &

HSE University, Moscow, Russia
michael@dcs.bbk.ac.uk

ABSTRACT
We show that deciding boundedness (aka FO-rewritability) of mon-
adic single rule datalog programs (sirups) is 2ExpTime-hard, which
matches the upper bound known since 1988 and finally settles a
long-standing open problem. We obtain this result as a byproduct
of an attempt to classify monadic ‘disjunctive sirups’—Boolean con-
junctive queries 𝒒 with unary and binary predicates mediated by a
disjunctive rule 𝑇 (𝑥) ∨ 𝐹 (𝑥) ← 𝐴(𝑥)—according to the data com-
plexity of their evaluation. Apart from establishing that deciding
FO-rewritability of disjunctive sirups with a dag-shaped 𝒒 is also
2ExpTime-hard, we make substantial progress towards obtaining
a complete FO/L-hardness dichotomy of disjunctive sirups with
ditree-shaped 𝒒.

CCS CONCEPTS
• Information systems→Query languages; • Theory of com-
putation→Complexity theory and logic;Description logics;
• Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
Boundedness; monadic datalog; first-order rewritability; ontology-
mediated query.

ACM Reference Format:
Stanislav Kikot, Agi Kurucz, Vladimir V. Podolskii, and Michael Zakharya-
schev. 2021. Deciding Boundedness of Monadic Sirups. In Proceedings of

the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (PODS ’21), June 20–25, 2021, Virtual Event, China. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3452021.3458332

1 INTRODUCTION
There have been two waves in the investigation of boundedness
or first-order rewritability of various types of recursive queries.
The first one started in the mid 1980s, when the deductive database

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00
https://doi.org/10.1145/3452021.3458332

community was analysing recursion in datalog queries with the
aim of optimising and parallelising their execution. One of the
fundamental issues was the problem of deciding whether the depth
of recursion required to evaluate a given datalog query could be
bounded independently of the input data. By 2000, among other
remarkable results, it had been discovered that

– boundedness of linear datalog queries with binary predicates
and of ternary linear datalog queries with a single recursive
rule is undecidable [26, 33];

– deciding program boundedness is 2ExpTime-complete for
monadic programs [9, 18], PSpace-complete for linear mon-
adic programs [18, 36], and NP-complete for linear monadic
and dyadic single rule programs [37].

Interestingly, the exact complexity of deciding boundedness of
monadic datalog programs with a single recursive rule, known as
sirups since [19], has remained open so far, somewhere between
NP and 2ExpTime, to be more precise. To clarify the ‘status [of
boundedness] for sirups’ is part of Open Problem 4.2.10 in [28].
According to [4], Kanellakis and Papadimitriou, who were inter-
ested in datalog programs computable in NC, and so parallelisable,
‘have investigated the case of unary sirups, and have made progress
towards a complete characterization’. Alas, that work appears to
have never been completed and published.

In this paper, we finally settle the boundedness problem for mon-
adic sirups by showing that it is 2ExpTime-hard, which matches
the upper bound for deciding boundedness of arbitrary monadic
datalog programs [18] (and which should be compared with the
NP–PSpace gap between deciding boundedness of linear sirups
and non-sirups.)

We obtained this result while surfing the secondwave, whichwas
triggered in the mid 2010s by the theory and practice of ontology-
based data access (OBDA) [15, 35, 38] (recently rebranded to virtual
knowledge graphs [39]). In OBDA, a typical ontology-mediated
query (OMQ) takes the form 𝑸 = (O, 𝒒) with a description logic
(DL) ontology O and a conjunctive query (CQ) 𝒒. A fundamental
problem in this setting is to decide whether a given OMQ 𝑸 is
FO-rewritable, in which case finding certain answers to 𝑸 can be
done by evaluating a non-recursive SQL-query using a standard
RDBMS.

The ontology language OWL2QL for OBDA systems (such as
Mastro1 or Ontop2), standardised by the W3C in 2009, is based on

1https://www.obdasystems.com
2https://ontopic.biz

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

370

https://doi.org/10.1145/3452021.3458332
https://doi.org/10.1145/3452021.3458332
https://www.obdasystems.com
https://ontopic.biz

DL-Lite that uniformly guarantees FO-rewritability of all OMQs
with an OWL2QL ontology. Uniformly FO-rewritable tgds, aka
Datalog± or existential rules, have also been identified; see, e.g., [17,
23, 30]. As an inevitable consequence, however, all of these ontology
languages are very inexpressive.

The FO-rewritability problem for OMQs in more expressive on-
tology languages was attacked in [11] via a reduction to CSPs. It
has been shown, among other results, that

– deciding FO-rewritability of OMQswith ontologies in expres-
sive DLs such as ALC (notational variant of multi-modal
logicK𝑛) and atomic CQs is NExpTime-complete [11], which
becomes 2NExpTime-complete in the case of (non-atomic)
CQs and also monadic disjunctive datalog queries [14, 20];

– any OMQwith a (Horn) EL ontology and a CQ is either FO-,
or linear-datalog-, or datalog-rewritable, and deciding this
trichotomy is ExpTime-complete [31, 32]; see also [6, 10] for
complexity results on deciding FO-rewritability of OMQs
with more expressive Horn description logic ontologies and
frontier-guarded existential rules.

In [22], aiming to single out and classify possible causes of non-FO-
or non-(linear)-datalog-rewritability of OMQs, we considered (in
the DL setting) a disjunctive analogue of monadic sirups, namely,
monadic disjunctive datalog programs Δ𝒒 of the form

𝑇 (𝑥) ∨ 𝐹 (𝑥) ← 𝐴(𝑥) (1)
𝑮 ← 𝒒 (2)

where 𝒒 is a (Boolean) CQ with unary predicates 𝑇 (𝑥), 𝐹 (𝑦) and
arbitrary binary predicates, and 𝑮 is a nullary (goal) predicate. In DL
and conceptual modelling, rule (1) is known as a covering axiom (or
constraint)𝐴 ⊑ 𝑇 ⊔𝐹 (as in ‘class Animal is covered by classes Male
and Female’). We illustrate the zoo of ‘monadic disjunctive sirups’
by an example, where CQs are given as digraphs with labelled edges
and (partially) labelled nodes.

Example 1. Consider the CQs 𝒒1, . . . , 𝒒5 shown below:

𝒒1
𝐹 𝐹 𝑇 𝑇

𝑅 𝑅 𝑅

𝒒2
𝑇 𝑇 𝐹

𝑆 𝑅

𝒒3
𝑇 𝑇 𝐹

𝑅 𝑅

𝒒4
𝑇

𝑧 𝑦

𝐹

𝑥𝑅 𝑅

𝒒5
𝑇 𝐹𝑇 𝐹

𝑅 𝑅 𝑅 𝑅 𝑅

For instance, in full, rule (2) in the program Δ𝒒4 looks as

𝑮 ← 𝐹 (𝑥), 𝑅(𝑦, 𝑥), 𝑅(𝑦, 𝑧),𝑇 (𝑧) .

Intuitively, the certain answer to the Boolean query (Δ𝒒4 , 𝑮) over a
data instanceD (given in the form of a labelled graph) is ‘yes’ iff we
can find the pattern 𝒒4 in every graph obtained by labelling each of
the 𝐴-nodes in D with either 𝑇 or 𝐹 . As shown in [22], answering
(Δ𝒒𝑖

, 𝑮) is coNP-complete for 𝒒1, P-complete for 𝒒2, NL-complete
for 𝒒3, L-complete for 𝒒4, and, in view of Example 4 below, 𝒒5 is
FO-rewritable and so in AC0.

Every disjunctive sirup Δ𝒒 , in which 𝒒 has a single ‘solitary’
𝐹 -node (like in 𝒒2–𝒒5), is equivalent to a monadic datalog program
Π𝒒 . For instance, Δ𝒒4 is equivalent to Π𝒒4 with three rules

𝑮 ← 𝐹 (𝑥), 𝑅(𝑦, 𝑥), 𝑅(𝑦, 𝑧), 𝑃 (𝑧)
𝑃 (𝑥) ← 𝑇 (𝑥)
𝑃 (𝑥) ← 𝐴(𝑥), 𝑅(𝑦, 𝑥), 𝑅(𝑦, 𝑧), 𝑃 (𝑧)

Furthermore, for certain CQs 𝒒, boundedness of Π𝒒 coincides with
boundedness of a sirup sub-program of Π𝒒 (see Sec. 2). In the above
example, this sirup, Σ𝒒4 , comprises the last two rules of Π𝒒4 , and
neither (Δ𝒒4 , 𝑮) nor (Σ𝒒4 , 𝑃) is FO-rewritable.

On the other hand, every disjunctive sirupΔ𝒒 can be encoded as a
CQ mediated by a Schema.org3 ontology. Deciding FO-rewritability
of UCQs mediated by Schema.org is known to be PSpace-hard [24].

Our first result in this paper establishes 2ExpTime-hardness of
deciding FO-rewritability in all of these cases. In Sec. 3, we show
how a computation of an alternating Turing machine can be cap-
tured in terms of boundedness of the disjunctive sirup Δ𝒒 , datalog
program Π𝒒 or its sirup sub-program Σ𝒒 , for some CQ 𝒒. Compared
to known techniques, which require multiple rules in a program
or a union of multiple CQs to check properties of Turing machine
computations, we achieve the same aim by means of polynomially-
many small Boolean circuits that are ‘implemented’ by a single

CQ 𝒒 and check local properties of binary trees representing the
expansions of Π𝒒 .

What causes such high computational costs of recognising FO-
rewritability of seemingly very primitive programs? Are there any
natural classes of monadic (disjunctive) sirups whose boundedness
can be checked by tractable algorithms? The 2ExpTime-hardness
proof provides three clues: first, the CQs 𝒒 used in it are dags;
second, each of them has two 𝑇 -nodes; and, third, they contain
many twin 𝐹𝑇 -nodes (as in 𝒒5 above). In [22], we gave a complete
classification of monadic disjunctive sirups Δ𝒒 with a path CQ 𝒒
and an extra disjointness constraint

⊥ ← 𝑇 (𝑥), 𝐹 (𝑥) (3)

(as in ‘classes Male and Female are disjoint’) according to their
data complexity (AC0/NL/P/coNP) and rewritability type (FO/linear
datalog/datalog/disjunctive datalog).

Here, in Sec. 4, we make significant progress towards a com-
plete understanding of FO-rewritability of disjunctive sirups Δ𝒒

with a ditree-shaped CQ 𝒒. First, we prove that twin-free CQs 𝒒
as well as those that contain comparable (w.r.t. the tree order in 𝒒)
solitary 𝐹 - and 𝑇 -nodes (like in 𝒒1–𝒒3 but not 𝒒4 and 𝒒5) give rise
to NL-hard disjunctive sirups. In particular, this yields a tractable
FO/NL-hardness dichotomy of the ditree disjunctive sirups with dis-
jointness (3). Second, we obtain a tractable FO/L/NL-completeness
trichotomy of ditree disjunctive sirups with one solitary 𝐹 , one soli-
tary𝑇 and any number of 𝐹𝑇 -twins. (This case corresponds to linear
ditree sirups.) Finally, we establish an FO/L-hardness dichotomy
for ditree disjunctive sirups with one solitary 𝐹 and show that this
dichotomy can be decided in polynomial time if the number of
solitary 𝑇 s in the CQs is bounded (like in our 2ExpTime-hardness

3https://schema.org: ‘Many applications from Google, Microsoft, Pinterest, Yandex
and others already use these vocabularies to power rich, extensible experiences’.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

371

https://schema.org

proof) and in exponential time otherwise. It follows that decid-
ing FO-rewritability of such disjunctive sirups is fixed-parameter
tractable if the number of solitary 𝑇 s is regarded as a parameter.

The omitted proofs can be found in the full version [29].

2 PRELIMINARIES
We remind the reader (who can consult [2] for details) that a datalog
program is a finite set, Π, of rules of the form

∀𝒙 (𝛾0 ← 𝛾1 ∧ · · · ∧ 𝛾𝑚) (4)

where each 𝛾𝑖 is a (constant- and function-free) atom 𝑄 (𝒚) with
𝒚 ⊆ 𝒙 . As usual, we omit ∀𝒙 and replace ∧ with a comma. The
atom𝛾0 is the head of the rule, and𝛾1, . . . , 𝛾𝑚 comprise its body. The
variables in the head must also occur in the body. The predicate in
the head of a rule in Π is called an IDB predicate; non-IDB predicates
in Π are EDB predicates. We call a rule recursive if its body has at
least one IDB predicate; otherwise, it is an initialisation rule. The
arity of Π is the maximum arity of its IDB predicates. Here, we only
consider monadic datalog programs with at most binary EDBs. A
monadic sirup is a monadic program with a single recursive rule.

A data instance for Π is any finite set D of ground atoms with
EDB predicates inΠ. The set of constants inD is denoted by ind(D).
For a unary IDB predicate 𝑃 , a certain answer to the datalog query
(Π, 𝑃) over D is any 𝑎 ∈ ind(D) such that I |= 𝑃 [𝑎], for every
model I of Π andD, or, in other words, 𝑃 (𝑎) is in the closure Π(D)
ofD under the rules in Π. For a 0-ary IDB 𝑮 (goal), a certain answer
to (Π, 𝑮) over D is ‘yes’ if 𝑮 ∈ Π(D), and ‘no’ otherwise.

A typical monadic datalog program, Π𝒒 , we deal with in this
paper is associated with a conjunctive query (CQ) 𝒒, which in our
context is just a set of atomswith unary predicates 𝐹 ,𝑇 and arbitrary
binary predicates. An atom 𝐹 (𝑧) ∈ 𝒒 is solitary if 𝑇 (𝑧) ∉ 𝒒, and
symmetrically for𝑇 (𝑧); a pair𝑇 (𝑧), 𝐹 (𝑧) ∈ 𝒒 is referred to as twins.

For a CQ 𝒒 with a single solitary 𝐹 (𝑥), possibly multiple solitary
𝑇 (𝑦1), . . . ,𝑇 (𝑦𝑛), arbitrary twins 𝑇 (𝑧), 𝐹 (𝑧) and binary atoms, the
program Π𝒒 comprises the following rules with 0-ary goal 𝑮:

𝑮 ← 𝐹 (𝑥), 𝒒−, 𝑃 (𝑦1), . . . , 𝑃 (𝑦𝑛) (5)
𝑃 (𝑥) ← 𝑇 (𝑥) (6)
𝑃 (𝑥) ← 𝐴(𝑥), 𝒒−, 𝑃 (𝑦1), . . . , 𝑃 (𝑦𝑛) (7)

where 𝒒− = 𝒒 \ {𝐹 (𝑥),𝑇 (𝑦1), . . . ,𝑇 (𝑦𝑛)}, and 𝐴 and 𝑃 are fresh
unary EDB and IDB predicates, respectively. One can show (see [22,
27] for details) that, for any such 𝒒, called a 1-CQ henceforth,
(Π𝒒, 𝑮) is equivalent to the disjunctive datalog program (Δ𝒒, 𝑮)
with rules (1) and (2) in the sense that they return the same an-
swer over any data instance D. Here, as usual, a certain answer to
(Δ𝒒, 𝑮) over D is ‘yes’ iff I |= 𝑮 , for every model I of Δ𝒒 and D.

The monadic sirups, deciding boundedness of which is proved to
be 2ExpTime-hard in Sec. 3, take the form Σ𝒒 = {(6), (7)} with a 1-
CQ 𝒒 and goal predicate 𝑃 . Adapting a similar terminology, we refer
to disjunctive datalog programs Δ𝒒 = {(1), (2)} and queries (Δ𝒒, 𝑮),
where 𝒒 may contain multiple 𝑇 and 𝐹 in general, as monadic

disjunctive sirups or d-sirups, for short.

Example 2. Note that recursion in d-sirups is implicit and origi-
nates in ‘proof by exhaustion’ or ‘case distinction’, which can be
seen by evaluating (Δ𝒒1 , 𝑮) and (Δ𝒒2 , 𝑮) (or the corresponding
(Π𝒒2 , 𝑮)), with the 𝒒𝑖 from Example 1, over the data instances D1

and, respectively D2 below.
D1

𝐹 𝐹 𝐴 𝐴

𝑇 𝑇

𝑇

𝑅 𝑅 𝑅 𝑅 𝑅

𝑅

D2

𝑎𝑏
𝑇 𝑇 𝐴 𝐴 𝐹

𝑇

𝑇

𝑆 𝑅 𝑆 𝑅
𝑅

𝑆

For instance, let I be any model of Δ𝒒2 andD2. By rule (1), each of
the 𝐴-nodes 𝑎 and 𝑏 in I is labelled by 𝐹 or 𝑇 . If 𝑎 is an 𝐹 -node, 𝒒2
is embeddable in I via the vertical 𝑅-arrow. So let 𝑎 be a 𝑇 -node. If
𝑏 is a 𝑇 -node, 𝒒2 is embeddable in I starting from 𝑎, and if 𝑏 is an
𝐹 -node, there is an embedding starting from 𝑏. Thus, I |= 𝒒2.

A monadic (disjunctive) datalog query (Π, 𝑄) is bounded or FO-
rewritable if there is a first-order formula Φ(𝑥) (a sentence Φ if𝑄 is
0-ary) such that, for any data instance D, a constant 𝑎 ∈ ind(D)
(or ‘yes’) is a certain answer to (Π, 𝑄) over D iff D |= Φ[𝑎] (re-
spectively, D |= Φ), where D is regarded as an FO-structure. It is
known (see, e.g., [11, 20]) that in this case (Π, 𝑄) is rewritable into
a union of conjunctive queries (UCQ). It is also known [34] that
FO-rewritability of datalog queries (Π, 𝑄) can be characterised in
terms of𝑄-expansions, which are defined inductively below for our
special queries (Π𝒒, 𝑮) under the moniker ‘cactuses’.

To begin with, we set C𝑮 = {𝐹 (𝑥), 𝒒−,𝑇 (𝑦1), . . . ,𝑇 (𝑦𝑛)} = {𝒒}
and 𝔎𝒒 = {C𝑮 }. Then we take the closure of 𝔎𝒒 under the rule
(bud) if 𝑇 (𝑦) ∈ C ∈ 𝔎𝒒 is solitary, then we add to 𝔎𝒒 the set of

atoms obtained from C by replacing 𝑇 (𝑦) with the atoms
𝐴(𝑥), 𝒒−,𝑇 (𝑦1), . . . ,𝑇 (𝑦𝑛), in which 𝑥 is renamed to 𝑦 and
all other variables are given fresh names.

The elements of the resulting (infinite if 𝑛 ≥ 1) set 𝔎𝒒 are called
cactuses for (Π𝒒, 𝑮). We represent cactuses as labelled digraphs.

For C ∈ 𝔎𝒒 , we refer to the copies 𝔰 of (maximal subsets of) 𝒒
that comprise C as segments and to the copy of the solitary 𝐹 -node
in 𝔰 as its focus. The skeleton C𝑠 of C is the ditree whose nodes are
the segments 𝔰 of C and edges (𝔰, 𝔰′) mean that 𝔰′ was attached
to 𝔰 by budding. The depth of 𝔰 in C (or in C𝑠) is the number of
edges on the branch from the root of C𝑠 to 𝔰. The depth of C is the
maximum depth of its segments.

Example 3. The data instance D2 from Example 2 is (isomor-
phic to) a cactus from 𝔎𝒒2 obtained by applying (bud) to 𝒒2 twice.
The skeleton D𝑠2 along with its three segments 𝔰0, 𝔰1, 𝔰2 and their
respective focuses 𝑧0, 𝑧1, 𝑧2 are illustrated below:

D𝑠2

𝔰1 𝔰2

𝔰0

D2

𝑇 𝑇 𝐴

𝑧2

𝐴

𝑧1

𝐹

𝑧0

𝑇

𝑇

𝑆 𝑅 𝑆 𝑅

𝑅

𝑆

𝔰0

𝔰2

𝔰1

In the remainder of this section, we establish a connection be-
tween boundedness of (Π𝒒, 𝑮) and (Σ𝒒, 𝑃), for a 1-CQ 𝒒, which
requires a few definitions. Every cactus C ∈ 𝔎𝒒 has exactly one 𝐹 -
node. We call it the root-focus of C and denote it by 𝑟 . By replacing
the 𝐹 -label of 𝑟 in C with 𝐴, we obtain a digraph C◦; the set of all
such C◦, for C ∈ 𝔎𝒒 , is denoted by 𝔎◦𝒒 . The following proposition
is proved by a standard induction on the derivation length:

Proposition 1. For any data instance D and any 𝑎 ∈ ind(D),

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

372

– 𝑮 ∈ Π𝒒 (D) iff there is a homomorphism from some cactus

C ∈ 𝔎𝒒 to D;
– 𝑃 (𝑎) ∈ Σ𝒒 (D) iff either 𝑇 (𝑎) ∈ D or there is a homomor-

phism ℎ from some C◦ ∈ 𝔎◦𝒒 to D such that ℎ(𝑟) = 𝑎.

A 1-CQ 𝒒 is called focused if the following condition holds:
(foc) for any cactuses C, C′ ∈ 𝔎𝒒 , if there is a homomorphism

ℎ : C → C′, then ℎ(𝑟) = 𝑟 .
The significance of this notion is shown by Example 4 below, and
by the following characterisation of boundedness; cf. [34]:

Proposition 2. For every focused 1-CQ 𝒒 with solitary 𝐹 (𝑥),
𝑇 (𝑦1), . . . ,𝑇 (𝑦𝑛), the following conditions are equivalent:
(𝑎) (Σ𝒒, 𝑃) is bounded;
(𝑏) (Π𝒒, 𝑮) is bounded;
(𝑐) there exists 𝑑 < 𝜔 such that, for every C ∈ 𝔎𝒒 , there is a

homomorphism ℎ : C′ → C, for some C′ ∈ 𝔎𝒒 of depth ≤ 𝑑 .
Conditions (𝑏) and (𝑐) are equivalent for every (not necessarily fo-

cused) 1-CQ 𝒒, in which case (𝑎) is equivalent to (𝑐) with an additional
requirement that ℎ(𝑟) = 𝑟 .

Proof. (𝑎) ⇒ (𝑏) If Φ(𝑥) is an FO-rewriting of (Σ𝒒, 𝑃), then
∃𝑥,𝑦1, . . . , 𝑦𝑛, 𝒛

(
𝐹 (𝑥) ∧ 𝒒′ ∧ Φ(𝑦1) ∧ · · · ∧ Φ(𝑦𝑛)

)
is an FO-rewriting of (Π𝒒, 𝑮), where 𝒛 comprises the variables in
𝒒′ different from 𝑥,𝑦1, . . . , 𝑦𝑛 .
(𝑏) ⇒ (𝑐) Let ∃𝒚 (𝒒1∨ · · ·∨𝒒𝑚) be a UCQ-rewriting of (Π𝒒, 𝑮),

where the 𝒒𝑖 are CQs and 𝒚 comprises their variables. Treating the
𝒒𝑖 as data instances, we obviously have 𝑮 ∈ Π𝒒 (𝒒𝑖), and so, for
every 𝑖 , 1 ≤ 𝑖 ≤ 𝑚, there is a homomorphism from some C𝑖 ∈ 𝔎𝒒

to 𝒒𝑖 . Let 𝑑 be the maximum depth of the C𝑖 , 𝑖 = 1, . . . ,𝑚. Consider
any C ∈ 𝔎𝒒 . Then there are homomorphisms C𝑖 → 𝒒𝑖 → C, for
some 𝑖 , 1 ≤ 𝑖 ≤ 𝑚, the composition of which is the required ℎ.
(𝑐) ⇒ (𝑎) By Prop. 1 and (c), the sentence ∃𝑟,𝒚 (C1 ∨ · · · ∨ C𝑚),

where the C𝑖 are all of the cactuses of depth ≤ 𝑑 with root-focus
𝑟 and the remaining variables 𝒚, is an FO-rewriting of (Π𝒒, 𝑮).
We show that the formula Φ(𝑟) = 𝑇 (𝑟) ∨ ∃𝒚

(
C◦1 ∨ · · · ∨ C

◦
𝑚

)
is

an FO-rewriting of (Σ𝒒, 𝑃). Let 𝑃 (𝑎) ∈ Σ𝒒 (D), for some D and
𝑎 ∈ ind(D). By Prop. 1, either 𝑇 (𝑎) ∈ D, in which case D |= Φ[𝑎],
or there is a homomorphism ℎ from some C◦ ∈ 𝔎𝒒 to D such
that ℎ(𝑟) = 𝑎. By (c), there is a homomorphism 𝑔 : C𝑖 → C, for
some 𝑖 ≤ 𝑚. As 𝒒 is focused, 𝑔(𝑟) = 𝑟 , and so we can regard 𝑔 as a
C◦
𝑖
→ C◦ homomorphism. But then we obtain a homomorphism

ℎ𝑔 : C◦
𝑖
→ D with ℎ𝑔(𝑟) = 𝑎, from which D |= ∃𝒚 C◦

𝑖
[𝑎]. That

D |= Φ[𝑎] implies 𝑃 (𝑎) ∈ Σ𝒒 (D) is trivial. ❑

The next example illustrates the difference between focused and
unfocused 1-CQs 𝒒 as far as boundedness of (Π𝒒, 𝑮) and (Σ𝒒, 𝑃) is
concerned.

Example 4. Consider the 1-CQ 𝒒5 from Example 1. Let C𝑘 be the
cactus obtained by applying (bud) 𝑘-times to C0 = 𝒒5. There are
homomorphisms ℎ : C1 → C𝑘 , for 𝑘 ≥ 2, and so both (Π𝒒5 , 𝑮) and
(Δ𝒒5 , 𝑮) are rewritable to the UCQ C0 ∨ C1. For each such ℎ, we
have ℎ(𝑟) = 𝑟 , so 𝒒5 is focused and the sirup (Σ𝒒5 , 𝑃) is bounded.

Now, consider the 1-CQ 𝒒6 below, where all of the arrows are
labelled by 𝑅. It is not hard to see that, for every C′ ∈ 𝔎𝒒6 of
depth ≥ 2, there exist C ∈ 𝔎𝒒6 of depth ≤ 1 and a homomorphism
ℎ : C → C′, so (Π𝒒6 , 𝑮) and (Δ𝒒6 , 𝑮) are FO-rewritable. However,

every such ℎ maps the root-focus 𝐹 -node 𝑟 to an 𝐹𝑇 -node, and so
𝒒6 is not focused. In the picture below, C is obtained by budding at
𝑡0, and C′ by budding first at 𝑡1 and then at 𝑡0. Using Prop. 2, one
can show that (Σ𝒒6 , 𝑃) is not bounded.

𝒒6
𝐹 𝐹𝑇 𝑇

𝑡0

𝑇

𝑡1

𝐹

𝑟

𝐹𝑇

𝐴

𝑇

𝐹𝑇 𝑇 𝑇

𝐹

𝑟

𝐹𝑇

𝑇

𝐴 𝐹𝑇

𝐴

𝑇

𝐹𝑇 𝑇 𝑇

ℎ

C′

C

3 DECIDING BOUNDEDNESS OF SIRUPS
In this section, we prove the following:

Theorem 3. The problems of deciding boundedness of monadic

sirups (Σ𝒒, 𝑃) and monadic d-sirups (Δ𝒒, 𝑮) are both 2ExpTime-hard.

Before diving into technical details, we put this theorem into the
context of related work.

3.1 Related results
That deciding program boundedness of arbitrary monadic data-
log queries can be done in 2ExpTime was shown in 1988 using an
automata-theoretic technique [18]. A matching lower bound for
monadic queries with multiple recursive rules was finally settled
in 2015 [9] using a construction from [8], which is based on the en-
coding of Turing machine computations from [12, 13]. For monadic
sirups, the NP lower bound for the linear case [37] has remained so
far the best known result (though, in view of Prop. 2 and the proof
of [22, Theorem 9], it can be raised to PSpace).

Establishing a higher lower bound for monadic sirups is difficult
for two obvious reasons: monadicity and singularity. The impact of
arity and the number of recursive rules on deciding boundedness of
datalog programs has been studied in great detail; see [25, 33] and
further references therein. For example, boundedness was shown to
be undecidable first for linear datalog programs of arity 4 [21], then
for those of arity 2 with multiple recursive rules [37], which were
encoded in a single rule at the expense of higher arity [1]; finally,
boundedness was proved to be undecidable already for linear sirups
of arity 3 [33].

Intuitively, the proofs of the lower bounds mentioned above
use different rules in a datalog program in order to detect and
exclude different ‘defects’ in possible computations of a Turing
machine. Our task in the proof of Theorem 3 will be to design such
an encoding of computations that can be verified by a single CQ.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

373

3.2 Proof idea
To achieve this, similarly to [7–9, 12, 13], we represent computations
of a Turing machine by means of annotated binary trees. The design
of the tree-representation of computations is such that its structure
can be connected with expansions (cactuses) of a given sirup via a
series of small Boolean circuits, which is the main innovation of
our construction.

More precisely, we use the criterion of Prop. 2 for testing bound-
edness. Our aim is, given any alternating Turing machine (ATM)𝑴
deciding a language in AExpSpace = 2ExpTime and an input𝒘 , to
construct a (dag-shaped) focused 1-CQ 𝒒 of polynomial size such
that the following holds:

Lemma 4. 𝑴 rejects 𝒘 iff there is 𝐾 < 𝜔 such that every cactus

C ∈ 𝔎𝒒 contains a homomorphic image of some C− ∈ 𝔎𝒒 of depth

at most 𝐾 .

We represent both the computation space of 𝑴 on 𝒘 and 𝒒-
cactuses by 01-trees: binary ditrees whose edges are labelled by 0 or
1, with siblings having different labels. On the one hand, we encode
the computation space of 𝑴 in such a way that checking whether
an arbitrary 01-tree represents a rejecting computation-tree on
𝒘 can be done by means of polynomially-many polynomial-size
Boolean circuits (in fact, formulas). On the other hand, the 1-CQ
𝒒 we associate with 𝑴 and 𝒘 has two solitary 𝑇 -nodes, 𝑡0 and 𝑡1.
Thus, we can regard the skeleton C𝑠 of any cactus C ∈ 𝔎𝒒 as a
01-tree, indicating which of 𝑡0 or 𝑡1 were budded. The 1-CQ 𝒒 is
assembled from gadgets implementing the Boolean circuits used
for checking the above properties of computations.

3.3 Connecting computations and cactuses
3.3.1 Encoding computations by 01-trees. We assume that we are
given an ATM 𝑴 = (𝑄, Γ, 𝛿, 𝑞init, 𝑞accept, 𝑞reject, 𝑔) with states 𝑄
including 𝑞init, 𝑞accept, 𝑞reject, tape alphabet Γ, transition function 𝛿 ,
and 𝑔 : 𝑄 → {∧,∨}. For any input𝒘 ∈ Γ∗, a configuration of 𝑴 is a
triple containing information about the current state, the current
position of the head, and the current content of the 2𝒑 (|𝒘 |) = 2𝒑
tape-cells, for some polynomial 𝒑. If its current state is 𝑞, then we
call the configuration a 𝑞-configuration. The full computation space

T𝑴,𝒘 is a finite tree whose nodes are (labelled by) configurations,
with its root being the initial configuration 𝑐

init(𝒘) (in state 𝑞init
reading the leftmost symbol of 𝒘), the descendants generated by
𝛿 , and each leaf being either a 𝑞accept- or a 𝑞reject-configuration (a
halting configuration). We assume that the depth of T𝑴,𝒘 is 2𝒑 (|𝒘 |) ,
𝑞init, 𝑞accept, 𝑞reject are ∨-states, every non-leaf has branching 2, and
∧- and ∨-configurations alternate on each branch. A computation-

tree (of 𝑴 on𝒘) is a substructure T of T𝑴,𝒘 , which is a tree with
root 𝑐

init(𝒘) such that every non-leaf ∧-node (∨-node) in T has
both (respectively, exactly one) of its children from T𝑴,𝒘 in T . The
tree T is rejecting if it has a 𝑞reject-leaf and accepting otherwise.
𝑴 rejects 𝒘 iff all computation-trees of 𝑴 on𝒘 are rejecting, and
accepts 𝒘 otherwise.

We encode a computation-tree T by an infinite 01-tree 𝛽+T via
a series of steps as follows. First, by our assumption on binary
branching, T can be considered as a (finite) 01-tree 𝛽0

T (with its
nodes still labelled by configurations). Next, we take the full binary
‘substructure’ 𝛽1

T of the ∨-configurations in 𝛽0
T as shown below:

p p p p
p p
p p

p
p

�
�

@
@

�
�

�
�

A
A

A
A0 1 0 1

0 1

0

1 0

∨

∧

∨

∧

∨ 𝑐
init(𝒘)

𝑐1

𝑐2 𝑐3

𝑐4 𝑐5

𝑐6 𝑐7 𝑐8 𝑐9
𝛽0
T

{

p p p p
p p

p
�
�

@
@

�
�

�
�

A
A

A
A0 1 0 1

0 1

𝑐
init(𝒘)

𝑐2 𝑐3

𝑐6 𝑐7 𝑐8 𝑐9
𝛽1
T

(So the depth of 𝛽1
T is 2𝒑−1.) The information about which child of

each ∨-configuration is taken in 𝛽0
T is provided in the encoding of

the subsequent ∨-configuration. To achieve this, we fine-tune the
‘configurations-as-binary-tree-leaves’ representation of [12, 13] for
our purpose. Let 𝒅 = 𝒅 (|𝒘 |) > 𝒑(|𝒘 |) = 𝒑 be a polynomial in |𝒘 |
such that configurations can be encoded by a 01-sequence of length
2𝒅 . We represent each ∨-configuration 𝑐 by the 01-sequence

state 𝑞

log |𝑄 |
cell content 𝑡10

log |Γ |
cell content 𝑡20

log |Γ |
. . . active cell 𝑡𝑘1

log |Γ |
. . . 0/1

where the last bit is 0 (1) iff 𝑐’s parent ∧-configuration is a 0-child
(1-child) of its parent. (By imposing some restrictions on 𝑄 and Γ,
one can ensure that, given a 2𝒅 -long 01-sequence, it is ‘easy’ to
locate the first bit of each ‘cell-representation’ in it.) We encode the
digits of this sequence as the leaves of a 01-tree 𝛾0

𝑐 of depth 𝒅 + 1
by taking first a full binary tree of depth 𝑑 , and for each of its 2𝒅
leaves, taking a ∗-child whenever the corresponding digit in the
sequence is ∗. (Throughout, we use ∗ in 01-sequences as a wildcard
for 0 or 1.) Finally, we turn 𝛾0

𝑐 to a 01-tree 𝛾𝑐 of depth 4𝒅 + 4 by
adding an incoming edge-pattern 111 above each node:

𝑐 = 0110 {

p p p pp p p pp pp
�� ��AA AA

�� @@

0 1 1 0
0 1 0 1

0 1

𝛾0
𝑐

{

𝛾𝑐

pp
pp

p p p p p p p p

p p p p p p p p
p p p p

p p p pp p p pAA AA AA AA

AA AA AA AA

AA AA AA AA

�� ��AA AA

AA AA

AA AA

AA AA

�� @@

1
1
1

1
1

1
1

1
1

1
1

0

1
1

1
1

1
1

1
1

0

0 0
1

1
1

0

1
1

1
1

We call 𝛾𝑐 a 𝑐-tree (or, a configuration-tree, in general).
Next, we take the full binary 01-tree 𝛽1

T above (whose nodes
are labelled by ∨-configurations), and turn it to a 01-tree 𝛽T (now
without node labels) as follows. We add an incoming edge-pattern
0010 above the root, stick the root of a 𝑐-tree to each node labelled
by some 𝑐 , and add an outgoing edge-pattern 001 below each node
before branching; see Fig. 1. Note that 𝛽T is of depth 𝒆 = 𝒆(|𝒘 |), for
some exponential function 𝒆. For any configuration 𝑐 , if the 𝑐-tree
𝛾𝑐 is a substructure of 𝛽T , then we call the root node of 𝛾𝑐 a main

node (of 𝑐) and say that it represents 𝑐 in 𝛽T ; see •-nodes in Fig. 1.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

374

p p p pp pp 𝑐
init(𝒘)

𝑐2 𝑐3

𝑐6 𝑐7 𝑐8 𝑐9

𝛽1
T

0 1

0 1 0 1
{

s s s s

s s
pp
p

pp
p

pp
pp
pp
pp

s
C
C
C

HHH
HHH

𝛾𝑐
init(𝒘)

�
�
�

�
�
�

C
C
C

@
@

@
𝛾𝑐2 𝛾𝑐3

�
�
�

�
�
�

C
C
C

�
�
�

A
A
A

S
S
S

𝛾𝑐6 𝛾𝑐7 𝛾𝑐8 𝛾𝑐9

0
0
1
0
0
0
1

0 1
0
0
1

0
0
1

0 1 0 1

�
�

�
�

B
B

B
B

J
J

�
�

Q
Q

�� AA �� @@
𝛽T

Figure 1: The 01-tree 𝛽T .

We also consider an infinite ‘version’ of 𝛽T . We obtain the in-
finite 01-tree 𝛽+T from 𝛽T by repeatedly sticking the following
pattern to the main node of each halting configuration 𝑐:

s s

s
pp
p

�
�
�

S
S
S

𝛾𝑐 𝛾𝑐

0
0
1

0 1�� AA

In other words, we assume 𝛿 to be such that after reaching a halting
configuration 𝑐 , 𝑐 is repeated forever on every branch of T𝑴,𝒘 .

An infinite 01-tree 𝛽 is ideal if it can be constructed by start-
ing with 𝛽+T0 , for some computation-tree T0, and then by repeat-
edly attaching to each of the leaves (that must be leaves of some
configuration-tree) the root of some 𝛽+T , where each T can be any
computation-tree.

Observe that each branch of an ideal tree is infinite. We are
interested in finite ‘middle-bits’ of ideal trees. We call a subtree
of an ideal tree having a main node (of not necessarily 𝑐

init(𝒘)) as
root a desired tree. Given some𝑀 < 𝜔 and a 01-tree 𝛽 , by an𝑀-cut
of 𝛽 we mean the 01-tree obtained by cutting all longer than 𝑀
branches in 𝛽 at depth𝑀 . The pretty baroque design above ensures
that there is a polynomial list of polynomially detectable properties
that identify desired trees up to isomorphism (see Claim 4.1 below).
In the next subsection, we discuss these properties.

3.3.2 Characterising exponential computations polynomially. We
investigate certain polynomial neighbourhoods of nodes in 01-
trees, and collect a polynomial list of their properties that fully
characterise those situations that can occur in a desired tree. For
each of the properties 𝑃 below, in Sec. 3.4 we describe in detail
how to give a small Boolean circuit 𝜑𝑃 having specific input-types
such that, when evaluated at a node 𝔞 of some 01-tree 𝛽 , 𝑃 fails at
𝔞 iff there is some 01-sequence 𝒃 such that 𝒃 is gathered from the
neighbourhood of 𝔞 in 𝛽 according to the input-types of 𝜑𝑃 and
𝜑𝑃 [𝒃] = 1.

Given 𝑛 < 𝜔 and a node 𝔞 of depth ≤ 𝑛 in a 01-tree 𝛽 , for any
𝑘 ≤ 𝑛, we denote by 𝑃𝑘𝔞 the 𝑘-long suffix of the path ending at 𝔞
in 𝛽 . To begin with, observe that every path in a desired tree that
is longer than 4𝒅 + 6 must contain a main node, and main nodes
can be identified by the property ‘the path leading to the node ends
with a 001∗-pattern’. So, given a node 𝔞 in a 01-tree 𝛽 , we say that
𝔞 is good in 𝛽 , if either the depth of 𝔞 in 𝛽 is < 4𝒅 + 11, or 𝑃4𝒅+11

𝔞

contains a 001∗-pattern; see Sec. 3.4.1.
Next, we describe proper branching-patterns in a desired tree. It

is easy to see that if the path leading to a node 𝔞 does contain a 001∗-
pattern, then there exist unique 𝑘 , ℓ and𝑤 such that 4 ≤ 𝑘 ≤ 4𝒅+11,
𝑃𝑘𝔞 = 001∗(111∗)ℓ𝑤 , and either ℓ ≤ 𝒅 and 𝑤 is a prefix of 001, or
ℓ < 𝒅 and𝑤 is a prefix of 111. Moreover, ℓ and𝑤 characterise the
children of 𝔞. We call 𝔞 properly branching in 𝛽 if the following
conditions (pb1)–(pb4) hold:
(pb1) if either 𝑤 is empty and ℓ = 0, or 𝑤 = 001, or 𝑤 = 111 and

ℓ < 𝒅 − 1, then 𝔞 has two children;
(pb2) if either 𝑤 is empty and 0 < ℓ < 𝒅, or 𝑤 = 1, or 𝑤 = 11, or

𝑤 = 00, then 𝔞 has no 0-child;
(pb3) if either 𝑤 is empty and ℓ = 𝒅, or 𝑤 = 0, then 𝔞 has no

1-child;
(pb4) if𝑤 = 111 and ℓ = 𝒅 − 1, then 𝔞 has only one child;
see Sec. 3.4.2. Note that leaves are never properly branching.

Next, we ensure that the ‘building-block’ computation-trees in
an ideal tree are properly represented in a 01-tree 𝛽 (provided that
all of its nodes are properly branching). First, after each leaf of
a configuration-tree, the representation of a proper computation-
tree from 𝑐

init(𝒘) should start. In such a case, the main node 𝔞

of 𝑐
init(𝒘) can be identified by an incoming path ending with a

111∗001∗-pattern. Then detecting whether the 𝑐-tree with root 𝔞 is
not a 𝑐

init(𝒘) -tree requires checking polynomial information. We
call 𝔞 properly initialising in 𝛽 if whenever the depth of 𝔞 in 𝛽 is
≥ 8, 𝑃8

𝔞 is of the form 111∗001∗, and 𝔞 is the root of a 𝑐-tree, then
𝑐 = 𝑐

init(𝒘) ; see Sec. 3.4.4. Second, the computation steps described
by 𝛿 should be properly represented. We call 𝔞 properly computing

in 𝛽 if, whenever the following pattern is present at 𝔞 in 𝛽
𝔞

C
C
C

@
@

@
𝛾𝑐

s s

s
pp
p

�
�
�

S
S
S

𝛾𝑐0 𝛾𝑐1

0
0
1

0 1�� AA

then the triple (𝑐, 𝑐0, 𝑐1) of∨-configurations ‘matches’ the transition
function 𝛿 of𝑴 . In order to detect that this is not the case, one needs
to check polynomial information ‘around’ 𝔞 in 𝛽 ; see Sec. 3.4.3.

We call 𝔞 correct in 𝛽 if 𝔞 is good, properly branching, properly
initialising and properly computing in 𝛽 . Otherwise, 𝔞 is called
incorrect in 𝛽 . Now it is straightforward to show that the collected
properties of 𝔞-neighbourhoods characterise desired trees:

Claim 4.1. For any 𝑀 < 𝜔 , any 01-tree 𝛽 and any node 𝔞 with

𝑃4
𝔞 = 001∗, the𝑀-cut 𝛽𝑀𝔞 of the subtree of 𝛽 with root 𝔞 is isomorphic

to the 𝑀-cut of a desired tree iff every node of depth < 𝑀 in 𝛽𝑀𝔞 is

correct in 𝛽𝑀𝔞 .

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

375

We also need to detect the presence of nodes representing 𝑞reject-
configurations in computation-trees; see Sec. 3.4.5.

3.3.3 Cactus homomorphisms vs rejecting computations. As our
1-CQ 𝒒 will have one solitary 𝐹 -node and two solitary 𝑇 -nodes 𝑡0
and 𝑡1, there are four possible kinds of non-root segments in any
cactus C ∈ 𝔎𝒒 denoted 𝒒−

𝑇𝑇
, 𝒒−
𝐴𝑇

, 𝒒−
𝑇𝐴

and 𝒒−
𝐴𝐴

. For example, 𝒒−
𝑇𝑇

is obtained by replacing the 𝐹 -label of the solitary 𝐹 -node in 𝒒 by
𝐴; in cactuses different from 𝒒, leaf segments are of this form. The
segment 𝒒−

𝑇𝐴
is obtained by replacing both the 𝐹 -label of the solitary

𝐹 -node and the 𝑇 -label of the 𝑡1-node by 𝐴. As 𝒒 itself does not
contain 𝐴, if ℎ : C → C′ is a homomorphism, for some C, C′ ∈ 𝔎𝒒 ,
then the focus of every non-root segment 𝔰 in C (labelled by 𝐴)
is mapped by ℎ to the focus of some non-root segment 𝔰′ in C′.
Our 𝒒 will also satisfy (foc): for every homomorphism ℎ : C → C′
between cactuses C, C′ ∈ 𝔎𝒒 , ℎ maps the only solitary 𝐹 -node in
C (the focus of its root segment) to the only solitary 𝐹 -node in C′.
So we say that ℎ maps a segment 𝔰 into a segment 𝔰′ if ℎ maps the
focus of 𝔰 to the focus of 𝔰′.

Now the proof of Theorem 3 can be completed as follows: Using
Claim 4.1, we prove in Appendix A that to obtain Lemma 4 it suffices
to construct a 1-CQ 𝒒 such that (foc) holds and, for every C ∈ 𝔎𝒒 ,

(leaf) there is a homomorphism ℎ : 𝒒−
𝑇𝑇
→ C mapping 𝒒−

𝑇𝑇
into some non-leaf segment 𝔰 of C iff either 𝔰 is incorrect or
𝔰 represents a 𝑞reject-configuration in the skeleton C𝑠 of C;

(branch) if ℎ maps 𝒒−
𝑇𝑇

into a non-leaf segment 𝔰 that is not
properly branching in C𝑠 due to violating (pb1), but 𝔰 is
correct in C𝑠 according to the other properties, then
– ℎ(𝑡0) = 𝑡0 and ℎ(𝑡1) ≠ 𝑡0, if 𝔰 = 𝒒−

𝑇𝐴
;

– ℎ(𝑡1) = 𝑡1 and ℎ(𝑡0) ≠ 𝑡1, if 𝔰 = 𝒒−
𝐴𝑇

.
After defining the focused 1-CQ 𝒒 in Secs. 3.5.1–3.5.3, we show in
Sec. 3.5.4 that, for every C ∈ 𝔎𝒒 , (leaf) and (branch) are satisfied,
completing the proof of Lemma 4.

3.4 Boolean formulas
We describe polynomially-many polynomial-size Boolean circuits
(in fact, Boolean formulas) that test the (failure) of the properties of
a node 𝔞 in a 01-tree 𝛽 , given in Sec. 3.3.2. For each such formula,
we also define some input-types, describing where around the tested
node 𝔞 the input 01-sequence for the formula should be ‘gathered’
from. In defining the input-types we use the following terminology:
for 𝑛 < 𝜔 , the 𝑛-long uppath (of 𝔞 in 𝛽) is the reverse of the 𝑛-long
suffix of the path ending at 𝔞 in 𝛽 ; while an 𝑛-long downpath is the
𝑛-long prefix of some path starting at 𝔞 in 𝛽 .

3.4.1 Checking goodness. One can clearly define a Boolean formula
Good(𝑥1, . . . , 𝑥4𝒅+11) such that, for any 4𝒅 + 11-long 01-sequence
𝒃 , Good[𝒃] = 1 iff 𝒃 does not contain the reverse of a 001∗-pattern.
The input should be gathered from the 4𝒅 + 11-long uppath.

3.4.2 Checking proper branching-patterns. For each of conditions
(pb1)–(pb4) in Sec. 3.3.2, we have a different family of formulas.

(pb1) For every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11, we define a Boolean
formula MustBranch𝑘 (𝑥1, . . . , 𝑥𝑘) such that, for any 𝑘-long 01-
sequence 𝒃 = (𝑏1, . . . , 𝑏𝑘), 𝜑𝑘 [𝒃] = 1 iff 𝒃 is the reverse of a se-
quence of the form 001∗(111∗)ℓ𝑤 , where either 𝑤 is empty and
ℓ = 0, or𝑤 = 001, or𝑤 = 111 and ℓ < 𝒅 − 1. For example, if 𝑘 = 4

then we have

MustBranch4 [𝒃] = 1 iff 𝒃 is the reverse of 001∗.

The input should be gathered from the 𝑘-long uppath.
(pb2) For every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11, we define a Boolean

formula NoBranch𝑘0 (𝑥1, . . . , 𝑥𝑘+1) such that, for any 𝑘 + 1-long 01-
sequence 𝒃 = (𝑏1, . . . , 𝑏𝑘+1), NoBranch𝑘0 [𝒃] = 1 iff 𝑏𝑘+1 = 0 and
(𝑏1, . . . , 𝑏𝑘) is the reverse of a sequence of the form 001∗(111∗)ℓ𝑤 ,
where either 𝑤 is empty and 0 < ℓ < 𝒅, or 𝑤 = 1, or 𝑤 = 11, or
𝑤 = 00. The input for (𝑥1, . . . , 𝑥𝑘) should be gathered from the
𝑘-long uppath, and for 𝑥𝑘+1 from a 1-long downpath.

(pb3) For every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11, we define a polynomial
size Boolean formula NoBranch𝑘1 (𝑥1, . . . , 𝑥𝑘+1) such that, for any
𝑘 + 1-long 01-sequence 𝒃 = (𝑏1, . . . , 𝑏𝑘+1), NoBranch𝑘1 [𝒃] = 1 iff
𝑏𝑘+1 = 1 and (𝑏1, . . . , 𝑏𝑘) is the reverse of a sequence of the form
001∗(111∗)ℓ𝑤 , where either 𝑤 is empty and ℓ = 𝒅, or 𝑤 = 0. The
input for (𝑥1, . . . , 𝑥𝑘) should be gathered from the 𝑘-long uppath,
and for 𝑥𝑘+1 from a 1-long downpath.

(pb4) For every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11, we define a polynomial
size Boolean formula NoBranch𝑘 (𝑥1, . . . , 𝑥𝑘+2) such that, for any
𝑘 + 2-long 01-sequence 𝒃 = (𝑏1, . . . , 𝑏𝑘+2), NoBranch𝑘 [𝒃] = 1 iff
𝑏𝑘+1 ≠ 𝑏𝑘+2 and (𝑏1, . . . , 𝑏𝑘) is the reverse of a sequence of the
form 001∗(111∗)ℓ𝑤 , where 𝑤 = 111 and ℓ = 𝒅 − 1. The input for
(𝑥1, . . . , 𝑥𝑘) should be gathered from the 𝑘-long uppath, and for
each of 𝑥𝑘+1 and 𝑥𝑘+2 from a 1-long downpath.

3.4.3 Checking proper computation steps. This is an adaptation of
the technique of [12, 13] to our representation. Suppose that

– 𝑛𝑄 is such that 𝑛𝑄 -long 01-sequences are in one-to-one cor-
respondence with the states in 𝑄 ,

– 𝑛Γ is such that (𝑛Γ − 1)-long 01-sequences are in one-to-one
correspondence with the symbols in Γ,

– 𝑛𝑄 + 2𝒑 · 𝑛Γ + 1 = 2𝒅

(see the picture in Sec. 3.3.1 on representing configurations with
2𝒅 -long 01-sequences).

First, we define a Boolean formula Head(𝑥1, . . . , 𝑥4(𝒅+1)) such
that, for any 4(𝒅 + 1)-long 01-sequence 𝒃 , Head[𝒃] = 1 iff 𝒃 de-
scribes a path in a desired tree starting at a main node with 1, and
ending at the first bit of the representation of some cell-content of
some configuration 𝑐 (that is, it is the (𝑛𝑄 + 𝑖 · 𝑛Γ + 1)th bit of the
01-sequence representing 𝑐 , for some 𝑖 < 2𝒑). Similarly, for ∗ = 0, 1,
we define a Boolean formula Head∗ (𝑥1, . . . , 𝑥4(𝒅+1)+4) such that,
for any 4(𝒅+1)+4-long 01-sequence 𝒃 , Head∗ [𝒃] = 1 iff 𝒃 describes
a path in a desired tree starting at a main node with 001∗1, and
ending at the first bit of the representation of some cell-content of
some configuration.

Next, we define a Boolean formula

SameCell(𝑥1, . . . , 𝑥4(𝒅+1) , 𝑦1, . . . , 𝑦4(𝒅+1)+4, 𝑧1, . . . , 𝑧4(𝒅+1)+4)

such that, for any 4(𝒅+1)-long 01-sequence 𝒃 and 4(𝒅+1)+4-long 01-
sequences 𝒃0, 𝒃1, we have SameCell[𝒃, 𝒃0, 𝒃1] = 1 iff Head[𝒃] = 1,
Head∗ [𝒃∗] = 1, and the three paths 𝒃, 𝒃0, 𝒃1 end at the same cell of
a configuration and its two children-configurations. (The number 𝑖
of this cell, for some 𝑖 < 2𝒑 , can be identified from 𝒃 .)

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

376

Next, we define a Boolean formula State(𝑥1, . . . , 𝑥4(𝒅+1) ·𝑛𝑄)
such that, for any 4(𝒅 + 1)-long 01-sequences 𝒃1, . . . , 𝒃𝑛𝑄 ,

State[𝒃1, . . . , 𝒃𝑛𝑄] = 1

iff for every 𝑗 ≤ 𝑛𝑄 , 𝒃 𝑗 describes a 4(𝒅 + 1)-long path in a de-
sired tree starting at a main node with 1, and ending at the 𝑗th
bit of the representation of some configuration 𝑐 . (So, whenever
𝒃 𝑗 = (𝑏1

𝑗
, . . . , 𝑏

4(𝒅+1)
𝑗

) for each 𝑗 ≤ 𝑛𝑄 , then (𝑏4(𝒅+1)
1 , . . . , 𝑏

4(𝒅+1)
𝑛𝑄)

encodes a state in𝑄 .) Similarly, for ∗ = 0, 1, we define a Boolean for-
mula State∗ (𝑥1, . . . , 𝑥 (4(𝒅+1)+4) ·𝑛𝑄) such that, for any 4(𝒅 + 1) + 4-
long 01-sequences 𝒃1 . . . , 𝒃𝑛𝑄 , State∗ [𝒃1 . . . , 𝒃𝑛𝑄] = 1 iff for every
𝑗 ≤ 𝑛𝑄 , 𝒃 𝑗 describes a path in a desired tree starting at a main node
with 001∗1, and ending at the 𝑗th bit of the representation of some
configuration.

Next, we define a Boolean formula Cell(𝑥1, . . . , 𝑥4(𝒅+1) ·𝑛Γ) such
that, for any 4(𝒅 + 1)-long 01-sequences 𝒃1 . . . , 𝒃𝑛Γ ,

Cell[𝒃1 . . . , 𝒃𝑛Γ] = 1

iff there is 𝑖 < 2𝒑 such that, for every 𝑗 ≤ 𝑛Γ , 𝒃 𝑗 describes a path
in a desired tree starting at a main node with 1, and ending at
the 𝑗th bit of the representation of the 𝑖th cell’s content in some
configuration. (So, Head[𝒃1] = 1, and if 𝒃 𝑗 = (𝑏1

𝑗
, . . . , 𝑏

4(𝒅+1)
𝑗

) for
each 𝑗 ≤ 𝑛Γ , then (𝑏4(𝒅+1)

2 , . . . , 𝑏
4(𝒅+1)
𝑛Γ) encodes a symbol in Γ.)

Similarly, for ∗ = 0, 1, we define a polynomial size Boolean formula
Cell∗ (𝑥1, . . . , 𝑥 (4(𝒅+1)+4) ·𝑛Γ) such that, for any 4(𝒅 + 1) + 4-long
01-sequences 𝒃1 . . . , 𝒃𝑛Γ , Cell∗ [𝒃1 . . . , 𝒃𝑛Γ] = 1 iff there is 𝑖 < 2𝒑
such that, for every 𝑗 ≤ 𝑛Γ , 𝒃 𝑗 describes a path in a desired tree
starting at a main node with 001∗1, and ending at the 𝑗 th bit of the
representation of the 𝑖th cell’s content in some configuration (In
particular, Head∗ [𝒃1] = 1.)

Next, for 𝑧 ∈ {0, 1}, we take the following tuples of variables:
– 𝒔 = (𝑠1, . . . , 𝑠4(𝒅+1) ·𝑛𝑄), which is to be gathered from 𝑛𝑄 -

many 4(𝒅 + 1)-long downpaths (representing the ∨-state in
𝑐);

– 𝒗 = (𝑣1, . . . , 𝑣4(𝒅+1) ·𝑛Γ), which needs to be gathered from
𝑛Γ-many 4(𝒅 + 1)-long downpaths (representing the active
cell’s content in 𝑐);

– 𝒔0 = (𝑠0
1, . . . , 𝑠

0
(4(𝒅+1)+4) ·𝑛𝑄), 𝒔

1 = (𝑠1
1, . . . , 𝑠

1
(4(𝒅+1)+4) ·𝑛𝑄),

each of which needs to be gathered from𝑛𝑄 -many 4(𝒅+1)+4-
long downpaths (representing the ∨-states in 𝑐0, 𝑐1);

– 𝒕𝑧 = (𝑡𝑧1 , . . . , 𝑡
𝑧
4(𝒅+1) ·𝑛Γ), 𝒕

𝑧0 = (𝑡𝑧0
1 , . . . , 𝑡𝑧0

(4(𝒅+1)+4) ·𝑛Γ), and
𝒕𝑧1 = (𝑡𝑧1

1 , . . . , 𝑡𝑧1
(4(𝒅+1+4)) ·𝑛Γ), for 𝑧 ∈ {0, 1}, where 𝒕

𝑧 is to
be gathered from 𝑛Γ-many 4(𝒅 + 1)-long downpaths, and
each of 𝒕𝑧0 and 𝒕𝑧1 is to be gathered from𝑛Γ-many 4(𝒅+1)+4-
long downpaths (𝒕𝑧 , 𝒕𝑧0, 𝒕𝑧1 represent the 𝑖th cell’s contents
in 𝑐, 𝑐0, 𝑐1, for some 𝑖 < 2𝒑 , when the 𝑧 ∧-child of 𝑐 is taken
in T𝑴,𝑥);

– 𝒛0 = (𝑧0
1, . . . , 𝑧

0
4(𝒅+1)+4) and 𝒛1 = (𝑧1

1, . . . , 𝑧
1
4(𝒅+1)+4), each

of which needs to be gathered from a 4(𝒅 + 1) + 4-long
downpath (representing the respective bits identifying the
parent ∧-configuration of 𝑐0 and 𝑐1).

For 𝑧 ∈ {0, 1}, we can define a Boolean formula Step𝑧 such that, for
any 01-sequence 𝒃 = (𝒔, 𝒗, 𝒔0, 𝒔1, 𝒕, 𝒕0, 𝒕1, 𝒛0, 𝒛1), Step𝑧 [𝒃] = 1 iff
𝒛0 = 001011 . . . 1𝑧, 𝒛1 = 001111 . . . 1𝑧, State[𝒔] = 1, Cell[𝒗] = 1,

State0 [𝒔0] = 1, State1 [𝒔1] = 1, Cell[𝒕] = 1, Cell0 [𝒕0] = 1,
Cell1 [𝒕1] = 1, and

SameCell[𝑡1, . . . , 𝑡4(𝒅+1) , 𝑡01 , . . . , 𝑡
0
4(𝒅+1)+4, 𝑡

1
1 , . . . , 𝑡

1
4(𝒅+1)+4] = 1,

but the information provided by 𝒃 is inconsistent with the transition
function 𝛿 in the sense that when the 𝑧 ∧-child of 𝑐 is chosen as the
common parent of 𝑐0 and 𝑐1 in the computation-tree T , the content-
triple of the 𝑖th cells of 𝑐, 𝑐0, 𝑐1 is wrong, where 𝑖 is identified from
the input in (𝑡1, . . . , 𝑡4(𝒅+1) , 𝑡01 , . . . , 𝑡

0
4(𝒅+1)+4, 𝑡

1
1 , . . . , 𝑡

1
4(𝒅+1)+4).

Finally, we define Step(𝒔, 𝒗, 𝒔0, 𝒔1, 𝒕0, 𝒕00, 𝒕01, 𝒕1, 𝒕10, 𝒕11, 𝒛0, 𝒛1) as
the disjunction

Step0 (𝒔, 𝒗, 𝒔0, 𝒔1, 𝒕0, 𝒕00, 𝒕01, 𝒛0, 𝒛1) ∨
Step1 (𝒔, 𝒗, 𝒔0, 𝒔1, 𝒕1, 𝒕10, 𝒕11, 𝒛0, 𝒛1).

It is not hard to see that there is 𝒃 with Step[𝒃] = 1 iff the in-
formation about the configuration-triple (𝑐, 𝑐0, 𝑐1) encoded in 𝒃 is
inconsistent with 𝛿 .

3.4.4 Checking proper initialisation. We take the following tuples
of variables:

– 𝒚 = (𝑦1, . . . , 𝑦8), which is to be gathered from the 8-long
uppath (representing the last 8-bits of the path leading to
the main node of a configuration 𝑐);

– 𝒔 = (𝑠1, . . . , 𝑠4(𝒅+1) ·𝑛𝑄), to be gathered from 𝑛𝑄 -many 4(𝒅 +
1)-long downpaths (representing the state in 𝑐);

– 𝒘 𝑗 = (𝑤 𝑗

1 , . . . ,𝑤
𝑗

4(𝒅+1) ·𝑛Γ), for 𝑗 < |𝒘 |, each of which needs
to be gathered from 𝑛Γ-many 4(𝒅 + 1)-long downpaths (rep-
resenting the contents of the first |𝒘 |-many cells in 𝑐);

– 𝒕 = (𝑡1, . . . , 𝑡4(𝒅+1) ·𝑛Γ), which needs to be gathered from 𝑛Γ-
many 4(𝒅 + 1)-long downpaths (representing the contents
of some cell in 𝑐).

Then we can define a Boolean formula Init such that, for any
01-sequence 𝒃 = (𝒚, 𝒔,𝒘1, . . . ,𝒘 |𝒘 |, 𝒕), Init[𝒃] = 1 iff 𝒚 is the re-
verse of some pattern 111∗001∗, State[𝒔] = 1, for all 1 ≤ 𝑗 ≤ |𝑥 |,
Cell[𝒘 𝑗] = 1 and (𝑤 𝑗

1 , . . . ,𝑤
𝑗

4(𝒅+1)) ends at the (𝑛𝑄 + (𝑗 − 1) ·𝑛Γ +
1)th bit of the 01-sequence representing configurations, Cell[𝒕] =
1, but the information provided by 𝒃 is inconsistent with 𝑐 being
𝑐
init(𝒘) (at the cell identified by the prefix (𝑡1, . . . 𝑡4(𝒅+1)) of 𝒕).

3.4.5 Representing 𝑞reject-configurations. This can clearly be done
by a formula Reject(𝑠1, . . . , 𝑠4(𝒅+1) ·𝑛𝑄) for which Reject[𝒔] = 1
iff State[𝒔] = 1 and the sequence

(𝑠4(𝒅+1) , 𝑠4(𝒅+1) ·2, ..., 𝑠4(𝒅+1) ·𝑛𝑄)
encodes𝑞reject. The input should be gathered from𝑛𝑄 -many 4(𝒅+1)-
long downpaths.

3.5 Query design
The dag-shaped 1-CQ 𝒒 having one solitary 𝐹 -node, two solitary𝑇 -
nodes and many 𝐹𝑇 -twins will be such that properties (foc), (leaf)
and (branch) given in Sec. 3.3.3 hold, for all C, C′ ∈ 𝔎𝒒 .

3.5.1 Overall query structure. To simplify notation, in our pictures
we omit the 𝑅-labels from 𝑅-arrows, and use extra labels (different
from 𝐹 ,𝑇) on nodes, say 𝐵 on 𝑎, as a shorthand for a 𝐵-arrow (𝑎, 𝑎′)
to a fresh node 𝑎′. Letters other than upper case italics (greek, lower
case italics and bold) are used as pointers and are not part of 𝒒.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

377

𝐹

𝜉

𝛼

𝑡0
𝑇

𝑡1
𝑇

𝑊

𝜉 ′

𝑆

𝑆

𝑅𝔤

𝜚𝔤

𝑀𝔤

𝜚 ′𝔤

𝑀 ′𝔤

𝜏𝔤 𝑅𝔤

𝐹𝑇

𝑈𝔤 𝑆

𝑆

𝑈𝔤

𝜄𝔤

𝑅𝔤

𝐼𝔤

𝜋𝔤

𝐼𝔤

type 𝐴𝑇

𝐹

𝜉

𝛼

𝑡0 𝑇 𝑡1𝑇

𝑊

𝜉 ′

𝑆

𝑆

𝑅𝔤

𝜚𝔤

𝑀𝔤

𝜚 ′𝔤

𝑀 ′𝔤

𝜏𝔤 𝑅𝔤

𝐹𝑇

𝑈𝔤 𝑆𝑈𝔤

𝜄𝔤

𝑅𝔤

𝐼𝔤

𝜋𝔤

𝑆

type 𝑇𝐴
𝐹

𝜉

𝛼

𝑡0
𝑇

𝑡1
𝑇

𝑊

𝜉 ′

𝑆

𝑆

𝑅𝔤

𝜚𝔤

𝑀𝔤

𝜚 ′𝔤

𝑀 ′𝔤

𝜏𝔤 𝑅𝔤

𝐹𝑇

𝑈𝔤 𝑆

𝑆

𝑈𝔤

𝜄𝔤

𝑅𝔤

𝐼𝔤

𝜋𝔤

type 𝐴𝐴

Figure 2: Frames of type 𝐴𝑇 , 𝑇𝐴 and 𝐴𝐴.

The 1-CQ 𝒒 has the following simple base block containing all of
the solitary 𝐹 - and 𝑇 -nodes of 𝒒:

𝐹

𝜉

𝛼

𝑡0
𝑇

𝑡1
𝑇

𝑊

𝜉 ′

𝑆

𝑆

Wired to the base in 𝒒 are gadgets 𝔤 that implement the Boolean
formulas 𝜑𝔤 defined in Sec. 3.4. Each gadget 𝔤 has four components:
two isomorphic copies of its main block 𝑀𝔤 and𝑀 ′𝔤 , an input block

𝐼𝔤 and a frame. The frame wires the gadget to the base and can be
of one of the three types 𝐴𝑇 ,𝑇𝐴 and 𝐴𝐴, which are shown in Fig. 2
(with the base block being indicated in each case by thin lines).
We say that 𝔤 is of type 𝑍 if its frame is of type 𝑍 . The frame of 𝔤
has a few distinguished nodes: 𝜋𝔤 and 𝜄𝔤 via which 𝐼𝔤 is 𝑅𝔤-wired
to the base block, 𝜚𝔤 via which 𝑀𝔤 is 𝑅𝔤-wired to the base block,
𝜚 ′𝔤 and 𝜏𝔤 via which 𝑀 ′𝔤 is 𝑅𝔤-wired to the base block (where the
edge-labelling 𝑅𝔤 is also unique for gadget 𝔤), the single 𝐹𝑇 -twin
of 𝔤 (none of 𝐼𝔤 ,𝑀𝔤 and𝑀 ′𝔤 contains any 𝐹𝑇 -twins), and two nodes
labelled by𝑈𝔤 .

It is easy to see that 𝒒 satisfies (foc): its 𝐹 -node has succes-
sors, while none of the 𝐹𝑇 -nodes does. Further, we observe that if
ℎ : 𝒒−

𝑇𝑇
→ C is a homomorphism mapping 𝒒−

𝑇𝑇
into some non-leaf

segment 𝔰, then there must be a gadget 𝔤 such that ℎ(𝛼) = 𝜏𝔤 , for
the 𝛼-node in 𝒒−

𝑇𝑇
and the 𝜏𝔤-node in 𝔰. Then, because of the 𝑈𝔤-

nodes, ℎ(𝜄𝔤) = 𝛼 must hold, for the 𝜄𝔤-node in 𝒒−
𝑇𝑇

and the 𝛼-node
in 𝔰. Therefore,ℎ(𝜋𝔤) = 𝜚𝔤 and the 𝐼𝔤-block of 𝒒−𝑇𝑇 must be mapped

by ℎ to the 𝑀𝔤-block of 𝔰, forcing the input to interact with the
formula.

Given a gadget 𝔤 and a homomorphism ℎ : 𝒒−
𝑇𝑇
→ C mapping

𝒒−
𝑇𝑇

into a non-leaf segment 𝔰 of some cactus C, we say that 𝔤 is

triggered by ℎ at 𝔰 if ℎ(𝜄𝔤) = 𝛼 , for the 𝜄𝔤-node in 𝒒−
𝑇𝑇

and the 𝛼-
node in 𝔰. We say that 𝔤 is triggered at 𝔰 if there is a homomorphism
ℎ triggering 𝔤 at 𝔰. Observe that if 𝔰 is of the form 𝒒−

𝑍
, for some

𝑍 ∈ {𝐴𝑇,𝑇𝐴,𝐴𝐴}, and 𝔤 is triggered at 𝔰, then 𝔤 is either of type
𝐴𝐴 or of type 𝑍 .

Each gadget 𝔤 in 𝒒 ‘implements’ some Boolean formula 𝜑𝔤 (𝒚)
checking some property of desired trees at node 𝔰 in the skeleton
01-tree C𝑠 of the cactus C. So the input values for the variables in
𝒚 are ‘collected’ from an environment of 𝔰 in C𝑠 . This collection
process is regulated by the input-types of each 𝜑𝔤 . We have the
following gadgets in 𝒒, each implementing some formula described
in Sec. 3.4:

(g1) a type 𝐴𝐴 gadget implementing Good;
(g2) for every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11 and every 𝑍 ∈ {𝐴𝑇,𝑇𝐴}, a

type 𝑍 gadget implementing MustBranch𝑘 ;
(g3) for every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11 and every ∗ ∈ {0, 1}, a type

𝐴𝐴-gadget implementing NoBranch𝑘∗ ;
(g4) for every 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11, a type 𝐴𝐴-gadget imple-

menting NoBranch𝑘 ;
(g5) a type 𝐴𝐴 gadget implementing Step;
(g6) a type 𝐴𝐴 gadget implementing Init;
(g7) a type 𝐴𝐴 gadget implementing Reject.

Now suppose 𝔤1, . . . , 𝔤𝑚 are all of the gadgets in 𝒒. We want to
ensure that when a gadget 𝔤𝑗 is triggered by some ℎ, then the other
gadgets are not triggered (that is, the 𝜄𝔤𝑖 -node for every 𝑖 ≠ 𝑗 can
be mapped by ℎ to itself). So, in addition to the above, for every 𝑗 ,
we connect the 𝜄𝔤𝑗 -node via an𝑈𝔤𝑗 -labelled node to the 𝜏𝔤𝑖 -node,
for all 𝑖 ≠ 𝑗 . We also want to ensure that when 𝔤𝑗 is triggered by
some ℎ, then the𝑀𝔤𝑖 -block can be ℎ-mapped to the𝑀 ′𝔤𝑖 -block for
every 𝑖 (not just for 𝑗). So we not only 𝑅𝔤𝑗 -connect 𝜚 ′𝔤𝑗 with 𝜏𝔤𝑗 ,
but also add 𝑅𝔤𝑗 -arrows connecting 𝜚 ′𝔤𝑗 with all of the 𝜏𝔤𝑖 :

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

378

𝜄𝔤𝑗

𝜏𝔤1

𝜏𝔤𝑖 𝜏𝔤𝑗 𝜏𝔤𝑚

𝑈𝔤𝑗

𝜉 ′

𝜚 ′𝔤𝑗

𝑅𝔤𝑗 𝑅𝔤𝑗 𝑅𝔤𝑗 𝑅𝔤𝑗

.

The proof of the following claim is provided in Appendix B:

Claim 4.2. A gadget 𝔤 in 𝒒 is triggered at 𝔰 iff there is 𝒃𝔰𝔤 such that
𝒃𝔰𝔤 is gathered from ‘around’ 𝔰 in C𝑠 according to the input-types for
𝜑𝔤 and 𝜑𝔤 [𝒃𝔰𝔤] = 1.

Claim 4.2 will be used in Sec. 3.5.4 to show that every C ∈ 𝔎𝒒

satisfies properties (leaf) and (branch) given in Sec. 3.3.3.

3.5.2 Main blocks in gadgets. Here we give a uniform description
of the main block𝑀𝔤 of each gadget 𝔤 in 𝒒. Apart from the label𝑊 ,
which is uniform through the gadgets, for each particular 𝔤, there
are a few additional labels on some nodes in 𝑀𝔤 ,𝑀 ′𝔤 and 𝐼𝔤 . These
are always specific to 𝔤, but we omit indicating this to simplify
notation.

A Boolean formula 𝜑𝔤 (𝒚) is regarded as a ditree whose vertices
are called gates. Leaf gates are labelled by the variables from the
list𝒚 = (𝑦1, . . . , 𝑦𝑛), with each 𝑦𝑖 labelling 𝑘𝑖 -many leaves of 𝜑𝔤 (𝒚).
Each non-leaf 𝑔 is either an AND-gate (having 2 children) or a
NOT-gate (having 1 child), with the outgoing edge(s) leading to the
input(s) of 𝑔. Given an assignment 𝒃 of 0 or 1 to the input-variables
𝑦𝑖 , we compute the value of each gate in 𝜑𝔤 under 𝒃 as usual in
Boolean logic.

We encode the gate-structure of 𝜑𝔤 (𝒚) by the 𝑀𝔤-block (and
also by its copy 𝑀 ′𝔤) as follows. With each non-leaf gate 𝑔 in 𝜑𝔤
we associate a fresh copy of its gadget shown below (where 𝐷 in
brackets means that 𝐷 is only present when the gate in question is
the root gate of 𝜑𝔤):

NOT-gate gadget
𝐢

(𝐷)
𝐨

𝑆

𝑆

AND-gate gadget

𝐢1 𝐢2

𝑏

(𝐷)

𝐨

𝑐3

𝑐1 𝑐2
𝐸

𝐸

𝐸 𝐸

𝑆 𝑆

𝑆 𝑆

𝑆 𝑆

𝑆𝑆

Each branch of 𝜑𝔤 is characterised by a pair (𝑖, 𝑗) such that the leaf
node of the branch is labelled by the 𝑗th copy 𝑦 𝑗

𝑖
of the variable 𝑦𝑖 ,

for some 𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑘𝑖 . For each pair (𝑖, 𝑗), we
introduce a label 𝐵𝑖 𝑗 . Suppose that 𝑔1 and 𝑔2 are the inputs of an

AND-gate𝑔. Then, for each𝑚 = 1, 2, if𝑔𝑚 is a non-leaf gate, thenwe
merge node 𝐨 of the 𝑔𝑚-gadget with node 𝐢𝑚 of the 𝑔-gadget; and
if 𝑔𝑚 is labelled by 𝑦 𝑗

𝑖
, we merge node 𝐢𝑚 of the 𝑔-gadget with the

lower 𝐵𝑖 𝑗 -node in𝑀𝔤 . We proceed similarly with NOT-gates. The
picture below shows how𝑀𝔤 (and its copy𝑀 ′𝔤) looks like (where,
apart from the 𝐵𝑖 𝑗 , we also label some nodes with 𝐵𝑖 , for 1 ≤ 𝑖 ≤ 𝑛):

𝛼 or 𝜏𝔤

𝜉 or 𝜉 ′
𝐵1, . . . , 𝐵𝑛

𝛽𝐹

𝜚𝔤 or 𝜚 ′𝔤

gate gadgets
of 𝜑𝔤

𝐵𝑛

𝐵𝑖 𝛽𝑇
𝑖

𝐵1

𝐵11

𝐵11

𝐵𝑛𝑘𝑛

𝐵𝑛𝑘𝑛

𝑅𝔤

. . .

. . .

.

.

.

.

.

.

𝑀𝔤 or𝑀 ′𝔤

3.5.3 Input blocks in gadgets. Given a Boolean formula 𝜑𝔤 (𝒚) with
𝒚 = (𝑦1, . . . , 𝑦𝑛), its input block 𝐼𝔤 consists of a uniformly describ-
able part (depending on 𝜑𝔤 and 𝑛) and a gathering block𝐺𝑖𝔤 , for each
𝑖 with 1 ≤ 𝑖 ≤ 𝑛 (depending on the input-types of 𝜑𝔤 (𝒚)). For each
branch of 𝜑𝔤 characterised by (𝑖, 𝑗), let 𝑔1

𝑖 𝑗
, . . . , 𝑔

𝑑𝑖 𝑗
𝑖 𝑗

be the sequence

of non-leaf gates from leaf to root on the branch with leaf 𝑦 𝑗
𝑖
. The

structure of the input block 𝐼𝔤 is shown below:

𝐼𝔤𝜂𝑖

...

𝛾𝑖

𝐺𝑖𝔤

𝐵𝑖

𝐵𝑛.
.
.

𝐵1
.
.
.

𝜋𝔤

𝜄𝔤𝑅𝔤

𝐵𝑖1 𝐵𝑖 𝑗 𝐵𝑖𝑘𝑖

𝑝1
𝑖 𝑗

.

.

.

𝑝ℓ
𝑖 𝑗

.

.

.
.
.
.

𝐸

.

.

.

𝐷

𝑆𝑔1
𝑖 𝑗

𝑆𝑔ℓ
𝑖 𝑗

𝑆𝑔
𝑑𝑖 𝑗
𝑖 𝑗

𝑆 𝑔ℓ
′
𝑖′ 𝑗 ′

if 𝑔ℓ
𝑖 𝑗
and 𝑔ℓ

′
𝑖′ 𝑗 ′ are the

same AND-gate 𝑔

.

.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

379

Finally, we describe the gathering blocks 𝐺𝑖𝔤 in 𝐼𝔤 . The Boolean
formula in 𝔤 takes the form 𝜑𝔤 (𝒚) = 𝜑𝔤 (𝒙1, . . . , 𝒙𝑚) where each
tuple 𝒙 𝑗 = (𝑥 𝑗1 , . . . , 𝑥

𝑗
𝑛 𝑗
) of variables can be of two input-types:

(up) either 𝒙 𝑗 is gathered from the (unique) 𝑛 𝑗 -long uppath

(the reverse of the suffix of the path ending at 𝔰 in C𝑠);
(down) or 𝒙 𝑗 is gathered from an 𝑛 𝑗 -long downpath (the prefix

of a path starting at 𝔰 in C𝑠).
So suppose 𝑦𝑘+1, . . . , 𝑦𝑘+𝑛 𝑗

are among the variables of 𝜑𝔤 such that
(𝑦𝑘+1, . . . , 𝑦𝑘+𝑛 𝑗

) = 𝒙 𝑗 for some 𝑗 . Then, for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 𝑗 ,
𝐺𝑘+𝑖𝔤 is shown below:

𝜂𝑘+𝑖
if 𝒙 𝑗 is (up)

𝛾𝑘+𝑖

𝑛 𝑗 − 𝑖 times

once

𝑖 − 1 times

𝑆

𝜂𝑘+𝑖
if 𝒙 𝑗 is (down)

𝛾𝑘+𝑖

𝑆

𝑊

In case 𝒙 𝑗 is like in (down), the𝑊 -node (of the base block) is a
common successor of the 𝜂𝑘+𝑖 -nodes, for every 𝑖 = 1, . . . , 𝑛 𝑗 , which
ensures that the input bits for 𝑦𝑘+1, . . . , 𝑦𝑘+𝑛 𝑗

are all gathered from
the same 𝑛 𝑗 -long downpath; see Appendix B for an example.

3.5.4 Proving that 𝒒 satisfies (leaf) and (branch). Suppose C is a
cactus in 𝔎𝒒 and 𝔰 is a non-leaf segment in the skeleton C𝑠 of C.
Then 𝔰 is of the form 𝒒−

𝑍𝔰
for some 𝑍𝔰 ∈ {𝐴𝑇,𝑇𝐴,𝐴𝐴}.

(leaf) (⇒) Suppose ℎ : 𝒒−
𝑇𝑇
→ C is a homomorphism mapping

𝒒−
𝑇𝑇

into 𝔰. Then there is a gadget 𝔤 that is triggered by ℎ at 𝔰 (that
is, the ℎ(𝜄𝔤) = 𝛼 for the 𝜄𝔤-node in 𝒒−

𝑇𝑇
and the 𝛼-node in 𝔰). By

Claim 4.2, there is 𝒃𝔰𝔤 such that 𝒃𝔰𝔤 is gathered from ‘around’ 𝔰 in
C𝑠 according to the input-types for 𝜑𝔤 and 𝜑𝔤 [𝒃𝔰𝔤] = 1. Now we
have a case distinction, depending on the gadget 𝔤, as listed in
Sec. 3.5.1. Each gadget implements a formula whose input-types
and behaviour are described in Sec. 3.4:

(g1) 𝔤 is the type 𝐴𝐴 gadget implementing Good (cf. Sec. 3.4.1).
By the input-types of Good, 𝒃𝔰𝔤 is the 4𝒅 + 11-long uppath, and it
does not contain the reverse of a 001∗-pattern. Thus, 𝔰 is not good
in C𝑠 .

(g2) There exist some 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11 and 𝑍 ∈ {𝐴𝑇,𝑇𝐴}
such that 𝔤 is the type 𝑍 gadget implementing MustBranch𝑘 (cf.
Sec. 3.4.2). By the input-types of MustBranch𝑘 , 𝒃𝔰𝔤 is the 𝑘-long
uppath, and it is the reverse of a sequence of the form 001∗(111∗)ℓ𝑤 ,

where either 𝑤 is empty and ℓ = 0, or 𝑤 = 001, or 𝑤 = 111 and
ℓ < 𝒅 − 1. On the other hand, 𝑍𝔰 = 𝑍 must hold, and so C𝑠 is not
branching at 𝔰. As branching at 𝔰 is required in condition (pb1) of
being properly branching, it follows that 𝔰 is not properly branching,
and so it is incorrect in C𝑠 .

(g3) There exist some 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11 and ∗ ∈ {0, 1}
such that 𝔤 is the type 𝐴𝐴 gadget implementing NoBranch𝑘∗ (cf.
Sec. 3.4.2). Suppose, say, that ∗ = 0 (the case when ∗ = 1 is similar).
By the input-types of NoBranch𝑘∗ , 𝒃𝔰𝔤 = (𝒆𝔰, 𝑏𝔰), where 𝒆𝔰 is the
𝑘-long uppath and 𝑏𝔰 is a 1-long downpath. Also, 𝑏𝔰 = 0 and 𝒆𝔰 is
the reverse of a sequence of the form 001∗(111∗)ℓ𝑤 , where either
𝑤 is empty and 0 < ℓ < 𝒅, or 𝑤 = 1, or 𝑤 = 11, or 𝑤 = 00. As
having a 0-child is forbidden in condition (pb2) of being properly
branching, it follows that 𝔰 is not properly branching, and so it is
incorrect in C𝑠 .

(g4) There exists some 𝑘 with 4 ≤ 𝑘 ≤ 4𝒅 + 11 such that 𝔤 is the
type 𝐴𝐴 gadget implementing NoBranch𝑘 (cf. Sec. 3.4.2). By the
input-types of NoBranch𝑘 , 𝒃𝔰𝔤 = (𝒆𝔰, 𝑏𝔰1, 𝑏

𝔰
2), where 𝒆

𝔰 is the 𝑘-long
uppath and each of 𝑏𝔰1 and 𝑏𝔰2 is a 1-long downpath. Also, 𝑏𝔰1 ≠ 𝑏𝔰2,
and 𝒆𝔰 is the reverse of a sequence of the form 001∗(111∗)ℓ𝑤 , where
𝑤 = 111 and ℓ = 𝒅 − 1. As having two children is forbidden in
condition (pb4) of being properly branching, it follows that 𝔰 is not
properly branching, and so 𝔰 is incorrect in C𝑠 .

(g5) 𝔤 is the type 𝐴𝐴 gadget implementing Step. By the input-
types of Step, 𝒃𝔰𝔤 should have gathered data about some ∨-configur-
ation 𝑐 and its two ‘subsequent’ ∨-configurations 𝑐0, 𝑐1. As ex-
plained in Sec. 3.4.3, (𝑐, 𝑐0, 𝑐1) is inconsistent with 𝛿 , and so 𝔰 is not
properly computing in C𝑠 . Thus, it is incorrect in C𝑠 .

(g6) 𝔤 is the type 𝐴𝐴 gadget implementing Init. By the input-
types of Init, 𝒃𝔰𝔤 should have gathered data about the 8-long uppath
and some ∨-configuration 𝑐 . As explained in Sec. 3.4.4, the part of
𝒃𝔰𝔤 gathered from the 8-long uppath is the reverse of some pattern
111∗001∗, but 𝑐 ≠ 𝑐

init(𝒘) . Thus, 𝔰 is not properly initialising in C𝑠 ,
and so it is incorrect in C𝑠 .

(g7) 𝔤 is the type𝐴𝐴 gadget implementing Reject. As explained
in Sec. 3.4.5, by the input-types of Reject, 𝒃𝔰𝔤 should have gathered
data about some state 𝑞, and 𝑞 = 𝑞reject must hold. Therefore, 𝔰
represents a 𝑞reject-configuration in C𝑠 , as required.

(leaf) (⇐) Again, we have cases (g1)–(g7). In each case, we have
a formula𝜑𝔤 for which some input 𝒃𝔰𝔤 can be gathered from ‘around’
𝔰 in C𝑠 according to its input-types and for which 𝜑𝔤 [𝒃𝔰𝔤] = 1. So
by Claim 4.2, there is a homomorphism ℎ : 𝒒−

𝑇𝑇
→ C mapping 𝒒−

𝑇𝑇
into 𝔰 and triggering 𝔤 at 𝔰.

(branch) Suppose there is a homomorphism ℎ : 𝒒−
𝑇𝑇
→ C map-

ping 𝒒−
𝑇𝑇

into some non-leaf segment 𝔰. Then some gadget 𝔤 is
triggered by ℎ at 𝔰. By our assumption on 𝔰 and by the proof of
the (⇒) direction of (leaf) above, it follows that 𝔤 can only be the
𝑍 type gadget implementing MustBranch𝑘 , where 𝑍 ∈ {𝐴𝑇,𝑇𝐴}
is such that 𝔰 = 𝒒−

𝑍
. An inspection of Fig. 2 shows that ℎ(𝑡0) = 𝑡0

and ℎ(𝑡1) ≠ 𝑡0 whenever 𝑍 = 𝑇𝐴, and ℎ(𝑡1) = 𝑡1 and ℎ(𝑡0) ≠ 𝑡1
whenever 𝑍 = 𝐴𝑇 . Therefore, (branch) holds.

This completes the proof that 𝒒 satisfies (leaf) and (branch).

3.6 OMQs with Schema.org and DL-Litebool
Schema.org, founded by Google, Microsoft, Yahoo and Yandex and
developed by an open community process, comprises a set of rules

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

380

𝑃 (𝒙) ← 𝑄 (𝒙), for unary or binary predicates 𝑃 and 𝑄 , together
with domain and range constraints such as

𝑇 (𝑥) ∨ 𝐹 (𝑥) ← 𝑆 (𝑥,𝑦) (8)
𝑇 (𝑦) ∨ 𝐹 (𝑦) ← 𝑅(𝑥,𝑦) (9)

For example, according to the Schema.org ontology, the range
of the binary relation musicBy(𝑥,𝑦) is covered by the union of
MusicGroup(𝑦) and Person(𝑦). In the syntax of description logic
DL-Lite

bool
[5], rules (8) and (9) are written as

∃𝑆 ⊑ 𝑇 ⊔ 𝐹 and ∃𝑅− ⊑ 𝑇 ⊔ 𝐹

Given any d-sirup (Δ𝒒, 𝑮), denote by Δ′𝒒 the ‘Schema.org ontology’
obtained by replacing (1) in Δ𝒒 with rule (9), for a fresh 𝑅.

Proposition 5. A d-sirup (Δ𝒒, 𝑮) is FO-rewritable iff (Δ′𝒒, 𝑮) is
FO-rewritable.

Proof. (⇒) SupposeΦ is a UCQ-rewriting of (Δ𝒒, 𝑮) andΦ′ the
result of replacing every 𝐴(𝑦) in Φ with ∃𝑥 𝑅(𝑥,𝑦). We claim that
Φ′ is an FO-rewriting of (Δ′𝒒, 𝑮). Indeed, suppose D ′ is any data
instance for (Δ′𝒒, 𝑮). Without loss of generality wemay assume that
it does not contain atoms 𝐴(𝑎). Let D be the result of adding 𝐴(𝑏)
to D ′ whenever 𝑅(𝑎, 𝑏) ∈ D ′. Then Δ𝒒,D |= 𝑮 iff Δ′𝒒,D ′ |= 𝑮 ,
and also D |= Φ iff D ′ |= Φ′, from which Δ′𝒒,D ′ |= 𝑮 iff D ′ |= Φ′.
(⇐) Suppose Φ′ is a UCQ-rewriting of (Δ′𝒒, 𝑮) and Φ is the

result of replacing every 𝑅(𝑥,𝑦) in Φ′ with 𝐴(𝑦). Let D be a data
instance for (Δ𝒒, 𝑮). Without loss of generality we may assume
that it does not contain atoms of the form 𝑅(𝑎, 𝑏). Let D ′ be the
result of adding 𝑅(𝑎, 𝑏), for a fresh 𝑎, to D whenever 𝐴(𝑏) ∈ D.
Then Δ𝒒,D |= 𝑮 iff Δ′𝒒,D ′ |= 𝑮 , and also D |= Φ iff D ′ |= Φ′,
from which Δ′𝒒,D ′ |= 𝑮 iff D ′ |= Φ′. ❑

As a consequence of Theorem 3 and Proposition 5, we obtain the
following theorem, which is an improvement on [24, Theorem 11]
showing PSpace-hardness of deciding FO-rewritability of UCQs
mediated by Schema.org ontologies.

Theorem 6. Deciding FO-rewritability of CQs mediated by a

Schema.org or DL-Lite
bool

ontology is 2ExpTime-hard.

4 MONADIC D-SIRUPS WITH A DITREE CQ
The high lower bound obtained in the previous section can be
regarded as a formal confirmation of the empirical fact that finding
transparent syntactic, let alone practical criteria of FO-rewritability
for sufficiently general classes of monadic (d-)sirups is a notoriously
difficult problem. The only positive results in this direction we know
of are the syntactic NC/P dichotomy of binary chain sirups [4]
(see also [3]) and the complete AC0/NL/P/coNP tetrachotomy of
monadic path d-sirups without twins [22].

The CQs used in the proof of Theorem 3 were directed acyclic
graphs with one solitary 𝐹 -node, two solitary𝑇 -nodes, and multiple
𝐹𝑇 -twins. The question we try to answer in this section is whether
the restriction of the set of CQs admitted in d-sirups to those that
are rooted directed trees as graphs (ditree CQs, for short) makes
deciding FO-rewritability of d-sirups (Δ𝒒, 𝑮) easier, having in mind
a complete syntactic classification of such d-sirups as an ultimate
(possibly unrealistic) aim. Note for starters that, by Example 1, the

data complexity of evaluating d-sirups with a ditree CQ ranges
from AC0 to L, NL, P, and coNP.

A CQ 𝒒 is minimal if there is no 𝒒 → 𝒒′ homomorphism, for
any proper subCQ 𝒒′ of 𝒒. As well-known, checking minimality of
tree-shaped CQs can be done in polynomial time; see, e.g., [16]. We
denote the root node of 𝒒 by 𝔯 and write 𝑥 ⪯𝒒 𝑦 to say that there is
a (directed) path from 𝑥 to𝑦 in 𝒒, and 𝑥 ≺𝒒 𝑦 if 𝑥 ⪯𝒒 𝑦 and 𝑥 ≠ 𝑦. A
pair (𝑥,𝑦) is ≺𝒒-comparable if either 𝑥 ⪯𝒒 𝑦 or 𝑦 ⪯𝒒 𝑥 , otherwise
(𝑥,𝑦) is ≺𝒒-incomparable. If 𝑥 ⪯𝒒 𝑦 then 𝛿𝒒 (𝑥,𝑦) is the number
of edges between 𝑥 and 𝑦. The distance between any 𝑥 and 𝑦 is
𝜕𝒒 (𝑥,𝑦) = 𝛿𝒒

(
inf𝒒 (𝑥,𝑦), 𝑥

)
+ 𝛿𝒒

(
inf𝒒 (𝑥,𝑦), 𝑦

)
, where inf𝒒 (𝑥,𝑦) is

the unique node such that inf𝒒 (𝑥,𝑦) ⪯𝒒 𝑥 , inf𝒒 (𝑥,𝑦) ⪯𝒒 𝑦 and
𝑧 ⪯𝒒 inf𝒒 (𝑥,𝑦) whenever 𝑧 ⪯𝒒 𝑥 and 𝑧 ⪯𝒒 𝑦. The subscript 𝒒 in
⪯𝒒 , ≺𝒒 , 𝛿𝒒 , inf𝒒 and 𝜕𝒒 will be dropped if understood.

If t is a solitary 𝑇 -node and f is solitary 𝐹 -node, we call (t, f) a
solitary pair . We say that a solitary pair (t, f) is of minimal distance,
if 𝜕(𝑡, 𝑓) ≥ 𝜕(t, f) for any solitary pair (𝑡, 𝑓). A ≺-incomparable
solitary pair (t, f) is called symmetric if the CQ obtained by remov-
ing the labels 𝐹 , 𝑇 from f, t and cutting the branches below them
is symmetric with respect to 𝔯 (see 𝒒4 in Example 1). A ditree 𝒒 is
quasi-symmetric if it has no ≺-comparable solitary pairs, and every
solitary pair (t, f) of minimal distance is symmetric.

As follows from [22] (where 𝐹 and 𝑇 are interchangeable),
(a) if 𝒒 has no solitary 𝐹 , then (Δ𝒒, 𝑮) is FO-rewritable;
(b) if 𝒒 has one solitary 𝐹 , then (Δ𝒒, 𝑮) is datalog-rewritable

(and so in P for data complexity);
(c) if 𝒒 has one solitary 𝐹 and one solitary 𝑇 , then (Δ𝒒, 𝑮) is

linear-datalog-rewritable (and so in NL);
(d) if 𝒒 has one solitary 𝐹 , one solitary𝑇 and is quasi-symmetric,

then (Δ𝒒, 𝑮) is symmetric-linear-datalog-rewritable (and so
in L).

The following result identifies a large and tractable class of d-sirups
with a ditree CQ whose evaluation is NL-hard:

Theorem 7. Suppose 𝒒 is a minimal ditree CQ with at least one

solitary 𝐹 , at least one solitary 𝑇 and such that either

(𝑖) there is a ≺-comparable solitary pair (t, f) or
(𝑖𝑖) 𝒒 is not quasi-symmetric and has no 𝐹𝑇 -twins.

Then evaluating the d-sirup (Δ𝒒, 𝑮) is NL-hard.

Proof. The proof is by reduction of the NL-complete reachabil-
ity problem for dags. Given a dag 𝐺 = (𝑉 , 𝐸) with nodes 𝔰, 𝔱 ∈ 𝑉 ,
we construct a data instance D𝐺 as follows. We pick a solitary pair
(t, f) such that, in case (𝑖), (t, f) is ≺-comparable and there is no
solitary 𝑇 - or 𝐹 -node between t and f; and, in case (𝑖𝑖), (t, f) is of
minimal distance, ≺-incomparable, and not symmetric. Then, in
both cases, we replace each 𝑒 = (𝔲, 𝔳) ∈ 𝐸 by a fresh copy 𝒒𝑒 of 𝒒
in which t𝑒 is renamed to 𝔲 with 𝑇 (𝔲) replaced by 𝐴(𝔲), and f𝑒 is
renamed to 𝔳 with 𝐹 (𝔳) replaced by 𝐴(𝔳). The dag D𝐺 comprises
the 𝒒𝑒 , for 𝑒 ∈ 𝐸, as well as 𝑇 (𝔰) and 𝐹 (𝔱). We show that 𝔰 →𝐺 𝔱

iff the answer to (Δ𝒒, 𝑮) over D𝐺 is ‘yes’.
(⇒) If 𝔰 = 𝔳0, . . . , 𝔳𝑛 = 𝔱 is a path in 𝐺 with 𝑒𝑖 = (𝔳𝑖 , 𝔳𝑖+1) ∈ 𝐸,

for 𝑖 < 𝑛, then for any model I of Δ𝒒 and D𝐺 , there is some 𝑖 < 𝑛
such that I |= 𝑇 (𝔳𝑖) and I |= 𝐹 (𝔳𝑖+1), and so the identity map
from 𝒒 to its copy 𝒒𝑒𝑖 is a 𝒒→ I homomorphism.
(⇐) If 𝔰 ̸→𝐺 𝔱, we define a model I of Δ𝒒 and D𝐺 by labelling

with𝑇 the𝐴-nodes inD𝐺 that (as nodes of𝐺) are reachable from 𝔰

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

381

(via a directed path in 𝐺) and with 𝐹 the remaining ones. We claim
that if one of (𝑖) or (𝑖𝑖) holds, then there is no homomorphism from
𝒒 to I, and so the answer to (Δ𝒒, 𝑮) over D𝐺 is ‘no’. Indeed, take
any map ℎ from 𝒒 to I, and consider the substructureH (t,f) ofD𝐺
comprising those copies 𝒒𝑒1 , . . . , 𝒒𝑒𝑛 of 𝒒 that have a non-empty
intersection with ℎ(𝒒). To simplify notation, we set 𝒒 𝑗 = 𝒒𝑒 𝑗 . Then
I can be regarded as a model of H (t,f) . The (quite arduous case-
distinction) proof in [29] shows that ℎ cannot be a homomorphism
from 𝒒 to I.

Here, we only sketch the proof for case (𝑖𝑖) when 𝒒 is not quasi-
symmetric, and we may also assume that 𝒒 has no ≺-comparable
solitary pairs. Suppose ℎ : 𝒒→ I is a homomorphism, and let 𝑎 be
such that ℎ(𝔯) ∈ 𝒒𝑎 . As (t, f) is ≺-incomparable,H (t,f) consists of
(at most) three copies 𝒒𝑎 , 𝒒𝑎−1 and 𝒒𝑎+1 of 𝒒, and looks as shown
in the picture below:
H (t,f)

t𝑎

f𝑎−1

𝔯𝑎−1𝒒𝑎−1

f𝑎

t𝑎+1

𝔯𝑎𝒒𝑎 𝔯𝑎+1𝒒𝑎+1

t𝑎−1

t𝑎

f𝑎−1

f𝑎

t𝑎+1 f𝑎+1

As (t, f) is not symmetric, I is such that the ‘contacts’ between the
𝒒-copies are either both in 𝐹 I or both in 𝑇 I .

The following ‘structural’ claim (tracking the possible locations
of ℎ(f) and ℎ(t)) is proved in the full version [29] (it is also used in
the proof of Theorem 11 below):

Claim 7.1. Suppose (t, f) is ≺-incomparable and of minimal dis-

tance (though 𝒒might contain 𝐹𝑇 -twins). Ifm = inf𝒒 (t, f) then ℎ(m)
is in 𝒒𝑎 , and one of the following holds:

(1) m𝑎 ≺𝒒𝑎 ℎ(m) ≺𝒒𝑎 t𝑎 , ℎ(t) is in 𝒒𝑎−1
with f𝑎−1 ≺𝒒𝑎−1 ℎ(t),

and ℎ(f) = t𝑎 ;
(2) m𝑎 ≺𝒒𝑎 ℎ(m) ≺𝒒𝑎 f𝑎 , ℎ(f) is in 𝒒𝑎+1 with t𝑎+1 ≺𝒒𝑎+1 ℎ(f),

and ℎ(t) = f𝑎 ;
(3) ℎ(m) = m𝑎 , ℎ(f) = f𝑎 , and ℎ(t) is in 𝒒𝑎 with ℎ(t) ≺𝒒𝑎 f𝑎 ;
(4) ℎ(m) = m𝑎 , ℎ(t) = t𝑎 , and ℎ(f) is in 𝒒𝑎 with ℎ(f) ≺𝒒𝑎 t𝑎 .

However, if 𝒒 contains neither 𝐹𝑇 -twins nor ≺-comparable solitary
pairs, none of (1)–(4) in Claim 7.1 can happen. ❑

Denote by Δ+𝒒 the d-sirup (Δ𝒒, 𝑮) extended by an extra rule
⊥ ← 𝑇 (𝑥), 𝐹 (𝑥) saying that the predicates 𝐹 and 𝑇 are disjoint,
and so Δ+𝒒 with 𝒒 containing an 𝐹𝑇 -twin is inconsistent. As shown
in [22], (Δ𝒒, 𝑮) is L-hard when 𝒒 has at least one solitary 𝐹 and at
least one solitary 𝑇 but no 𝐹𝑇 -twins. So we have:

Corollary 8. Every d-sirup (Δ+𝒒, 𝑮) with a ditree 𝒒 is either FO-

rewritable (if 𝒒 contains 𝐹𝑇 -twins), or L-hard (if 𝒒 is quasi-symmetric

without 𝐹𝑇 -twins), or NL-hard (otherwise).

The non-quasi-symmetric CQs 𝒒 that are outside the scope
of Theorem 7 are those that have 𝐹𝑇 -twins and only contain ≺-
incomparable solitary pairs. That Theorem 7 does not hold for such
CQs is demonstrated by 𝒒5 in Example 1 (cf. Claim 7.1 (3)), 𝒒6 in
Example 4 (cf. Claim 7.1 (4)), and 𝒒7, 𝒒8 below (cf. Claim 7.1 (1)), for

all of which (Δ𝒒, 𝑮) is FO-rewritable. As before, the omitted labels
on the arrows are all 𝑅.
𝒒7

𝑇 𝐹𝑇 𝐹𝑇 𝐹 𝐹𝑇 𝐹𝑇

Our next result, used in tandem with Theorem 7, gives an FO/L-
hardness dichotomy for d-sirups (Δ𝒒, 𝑮) with a ditree 1-CQ 𝒒 (hav-
ing a single solitary 𝐹). If such a 𝒒 has 𝑘-many solitary 𝑇 -nodes,
each of which is ≺-incomparable with the 𝐹 -node, we call it a Λ-CQ
of span 𝑘 .

Theorem 9. (𝑖) For any Λ-CQ 𝒒, either the d-sirup (Δ𝒒, 𝑮) is
FO-rewritable or evaluating it is L-hard.

(𝑖𝑖) ForΛ-CQs of span 𝑘 , deciding this FO/L-dichotomy can be done

in time 𝑝 (|𝒒 |)2𝑝′ (𝑘) , for some polynomials 𝑝 and 𝑝 ′. Thus, deciding
FO-rewritability of d-sirups with a Λ-CQ is fixed-parameter tractable,

if the Λ-CQ’s span is regarded as a parameter.

Proof. Let 𝒒 be a Λ-CQ with solitary 𝑇 -nodes 𝑇 (𝑦1), . . . ,𝑇 (𝑦𝑘).
By Prop. 2, (Δ𝒒, 𝑮) is FO-rewritable iff there exists 𝑑 < 𝜔 such
that any cactus (for 𝒒) contains a homomorphic image of some
cactus of depth ≤ 𝑑 . The neighbourhood of a segment 𝔰 in a cactus
C consists of 𝔰 itself and those segments that, in the skeleton C𝑠 ,
are the children, parent and siblings of 𝔰—at most 2𝑘 + 1 segments
in total. Since 𝒒 is a ditree, in which the 𝐹 -node is ≺-incomparable
with any𝑇 -node, the following holds for any cactuses C, C′ (for 𝒒):

Claim 9.1. Suppose ℎ : C → C′ is a homomorphism that maps

the root of a segment 𝔰 in C to a node in a segment 𝔰′ in C′. Then the

nodes in 𝔰 are mapped by ℎ to nodes in the neighbourhood of 𝔰′.

Example 5. Consider the Λ-CQ 𝒒8 of span 1 below.We invite the
reader to verify that there is a homomorphismℎ : C2 → C𝑖 , for 𝑖 ≥ 3
(where C𝑖 is obtained by 𝑖-many applications of (bud) to C0 = 𝒒8)
such that the ℎ-image of the leaf segment in C2 intersects three
segments in C𝑖 . It is not hard to see that (Δ𝒒, 𝑮) is FO-rewritable
to ∃𝒛

(
C0 ∨ C1 ∨ C2

)
.

𝒒8

𝐹𝑇
𝐹 𝐹𝑇 𝐹𝑇 𝐹𝑇 𝐹𝑇

𝐹𝑇 𝐹𝑇

𝐹𝑇 𝐹𝑇 𝑇 𝐹𝑇 𝐹𝑇

In any skeleton C𝑠 , we label by 𝑖 ∈ {1, . . . , 𝑘} every edge that
results from budding 𝑇 (𝑦𝑖). The neighbourhood of any segment 𝔰
is given by the triple 𝑡 = (𝑃, 𝑖𝔰,𝐶), where 𝑃 ⊆ {1, . . . , 𝑘} comprises
the labels on the edges from the parent 𝔰′ of 𝔰, 𝑖𝔰 is the label on
(𝔰′, 𝔰), and𝐶 ⊆ {1, . . . , 𝑘} are the labels on the edges to 𝔰’s children.
If 𝔰 is the root of C𝑠 , 𝑃 = ∅ and we set 𝑖𝔰 = 0; if 𝔰 is a leaf, 𝐶 = ∅.
We refer to 𝔰 as the central segment of 𝑡 , and to 𝑡 as the type of 𝔰;
we call it a root type if 𝔰 is the root of C𝑠 , and a leaf type if 𝔰 is a
leaf. A cactus C is acyclic if none of the branches in C𝑠 has two
nodes of the same type.

Let𝔊 be the digraph whose nodes are all possible types and there
is an edge (𝑡, 𝑡 ′) labelled by 𝑖 ∈ {1, . . . , 𝑘} iff some skeleton C𝑠 has
an edge (𝔰, 𝔰′) labelled by 𝑖 with 𝔰 being of type 𝑡 and 𝔰′ of type 𝑡 ′.
Let 𝜒C be the canonical homomorphism of C𝑠 to𝔊 (mapping the
segments of C𝑠 to their types). For a subgraph ℌ of𝔊 denote by ℌ̄

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

382

the result of replacing the types in ℌ with their central segments
and glueing them at 𝐴-nodes as indicated by the types and edges
in ℌ, mimicking (bud). We call this operation the ·̄-closure of ℌ.

A node 𝑣 of type (𝑃, 𝑖,𝐶) in a subgraph ℌ of𝔊 is realisable in ℌ

if 𝑣 has exactly one outgoing edge labelled by 𝑗 inℌ, for each 𝑗 ∈ 𝐶 .
We call ℌ realisable if it has exactly one source (a node without
incoming edges) of root type and all nodes in ℌ are realisable.

A periodic structure is a triple 𝔓 = (𝑩, 𝑷 , 𝑬) satisfying the fol-
lowing conditions. First, we take some realisable subgraph ℌ of𝔊
and define the pre-periodic part 𝑩 to be the subgraph of ℌ induced
by those nodes 𝑣 in ℌ, for which there are no arbitrarily long paths
from the source to 𝑣 . The periodic part 𝑷 is induced by the remain-
ing nodes in ℌ. Finally, the post-periodic part 𝑬 comprises a set 𝑅
of nodes in 𝑷 , intersecting any directed cycle in 𝑷 , and a family of
acyclic subgraphs ℌ𝑣 , 𝑣 ∈ 𝑅, of𝔊 with unique source 𝑣 and such
that all of the ℌ𝑣 ’s nodes are realisable in ℌ𝑣 , for any 𝑣 ∈ 𝑅. Denote
by 𝔓̄ = (𝑩̄, 𝑷̄ , 𝑬̄) the triple obtained by taking the ·̄-closure of the
components 𝑩, 𝑷 and 𝑬 in𝔓.

To illustrate, for 𝑘 = 1, in the only periodic structure with non-
empty 𝑷 shown below, 𝑩 comprises the root segment 𝔰𝑟 , 𝑷 the
segment 𝔰 (with two𝐴-nodes), and 𝑬 the leaf segment 𝔰𝑙 . There are
also three ‘degenerate’ periodic structures with empty 𝑷 and 𝑬 .

1

𝔰𝑟 𝔰 𝔰𝑙

1 1

The acyclic version of a rooted digraph 𝐺 is constructed as follows.
We consider each path 𝜋 starting in the root and ending at the first
repeating node 𝑣 on 𝜋 with the last edge (𝑢, 𝑣). For all such 𝜋 , 𝑣
and (𝑢, 𝑣), we add to 𝐺 a fresh node 𝑣 ′ and replace (𝑢, 𝑣) by (𝑢, 𝑣 ′).

The proof of the following criterion can be found in the full
version [29]:

Claim 9.2. The d-sirup (Δ𝒒, 𝑮) is FO-rewritable iff, for any peri-

odic structure𝔓 = (𝑩, 𝑷 , 𝑬) with 𝑷 ≠ ∅, one of the following holds:
(h1) there is a homomorphism from some cactus to the ·̄-closure of

the acyclic version of 𝑩 ∪ 𝑷 ;
(h2) there is a homomorphism from the root segment of some cactus

to 𝑷̄ ;
(h3) there is a homomorphism from the root segment of one of the

ℌ̄𝑣 to 𝑬̄ .

On the other hand, we have the following claim, which is proved
in [29] and establishes an FO/L-hardness dichotomy of d-sirups
with a Λ-CQ:

Claim 9.3. If none of conditions (h1)–(h3) holds, then evaluating

(Δ𝒒, 𝑮) is L-hard.
In the full version [29], we show that checking the criterion of

Claim 9.2 for Λ-CQs of span 𝑘 can be done in time 𝑝 (|𝒒 |)2𝑝′ (𝑘) , for
some polynomials 𝑝 and 𝑝 ′. ❑

As a consequence of Theorems 7 and 9, we obtain the dichotomy:

Corollary 10. Any d-sirup (Δ𝒒, 𝑮) with a ditree 1-CQ 𝒒 is either

FO-rewritable or L-hard. Deciding this dichotomy, parameterised by

the number of solitary 𝑇 -nodes in CQs, is fixed-parameter tractable.

This result is in sharp contrast to 2ExpTime-completeness of
deciding FO-rewritability of d-sirups (Δ𝒒, 𝑮) with a dag 1-CQ 𝒒

having two solitary 𝑇 -nodes. We hope that, using the techniques
of [22, 31], this dichotomy can be extended to a complete FO/L/NL/P-
tetrachotomy of all d-sirups with a ditree 1-CQ. As a first step, we
obtain the following trichotomy:

Theorem 11. For any a ditree CQ 𝒒 with one solitary 𝐹 and one

solitary 𝑇 , (Δ𝒒, 𝑮) is either FO-rewritable, or L-complete, or NL-

complete. Deciding this trichotomy can be done in polynomial time.

Proof. We use the results of [22] listed as items (c) and (d) on
page 12. Let t and f be the solitary𝑇 - and 𝐹 -nodes in 𝒒. If (t, f) is ≺-
comparable then (Δ𝒒, 𝑮) is NL-complete by (c) and Theorem 7 (𝑖).
If 𝒒 is quasi-symmetric, then (Δ𝒒, 𝑮) is in L by (d); L-hardness is
shown in [29] by a reduction of graph reachability (using a con-
struction that is similar to the one in the proof of Theorem 7).

Otherwise, we consider two models I over the structureH (t,f)
(defined in the proof-sketch of Theorem 7 (𝑖𝑖)): one has both ‘con-
tacts’ in 𝐹 I , the other in 𝑇 I . We check whether there exists a
homomorphism from 𝒒 to either of these models: If neither, then
(Δ𝒒, 𝑮) is NL-hard by the the proof of Theorem 7 (𝑖𝑖). If at least
one of them is possible, then (Δ𝒒, 𝑮) is FO-rewritable by Prop. 2 (as
one can use the 𝒒→ I homomorphism to define homomorphisms
from some depth ≤ 2 cactus to any larger cactus). Details can be
found in the full paper [29]. ❑

5 CONCLUSIONS
In this paper, we settled the long-standing open problem on the
complexity of deciding boundedness of monadic single rule dat-
alog programs. Namely, we proved this problem to be 2ExpTime-
complete—that is, as hard as deciding program boundedness of
arbitrary monadic datalog programs [18]. The main innovation of
our proof is that we look at the computations of ATMs and the
expansions of sirups through the lens of Boolean circuits and show
how these circuits can be ‘implemented’ in dag-shaped CQs to
verify the correctness of computations encoded by the expansions.

We obtained this result while trying to classify a somewhat dif-
ferent type of basic recursive programs called monadic disjunctive
sirups. The disjunctive rule 𝐹 (𝑥) ∨𝑇 (𝑥) ← 𝐴(𝑥) can make answer-
ing a Boolean CQ it mediates in the d-sirup range between AC0

and coNP. Deciding FO-rewritability of monadic d-sirups (as well
as of Schema.org and DL-Lite

bool
ontology-mediated queries) was

shown to be between 2ExpTime and 2NExpTime, and so a complete
classification of monadic d-sirups according to their data complex-
ity can be as illusory as the classification of monadic sirups, which
has been challenging the datalog community since the 1980s.

On the other hand, this paper shows that d-sirups with ditree
CQs are less impenetrable, and we believe a complete classification
is possible, though it could be quite tricky and laborious. This
problem as well as pinpointing the exact complexity of deciding
FO-rewritability of monadic d-sirups (2ExpTime vs 2NexpTime) are
left for future work.

ACKNOWLEDGMENTS
This work was supported by the UK EPSRC grant EP/S032282, HSE
University Basic Research Program, and Russian Science Founda-
tion 20-11-20203 (Section 4). Thanks are due to the anonymous
reviewers for their comments and constructive suggestions.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

383

REFERENCES
[1] Serge Abiteboul. 1989. Boundedness is Undecidable for Datalog Programs with a

Single Recursive Rule. Inf. Process. Lett. 32, 6 (1989), 281–287. https://doi.org/10.
1016/0020-0190(89)90019-7

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley. http://webdam.inria.fr/Alice/

[3] Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. 2003. Linearisability
on datalog programs. Theor. Comput. Sci. 308, 1-3 (2003), 199–226. https://doi.
org/10.1016/S0304-3975(02)00730-2

[4] Foto N. Afrati and Christos H. Papadimitriou. 1993. The Parallel Complexity of
Simple Logic Programs. J. ACM 40, 4 (1993), 891–916. https://doi.org/10.1145/
153724.153752

[5] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. 2009. The DL-Lite Family and Relations. J. Artif. Intell. Res. 36
(2009), 1–69. https://doi.org/10.1613/jair.2820

[6] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. 2018. First-Order
Rewritability of Frontier-Guarded Ontology-Mediated Queries. In Proceedings of

the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI

2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 1707–1713.
https://doi.org/10.24963/ijcai.2018/236

[7] Michael Benedikt, Pierre Bourhis, Georg Gottlob, and Pierre Senellart. 2020.
Monadic Datalog, Tree Validity, and Limited Access Containment. ACM Trans.

Comput. Log. 21, 1 (2020), 6:1–6:45.
[8] Michael Benedikt, Pierre Bourhis, and Pierre Senellart. 2012. Monadic Datalog

Containment. In Automata, Languages, and Programming - 39th International

Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II (Lecture

Notes in Computer Science, Vol. 7392), Artur Czumaj, Kurt Mehlhorn, Andrew M.
Pitts, and Roger Wattenhofer (Eds.). Springer, 79–91. https://doi.org/10.1007/978-
3-642-31585-5_11

[9] Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden
Boom. 2015. The Complexity of Boundedness for Guarded Logics. In 30th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July

6-10, 2015. IEEE Computer Society, 293–304. https://doi.org/10.1109/LICS.2015.36
[10] Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. 2016. First

Order-Rewritability and Containment of Conjunctive Queries in Horn Descrip-
tion Logics. In Proceedings of the Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, Subbarao Kamb-
hampati (Ed.). IJCAI/AAAI Press, 965–971. http://www.ijcai.org/Abstract/16/141

[11] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. 2014.
Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and
MMSNP. ACM Trans. Database Syst. 39, 4 (2014), 33:1–33:44. https://doi.org/10.
1145/2661643

[12] Henrik Björklund, Wim Martens, and Thomas Schwentick. 2008. Optimizing
Conjunctive Queries over Trees Using Schema Information. In Mathematical

Foundations of Computer Science 2008, 33rd International Symposium, MFCS 2008,

Torun, Poland, August 25-29, 2008, Proceedings (Lecture Notes in Computer Science,

Vol. 5162), Edward Ochmanski and Jerzy Tyszkiewicz (Eds.). Springer, 132–143.
https://doi.org/10.1007/978-3-540-85238-4_10

[13] Henrik Björklund, Wim Martens, and Thomas Schwentick. 2018. Conjunctive
query containment over trees using schema information. Acta Informatica 55, 1
(2018), 17–56. https://doi.org/10.1007/s00236-016-0282-1

[14] Pierre Bourhis and Carsten Lutz. 2016. Containment in Monadic Disjunctive
Datalog, MMSNP, and Expressive Description Logics. In Principles of Knowl-

edge Representation and Reasoning: Proceedings of the Fifteenth International

Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, Chitta Baral,
James P. Delgrande, and Frank Wolter (Eds.). AAAI Press, 207–216. http:
//www.aaai.org/ocs/index.php/KR/KR16/paper/view/12847

[15] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family. J. Autom. Reason. 39, 3 (2007), 385–429.
https://doi.org/10.1007/s10817-007-9078-x

[16] Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive query containment
revisited. Theor. Comput. Sci. 239, 2 (2000), 211–229. https://doi.org/10.1016/S0304-
3975(99)00220-0

[17] C. Civili and R. Rosati. 2012. A Broad Class of First-Order Rewritable Tuple-
Generating Dependencies. In Proc. of the 2nd Int. Datalog 2.0 Workshop (Lecture

Notes in Computer Science, Vol. 7494). Springer, 68–80.
[18] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi.

1988. Decidable Optimization Problems for Database Logic Programs (Preliminary
Report). In STOC. 477–490.

[19] Stavros S. Cosmadakis and Paris C. Kanellakis. 1986. Parallel Evaluation of Recur-
sive Rule Queries. In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, March 24-26, 1986, Cambridge, Massachusetts,

USA, Avi Silberschatz (Ed.). ACM, 280–293. https://doi.org/10.1145/6012.15421
[20] Cristina Feier, Antti Kuusisto, and Carsten Lutz. 2019. Rewritability in Monadic

Disjunctive Datalog, MMSNP, and Expressive Description Logics. Logical Methods

in Computer Science 15, 2 (2019). https://doi.org/10.23638/LMCS-15(2:15)2019

[21] Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. 1987.
Undecidable Optimization Problems for Database Logic Programs. In Proceedings

of the Symposium on Logic in Computer Science (LICS ’87), Ithaca, New York, USA,

June 22-25, 1987. IEEE Computer Society, 106–115.
[22] Olga Gerasimova, Stanislav Kikot, Agi Kurucz, Vladimir V. Podolskii, and Michael

Zakharyaschev. 2020. A Data Complexity and Rewritability Tetrachotomy of
Ontology-Mediated Queries with a Covering Axiom. In Proceedings of the 17th

International Conference on Principles of Knowledge Representation and Reasoning,

KR 2020, Rhodes, Greece, September 12-18, 2020, Diego Calvanese, Esra Erdem, and
Michael Thielscher (Eds.). 403–413. https://doi.org/10.24963/kr.2020/41

[23] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and
Optimization for Ontological Databases. ACM Trans. Database Syst. 39, 3 (2014),
25:1–25:46. https://doi.org/10.1145/2638546

[24] André Hernich, Carsten Lutz, Ana Ozaki, and Frank Wolter. 2015. Schema.org
as a Description Logic. In Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July

25-31, 2015, Qiang Yang and Michael J. Wooldridge (Eds.). AAAI Press, 3048–3054.
http://ijcai.org/Abstract/15/430

[25] Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi.
1991. Tools for Datalog Boundedness. In Proceedings of the Tenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, May 29-31, 1991,

Denver, Colorado, USA, Daniel J. Rosenkrantz (Ed.). ACM Press, 1–12. https:
//doi.org/10.1145/113413.113414

[26] Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi.
1995. Undecidable Boundedness Problems for Datalog Programs. J. Log. Program.

25, 2 (1995), 163–190. https://doi.org/10.1016/0743-1066(95)00051-K
[27] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. 2016. Datalog

rewritability of Disjunctive Datalog programs and non-Horn ontologies. Artif.
Intell. 236 (2016), 90–118. https://doi.org/10.1016/j.artint.2016.03.006

[28] Paris C. Kanellakis. 1990. Elements of Relational Database Theory. In Handbook

of Theoretical Computer Science, Volume B: Formal Models and Semantics, Jan van
Leeuwen (Ed.). Elsevier and MIT Press, 1073–1156. https://doi.org/10.1016/b978-
0-444-88074-1.50022-6

[29] Stanislav Kikot, Agi Kurucz, Vladimir Podolskii, and Michael Zakharyaschev.
2021. Deciding boundedness of monadic sirups. (2021). Full version available at
https://www.dcs.bbk.ac.uk/~michael/PODS-21.pdf.

[30] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo.
2015. Sound, complete and minimal UCQ-rewriting for existential rules. Semantic

Web 6, 5 (2015), 451–475. https://doi.org/10.3233/SW-140153
[31] Carsten Lutz and Leif Sabellek. 2017. Ontology-Mediated Querying with the

Description Logic EL: Trichotomy and Linear Datalog Rewritability. In Proceed-

ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org,
1181–1187. https://doi.org/10.24963/ijcai.2017/164

[32] Carsten Lutz and Leif Sabellek. 2019. A Complete Classification of the Complexity
and Rewritability of Ontology-Mediated Queries based on the Description Logic
EL. CoRR abs/1904.12533 (2019). arXiv:1904.12533 http://arxiv.org/abs/1904.12533

[33] Jerzy Marcinkowski. 1999. Achilles, Turtle, and Undecidable Boundedness Prob-
lems for Small DATALOG Programs. SIAM J. Comput. 29, 1 (1999), 231–257.
https://doi.org/10.1137/S0097539797322140

[34] Jeffrey F. Naughton. 1986. Data Independent Recursion in Deductive Databases.
In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Data-

base Systems, March 24-26, 1986, Cambridge, Massachusetts, USA, Avi Silberschatz
(Ed.). ACM, 267–279. https://doi.org/10.1145/6012.15420

[35] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking Data to Ontologies. J.
Data Semant. 10 (2008), 133–173. https://doi.org/10.1007/978-3-540-77688-8_5

[36] Ron van der Meyden. 2000. Predicate Boundedness of Linear Monadic Datalog is
in PSPACE. Int. J. Found. Comput. Sci. 11, 4 (2000), 591–612. https://doi.org/10.
1142/S0129054100000351

[37] Moshe Y. Vardi. 1988. Decidability and Undecidability Results for Boundedness
of Linear Recursive Queries. In Proceedings of the Seventh ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, March 21-23, 1988, Austin,

Texas, USA, Chris Edmondson-Yurkanan and Mihalis Yannakakis (Eds.). ACM,
341–351. https://doi.org/10.1145/308386.308470

[38] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella
Poggi, Riccardo Rosati, and Michael Zakharyaschev. 2018. Ontology-Based Data
Access: A Survey. In Proceedings of the Twenty-Seventh International Joint Con-

ference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.,
Jérôme Lang (Ed.). ijcai.org, 5511–5519. https://doi.org/10.24963/ijcai.2018/777

[39] Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. 2019. Virtual
Knowledge Graphs: An Overview of Systems and Use Cases. Data Intell. 1, 3
(2019), 201–223. https://doi.org/10.1162/dint_a_00011

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

384

https://doi.org/10.1016/0020-0190(89)90019-7
https://doi.org/10.1016/0020-0190(89)90019-7
http://webdam.inria.fr/Alice/
https://doi.org/10.1016/S0304-3975(02)00730-2
https://doi.org/10.1016/S0304-3975(02)00730-2
https://doi.org/10.1145/153724.153752
https://doi.org/10.1145/153724.153752
https://doi.org/10.1613/jair.2820
https://doi.org/10.24963/ijcai.2018/236
https://doi.org/10.1007/978-3-642-31585-5_11
https://doi.org/10.1007/978-3-642-31585-5_11
https://doi.org/10.1109/LICS.2015.36
http://www.ijcai.org/Abstract/16/141
https://doi.org/10.1145/2661643
https://doi.org/10.1145/2661643
https://doi.org/10.1007/978-3-540-85238-4_10
https://doi.org/10.1007/s00236-016-0282-1
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12847
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12847
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1145/6012.15421
https://doi.org/10.23638/LMCS-15(2:15)2019
https://doi.org/10.24963/kr.2020/41
https://doi.org/10.1145/2638546
http://ijcai.org/Abstract/15/430
https://doi.org/10.1145/113413.113414
https://doi.org/10.1145/113413.113414
https://doi.org/10.1016/0743-1066(95)00051-K
https://doi.org/10.1016/j.artint.2016.03.006
https://doi.org/10.1016/b978-0-444-88074-1.50022-6
https://doi.org/10.1016/b978-0-444-88074-1.50022-6
https://www.dcs.bbk.ac.uk/~michael/PODS-21.pdf
https://doi.org/10.3233/SW-140153
https://doi.org/10.24963/ijcai.2017/164
https://arxiv.org/abs/1904.12533
http://arxiv.org/abs/1904.12533
https://doi.org/10.1137/S0097539797322140
https://doi.org/10.1145/6012.15420
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1142/S0129054100000351
https://doi.org/10.1142/S0129054100000351
https://doi.org/10.1145/308386.308470
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011

A PROOF OF LEMMA 4 FROM (FOC), (LEAF)
AND (BRANCH)

Let 𝒒 be a 1-CQ having two solitary 𝑇 -nodes 𝑡0 and 𝑡1 such that,
for every C, C′ ∈ 𝔎𝒒 ,

(foc) if ℎ : C → C′ is a homomorphism then ℎ maps the root
segment of C into the root segment of C′;

(leaf) there is a homomorphism ℎ : 𝒒−
𝑇𝑇
→ C mapping 𝒒−

𝑇𝑇
into some non-leaf segment 𝔰 of C iff either 𝔰 is incorrect or
𝔰 represents a 𝑞reject-configuration in C𝑠 ;

(branch) if ℎ maps 𝒒−
𝑇𝑇

into a non-leaf segment 𝔰 that is not
properly branching in C𝑠 due to violating (pb1), but 𝔰 is
correct in C𝑠 according to the other properties, then
– ℎ(𝑡0) = 𝑡0 and ℎ(𝑡1) ≠ 𝑡0, if 𝔰 = 𝒒−

𝑇𝐴
;

– ℎ(𝑡1) = 𝑡1 and ℎ(𝑡0) ≠ 𝑡1, if 𝔰 = 𝒒−
𝐴𝑇

.
We prove the following:

Lemma 4. 𝑴 rejects𝒘 iff there is 𝐾 < 𝜔 such that every C ∈ 𝔎𝒒

contains a homomorphic image of some C− ∈ 𝔎𝒒 of depth ≤ 𝐾 .
(⇐) Suppose 𝑴 accepts 𝒘 , and so there is an accepting com-

putation-tree Taccept. We construct an ideal tree 𝛽∞ by using only
𝛽+Taccept in every step, and then take a subtree 𝛽∞𝔞 whose root 𝔞 is the
main node of some 𝑐

init(𝒘) . Given𝐾 < 𝜔 , we take the (𝐾+1)-cut 𝛽𝐾
of the desired tree 𝛽∞𝔞 . By the (⇒) direction of Claim 4.1, every node
of depth ≤ 𝐾 in 𝛽𝐾 is correct in 𝛽𝐾 . By the construction of 𝛽∞ from
the accepting computation-tree Taccept, no node in 𝛽𝐾 represents
a 𝑞reject-configuration. Let C𝐾 be the cactus such that C𝑠

𝐾
= 𝛽𝐾 .

Then, by the (⇒) direction of (leaf), there is no homomorphism
from 𝒒−

𝑇𝑇
to C𝐾 mapping 𝒒−

𝑇𝑇
into some non-leaf segment of C𝐾 .

It follows that no cactus C− of depth ≤ 𝐾 can be homomorphi-
cally mapped to C𝐾 . Indeed, suppose on the contrary that there is
a homomorphism ℎ from C− to C𝐾 . By (foc), ℎ must map the root
segment of C− into the root segment of C𝐾 . Thus, any leaf segment
𝔰 of C− (and so 𝒒−

𝑇𝑇
) should be mapped by ℎ into some segment 𝔰′

of C𝐾 whose depth is ≤ 𝐾 in C𝑠
𝐾
, and so 𝔰′ is a non-leaf segment

of C𝐾 , which is a contradiction.
(⇒) Suppose 𝑴 rejects 𝒘 , and so every computation-tree is

rejecting. Let 𝐾 = 𝒆 + 8𝒅 + 19 and take some cactus C of depth > 𝐾 .
We will cut each of the long branches of C𝑠 at some depth ≤ 𝐾 , and
show that the resulting cactus C− can be mapped homomorphically
into C.

To this end, take a branch B of C𝑠 longer than 𝐾 . We will cut B
(and possibly some other branches) at some depth ≤ 𝐾 , and show
that the resulting cactus C′ can be mapped homomorphically into
C. There are two cases: either the 4𝒅 + 11-long prefix of B does
not contain a 001∗-sequence, or it does. In the former case, the
segment 𝔰 at the end of the 4𝒅 + 11-long prefix of B (which is a
non-leaf segment of C𝑠) is not good in C𝑠 , and so it is incorrect in
C𝑠 . Thus, by the (⇐) direction of (leaf), there is a homomorphism
ℎ : 𝒒−

𝑇𝑇
→ C mapping 𝒒−

𝑇𝑇
into 𝔰. We cut B at 𝔰. Let 𝔰′ denote the

leaf segment corresponding to 𝔰 in the resulting cactus C′. Then
by mapping 𝔰′ = 𝒒−

𝑇𝑇
according to ℎ and taking the isomorphism

on any other segment of C′, we obtain a homomorphism from C′
to C.

Now consider the latter case. We take some 001∗-sequence in
the 4𝒅 + 11-long prefix of B, and let 𝔳 be the segment at the end of
this 001∗-sequence. We consider the subtree C𝑠𝔳 of C𝑠 with root 𝔳.

We claim that there is a segment 𝔰 in C𝑠𝔳 whose depth in C𝑠 is ≤ 𝐾
and such that

(correct) every segment on the path from 𝔳 to 𝔰 is correct in
C𝑠 , and there is a homomorphism ℎ0 : 𝒒−

𝑇𝑇
→ C mapping

𝒒−
𝑇𝑇

into 𝔰.

Indeed, denote by 𝑑𝔳 the depth of 𝔳 in C𝑠 (then 𝑑𝔳 ≤ 4𝒅 +11). There
are two cases:
(𝑖) There is some segment of depth< 𝐾−𝑑𝔳 inC𝑠𝔳 that is incorrect

in C𝑠𝔳 . Then we choose such a segment 𝔰 for which every segment
on the path from 𝔳 to 𝔰 is correct in C𝑠𝔳 (and so in C𝑠). If 𝔰 is a
leaf of C𝑠𝔳 (and so of C𝑠), then the isomorphism from 𝒒−

𝑇𝑇
to 𝔰 is a

homomorphism from 𝒒−
𝑇𝑇

to C mapping 𝒒−
𝑇𝑇

into 𝔰. Otherwise, by
the (⇐) direction of (leaf), there is a homomorphism from 𝒒−

𝑇𝑇
to

C mapping 𝒒−
𝑇𝑇

into the non-leaf segment 𝔰 (whose depth in C𝑠 is
≤ 𝐾).
(𝑖𝑖) All segments of depth < 𝐾 − 𝑑𝔳 in C𝑠𝔳 are correct in C𝑠𝔳 .

𝔰

𝛾𝑐reject

𝔳′

.

.

.

𝛾𝑐
init(𝒘)

𝔳

𝛾𝑐

0
1

0

0

∗
1

0

0

. . .

𝛽T

B

C𝑠

C𝑠𝔳𝐾

≥ 𝒆

4𝒅 + 8

𝑑𝔳 ≤ 4𝒅 + 11

C𝑠
𝐾

Then let C𝑠
𝐾
be the (𝐾−𝑑𝔳)-cut of C𝑠𝔳 . As C𝑠𝐾 is a substructure of C𝑠𝔳 ,

all segments of depth < 𝐾 − 𝑑𝔳 in C𝑠𝐾 are correct in C𝑠
𝐾
. So, by the

(⇐) direction of Claim 4.1, C𝑠
𝐾
is isomorphic to the (𝐾 − 𝑑𝔳)-cut of

some desired tree, and therefore 𝔳 represents some configuration 𝑐 .
Whichever configuration 𝑐 is, there is a segment 𝔳′ of depth ≤ 4𝒅+8
in C𝑠

𝐾
that is the main node of 𝑐

init(𝒘) . As 𝐾 − 𝑑𝔳 − (4𝒅 + 8) ≥ 𝒆,
it follows that there is a computation-tree T such that 𝛽T is a
substructure of the subtree of C𝑠

𝐾
with root 𝔳′ (as the depth of

each 𝛽T is 𝒆). Thus, there is a segment 𝔰 in C𝑠
𝐾

representing a
𝑞reject-configuration 𝑐reject in C𝑠𝐾 (because every computation-tree
is rejecting, and so T is rejecting). As 𝔰 is a non-leaf segment in C𝑠

𝐾
and C𝑠

𝐾
is a substructure of C𝑠 , 𝔰 is a non-leaf segment representing

𝑐reject in C𝑠 whose depth is ≤ 𝐾 in C𝑠 . Thus, by the (⇐) direction

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

385

of (leaf), there is a homomorphism from 𝒒−
𝑇𝑇

to C mapping 𝒒−
𝑇𝑇

into 𝔰.
So in both cases (𝑖) and (𝑖𝑖), we have shown that there is a

segment 𝔰 of depth ≤ 𝐾 in C𝑠 such that (correct) holds. However,
𝔰 is not necessarily in the branch B. Let 𝔰𝑚 be the last ancestor of
𝔰 in B, and list the segments 𝔰 = 𝔰0, 𝔰1, . . . , 𝔰𝑚 on the path leading
upwards from 𝔰 to 𝔰𝑚 . Let C′ be obtained from C by cutting at 𝔰𝑖
every branch of C𝑠 going through 𝔰𝑖 other than the one going to
𝔰, for every 𝑖 ≤ 𝑚. (In particular, B is cut at 𝔰𝑚 which is of depth
≤ 𝐾 .) Let 𝔰★

𝑖
denote the segment corresponding to 𝔰𝑖 in C′. Then

𝔰★0 is a leaf in C′, and so 𝔰★0 = 𝒒−
𝑇𝑇

. Also, for each 𝑖 > 0,
– either 𝔰★

𝑖
= 𝔰𝑖

– or 𝔰𝑖 = 𝒒−
𝐴𝐴

and 𝔰★
𝑖
is either 𝒒−

𝐴𝑇
or 𝒒−

𝑇𝐴
.

We claim that, for every 𝑖 ≤ 𝑚, there is some homomorphism
ℎ𝑖 : 𝔰★

𝑖
→ C mapping 𝔰★

𝑖
into 𝔰𝑖 and such that

if 𝔰★
𝑖−1 is the 𝑗-child of 𝔰★

𝑖
, for 𝑗 = 0, 1, then

ℎ𝑖 maps the 𝑡 𝑗 -node of 𝔰★𝑖 to the 𝑡 𝑗 -node of 𝔰𝑖 . (10)

This will be enough for building a homomorphism from C′ to C:
we take these ℎ𝑖 on each 𝔰★

𝑖
, and the isomorphism on any other

segment.
Indeed, if 𝑖 = 0 then the ℎ0 in (correct) is suitable. If 𝑖 > 0 and

𝔰★
𝑖
= 𝔰𝑖 , then the isomorphism is suitable for ℎ𝑖 . So suppose that

𝔰★
𝑖
≠ 𝔰𝑖 (so 𝔰𝑖 = 𝒒−

𝐴𝐴
). We consider the case when 𝔰★

𝑖
= 𝒒−

𝐴𝑇
, that

is, 𝔰★
𝑖−1 is a 0-child of 𝔰★

𝑖
(the case when 𝔰★

𝑖
= 𝒒−

𝑇𝐴
is similar). Let

C𝑖 be obtained from C by cutting at 𝔰𝑖 the branch leading to 𝔰. Let
𝔰
†
𝑖
denote the segment corresponding to 𝔰𝑖 in C𝑖 , that is, 𝔰†𝑖 = 𝒒−

𝑇𝐴
.

C

B

𝔰𝑚 𝔰𝑖

𝔰0 = 𝔰

C′

B

𝔰★𝑚 𝔰★
𝑖

𝔰★0

C𝑖

B

𝔰
†
𝑖

By (correct), 𝔰𝑖 is correct in C𝑠 , and so 𝔰𝑖 is properly branching
in C𝑠 . Thus, 𝔰†

𝑖
is incorrect in C𝑠

𝑖
because it violates condition

(pb1) in Sec. 3.3.2. On the other hand, 𝔰†
𝑖
is correct in C𝑠

𝑖
in all the

other aspects (this is because apart from 𝔰𝑖 and some of its descen-
dants, every other segment is the same in both cactuses C and C𝑖).
Therefore, by the (⇐) direction of (leaf), there is a homomorphism
ℎ𝑖 : 𝒒−

𝑇𝑇
→ C𝑖 mapping 𝒒−

𝑇𝑇
into 𝔰†

𝑖
. Also, by (branch), the same

ℎ𝑖 is a homomorphism from 𝔰★
𝑖
to C, mapping 𝔰★

𝑖
to 𝔰𝑖 and such

that (10) holds:

𝑡0

𝑇

𝑡1

𝑇

𝑡0

𝑇

𝑡1

𝐴 𝐹𝑇
{

ℎ𝑖

𝒒−
𝑇𝑇 𝔰

†
𝑖
= 𝒒−

𝑇𝐴

𝑡0

𝐴

𝑡1

𝑇

𝑡0

𝐴

𝑡1

𝐴 𝐹𝑇

ℎ𝑖

𝔰★
𝑖
= 𝒒−

𝐴𝑇
𝔰𝑖 = 𝒒−

𝐴𝐴

So in any case we showed that there exists a C′ → C homo-
morphism, for some subcactus C′ of C where branch B is cut at
some depth ≤ 𝐾 . If C′ still has branches longer than 𝐾 , we repeat

the above process for a long branch in C′ to obtain a C′′ → C′
homomorphism for some C′′, and so on. At the end, we obtain a
cactus C− of depth ≤ 𝐾 homomorphically mapping into C, which
completes the proof of Lemma 4.

B PROOF OF CLAIM 4.2
(⇒) Suppose that, for some C and 𝔰, a gadget 𝔤 implementing a
formula𝜑𝔤 (𝑦1, . . . , 𝑦𝑛) is triggered at 𝔰. Then there is aℎ : 𝒒−

𝑇𝑇
→ C

homomorphism mapping the 𝐼𝔤-block in 𝒒−
𝑇𝑇

to the𝑀𝔤-block in 𝔰.
In particular, ℎ(𝜄𝔤) = 𝛼 , and so ℎ(𝜋𝔤) = 𝜚𝔤 . Thus, for every 𝑖 ≤ 𝑛,
the 𝐵𝑖 -node in 𝐼𝔤 must also be mapped to one of the two 𝐵𝑖 -nodes
in the 𝑀𝔤-block of 𝔰 (either 𝛽𝑇

𝑖
or 𝛽𝐹). However, which of these

two 𝐵𝑖 -nodes is the image depends on the truth-value 𝑏𝔰
𝑖
of the

gathered input 𝒃𝔰𝔤 = (𝑏𝔰1, . . . , 𝑏
𝔰
𝑛) on the variable 𝑦𝑖 . We claim that

(𝑖) if 𝑏𝔰
𝑖
= 0, then the 𝐵𝑖 -node in 𝐼𝔤 is mapped by ℎ to 𝛽𝐹 ;

(𝑖𝑖) if 𝑏𝔰
𝑖
= 1, then the 𝐵𝑖 -node in 𝐼𝔤 is mapped by ℎ to 𝛽𝑇

𝑖
.

Instead of proving (𝑖) and (𝑖𝑖), here we give an illustrative example.
Suppose 𝜑𝔤 (𝑦1, . . . , 𝑦5) is such that (𝑦1, 𝑦2, 𝑦3) should be gathered
from the 3-long uppath, and (𝑦4, 𝑦5) from a 2-long downpath. Sup-
pose the ‘environment’ of 𝔰 in C𝑠 looks like this:

q qq qqq
qq

q
𝔰

ppp

ppp
��	

��	

@@R

@@R

?

?

?

?

1

1

0

0 1

0 1 0

Then if ℎ is a homomorphism triggering 𝔤 at 𝔰, then the possible
inputs 𝒃𝔰𝔤 that can be gathered are 01100, 01101, or 01110, because
ℎ should map the pattern

𝜂1

– –

– –

𝛾1 –

𝐵1

𝑆

𝜂2

– –

– –

𝛾2 –

𝐵2

𝑆

𝜂3

– –

– –

𝛾3 –

𝐵3

𝑆

𝜂4

– –

𝛾4 –

𝐵4

𝑆

𝜂5

– –

𝛾5 –

𝐵5

𝑆

𝑊

...

𝐼𝔤

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

386

to the pattern shown below:

.

.

.

– –

– –

𝐴

𝜉

𝛼

𝑆

𝑆

𝑆

𝐴

. . .

𝐴 𝐴

.

.

.
.
.
.

𝑊 𝑊

𝔰

𝑆

𝑆

𝑆

𝐴

. . .

𝐴 𝑇

.

.

.
𝑊

𝑆

𝑆

𝑆

𝛽𝑇1 𝐵1

𝐵2

𝐵3

𝐵4

𝛽𝑇5 𝐵5

𝐵1, . . . , 𝐵5

𝛽𝐹

(We are also using that the parts of gadgets that are not depicted
above do not contain𝑊 -nodes, so the ℎ-image cannot ‘stray’ there
when taking a downpath.)

It remains to see how ℎ maps the remaining part of the 𝐼𝔤-block
into the𝑀𝔤-block of 𝔰. We claim that for every non-leaf gate 𝑔 in
𝜑𝔤 , if 𝑔ℓ𝑖 𝑗 is an occurrence of 𝑔 on some branch, then the end-node
𝑝ℓ
𝑖 𝑗
of the 𝑅𝑆𝑅-pattern corresponding to 𝑔ℓ

𝑖 𝑗
in 𝐼𝔤 is mapped in such

a way that

(𝑖𝑖𝑖) ℎ(𝑝ℓ
𝑖 𝑗
) is the 𝐨-node of the gadget for 𝑔, whenever the value

of 𝑔 under 𝒃𝔰𝔤 is 0;
(𝑖𝑣) ℎ(𝑝ℓ

𝑖 𝑗
) is the (𝐷)-node of the gadget for 𝑔, whenever the

value of 𝑔 under 𝒃𝔰𝔤 is 1.

We prove this by induction on the tree-structure of 𝜑𝔤 , going from
leaves to root. Take some gate 𝑔, and let 𝑔ℓ

𝑖 𝑗
be an occurrence of 𝑔.

First, suppose that 𝑔 is an AND-gate. There are many cases,
depending on the truth-values of 𝑔 and its two inputs 𝑔1 and 𝑔2

under 𝒃𝔰𝔤 , and also on whether each of the 𝑔𝑖 is a leaf gate or not.
We consider just two cases, the other ones are similar.

– Suppose that the value of 𝑔 under 𝒃𝔰𝔤 is 0, ℓ = 1 (and so 𝑔1
is a leaf labelled by 𝑦𝑖), and 𝑏𝔰𝑖 = 1. Suppose that 𝑔2 is also
a leaf gate, and so 𝑔2 has value 0 under 𝒃𝔰𝔤 . Let 𝑔1

𝑖′ 𝑗 ′ be an
occurrence of 𝑔2. By (𝑖𝑖), the 𝐵𝑖 𝑗 -node in 𝐼𝔤 is mapped by
ℎ to the upper 𝐵𝑖 𝑗 -node in the 𝑀𝔤-block of 𝔰. So the first
𝑅-edge of the 𝑅𝑆𝑅-pattern corresponding to 𝑔1

𝑖 𝑗
is mapped to

the 𝑅-edge connecting the two 𝐵𝑖 𝑗 -nodes. Thus, the 𝑆-edge
of the 𝑅𝑆𝑅-pattern corresponding to 𝑔1

𝑖 𝑗
must be mapped

to an 𝑆-edge starting at the 𝐢1-node of the 𝑔-gadget. Simi-
larly, by (𝑖), the 𝐵𝑖′ 𝑗 ′-node in 𝐼𝔤 is mapped by ℎ to the lower
𝐵𝑖′ 𝑗 ′-node in the 𝑀𝔤-block of 𝔰. So the 𝑆-edge of the 𝑅𝑆𝑅-
pattern corresponding to 𝑔1

𝑖′ 𝑗 ′ must be mapped to an 𝑆-edge
following an 𝑅-edge starting at the 𝐢2-node of the 𝑔-gadget.
As ℎ preserves 𝐸, the end-nodes of these two 𝑆-edges in the
𝑔-gadget must coincide, and so it must be node 𝑐1. So ℎ(𝑝1

𝑖 𝑗
)

is the 𝐨-node of the 𝑔-gadget.
– Suppose that the value of 𝑔 under 𝒃𝔰𝔤 is 1, and both of its
inputs are non-leaf gates having value 1 under 𝒃𝔰𝔤 . Suppose
𝑔ℓ−1
𝑖 𝑗

is an occurrence of 𝑔1 and 𝑔ℓ
′
𝑖′ 𝑗 ′ is an occurrence of 𝑔2.

By the IH, ℎ(𝑝ℓ−1
𝑖 𝑗
) is the (𝐷)-node of the gadget for 𝑔1, and

ℎ(𝑝ℓ′
𝑖′ 𝑗 ′) is the (𝐷)-node of the gadget for 𝑔2. Then the 𝑆-

edges of the 𝑅𝑆𝑅-patterns corresponding to 𝑔ℓ−1
𝑖 𝑗

and 𝑔ℓ
′
𝑖′ 𝑗 ′

must be mapped, respectively, to 𝑆-edges starting at the 𝐢1-
and 𝐢2-nodes of the𝑔-gadget. Asℎ preserves 𝐸, the end-nodes
of these two 𝑆-edges in the 𝑔-gadget must coincide, and so
it must be node 𝑏. So ℎ(𝑝ℓ

𝑖 𝑗
) is the (𝐷)-node of the 𝑔-gadget,

as required.
The case when 𝑔 is a NOT-gate can be handled similarly, thereby
completing the proof of (𝑖𝑖𝑖) and (𝑖𝑣). As ℎ preserves 𝐷 , it follows
that 𝜑𝔤 [𝒃𝔰𝔤] = 1.
(⇐) If there is 𝒃𝔰𝔤 such that 𝒃𝔰𝔤 is gathered from ‘around’ 𝔰 in C𝑠

according to the input-types for 𝜑𝔤 and 𝜑𝔤 [𝒃𝔰𝔤] = 1, then we define
a function ℎ : 𝒒−

𝑇𝑇
→ C by taking

– ℎ(𝛼) = 𝜏𝔤 for the 𝜏𝔤-node of 𝔰,
– ℎ(𝜄𝔤) = 𝛼 for the 𝛼-node of 𝔰,

and mapping
– the 𝐼𝔤-block to the𝑀𝔤-block of 𝔰 following the structure of
𝒃𝔰𝔤 and 𝜑𝔤 as described above,

– the 𝐼𝔤𝑖 -block of every gadget 𝔤𝑖 different from 𝔤 to the 𝐼𝔤𝑖 -
block of 𝔰.

– the𝑀𝔤𝑖 -block of every gadget 𝔤𝑖 to the𝑀 ′𝔤𝑖 -block of 𝔰, and
– the𝑀 ′𝔤𝑖 -block of every gadget 𝔤𝑖 also to the𝑀 ′𝔤𝑖 -block of 𝔰.

Using the interaction-regulating mechanism between different gad-
gets described in Sec. 3.5.1, it is easy to see that ℎ is a homomor-
phism, and 𝔤 is triggered by ℎ at 𝔰.

Session: Query Languages

PODS ’21, June 20–25, 2021, Virtual Event, China

387

	Abstract
	1 Introduction
	2 Preliminaries
	3 Deciding boundedness of sirups
	3.1 Related results
	3.2 Proof idea
	3.3 Connecting computations and cactuses
	3.4 Boolean formulas
	3.5 Query design
	3.6 OMQs with Schema.org and DL-Litebool

	4 Monadic d-sirups with a ditree CQ
	5 Conclusions
	Acknowledgments
	References
	A Proof of Lemma 4 from (foc), (leaf) and (branch)
	B Proof of Claim 4.2

