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Abstract

We study the data complexity of consistent query answering (CQA) on databases that may violate the
primary key constraints. A repair is a maximal consistent subset of the database. For a Boolean query q, the
problem CERTAINTY(q) takes a database as input, and asks whether or not each repair satisfies q. It is known
that for any self-join-free Boolean conjunctive query q, CERTAINTY(q) is in FO, L-complete, or coNP-complete.
In particular, CERTAINTY(q) is in FO for any self-join-free Boolean path query q. In this paper, we show that
if self-joins are allowed, the complexity of CERTAINTY(q) for Boolean path queries q exhibits a tetrachotomy
between FO, NL-complete, PTIME-complete, and coNP-complete. Moreover, it is decidable, in polynomial
time in the size of the query q, which of the four cases applies.

1 Introduction

Primary keys are probably the most common integrity constraints in relational database systems. Although
databases should ideally satisfy their integrity constraints, data integration is today frequently cited as a cause for
primary key violations, for example, when a same client is stored with different birthdays in two data sources. A
repair of such an inconsistent database instance is then naturally defined as a maximal consistent subinstance. Two
approaches are then possible. In data cleaning, the objective is to single out the “best” repair, which however may
not be practically possible. In consistent query answering (CQA) [3], instead of cleaning the inconsistent database
instance, we change the notion of query answer: the consistent (or certain) answer is defined as the intersection
of the query answers over all (exponentially many) repairs. In computational complexity studies, consistent query
answering is commonly defined as the data complexity of the following decision problem, for a fixed Boolean query q:

Problem: CERTAINTY(q)

Input: A database instance db.

Question: Does q evaluate to true on every repair of db?

For every first-order query q, the problem CERTAINTY(q) is obviously in coNP. However, despite significant
research efforts (see Section 9), a fine-grained complexity classification is still largely open. A notorious open
conjecture is the following.

Conjecture 1. For each Boolean conjunctive query q, CERTAINTY(q) is either in PTIME or coNP-complete.

On the other hand, for the smaller class of self-join-free Boolean conjunctive queries, the complexity landscape
is by now well understood, as summarized by the following theorem.

Theorem 1 ([32]). For each self-join-free Boolean conjunctive query q, CERTAINTY(q) is in FO, L-complete, or
coNP-complete, and it is decidable which of the three cases applies.

∗This paper is an evolved version of a paper with the same title and authors published at ACM PODS’21 [25]. In particular, the
proof of Lemma 9 in the current paper is new and replaces a flawed proof in the earlier version, and the technical treatment in the
current Section 6.3 strengthens some earlier results.
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Figure 1: An inconsistent database instance db.

Abandoning the restriction of self-join-freeness turns out to be a major challenge. The difficulty of self-joins
is caused by the obvious observation that a single database fact can be used to satisfy more than one atom of a
conjunctive query, as illustrated by Example 1. Self-joins happen to significantly change the complexity landscape
laid down in Theorem 1; this is illustrated by Example 2. Self-join-freeness is a simplifying assumption that is also
used outside CQA (e.g., [15, 4, 16]).

Example 1. Take the self-join q1 = ∃x∃y(R(x, y)∧R(y, x)) and its self-join-free counterpart q2 = ∃x∃y(R(x, y)∧
S(y, x)), where the primary key positions are underlined. Consider the inconsistent database instance db in
Figure 1. We have that db is a “no”-instance of CERTAINTY(q2), because q2 is not satisfied by the repair {R(a, a),
R(b, b), S(a, b), S(b, a)}. However, db is a “yes”-instance of CERTAINTY(q1). This is because every repair that
contains R(a, a) or R(b, b) will satisfy q1, while a repair that contains neither of these facts must contain R(a, b)
and R(b, a), which together also satisfy q1.

Example 2. Take the self-join q1 = ∃x∃y∃z(R(x, z)∧R(y, z)) and its self-join-free counterpart q2 = ∃x∃y∃z(R(x, z)∧
S(y, z)). CERTAINTY(q2) is known to be coNP-complete, whereas it is easily verified that CERTAINTY(q1) is
in FO, by observing that a database instance is a “yes”-instance of CERTAINTY(q1) if and only if it satisfies
∃x∃y(R(x, y)).

This paper makes a contribution to the complexity classification of CERTAINTY(q) for conjunctive queries,
possibly with self-joins, of the form

q = ∃x1 · · · ∃xk+1(R1(x1, x2) ∧R2(x2, x3) ∧ · · · ∧Rk(xk, xk+1)),

which we call path queries. The primary key positions are underlined. As will become apparent in our technical
treatment, the classification of path queries is already very challenging, even though it is only a first step to-
wards Conjecture 1, which is currently beyond reach. If all Ri’s are distinct (i.e., if there are no self-joins), then
CERTAINTY(q) is known to be in FO for path queries q. However, when self-joins are allowed, the complexity
landscape of CERTAINTY(q) for path queries exhibits a tetrachotomy, as stated by the following main result of our
paper.

Theorem 2. For each Boolean path query q, CERTAINTY(q) is in FO, NL-complete, PTIME-complete, or
coNP-complete, and it is decidable in polynomial time in the size of q which of the four cases applies.

Comparing Theorem 1 and Theorem 2, it is striking that there are path queries q for which CERTAINTY(q) is
NL-complete or PTIME-complete, whereas these complexity classes do not occur for self-join-free queries (under
standard complexity assumptions). So even for the restricted class of path queries, allowing self-joins immediately
results in a more varied complexity landscape.

Let us provide some intuitions behind Theorem 2 by means of examples. Path queries use only binary relation
names. A database instance db with binary facts can be viewed as a directed edge-colored graph: a fact R(a, b)
is a directed edge from a to b with color R. A repair of db is obtained by choosing, for each vertex, precisely one
outgoing edge among all outgoing edges of the same color. We will use the shorthand q = RR to denote the path
query q = ∃x∃y∃z(R(x, y) ∧R(y, z)).

In general, path queries can be represented by words over the alphabet of relation names. Throughout this
paper, relation names are in uppercase letters R, S, X, Y etc., while lowercase letters u, v, w stand for (possibly
empty) words. An important operation on words is dubbed rewinding : if a word has a factor of the form RvR,
then rewinding refers to the operation that replaces this factor with RvRvR. That is, rewinding the factor RvR
in the word uRvRw yields the longer word uRvRvRw. For short, we also say that uRvRw rewinds to the word
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u·Rv ·Rv ·Rw, where we used concatenation (·) and underlining for clarity. For example, TWITTER rewinds to
TWI ·TWI ·TTER, but also to TWIT ·TWIT ·TER and to TWI ·T ·T ·TER.

Let q1 = RR. It is easily verified that a database instance is a “yes”-instance of CERTAINTY(q1) if and only if
it satisfies the following first-order formula:

φ = ∃x(∃yR(x, y) ∧ ∀y(R(x, y)→ ∃zR(y, z))).

Informally, every repair contains an R-path of length 2 if and only if there exists some vertex x such that every
repair contains a path of length 2 starting in x.

Let q2 = RRX, and consider the database instance in Figure 2. Since the only conflicting facts are R(1, 2) and
R(1, 3), this database instance has two repairs. Both repairs satisfy RRX, but unlike the previous example, there is
no vertex x such that every repair has a path colored RRX that starts in x. Indeed, in one repair, such path starts
in 0; in the other repair it starts in 1. For reasons that will become apparent in our theoretical development, it is
significant that both repairs have paths that start in 0 and are colored by a word in the regular language defined
by RR (R)

∗
X. This is exactly the language that contains RRX and is closed under the rewinding operation. In

general, it can be verified with some effort that a database instance is a “yes”-instance of CERTAINTY(q2) if and
only if it contains some vertex x such that every repair has a path that starts in x and is colored by a word in the
regular language defined by RR (R)

∗
X. The latter condition can be tested in PTIME (and even in NL).

0 1
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R

R

R

X

Figure 2: An example database instance db for q2 = RRX.

The situation is still different for q3 = ARRX, for which it will be shown that CERTAINTY(q3) is coNP-
complete. Unlike our previous example, repeated rewinding of ARRX into words of the language ARR (R)

∗
X

is not helpful. For example, in the database instance of Figure 3, every repair has a path that starts in 0 and is
colored with a word in the language defined by ARR (R)

∗
X. However, the repair that contains R(a, c) does not

satisfy q3. Unlike Figure 2, the “bifurcation” in Figure 3 can be used as a gadget for showing coNP-completeness
in Section 7.
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Figure 3: An example database instance db for q3 = ARRX.

Organization. Section 2 introduces the preliminaries. In Section 3, the statement of Theorem 3 gives the
syntactic conditions for deciding the complexity of CERTAINTY(q) for path queries q. To prove this theorem, we
view the rewinding operator from the perspectives of regular expressions and automata, which are presented in
Sections 4 and 5 respectively. Sections 6 and 7 present, respectively, complexity upper bounds and lower bounds
of our classification. In Section 8, we extend our classification result to path queries with constants. Section 9
discusses related work, and Section 10 concludes this paper.

2 Preliminaries

We assume disjoint sets of variables and constants. A valuation over a set U of variables is a total mapping θ
from U to the set of constants.

Atoms and key-equal facts. We consider only 2-ary relation names, where the first position is called the
primary key. If R is a relation name, and s, t are variables or constants, then R(s, t) is an atom. An atom without
variables is a fact. Two facts are key-equal if they use the same relation name and agree on the primary key.

Database instances, blocks, and repairs. A database schema is a finite set of relation names. All constructs
that follow are defined relative to a fixed database schema.
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A database instance is a finite set db of facts using only the relation names of the schema. We write adom(db)
for the active domain of db (i.e., the set of constants that occur in db). A block of db is a maximal set of key-equal
facts of db. Whenever a database instance db is understood, we write R(c, ∗) for the block that contains all facts
with relation name R and primary-key value c. A database instance db is consistent if it contains no two distinct
facts that are key-equal (i.e., if no block of db contains more than one fact). A repair of db is an inclusion-maximal
consistent subset of db.

Boolean conjunctive queries. A Boolean conjunctive query is a finite set q = {R1(x1, y1), . . . , Rn(xn, yn)}
of atoms. We denote by vars(q) the set of variables that occur in q. The set q represents the first-order sentence

∃u1 · · · ∃uk(R1(x1, y1) ∧ · · · ∧Rn(xn, yn)),

where {u1, . . . , uk} = vars(q).
We say that a Boolean conjunctive query q has a self-join if some relation name occurs more than once in q. A

conjunctive query without self-joins is called self-join-free.
Consistent query answering. For every Boolean conjunctive query q, the decision problem CERTAINTY(q)

takes as input a database instance db, and asks whether q is satisfied by every repair of db. It is straightforward
that for every Boolean conjunctive query q, CERTAINTY(q) is in coNP.

Path queries. A path query is a Boolean conjunctive query without constants of the following form:

q = {R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)},

where x1, x2,. . . , xk+1 are distinct variables, and R1, R2,. . . , Rk are (not necessarily distinct) relation names.
It will often be convenient to denote this query as a word R1R2 · · ·Rk over the alphabet of relation names. This
“word” representation is obviously lossless up to a variable renaming. Importantly, path queries may have self-joins,
i.e., a relation name may occur multiple times. Path queries containing constants will be discussed in Section 8.
The treatment of constants is significant, because it allows moving from Boolean to non-Boolean queries, by using
that free variables behave like constants.

3 The Complexity Classification

We define syntactic conditions C1, C2, and C3 for path queries q. Let R be any relation name in q, and let u, v, w
be (possibly empty) words over the alphabet of relation names of q.

C1: Whenever q = uRvRw, q is a prefix of uRvRvRw.

C2: Whenever q = uRvRw, q is a factor of uRvRvRw; and whenever q = uRv1Rv2Rw for consecutive occurrences
of R, v1 = v2 or Rw is a prefix of Rv1.

C3: Whenever q = uRvRw, q is a factor of uRvRvRw.

It is instructive to think of these conditions in terms of the rewinding operator introduced in Section 1: C1 is
tantamount to saying that q is a prefix of every word to which q rewinds; and C3 says that q is a factor of every
word to which q rewinds. These conditions can be checked in polynomial time in the length of the word q. The
following result has an easy proof.

Proposition 1. Let q be a path query. If q satisfies C1, then q satisfies C2; and if q satisfies C2, then q satisfies C3.

The main part of this paper comprises a proof of the following theorem, which refines the statement of Theorem 2
by adding syntactic conditions. The theorem is illustrated by Example 3.

Theorem 3. For every path query q, the following complexity upper bounds obtain:

• if q satisfies C1, then CERTAINTY(q) is in FO;

• if q satisfies C2, then CERTAINTY(q) is in NL; and

• if q satisfies C3, then CERTAINTY(q) is in PTIME.

Moreover, for every path query q, the following complexity lower bounds obtain:

• if q violates C1, then CERTAINTY(q) is NL-hard;
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• if q violates C2, then CERTAINTY(q) is PTIME-hard; and

• if q violates C3, then CERTAINTY(q) is coNP-complete.

Example 3. The query q1 = RXRX rewinds to (and only to) RX·RX·RX and R·XR·XR·X, which both contain
q1 as a prefix. It is correct to conclude that CERTAINTY(q1) is in FO.

The query q2 = RXRY rewinds only to RX ·RX ·RY , which contains q2 as a factor, but not as a prefix.
Therefore, q2 satisfies C3, but violates C1. Since q2 vacuously satisfies C2 (because no relation name occurs three
times in q2), it is correct to conclude that CERTAINTY(q2) is NL-complete.

The query q3 = RXRY RY rewinds to RX ·RX ·RY RY , to RXRY ·RXRY ·RY , and to RX ·RY ·RY ·RY =
RXR·Y R·Y R·Y . Since these words contain q3 as a factor, but not always as a prefix, we have that q3 satisfies C3
but violates C1. It can be verified that q3 violates C2 by writing it as follows:

q3 = ε︸︷︷︸
u

RX︸︷︷︸
Rv1

RY︸︷︷︸
Rv2

RY︸︷︷︸
Rw

We have X = v1 ̸= v2 = Y , but Rw = RY is not a prefix of Rv1 = RX. Thus, CERTAINTY(q3) is PTIME-
complete.

Finally, the path query q4 = RXRXRY RY rewinds, among others, to RX ·RXRY ·RXRY ·RY , which does
not contain q4 as a factor. It is correct to conclude that CERTAINTY(q4) is coNP-complete.

4 Regexes for C1, C2, and C3
In this section, we show that the conditions C1, C2, and C3 can be captured by regular expressions (or regexes) on
path queries, which will be used in the proof of Theorem 3. Since these results are within the field of combinatorics
of words, we will use the term word rather than path query.

Definition 1. We define four properties B1, B2a, B2b, B3 that a word q can possess:

B1: For some integer k ≥ 0, there are words v, w such that vw is self-join-free and q is a prefix of w (v)
k
.

B2a: For some integers j, k ≥ 0, there are words u, v, w such that uvw is self-join-free and q is a factor of (u)
j
w (v)

k
.

B2b: For some integer k ≥ 0, there are words u, v, w such that uvw is self-join-free and q is a factor of (uv)
k
wv.

B3: For some integer k ≥ 0, there are words u, v, w such that uvw is self-join-free and q is a factor of uw (uv)
k
.

We can identify each condition among C1, C2, C3, B1, B2a, B2b, B3 with the set of all words satisfying this
condition. Note then that B1 ⊆ B2a ∩ B3. The results in the remainder of this section can be summarized as
follows:

• C1 = B1 (Lemma 1)

• C2 = B2a ∪ B2b (Lemma 3)

• C3 = B2a ∪ B2b ∪ B3 (Lemma 2)

Moreover, Lemma 3 characterizes C3 \ C2.

Lemma 1. For every word q, the following are equivalent:

1. q satisfies C1; and

2. q satisfies B1.

Lemma 2. For every word q, the following are equivalent:

1. q satisfies C3; and

2. q satisfies B2a, B2b, or B3.

Definition 2 (First and last symbol). For a nonempty word u, we write first(u) and last(u) for, respectively, the
first and the last symbol of u.
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Figure 4: The NFA(q) automaton for the path query q = RXRRR.

Lemma 3. Let q be a word that satisfies C3. Then, the following three statements are equivalent:

1. q violates C2;

2. q violates both B2a and B2b; and

3. there are words u, v, w with u ̸= ε and uvw self-join-free such that either

(a) v ̸= ε and last(u) · wuvu · first(v) is a factor of q; or

(b) v = ε, w ̸= ε, and last(u) · w (u)
2 · first(u) is a factor of q.

The shortest word of the form (3a) in the preceding lemma is RRSRS (let u = R, v = S, and w = ε), and the
shortest word of the form (3b) is RSRRR (let u = R, v = ε, and w = S). Note that since each of C2, B2a, and B2b
implies C3, it is correct to conclude that the equivalence between the first two items in Lemma 3 does not need the
hypothesis that q must satisfy C3.

5 Automaton-Based Perspective

In this section, we prove an important lemma, Lemma 7, which will be used for proving the complexity upper
bounds in Theorem 3.

5.1 From Path Queries to Finite Automata

We can view a path query q as a word where the alphabet is the set of relation names. We now associate each path
query q with a nondeterministic finite automaton (NFA), denoted NFA(q).

Definition 3 (NFA(q)). Every word q gives rise to a nondeterministic finite automaton (NFA) with ε-moves,
denoted NFA(q), as follows.

States: The set of states is the set of prefixes of q. The empty word ε is a prefix of q.

Forward transitions: If u and uR are states, then there is a transition with label R from state u to state uR.
These transitions are said to be forward.

Backward transitions: If uR and wR are states such that |u| < |w| (and therefore uR is a prefix of w), then
there is a transition with label ε from state wR to state uR. These transitions are said to be backward, and
capture the operation dubbed rewinding.

Initial and accepting states: The initial state is ε and the only accepting state is q.

Figure 4 shows the automaton NFA(RXRRR). Informally, the forward transitions capture the automaton that
would accept the word RXRRR, while the backward transitions capture the existence of self-joins that allow an
application of the rewind operator. We now take an alternative route for defining the language accepted by NFA(q),
which straightforwardly results in Lemma 4. Then, Lemma 5 gives alternative ways for expressing C1 and C3.

Definition 4. Let q be a path query, represented as a word over the alphabet of relation names. We define the
language L↬(q) as the smallest set of words such that

6



(a) q belongs to L↬(q); and

(b) Rewinding: if uRvRw is in L↬(q) for some relation name R and (possibly empty) words u, v, w, then
uRvRvRw is also in L↬(q).

That is, L↬(q) is the smallest language that contains q and is closed under rewinding.

Lemma 4. For every path query q, the automaton NFA(q) accepts the language L↬(q).

Lemma 5. Let q be a path query. Then,

1. q satisfies C1 if and only if q is a prefix of each p ∈ L↬(q);

2. q satisfies C3 if and only if q is a factor of each p ∈ L↬(q).

Proof. ⇐= in (1) and (2) This direction is trivial, because whenever q = uRvRw, we have that uRvRvRw ∈
L↬(q).

We now show the =⇒ direction in both items. To this end, we call an application of the rule (b) in Definition 4
a rewind. By construction, each word in L↬(q) can be obtained from q by using k rewinds, for some nonnegative
integer k. Let qk be a word in L↬(q) that can be obtained from q by using k rewinds.

=⇒ in (1) We use induction on k to show that q is a prefix of qk. For he induction basis, k = 0, we have

that q is a prefix of q0 = q. We next show the induction step k → k+1. Let qk+1 = uRvRvRw where qk = uRvRw
is a word in L↬(q) obtained with k rewinds. By the induction hypothesis, we can assume a word s such that
qk = q · s.

• If q is a prefix of uRvR, then qk+1 = uRvRvRw trivially contains q as a prefix;

• otherwise uRvR is a proper prefix of q. Let q = uRvRt where t is nonempty. Since q satisfies C1, Rt is a
prefix of Rv. Then qk+1 = uRvRvRw contains q = u ·Rv ·Rt as a prefix.

=⇒ in (2) We use induction on k to show that q is a factor of qk. For the induction basis, k = 0, we have

that q is a prefix of q0 = q. For the induction step, k → k + 1, let qk+1 = uRvRvRw where qk = uRvRw is a
word in L↬(q) obtained with k rewinds. By the induction hypothesis, qk = uRvRw contains q as a factor. If q is
a factor of either uRvR or RvRw, then qk+1 = uRvRvRw contains q as a factor. Otherwise, we can decompose
qk = u−q−RvRq+w+ where q = q−RvRq+, u = u−q− and w = q+w+. Since q satisfies C3, the word q−RvRvRq+,
which is a factor of qk+1, contains q as a factor.

In the technical treatment, it will be convenient to consider the automaton obtained from NFA(q) by changing
its start state, as defined next.

Definition 5. If u is a prefix of q (and thus u is a state in NFA(q)), then S-NFA(q, u) is the automaton obtained
from NFA(q) by letting the initial state be u instead of the empty word. Note that S-NFA(q, ε) = NFA(q). It may
be helpful to think of the first S in S-NFA(q, u) as “Start at u.”

5.2 Reification Lemma

In this subsection, we first define how an automaton executes on a database instance. We then state an helping
lemma which will be used in the proof of Lemma 7, which constitutes the main result of Section 5. To improve the
readability and logical flow of our presentation, we postpone the proof of the helping lemma to Section 5.3.

Definition 6 (Automata on database instances). Let db be a database instance. A path (in db) is defined as
a sequence R1(c1, c2), R2(c2, c3), . . . , Rn(cn, cn+1) of facts in db. Such a path is said to start in c1. We call
R1R2 · · ·Rn the trace of this path. A path is said to be accepted by an automaton if its trace is accepted by the
automaton.

Let q be a path query and r be a consistent database instance. We define start(q, r) as the set containing all
(and only) constants c ∈ adom(r) such that there is a path in r that starts in c and is accepted by NFA(q).

Example 4. Consider the query q2 = RRX and the database instance of Figure 2. Let r1 and r2 be the repairs
containing, respectively, R(1, 2) and R(1, 3). The only path with trace RRX in r1 starts in 1; and the only path
with trace RRX in r2 starts in 0. The regular expression for L↬(q) is RR (R)

∗
X. We have start(q, r1) = {0, 1}

and start(q, r2) = {0}.
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The following lemma tells us that, among all repairs, there is one that is inclusion-minimal with respect to
start(q, ·). In the preceding example, the repair r2 minimizes start(q, ·).

Lemma 6. Let q be a path query, and db a database instance. There exists a repair r∗ of db such that for every
repair r of db, start(q, r∗) ⊆ start(q, r).

Informally, we think of the next Lemma 7 as a reification lemma. The notion of reifiable variable was coined
in [40, Definition 8.5], to refer to a variable x in a query ∃x (φ(x)) such that whenever that query is true in every
repair of a database instance, then there is a constant c such that φ(c) is true in every repair. The following lemma
captures a very similar concept.

Lemma 7 (Reification Lemma for C3). Let q be a path query that satisfies C3. Then, for every database instance
db, the following are equivalent:

1. db is a “yes”-instance of CERTAINTY(q); and

2. there exists a constant c (which depends on db) such that for every repair r of db, c ∈ start(q, r).

Proof. 1 =⇒ 2 Assume (1). By Lemma 6, there exists a repair r∗ of db such that for every repair r of db,
start(q, r∗) ⊆ start(q, r). Since r∗ satisfies q, there is a path R1(c1, c2), R2(c2, c3), . . . , Rn(cn, cn+1) in r∗ such that
q = R1R2 · · ·Rn. Since q is accepted by NFA(q), we have c1 ∈ start(q, r∗). It follows that c1 ∈ start(q, r) for every
repair r of db.

2 =⇒ 1 Let r be any repair of db. By our hypothesis that (2) holds true, there is some c ∈ start(q, r).
Therefore, there is a path in r that starts in c and is accepted by NFA(q). Let p be the trace of this path. By
Lemma 4, p ∈ L↬(q). Since q satisfies C3 by the hypothesis of the current lemma, it follows by Lemma 5 that q is
a factor of p. Consequently, there is a path in r whose trace is q. It follows that r satisfies q.

5.3 Proof of Lemma 6

We will use the following definition.

Definition 7 (States Set). This definition is relative to a path query q. Let r be a consistent database instance,
and let f be an R-fact in r, for some relation name R. The states set of f in r, denoted STq(f, r), is defined as the
smallest set of states satisfying the following property, for all prefixes u of q:

if S-NFA(q, u) accepts a path in r that starts with f , then uR belongs to STq(f, r).

Note that if f is an R-fact, then all states in S-NFA(q, r) have R as their last relation name.

Example 5. Let q = RRX and r = {R(a, b), R(b, c), R(c, d), X(d, e), R(d, e)}. Then NFA(q) has states
{ε,R,RR,RRX} and accepts the regular language RR (R)

∗
X. Since S-NFA(q, ε) accepts the path R(b, c), R(c, d),

X(c, d), the states set STq(R(b, c), r) contains ε · R = R. Since the latter path is also accepted by S-NFA(q,R),
we also have R ·R ∈ STq(R(b, c), r). Finally, note that STq(R(d, e), r) = ∅, because there is no path that contains
R(d, e) and is accepted by NFA(q).

Lemma 8. Let q be a path query, and r a consistent database instance. If STq(f, r) contains state uR, then it
contains every state of the form vR with |v| ≥ |u|.

Proof. Assume uR ∈ STq(f, r). Then f is an R-fact and there is a path f · π in r that is accepted by S-NFA(q, u).
Let vR be a state with |v| > |u|. Thus, by construction, NFA(q) has a backward transition with label ε from state
vR to state uR.

It suffices to show that f · π is accepted by S-NFA(q, v). Starting in state v, S-NFA(q, v) traverses f (reaching
state vR) and then uses the backward transition (with label ε) to reach the state uR. From there on, S-NFA(q, v)
behaves like S-NFA(q, u).

From Lemma 8, it follows that STq(f, r) is completely determined by the shortest word in it.

Definition 8. Let q be a path query and db a database instance. For every fact f ∈ db, we define:

cqaSTq(f,db) :=
⋂
{STq(f, r) | r is a repair of db that contains f},

where
⋂
X =

⋂
S∈X S.

8



It is to be noted here that whenever r1 and r2 are repairs containing f , then by Lemma 8, STq(f, r1) and
STq(f, r2) are comparable by set inclusion. Therefore, informally, cqaSTq(f,db) is the ⊆-minimal states set of f
over all repairs that contain f .

Definition 9 (Preorder ⪯q on repairs). Let db be a database instance. For all repairs r, s of db, we define r ⪯q s
if for every f ∈ r and g ∈ s such that f and g are key-equal, we have STq(f, r) ⊆ STq(g, s).

Clearly, ⪯q is a reflexive and transitive binary relation on the set of repairs of db. We write r ≺q s if both
r ⪯q s and for some f ∈ r and g ∈ s such that f and g are key-equal, STq(f, r) ⊊ STq(g, s).

Lemma 9. Let q be a path query. For every database instance db, there is a repair r∗ of db such that for every
repair r of db, r∗ ⪯q r.

Proof. Construct a repair r∗ as follows. For every block blk of db, insert into r∗ a fact f of blk such that
cqaSTq(f,db) =

⋂
{cqaSTq(g,db) | g ∈ blk}. More informally, we insert into r∗ a fact f from blk with a states

set that is ⊆-minimal over all repairs and all facts of blk. We first show the following claim.

Claim 1. For every fact f in r∗, we have STq(f, r
∗) = cqaSTq(f,db).

Proof. Let f1 be an arbitrary fact in r∗. We show STq(f1, r
∗) = cqaSTq(f1,db).

⊇ Obvious, because r∗ is itself a repair of db that contains f1.

⊆ Let f1 = R1(c0, c1). Assume by way of a contradiction that there is p1 ∈ STq(f1, r
∗) such that p1 /∈

cqaSTq(f1,db). Then, for some (possibly empty) prefix p0 of q, there is a sequence:

p0
ε−→ p′0

f1=R1(c0,c1)

−−−−−−−−−−−−→ p1
ε−→ p′1

f2=R2(c1,c2)

−−−−−−−−−−−−→ p2 · · · pn−1
ε−→ p′n−1

fn=Rn(cn−1,cn)

−−−−−−−−−−−−→ pn = q, (1)

where f1, f2, . . . , fn ∈ r∗, for each i ∈ {1, . . . , n}, pi = p′i−1Ri, and for each i ∈ {0, . . . , n − 1}, either p′i = pi or
p′i is a strict prefix of pi such that p′i and pi agree on their rightmost relation name. Informally, the sequence (1)
represents an accepting run of S-NFA(q, p0) in r∗. Since p1 ∈ STq(f1, r

∗) \ cqaSTq(f1,db), we can assume a largest
index ℓ ∈ {1, . . . , n} such that pℓ ∈ STq(fℓ, r

∗)\ cqaSTq(fℓ,db). By construction of r∗, there is a repair s such that
fℓ ∈ s and STq(fℓ, s) = cqaSTq(fℓ,db). Consequently, pℓ /∈ STq(fℓ, s). We distinguish two cases:

Case that ℓ = n. Thus, the run (1) ends with

· · · pℓ−1
ε−→ p′ℓ−1

fℓ=Rℓ(cℓ−1,cℓ)

−−−−−−−−−−−−→ pℓ = q.

Thus, the rightmost relation name in q is Rℓ. Since fℓ ∈ s, it is clear that pℓ ∈ STq(fℓ, s), a contradiction.

Case that ℓ < n. Thus, the run (1) includes

· · · pℓ−1
ε−→ p′ℓ−1

fℓ=Rℓ(cℓ−1,cℓ)

−−−−−−−−−−−−→ pℓ
ε−→ p′ℓ

fℓ+1=Rℓ+1(cℓ,cℓ+1)

−−−−−−−−−−−−→ pℓ+1 · · · ,

where ℓ + 1 can be equal to n. Clearly, pℓ+1 ∈ STq(fℓ+1, r
∗). Assume without loss of generality that s

contains f ′ℓ+1 := Rℓ+1(cℓ, c
′
ℓ+1), which is key-equal to fℓ+1 (possibly c′ℓ+1 = cℓ+1). From pℓ /∈ STq(fℓ, s),

it follows pℓ+1 /∈ STq(f
′
ℓ+1, s). Consequently, pℓ+1 /∈ cqaSTq(f

′
ℓ+1,db). By our construction of r∗, we have

pℓ+1 /∈ cqaSTq(fℓ+1,db). Consequently, pℓ+1 ∈ STq(fℓ+1, r
∗) \ cqaSTq(fℓ+1,db), which contradicts that ℓ

was chosen to be the largest such an index possible.

The proof of Claim 1 is now concluded. ◁

To conclude the proof of the lemma, let r be any repair of db, and let f ∈ r∗ and f ′ ∈ r be two key-equal
facts in db. By Claim 1 and the construction of r∗, we have that STq(f, r

∗) = cqaSTq(f,db) ⊆ cqaSTq(f
′,db) ⊆

STq(f
′, r), as desired.

We can now give the proof of Lemma 6.

Proof of Lemma 6. Let db be a database instance. Then by Lemma 9, there is a repair r∗ of db such that for
every repair r of db, r∗ ⪯q r. It suffices to show that for every repair r of db, start(q, r∗) ⊆ start(q, r). To this
end, consider any repair r and c ∈ start(q, r∗). Let R be the first relation name of q. Since c ∈ start(q, r∗), there
is d ∈ adom(r∗) such that R ∈ STq(R(c, d), r

∗). Then, there is a unique d′ ∈ adom(r) such that R(c, d′) ∈ r,
where it is possible that d′ = d. From r∗ ⪯q r, it follows STq(R(c, d), r

∗) ⊆ STq(R(c, d
′), r). Consequently,

R ∈ STq(R(c, d
′), r), which implies c ∈ start(q, r). This conclude the proof.
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Initialization Step: N ← {⟨c, q⟩ | c ∈ adom(db)}.
Iterative Rule: if uR is a prefix of q, and

R(c, ∗) is a nonempty block in db s.t. for every R(c, y) ∈ db, ⟨y, uR⟩ ∈ N
then

N ← N ∪ {⟨c, u⟩}︸ ︷︷ ︸
forward

∪{⟨c, w⟩ | NFA(q) has a backward transition from w to u}︸ ︷︷ ︸
backward

.

Figure 5: Polynomial-time algorithm for computing {⟨c, u⟩ | db ⊢q ⟨c, u⟩}, for a fixed path query q satisfying C3.

Iteration Tuples added to N

init. <0, RRX>, <1, RRX>, <2, RRX>, <3, RRX>, <4, RRX>, <5, RRX>

1 <4, RR>

2 <3, R>, <3, RR>

3 <2, R>, <2, RR>

4 <1, R>, <1, RR>

5 <0, R>, <0, RR>, <0, ε>

0 1 2 3

4 5

R R RR

R
R

R

X

Figure 6: Example run of our algorithm for q = RRX, on the database instance db shown at the right.

6 Complexity Upper Bounds

We now show the complexity upper bounds of Theorem 3.

6.1 A PTIME Algorithm for C3
We now specify a polynomial-time algorithm for CERTAINTY(q), for path queries q that satisfy condition C3. The
algorithm is based on the automata defined in Definition 5, and uses the concept defined next.

Definition 10 (Relation ⊢q). Let q be a path query and db a database instance. For every c ∈ adom(q) and
every prefix u of q, we write db ⊢q ⟨c, u⟩ if every repair of db has a path that starts in c and is accepted by
S-NFA(q, u).

An algorithm that decides the relation ⊢q can be used to solve CERTAINTY(q) for path queries satisfying C3.
Indeed, by Lemma 7, for path queries satisfying C3, db is a “yes”-instance for the problem CERTAINTY(q) if and
only if there is a constant c ∈ adom(db) such that db ⊢q ⟨c, u⟩ with u = ε.

Figure 5 shows an algorithm that computes {⟨c, u⟩ | db ⊢q ⟨c, u⟩} as the fixed point of a binary relation N .
The Initialization Step inserts into N all pairs ⟨c, q⟩, which is correct because db ⊢q ⟨c, q⟩ holds vacuously, as q is
the accepting state of S-NFA(q, q). Then, the Iterative Rule is executed until N remains unchanged; it intrinsically
reflects the constructive proof of Lemma 9: db ⊢q ⟨c, u⟩ if and only if for every fact f = R(c, d) ∈ db, we have
uR ∈ cqaSTq(f,db). Figure 6 shows an example run of the algorithm in Figure 5. The next lemma states the
correctness of the algorithm.

Lemma 10. Let q be a path query. Let db be a database instance. Let N be the output relation returned by the
algorithm in Figure 5 on input db. Then, for every c ∈ adom(db) and every prefix u of q,

⟨c, u⟩ ∈ N if and only if db ⊢q ⟨c, u⟩.

Proof. ⇐= Proof by contraposition. Assume ⟨c, u⟩ /∈ N . The proof shows the construction of a repair r of db
such that r has no path that starts in c and is accepted by S-NFA(q, u). Such a repair shows db ̸⊢q ⟨c, u⟩.

We explain which fact of an arbitrary block R(a, ∗) of db will be inserted in r. Among all prefixes of q that
end with R, let u0R be the longest prefix such that ⟨a, u0⟩ /∈ N . If such u0R does not exist, then an arbitrarily
picked fact of the block R(a, ∗) is inserted in r. Otherwise, the Iterative Rule in Figure 5 entails the existence of a
fact R(a, b) such that ⟨b, u0R⟩ /∈ N . Then, R(a, b) is inserted in r. We remark that this repair r is constructed in
exactly the same way as the repair r∗ built in the proof of Lemma 9.

Assume for the sake of contradiction that there is a path π in r that starts in c and is accepted by S-NFA(q, u).
Let π := R1(c0, c1), R2(c1, c2), . . . , Rn(cn−1, cn) where c0 = c. Since ⟨c0, u⟩ ̸∈ N and ⟨cn, q⟩ ∈ N , there is a
longest prefix u0 of q, where |u0| ≥ |u|, and i ∈ {1, . . . , n} such that ⟨ci−1, u0⟩ ̸∈ N and ⟨ci, u0Ri⟩ ∈ N . From
⟨ci−1, u0⟩ ̸∈ N , it follows that db contains a fact Ri(ci−1, d) such that ⟨d, u0Ri⟩ ̸∈ N . Then Ri(ci−1, ci) would not
be chosen in a repair, contradicting Ri(ci−1, ci) ∈ r.
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φq(N, x, z) :=


(α(x) ∧ z = ‘q’)

∨
(∨

uR≤q ((z = ‘u’) ∧ ∃yR(x, y) ∧ ∀y (R(x, y)→ N(y, ‘uR’)))
)

∨

(∨
ε<u<uv≤q

last(u)=last(v)

(N(x, ‘u’) ∧ z = ‘uv’)

)


Figure 7: Definition of φq(N, x, z). The predicate α(x) states that x is in the active domain, and < is shorthand
for “is a strict prefix of”.

=⇒ Assume that ⟨c, u⟩ ∈ N . Let ℓ be the number of executions of the Iterative Rule that were used to insert
⟨c, u⟩ in N . We show db ⊢q ⟨c, u⟩ by induction on ℓ.

The basis of the induction, ℓ = 0, holds because the Initialization Step is obviously correct. Indeed, since q is
an accepting state of S-NFA(q, q), we have db ⊢q ⟨c, q⟩. For the inductive step, ℓ→ ℓ+1, we distinguish two cases.

Case that ⟨c, u⟩ is added to N by the forward part of the Iterative Rule. That is, ⟨c, u⟩ is added because
db has a block {R(c, d1), . . . , R(c, dk)} with k ≥ 1 and for every i ∈ {1, . . . , k}, we have that ⟨di, uR⟩ was added
to N by a previous execution of the Iterative Rule. Let r be an arbitrary repair of db. Since every repair contains
exactly one fact from each block, we can assume i ∈ {1, . . . , k} such that R(c, di) ∈ r. By the induction hypothesis,
db ⊢q ⟨di, uR⟩ and thus r has a path that starts in di and is accepted by S-NFA(q, uR). Clearly, this path can
be left extended with R(c, di), and this left extended path is accepted by S-NFA(q, u). Note incidentally that the
path in r may already use R(c, di), in which case the path is cyclic. Since r is an arbitrary repair, it is correct to
conclude db ⊢q ⟨c, u⟩.

Case that ⟨c, u⟩ is added to N by the backward part of the Iterative Rule. Then, there exists a relation
name S and words v, w such that u = vSwS, and ⟨c, u⟩ is added because ⟨c, vS⟩ was added in the same iteration.
Then, S-NFA(q, u) has an ε-transition from state u to vS. Let r be an arbitrary repair of db. By the reasoning in
the previous case, r has a path that starts in c and is accepted by S-NFA(q, vS). We claim that r has a path that
starts in c and is accepted by S-NFA(q, u). Indeed, S-NFA(q, u) can use the ε-transition to reach the state vS, and
then behave like S-NFA(q, vS). This concludes the proof.

The following corollary is now immediate.

Corollary 1. Let q be a path query. Let db be a database instance, and c ∈ adom(db). Then, the following are
equivalent:

1. c ∈ start(q, r) for every repair r of db; and

2. ⟨c, ϵ⟩ ∈ N , where N is the output of the algorithm in Figure 5.

Finally, we obtain the following tractability result.

Lemma 11. For each path query q satisfying C3, CERTAINTY(q) is expressible in Least Fixpoint Logic, and hence
is in PTIME.

Proof. For a path query q, define the following formula in LFP [33]:

ψq(s, t) :=
[
lfpN,x,zφq(N, x, z)

]
(s, t), (2)

where φq(N, x, z) is given in Figure 7. Herein, α(x) denotes a first-order query that computes the active domain.
That is, for every database instance db and constant c, db |= α(c) if and only if c ∈ adom(db). Further, u ≤ v
means that u is a prefix of v; and u < v means that u is a proper prefix of v. Thus, u < v if and only if u ≤ v
and u ̸= v. The formula φq(N, x, z) is positive in N , which is a 2-ary predicate symbol. It is understood that the
middle disjunction ranges over all nonempty prefixes uR of q (possibly u = ε). The last disjunction ranges over all
pairs (u, uv) of distinct nonempty prefixes of q that agree on their last symbol. We used a different typesetting to
distinguish the constant words q, uR, uv from first-order variables x, z. It is easily verified that the LFP query (2)
expresses the algorithm of Figure 5.

Since the formula (2) in the proof of Lemma 11 uses universal quantification, it is not in Existential Least
Fixpoint Logic, which is equal to DATALOG¬ [33, Theorem 10.18].
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6.2 FO-Rewritability for C1
We now show that if a path query q satisfies C1, then CERTAINTY(q) is in FO, and a first-order rewriting for q
can be effectively constructed.

Definition 11 (First-order rewriting). If q is a Boolean query such that CERTAINTY(q) is in FO, then a (consis-
tent) first-order rewriting for q is a first-order sentence ψ such that for every database instance db, the following
are equivalent:

1. db is a “yes”-instance of CERTAINTY(q); and

2. db satisfies ψ.

Definition 12. If q = {R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)}, k ≥ 1, and c is a constant, then q[c] is the
Boolean conjunctive query q[c] := {R1(c, x2), R2(x2, x3), . . . , Rk(xk, xk+1)}.

Lemma 12. For every nonempty path query q and constant c, the problem CERTAINTY(q[c]) is in FO. Moreover,
it is possible to construct a first-order formula ψ(x), with free variable x, such that for every constant c, the sentence
∃x (ψ(x) ∧ x = c) is a first-order rewriting for q[c].

Proof. The proof inductively constructs a first-order rewriting for q[c], where the induction is on the number n
of atoms in q. For the basis of the induction, n = 1, we have q[c] = R(c, y). Then, the first-order formula
ψ(x) = ∃yR(x, y) obviously satisfies the statement of the lemma.

We next show the induction step, n → n + 1. Let R(x1, x2) be the left-most atom of q, and assume that
p := q \ {R(x1, x2)} is a path query with n ≥ 1 atoms. By the induction hypothesis, it is possible to construct a
first-order formula φ(z), with free variable z, such that for every constant d,

∃z (φ(z) ∧ z = d) is a first-order rewriting for p[d]. (3)

We now define ψ(x) as follows:
ψ(x) = ∃y (R(x, y)) ∧ ∀z (R(x, z)→ φ(z)) . (4)

We will show that for every constant c, ∃x (ψ(x) ∧ x = c) is a first-order rewriting for q[c]. To this end, let db be
a database instance. It remains to be shown that db is a “yes”-instance of CERTAINTY(q[c]) if and only if db
satisfies ∃x (ψ(x) ∧ x = c).

⇐= Assume db satisfies ∃x (ψ(x) ∧ x = c). Because of the conjunct ∃y (R(x, y)) in (4), we have that db
includes a block R(c, ∗). Let r be a repair of db. We need to show that r satisfies q[c]. Clearly, r contains R(c, d)
for some constant d. Since db satisfies ∃z (φ(z) ∧ z = d), the induction hypothesis (3) tells us that r satisfies p[d].
It is then obvious that r satisfies q[c].

=⇒ Assume db is a “yes”-instance for CERTAINTY(q[c]). Then db must obviously satisfy ∃y (R(c, y)).
Therefore, db includes a block R(c, ∗). Let r be an arbitrary repair of db. There exists d such that R(c, d) ∈ r.
Since r satisfies q[c], it follows that r satisfies p[d]. Since r is an arbitrary repair, the induction hypothesis (3) tells
us that db satisfies ∃z (φ(z) ∧ z = d). It is then clear that db satisfies ∃x (ψ(x) ∧ x = c).

Lemma 13. For every path query q that satisfies C1, the problem CERTAINTY(q) is in FO, and a first-order
rewriting for q can be effectively constructed.

Proof. By Lemmas 5 and 7, a database instance db is a “yes”-instance for CERTAINTY(q) if and only if there is
a constant c (which depends on db) such that db is a “yes”-instance for CERTAINTY(q[c]). By Lemma 12, it is
possible to construct a first-order rewriting ∃x (ψ(x) ∧ x = c) for q[c]. It is then clear that ∃x (ψ(x)) is a first-order
rewriting for q.

6.3 An NL Algorithm for C2
We show that CERTAINTY(q) is in NL if q satisfies C2 by expressing it in linear Datalog with stratified negation.
The proof will use the syntactic characterization of C2 established in Lemma 3.

Lemma 14. For every path query q that satisfies C2, the problem CERTAINTY(q) is in linear Datalog with stratified
negation (and hence in NL).

In the remainder of this section, we develop the proof of Lemma 14.
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Definition 13. Let q be a path query. We define NFAmin(q) as the automaton that accepts w if w is accepted by
NFA(q) and no proper prefix of w is accepted by NFA(q).

It is well-known that such an automaton NFAmin(q) exists.

Example 6. Let q = RXRY R. Then, RXRY RY R is accepted by NFA(q), but not by NFAmin(q), because the
proper prefix RXRY R is also accepted by NFA(q).

Definition 14. Let q be a path query and r be a consistent database instance. We define startmin(q, r) as the set
containing all (and only) constants c ∈ adom(r) such that there is a path in r that starts in c and is accepted by
NFAmin(q).

Lemma 15. Let q be a path query. For every consistent database instance r, we have that start(q, r) = startmin(q, r).

Proof. By construction, startmin(q, r) ⊆ start(q, r). Next assume that c ∈ start(q, r) and let π be the path that
starts in c and is accepted by NFA(q). Let π− be the shortest prefix of π that is accepted by NFA(q). Since π−

starts in c and is accepted by NFAmin(q), it follows c ∈ startmin(q, r).

Lemma 16. Let u · v · w be a self-join-free word over the alphabet of relation names. Let s be a suffix of uv that
is distinct from uv. For every integer k ≥ 0, NFAmin(s (uv)

k
wv) accepts the language of the regular expression

s (uv)
k
(uv)

∗
wv.

Proof. Let q = s (uv)
k
wv. Since u · v · w is self-join-free, applying the rewinding operation, zero, one, or more

times, in the part of q that precedes w will repeat the factor uv. This gives words of the form s (uv)
ℓ
wv with ℓ ≥ k.

The difficult case is where we rewind a factor of q that itself contains w as a factor. In this case, the rewinding
operation will repeat a factor of the form v2 (uv)

ℓ
wv1 such that v = v1v2 and v2 ̸= ε, which results in words of one

of the following forms (s = s1 · v2):(
s (uv)

ℓ1 uv1

)
·v2 (uv)ℓ2 wv1 ·v2 (uv)ℓ2 wv1 ·(v2); or

(s1)·v2 (uv)ℓ wv1 ·v2 (uv)ℓ wv1 ·(v2).

These words have a prefix belonging to the language of the regular expression s (uv)
k
(uv)

∗
wv.

Definition 15. Let db be a database instance, and q a path query.

For a, b ∈ adom(db), we write db |= a
q−→ b if there exists a path in db from a to b with trace q. Even more

formally, db |= a
q−→ b if db contains facts R1(a1, a2), R2(a2, a3), . . . , R|q|(a|q|, a|q|+1) such that R1R2 · · ·R|q| = q.

We write db |= a
q1−→ b

q2−→ c as a shorthand for db |= a
q1−→ b and db |= b

q2−→ c.

We write db |= a
q−→−→ b if there exists a consistent path in db from a to b with trace q, where a path is called

consistent if it does not contain two distinct key-equal facts.
A constant c ∈ adom(db) is called terminal for q in db if for some (possibly empty) proper prefix p of q, there

is a consistent path in db with trace p that cannot be right extended to a consistent path in db with trace q.

Note that for every c ∈ adom(db), we have c
ε−→−→ c. Clearly, if q is self-join-free, then c

q−→ d implies c
q−→−→ d

(the converse implication holds vacuously true).

Example 7. Let db = {R(c, d), S(d, c), R(c, e), T (e, f)}. Then, c is terminal for RSRT in db because the path
R(c, d), S(d, c) cannot be right extended to a consistent path with trace RSRT , because d has no outgoing T -edge.

Note incidentally that db |= c
RS−→−→ c

RT−→−→ f , but db ̸|= c
RSRT−→−→ f .

Lemma 17. Let db be a database instance, and c ∈ adom(db). Let q be a path query. Then, c is terminal for q
in db if and only if db is a “no”-instance of CERTAINTY(q[c]), with q[c] as defined by Definition 12.

Proof. =⇒ Straightforward. ⇐= Assume db is a “no”-instance of CERTAINTY(q[c]). Then, there is a repair r
of db such that r ̸|= q[c]. The empty path is a path in r that starts in c and has trace ε, which is a prefix of q. We
can therefore assume a longest prefix p of q such there exists a path π in r that starts in c and has trace p. Since r
is consistent, π is consistent. From r ̸|= q[c], it follows that p is a proper prefix of q. By Definition 15, c is terminal
for q in db.

We can now give the proof of Lemma 14.
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Proof of Lemma 14. Assume q satisfies C2. By Lemma 3, q satisfies B2a or B2b. We treat the case that q satisfies B2b
(the case that q satisfies B2a is even easier). We have that q is a factor of (uv)

k
wv, where k is chosen as small

as possible, and uvw is self-join-free. The proof is straightforward if k = 0; we assume k ≥ 1 from here on. To
simplify notation, we will show the case where q is a suffix of (uv)

k
wv; our proof can be easily extended to the case

where q is not a suffix, at the price of some extra notation. There is a suffix s of uv such that q = s (uv)
k−1

wv.
We first define a unary predicate P (which depends on q) such that db |= P (d) if for some ℓ ≥ 0, there are

constants d0, d1, . . . , dℓ ∈ adom(db) with d0 = d such that:

(i) db |= d0
uv−→ d1

uv−→ d2
uv−→ · · · uv−→ dℓ;

(ii) for every i ∈ {0, 1, . . . , ℓ}, di is terminal for wv in db; and

(iii) either dℓ is terminal for uv in db, or dℓ ∈ {d0, . . . , dℓ−1}.

Claim 2. The definition of the predicate P does not change if we replace item (i) by the stronger requirement that
for every i ∈ {0, 1, . . . , ℓ − 1}, there exists a path πi from di to di+1 with trace uv such that the composed path
π0 · π1 · · ·πℓ−1 is consistent.

Proof. It suffices to show the following statement by induction on increasing l:

whenever there exist l ≥ 1 and constants d0, d1, . . . , dl with d0 = d such that conditions (i), (ii), and (iii)
hold, there exist another constant k ≥ 1 and constants c0, c1, . . . , ck with c0 = d such that conditions (i),
(ii), and (iii) hold, and, moreover, for each i ∈ {0, 1, . . . , k − 1}, there exists a path πi from ci to ci+1

such that the composed path π0 · π1 · · ·πk−1 is consistent.

Basis l = 1. Then we have db |= d0
uv−→ d1, witnessed by a path π0. Since uv is self-join-free, the path π0 is

consistent. The claim thus follows with k = l = 1, c0 = d0 and c1 = d1.

Inductive step l→ l + 1. Assume that the statement holds for any integer in {1, 2, . . . , l}. Suppose that there
exist l ≥ 2 and constants d0, d1, . . . , dl+1 with d0 = d such that conditions (i), (ii), and (iii) hold.

For i ∈ {0, . . . , l}, let πi be a path with trace uv from di to di+1 in db. The claim holds if the composed path
π0 · π1 · · ·πl is consistent, with k = l + 1 and ci = di for i ∈ {0, 1, . . . , l + 1}.
Now, assume that for some i < j, the paths that show db |= di

uv−→ di+1 and db |= dj
uv−→ dj+1 contain,

respectively, R(a, b1) and R(a, b2) with b1 ̸= b2. It is easily verified that

db |= d0
uv−→ d1

uv−→ d2
uv−→ · · · uv−→ di

uv−→ dj+1
uv−→ · · · uv−→ dl+1,

where the number of uv-steps is strictly less than l+1. Informally, we follow the original path until we reach
R(a, b1), but then follow R(a, b2) instead of R(a, b1), and continue on the path that proves db |= dj

uv−→ dj+1.
Then the claim holds by applying the inductive hypothesis on constants d0, d1, . . . , di, dj+1, . . . , dl+1.

The proof is now complete.

Since we care about the expressibility of the predicate P in Datalog, Claim 2 is not cooked into the definition
of P . The idea is the same as in an NL-algorithm for reachability: if there exists a directed path from s to t,
then there is such a path without repeated vertices; but we do not care for repeated vertices when computing
reachability.

Claim 3. The definition of predicate P does not change if we require that for i ∈ {0, 1, . . . , ℓ−1}, di is not terminal
for uv in db.

Proof. Assume that for some 0 ≤ i < ℓ, di is terminal for uv in db. Then, all conditions in the definition are
satisfied by choosing ℓ equal to j.

Claim 3 is not cooked into the definition of P to simplify the the encoding of P in Datalog.
Next, we define a unary predicate O such that db |= O(c) for a constant c if c ∈ adom(db) and one of the

following holds true:

1. c is terminal for s (uv)
k−1

in db; or

2. there is a constant d ∈ adom(db) such that both db |= c
s(uv)k−1

−−−−−→−→ d and db |= P (d).
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Claim 4. Let c ∈ adom(db). The following are equivalent:

(I) there is a repair r of db that contains no path that starts in c and whose trace is in the language of the

regular expression s (uv)
k−1

(uv)
∗
wv; and

(II) db |= O(c).

Proof. Let wv = S0S1 · · ·Sm−1 and uv = R0R1 · · ·Rn−1.

(I) =⇒ (II) Assume that item (I) holds true. Let the first relation name of s be Ri. Starting from c, let π be

a maximal (possibly infinite) path in r that starts in c and has trace RiRi+1Ri+2 · · · , where addition is modulo n.
Since r is consistent, π is deterministic. Since r is finite, π contains only finitely many distinct edges. Therefore, π
ends either in a loop or in an edge Rj(d, e) such that db |= ¬∃yRj+1(e, y) (recall that r contains a fact from every

block of db). Assume that π has a prefix π′ with trace s (uv)
k−1

; if e occurs at the non-primary key position of the
last Rn−1-fact of π

′ or of any Rn−1-fact occurring afterwards in π, then it follows from item (I) that there exist a

(possibly empty) prefix pSj of wv and a constant f ∈ adom(r) such that r |= e
p−→ f and db |= ¬∃ySj(f, y). It is

now easily verified that db |= O(c).

(II) =⇒ (I) Assume db |= O(c). It is easily verified that the desired result holds true if c is terminal

for s (uv)
k−1

in db. Assume from here on that c is not terminal for s (uv)
k−1

in db. That is, for every re-

pair r of db, there is a constant d such that r |= c
s(uv)k−1

−−−−−→ d. Then, there is a consistent path α with

trace s (uv)
k−1

from c to some constant d ∈ adom(db) such that db |= P (d), using the stronger definition of P
implied by Claims 2 and 3. Let d0, . . . , dℓ be as in our (stronger) definition of P (d), that is, first, d1, . . . , dℓ−1 are
not terminal for uv in db (cf. Claim 3), and second, there is a ⊆-minimal consistent subset π of db such that

π |= d0
uv−→ d1

uv−→ d2
uv−→ · · · uv−→ dℓ (cf. Claim 2). We construct a repair r as follows:

1. insert into r all facts of π;

2. for every i ∈ {0, . . . , ℓ}, di is terminal for wv in db. We ensure that r |= di
S0S1···Sji

−−−−−→ ei for some ji ∈
{0, . . . ,m− 2} and some constant ei such that db |= ¬∃ySji+1(ei, y);

3. if dℓ is terminal for uv in db, then we ensure that r |= dℓ
R0R1···Rj

−−−−−→ e for some j ∈ {0, . . . , n − 2} and some
constant e such that db |= ¬∃ySj+1(e, y);

4. insert into r the facts of α that are not key-equal to a fact already in r; and

5. complete r into a ⊆-maximal consistent subset of db.

Since r is a repair of db, there exists a path δ with trace s (uv)
k−1

in r that starts from c. If δ ̸= α, then δ must
contain a fact of π that was inserted in step 1. Consequently, no matter whether δ = α or δ ̸= α, the endpoint of δ
belongs to {d0, . . . , dℓ}. It follows that there is a (possibly empty) path from δ’s endpoint to dℓ whose trace is of
the form (uv)

∗
. Two cases can occur:

• dℓ is terminal for uv in db.

• dℓ is not terminal for uv in db. Then there is j ∈ {0, . . . , ℓ− 1} such that dj = dℓ. Then, there is a path of
the form (uv)

∗
that starts from δ’s endpoint and eventually loops.

Since, by construction, each di is terminal for wv in r, it will be the case that δ cannot be extended to a path in r
whose trace is of the form s (uv)

k
(uv)

∗
wv.

Claim 5. The unary predicate O is expressible in linear Datalog with stratified negation.

Proof. The construction of the linear Datalog program is straightforward. Concerning the computation of predi-
cates P and O, note that it can be checked in FO whether or not a constant c is terminal for some path query q,
by Lemmas 12 and 17. The only need for recursion comes from condition (i) in the definition of the predicate P ,
which searches for a directed path of a particular form. We give a program for q = UV UVWV , where c(X) states
that X is a constant, and ukey(X) states that X is the primary key of some U -fact. consistent(X1, X2, X3, X4) is
true if either X1 ̸= X3 or X2 = X4 (or both).
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uvterminal(X) :- c(X), not ukey(X).

uvterminal(X) :- u(X,Y), not vkey(Y).

wvterminal(X) :- c(X), not wkey(X).

wvterminal(X) :- w(X,Y), not vkey(Y).

uv2terminal(X) :- uvterminal(X).

uv2terminal(X1) :- u(X1,X2), v(X2,X3), uvterminal(X3).

uvpath(X1,X3) :- u(X1,X2), v(X2,X3), wvterminal(X1), wvterminal(X2), wvterminal(X3).

uvpath(X1,X4) :- uvpath(X1,X2), u(X2,X3), v(X3,X4), wvterminal(X3), wvterminal(X4).

p(X) :- uvterminal(X), wvterminal(X). %%% the empty path.

p(X) :- uvpath(X,Y), uvterminal(Y).

p(X) :- uvpath(X,Y), uvpath(Y,Y). %%% p and uvpath are not mutually recursive.

o(X) :- uv2terminal(X).

o(X1) :- u(X1,X2), v(X2,X3), u(X3,X4), v(X4,X5), consistent(X1,X2,X3,X4), consistent(X2,X3,X4,X5), p(X5).

The above program is in linear Datalog with stratified negation. It is easily seen that any path query satisfying B2b
admits such a program for the predicate O.

By Lemmas 7, 15, and 16, the following are equivalent:

(a) db is a “no”-instance of CERTAINTY(q); and

(b) for every constant ci ∈ adom(q), there is a repair r of db that contains no path that starts in ci and whose

trace is in the language of the regular expression s (uv)
k−1

(uv)
∗
wv.

By Claim 4, item (b) holds true if and only if for every c ∈ adom(db), db |= ¬O(c). It follows from Claim 5 that
the latter test is in linear Datalog with stratified negation, which concludes the proof of Lemma 14.

7 Complexity Lower Bounds

In this section, we show the complexity lower bounds of Theorem 3. For a path query q = {R1(x1, x2), . . . ,
Rk(xk, xk+1)} and constants a, b, we define the following database instances:

ϕba[q] := {R1(a,□2), R2(□2,□3), . . . , Rk(□k, b)}
ϕ⊥a [q] := {R1(a,□2), R2(□2,□3), . . . , Rk(□k,□k+1)}
ϕb⊥[q] := {R1(□1,□2), R2(□2,□3), . . . , Rk(□k, b)}

where the symbols □i denoted fresh constants not occurring elsewhere. Significantly, two occurrences of □i will
represent different constants.

7.1 NL-Hardness

We first show that if a path query violates C1, then CERTAINTY(q) is NL-hard, and therefore not in FO.

Lemma 18. If a path query q violates C1, then CERTAINTY(q) is NL-hard.

Proof. Assume that q does not satisfy C1. Then, there exists a relation name R such that q = uRvRw and q is
not a prefix of uRvRvRw. It follows that Rw is not a prefix of RvRw. Since Rv ̸= ε, there exists no (conjunctive
query) homomorphism from q to uRw.

The problem REACHABILITY takes as input a directed graph G(V,E) and two vertices s, t ∈ V , and asks
whether G has a directed path from s to t. This problem is NL-complete and remains NL-complete when the
inputs are acyclic graphs. Recall that NL is closed under complement. We present a first-order reduction from
REACHABILITY to the complement of CERTAINTY(q), for acyclic directed graphs.

Let G = (V,E) be an acyclic directed graph and s, t ∈ V . Let G′ = (V ∪{s′, t′}, E ∪{(s′, s), (t, t′)}), where s′, t′
are fresh vertices. We construct an input instance db for CERTAINTY(q) as follows:

• for each vertex x ∈ V ∪ {s′}, we add ϕx⊥[u];

• for each edge (x, y) ∈ E ∪ {(s′, s), (t, t′)}, we add ϕyx[Rv]; and
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• for each vertex x ∈ V , we add ϕ⊥x [Rw].

This construction can be executed in FO. Figure 8 shows an example of the above construction. Observe that the
only conflicts in db occur in R-facts outgoing from a same vertex.

s′ s a t t′

u u u u

Rw Rw Rw

Rv Rv Rv Rv

Figure 8: Database instance for the NL-hardness reduction from the graph G with V = {s, a, t} and E =
{(s, a), (a, t)}.

We now show that there exists a directed path from s to t in G if and only if there exists a repair of db that
does not satisfy q.

=⇒ Suppose that there is a directed path from s to t in G. Then, G′ has a directed path P = s, x0, x1, . . . , t, t
′.

Then, consider the repair r that chooses the first R-fact from ϕyx[Rv] for each edge (x, y) on the path P , and the first
R-fact from ϕ⊥y [Rw] for each y not on the path P . We show that r falsifies q. Assume for the sake of contradiction
that r satisfies q. Then, there exists a valuation θ for the variables in q such that θ(q) ⊆ r. Since, as argued in
the beginning of this proof, there exists no (conjunctive query) homomorphism from q to uRw, it must be that all

facts in θ(q) belong to a path in r with trace u (Rv)
k
, for some k ≥ 0. Since, by construction, no constants are

repeated on such paths, there exists a (conjunctive query) homomorphism from q to u (Rv)
k
, which implies that

Rw is a prefix of RvRw, a contradiction. We conclude by contradiction that r falsifies q.
⇐= Proof by contradiction. Suppose that there is no directed path from s to t in G. Let r be any repair

of db; we will show that r satisfies q. Indeed, there exists a maximal path P = x0, x1, . . . , xn such that x0 = s′,
x1 = s, and ϕ

xi+1
xi [Rv] ⊆ r. By construction, s′ cannot reach t′ in G′, and thus xn ̸= t′. Since P is maximal, we

must have ϕ⊥xn
[Rw] ⊆ r. Then ϕ

xn−1

⊥ [u] ∪ ϕxn
xn−1

[Rv] ∪ ϕ⊥xn
[Rw] satisfies q.

7.2 coNP-Hardness

Next, we show the coNP-hard lower bound.

Lemma 19. If a path query q violates C3, then CERTAINTY(q) is coNP-hard.

Proof. If q does not satisfy C3, then there exists a relation R such that q = uRvRw and q is not a factor of
uRvRvRw. Note that this means that there is no homomorphism from q to uRvRvRw. Also, u must be nonempty
(otherwise, q = RvRw is trivially a suffix of RvRvRw). Let S be the first relation of u.

The proof is a first-order reduction from SAT to the complement of CERTAINTY(q). The problem SAT asks
whether a given propositional formula in CNF has a satisfying truth assignment.

Given any formula ψ for SAT, we construct an input instance db for CERTAINTY(q) as follows:

• for each variable z, we add ϕ⊥z [Rw] and ϕ
⊥
z [RvRw];

• for each clause C and positive literal z of C, we add ϕzC [u];

• for each clause C and variable z that occurs in a negative literal of C, we add ϕzC [uRv].

This construction can be executed in FO. Figure 9 depicts an example of the above construction. Intuitively,
ϕ⊥z [Rw] corresponds to setting the variable z to true, and ϕ⊥z [RvRw] to false. There are two types of conflicts that
occur in db. First, we have conflicting facts of the form S(C, ∗); resolving this conflict corresponds to the clause
C choosing one of its literals. Moreover, for each variable z, we have conflicting facts of the form R(z, ∗); resolving
this conflict corresponds to the variable z choosing a truth assignment.

We show now that ψ has a satisfying truth assignment if and only if there exists a repair of db that does not
satisfy q.

=⇒ Assume that there exists a satisfying truth assignment σ for ψ. Then for any clause C, there exists a
variable zC ∈ C whose corresponding literal is true in C under σ. Consider the repair r that:

• for each variable z, it chooses the first R-fact of ϕ⊥z [Rw] if σ(z) is true, otherwise the first R-fact of ϕ
⊥
z [RvRw];
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(x2 ∨ x3)

(x1 ∨ x2)

x3

x2

x1

−

+

−

+

−

+

u

uRv

u

uRv

Rw

RvRw

Rw

RvRw

Rw

RvRw

Figure 9: Database instance for the coNP-hardness reduction from the formula ψ = (x1 ∨ x2) ∧ (x2 ∨ x3).

• for each clause C, it chooses the first S-fact of ϕzC [u] if zC is positive in C, or the first S-fact of ϕzC [uRv] if
zC is negative in C.

Assume for the sake of contradiction that r satisfies q. Then we must have a homomorphism from q to either uRw
or uRvRvRw. But the former is not possible, while the latter contradicts C3. We conclude by contradiction that
r falsifies q.

⇐= Suppose that there exists a repair r of db that falsifies q. Consider the assignment σ:

σ(z) =

{
true if ϕ⊥z [Rw] ⊆ r

false if ϕ⊥z [RvRw] ⊆ r

We claim that σ is a satisfying truth assignment for ψ. Indeed, for each clause C, the repair must have chosen a
variable z in C. If z appears as a positive literal in C, then ϕzC [u] ⊆ r. Since r falsifies q, we must have ϕ⊥z [Rw] ⊆ r.
Thus, σ(z) is true and C is satisfied. If z appears in a negative literal, then ϕzC [uRv] ⊆ r. Since r falsifies q, we
must have ϕ⊥z [RvRw] ⊆ r. Thus, σ(z) is false and C is again satisfied.

7.3 PTIME-Hardness

Finally, we show the PTIME-hard lower bound.

Lemma 20. If a path query q violates C2, then CERTAINTY(p) is PTIME-hard.

Proof. Suppose q violates C2. If q also violates C3 , then the problem CERTAINTY(q) is PTIME-hard since it is
coNP-hard by Lemma 19. Otherwise, it is possible to write q = uRv1Rv2Rw, with three consecutive occurrences
of R such that v1 ̸= v2 and Rw is not a prefix of Rv1. Let v be the maximal path query such that v1 = vv+1 and
v2 = vv+2 . Thus v

+
1 ̸= v+2 and the first relation names of v+1 and v+2 are different.

Our proof is a reduction from the Monotone Circuit Value Problem (MCVP) known to be PTIME-complete [18]:

Problem: MCVP

Input: A monotone Boolean circuit C on inputs x1, x2, . . . , xn and output gate o; an assignment σ : {xi | 1 ≤
i ≤ n} → {0, 1}.

Question: What is the value of the output o under σ?

We construct an instance db for CERTAINTY(q) as follows:

• for the output gate o, we add ϕo⊥[uRv1];

• for each input variable x with σ(x) = 1, we add ϕ⊥x [Rv2Rw];

• for each gate g, we add ϕg⊥[u] and ϕ
⊥
g [Rv2Rw];

• for each AND gate g = g1 ∧ g2, we add
ϕg1g [Rv1] ∪ ϕg2g [Rv1].

Here, g1 and g2 can be gates or input variables; and
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• for each OR gate g = g1 ∨ g2, we add

ϕc1g [Rv] ∪ ϕg1c1 [v
+
1 ] ∪ ϕc2c1 [v

+
2 ]

∪ ϕc2⊥ [u] ∪ ϕg2c2 [Rv1] ∪ ϕ⊥c2 [Rw]

where c1, c2 are fresh constants.

This construction can be executed in FO. An example of the gadget constructions is shown in Figure 10. We next
show that the output gate o is evaluated to 1 under σ if and only if each repair of db satisfies q.

g

g2

g1

u

Rv1

Rv1
Rv2Rw

(a) AND gate

g

g1

g2

c1

c2

u

Rv2Rw

v+1
Rv

v+2
u Rw

Rv1

(b) OR gate

Figure 10: Gadgets for the PTIME-hardness reduction.

=⇒ Suppose the output gate o is evaluated to 1 under σ. Consider any repair r. We construct a sequence of
gates starting from o, with the invariant that every gate g evaluates to 1, and there is a path of the form uRv1 in r
that ends in g. The output gate o evaluates to 1, and also we have that ϕo⊥[uRv1] ⊆ r by construction. Suppose
that we are at gate g. If there is a Rv2Rw path in r that starts in g, the sequence ends and the query q is satisfied.
Otherwise, we distinguish two cases:

1. g = g1 ∧ g2. Then, we choose the gate with ϕgig [Rv1] ⊆ r. Since both gates evaluate to 1 and ϕg⊥[u] ⊆ r, the
invariant holds for the chosen gate.

2. g = g1 ∨ g2. If g1 evaluates to 1, we choose g1. Observe that ϕg⊥[u] ∪ ϕc1g [Rv] ∪ ϕg1c1 [v
+
1 ] creates the desired

uRv1 path. Otherwise g2 evaluates to 1. If ϕ⊥c2 [Rw] ⊆ r, then there is a path with trace uRv1 ending in g,
and a path with trace Rv2Rw starting in g, and therefore r satisfies q. If ϕ⊥c2 [Rw] ⊈ r, we choose g2 and the
invariant holds.

If the query is not satisfied at any point in the sequence, we will reach an input variable x evaluated at 1. But then
there is an outgoing Rv2Rw path from x, which means that q must be satisfied.

⇐= Proof by contraposition. Assume that o is evaluated to 0 under σ. We construct a repair r as follows,
for each gate g:

• if g is evaluated to 1, we choose the first R-fact in ϕ⊥g [Rv2Rw];

• if g = g1 ∧ g2 and g is evaluated to 0, let gi be the gate or input variable evaluated to 0. We then choose
ϕgig [Rv1];

• if g = g1 ∨ g2 and g is evaluated to 0, we choose ϕc1g [Rv]; and

• if g = g1 ∨ g2, we choose ϕg2c2 [Rv1].

For a path query p, we write head(p) for the variable at the key-position of the first atom, and rear(p) for the
variable at the non-key position of the last atom.

Assume for the sake of contradiction that r satisfies q. Then, there exists some valuation θ such that θ(uRv1Rv2Rw) ⊆
r. Then the gate g∗ := θ(head(Rv1)) is evaluated to 0 by construction. Let g1 := θ(rear(Rv1)). By construction,
for g∗ = g1 ∧ g2 or g∗ = g1 ∨ g2, we must have ϕg1g [Rv1] ⊆ r and g1 is a gate or an input variable also evaluated
to 0. By our construction of r, there is no path with trace Rv2Rw outgoing from g1. However, θ(Rv2Rw) ⊆ r, this
can only happen when g1 is an OR gate, and one of the following occurs:

• Case that |Rw| ≤ |Rv1|, and the trace of θ(Rv2Rw) is a prefix of Rvv+2 Rv1. Then Rw is a prefix of Rv1, a
contradiction.
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• Case that |Rw| > |Rv1|, and Rvv+2 Rv1 is a prefix of the trace of θ(Rv2Rw). Consequently, Rv1 is a prefix

of Rw. Then, for every k ≥ 1, L↬(q) contains uRv1 (Rv2)
k
Rw. It is now easily verified that for large

enough values of k, uRv1Rv2w is not a factor of uRv1 (Rv2)
k
Rw. By Lemmas 5 and 19, CERTAINTY(q) is

coNP-hard.

8 Path Queries with Constants

We now extend our complexity classification of CERTAINTY(q) to path queries in which constants can occur.

Definition 16 (Generalized path queries). A generalized path query is a Boolean conjunctive query of the following
form:

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1)}, (5)

where s1, s2,. . . , sk+1 are constants or variables, all distinct, and R1, R2,. . . , Rk are (not necessarily distinct)
relation names. Significantly, every constant can occur at most twice: at a non-primary-key position and the next
primary-key-position.

The characteristic prefix of q, denoted by char(q), is the longest prefix

{R1(s1, s2), R2(s2, s3), . . . , Rℓ(sℓ, sℓ+1)}, 0 ≤ ℓ ≤ k

such that no constant occurs among s1, s2, . . . , sℓ (but sℓ+1 can be a constant). Clearly, if q is constant-free, then
char(q) = q.

Example 8. If q = {R(x, y), S(y, 0), T (0, 1), R(1, w)}, where 0 and 1 are constants, then char(q) = {R(x, y),
S(y, 0)}.

The following lemma implies that if a generalized path query q starts with a constant, then CERTAINTY(q) is
in FO. This explains why the complexity classification in the remainder of this section will only depend on char(q).

Lemma 21. For any generalized path query q, CERTAINTY(p) is in FO, where p := q \ char(q).

We now introduce some definitions and notations used in our complexity classification. The following definition
introduces a convenient syntactic shorthand for characteristic prefixes previously defined in Definition 16.

Definition 17. Let q = {R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)} be a path query. We write [[q, c]] for the
generalized path query obtained from q by replacing xk+1 with the constant c. The constant-free path query q will
be denoted by [[q,⊤]], where ⊤ is a distinguished special symbol.

Definition 18 (Prefix homomorphism). Let

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1)}
p = {S1(t1, t2), S2(t2, t3), . . . , Rℓ(sℓ, sℓ+1)}

be generalized path queries. A homomorphism from q to p is a substitution θ for the variables in q, extended to
be the identity on constants, such that for every i ∈ {1, . . . , k}, Ri(θ(si), θ(si+1)) ∈ p. Such a homomorphism is a
prefix homomorphism if θ(s1) = t1.

Example 9. Let q = {R(x, y), R(y, 1), S(1, z)}, and p = {R(x, y), R(y, z), R(y, 1)}. Then char(q) = {R(x, y), R(y, 1)} =
[[RR, 1]] and p = [[RRR, 1]]. There is a homomorphism from char(q) to p, but there is no prefix homomorphism
from char(q) to p.

The following conditions generalize C1, C2, and C3 from constant-free path queries to generalized path queries.
Let γ be either a constant or the distinguished symbol ⊤.

D1: Whenever char(q) = [[uRvRw, γ]], there is a prefix homomorphism from char(q) to [[uRvRvRw, γ]].

D2: Whenever char(q) = [[uRvRw, γ]], there is a homomorphism from char(q) to [[uRvRvRw, γ]]; and whenever
char(q) = [[uRv1Rv2Rw, γ]] for consecutive occurrences of R, v1 = v2 or there is a prefix homomorphism from
[[Rw, γ]] to [[Rv1, γ]].

D3: Whenever char(q) = [[uRvRw, γ]], there is a homomorphism from char(q) to [[uRvRvRw, γ]].
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It is easily verified that if γ = ⊤, then D1, D2, and D3 are equivalent to, respectively, C1, C2, and C3. Likewise, the
following theorem degenerates to Theorem 3 for path queries without constants.

Theorem 4. For every generalized path query q, the following complexity upper bounds obtain:

• if q satisfies D1, then CERTAINTY(q) is in FO;

• if q satisfies D2, then CERTAINTY(q) is in NL; and

• if q satisfies D3, then CERTAINTY(q) is in PTIME.

The following complexity lower bounds obtain:

• if q violates D1, then CERTAINTY(q) is NL-hard;

• if q violates D2, then CERTAINTY(q) is PTIME-hard; and

• if q violates D3, then CERTAINTY(q) is coNP-complete.

Finally, the proof of Theorem 4 reveals that for generalized path queries q containing at least one constant, the
complexity of CERTAINTY(q) exhibits a trichotomy (instead of a tetrachotomy as in Theorem 4).

Theorem 5. For any generalized path query q containing at least one constant, the problem CERTAINTY(q) is
either in FO, NL-complete, or coNP-complete.

9 Related Work

Inconsistencies in databases have been studied in different contexts [8, 21, 22]. Consistent query answering (CQA)
was initiated by the seminal work by Arenas, Bertossi, and Chomicki [3]. After twenty years, their contribution was
acknowledged in a Gems of PODS session [5]. An overview of complexity classification results in CQA appeared
recently in the Database Principles column of SIGMOD Record [41].

The term CERTAINTY(q) was coined in [39] to refer to CQA for Boolean queries q on databases that violate
primary keys, one per relation, which are fixed by q’s schema. The complexity classification of CERTAINTY(q)
for the class of self-join-free Boolean conjunctive queries started with the work by Fuxman and Miller [17], and
was further pursued in [23, 26, 27, 28, 30, 32], which eventually revealed that the complexity of CERTAINTY(q)
for self-join-free conjunctive queries displays a trichotomy between FO, L-complete, and coNP-complete. A few
extensions beyond this trichotomy result are known. It remains decidable whether or not CERTAINTY(q) is in
FO for self-join-free Boolean conjunctive queries with negated atoms [29], with respect to multiple keys [31], and
with unary foreign keys [20], all assuming that q is self-join-free.

Little is known about CERTAINTY(q) beyond self-join-free conjunctive queries. Fontaine [14] showed that if
we strengthen Conjecture 1 from conjunctive queries to unions of conjunctive queries, then it implies Bulatov’s
dichotomy theorem for conservative CSP [6]. This relationship between CQA and CSP was further explored in [34].
In [1], the authors show the FO boundary for CERTAINTY(q) for constant-free Boolean conjunctive queries q using
a single binary relation name with a singleton primary key. Figueira et al. [13] have recently discovered a simple
fixpoint algorithm that solves CERTAINTY(q) when q is a self-join free conjunctive query or a path query such that
CERTAINTY(q) is in PTIME.

The counting variant of the problem CERTAINTY(q), denoted ♯CERTAINTY(q), asks to count the number of
repairs that satisfy some Boolean query q. For self-join-free Boolean conjunctive queries, ♯CERTAINTY(q) exhibits
a dichotomy between FP and ♯PTIME-complete [37]. This dichotomy has been shown to extend to self-joins if
primary keys are singletons [38], and to functional dependencies [7].

In practice, systems supporting CQA have often used efficient solvers for Disjunctive Logic Programming,
Answer Set Programming (ASP) or Binary Integer Programming (BIP), regardless of whether the CQA problem
admits a first-order rewriting [2, 9, 10, 11, 12, 19, 24, 35, 36].

10 Conclusion

We established a complexity classification in consistent query answering relative to primary keys, for path queries
that can have self-joins: for every path query q, the problem CERTAINTY(q) is in FO, NL-complete, PTIME-
complete, or coNP-complete, and it is decidable in polynomial time in the size of q which of the four cases applies.
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If CERTAINTY(q) is in FO or in PTIME, rewritings of q can be effectively constructed in, respectively, first-order
logic and Least Fixpoint Logic .

For binary relation names and singleton primary keys, an intriguing open problem is to generalize the form
of the queries, from paths to directed rooted trees, DAGs, or general digraphs. The ultimate open problem is
Conjecture 1, which conjectures that for every Boolean conjunctive query q, CERTAINTY(q) is either in PTIME
or coNP-complete.
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A Proofs for Section 4

A.1 Preliminary Results

We define (q)
k
= ε if k = 0. The following lemma concerns words having a proper suffix that is also a prefix.

Lemma 22. If w is a prefix of the word uw with u ̸= ε, then w is a prefix of (u)
|w|

. Symmetrically, if u is a suffix

uw with w ̸= ε, then u is a suffix of (w)
|u|
.

Proof. Assume w is a prefix of uw with u ̸= ε. The desired result is obvious if |w| ≤ |u|, in which case w is a
prefix of u. In the remainder of the proof, assume |w| > |u|. The desired result becomes clear from the following
construction:

u

w

w1

u2 u3

The word w1 is the occurrence of w that is a prefix of uw. The word u2 is the length-|u| prefix of w. Obviously,
u2 = u. The word u2u3 is the length-2|u| prefix of w. Obviously, u3 = u2. And so on. It is now clear that w is a

prefix of (u)
|w|

. Note that this construction requires u ̸= ε. This concludes the proof.

Definition 19 (Episode). An episode of q is a factor of q of the form RuR such that R does not occur in u. Let

q = ℓRuRr where RuR is an episode. We say that this episode is right-repeating (within q) if r is a prefix of (uR)
|r|
.

Symmetrically, we say that this episode is left-repeating if ℓ is a suffix of (Ru)
|ℓ|
.

For example, let q = AMAA

e1︷ ︸︸ ︷
MAAM A

e2︷ ︸︸ ︷
MAAM AAMAB. Then the episode called e1 is left-repeating, while

the episode e2 is neither left-repeating nor right-repeating.

Definition 20 (Offset). Let u and w be words. We say that u has offset n in w if there exists words p, s such
that |p| = n and w = pus.

Lemma 23 (Repeating lemma). Let q be a word that satisfies C3. Then, every episode of q is either left-repeating
or right-repeating (or both).

Proof. Let RuR be an episode in q = ℓRuRr. By the hypothesis of the lemma, q is a factor of p := ℓ·Ru·Ru·Rr.
Since |q| − |p| = |u|+ 1, the offset of q in p is ≤ |u|+ 1. Since R does not occur in u, it must be that q is either a
prefix or a suffix of p. We distinguish two cases:

Case that q is a suffix of p. Then, it is easily verified that ℓ is a suffix of ℓRu. By Lemma 22, ℓ is a suffix of

(Ru)
|ℓ|
, which means that RuR is left-repeating within q.

Case that q is a prefix of p. We have that r is a prefix of uRr. By Lemma 22, r is a prefix of (uR)
|r|
, which

means that RuR is right-repeating.

This concludes the proof.

Definition 21. If q is a word over an alphabet Σ, then symbols(q) is the set that contains all (and only) the
symbols that occur in q.

Lemma 24 (Self-join-free episodes). Let q be a word that satisfies C3. Let LℓL be the right-most occurrence of an
episode that is left-repeating in q. Then, Lℓ is self-join-free.

Proof. Consider for the sake of contradiction that Lℓ is not self-join-free. Since L ̸∈ symbols(ℓ), it must be that ℓ
has a factorMmM such thatMm is self-join-free. By Lemma 23, MmM must be left-repeating or right-repeating,
which requires L ∈ symbols(Mm), a contradiction.
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A.2 Proof of Lemma 1

Proof of Lemma 1. The implication 2 =⇒ 1 is obvious. To show 1 =⇒ 2, assume that q satisfies C1. The desired
result is obvious if q is self-join-free. Assume from here on that q is not self-join-free. Then, we can write q = ℓRmRr,
such that ℓRm is self-join-free. That is, the second occurrence of R is the left-most symbol that occurs a second
time in q. By C1, q is a prefix of ℓRmRmRr. It follows that Rr is a prefix of RmRr. By Lemma 22, Rr is a prefix

of (Rm)
|r|+1

. It follows that there is a k such that q is a prefix of ℓ (Rm)
k
.

A.3 Proof of Lemma 2

Proof of Lemma 2. The proof of 2 =⇒ 1 is straightforward. We show next the direction 1 =⇒ 2. To this end,
assume that q satisfies C3. The desired result is obvious if q is self-join-free (let j = k = 0 in B2a). Assume that q
has a factor LℓL ·m ·RrR where LℓL and RrR are episodes such that symbols(LℓL), symbols(RrR), and symbols(m)
are pairwise disjoint. Then, by Lemma 23, LℓL must be left-repeating, and RrR right-repeating. By Lemma 24,
Lℓ and rR are self-join-free. Then q is of the form B2a. By letting j = 0 or k = 0, we obtain the situation where
the number of episodes that are factors of q is zero or one.

The only difficult case is where two episodes overlap. Assume that q has an episode that is left-repeating
(the case of a right-repeating episode is symmetrical). Assume that this left-repeating episode is e1 := LℓRoL in

q := · · ·
e1︷ ︸︸ ︷

LℓRoL rR︸ ︷︷ ︸
e2

· · · , where it can be assumed that e1 is the right-most episode that is left-repeating. Then,

ℓ ̸= ε ̸= r implies first(ℓ) ̸= first(r) (or else e1 would not be right-most, a contradiction). By a similar reasoning,
ℓ = ε implies r ̸= ε. Therefore, it is correct to conclude ℓ ̸= r. It can also be assumed without loss of generality
that r shares no symbols with e1, by choosing R as the first symbol after e1 that also occurs in e1. Now assume e2

is right-repeating, over a length > |oL|. Then q contains a factor

e1︷ ︸︸ ︷
LℓRoL rR︸ ︷︷ ︸

e2

· oL. Then, q rewinds to a word p

with factor:
e1︷ ︸︸ ︷

LℓRoL rR︸ ︷︷ ︸
e2

· o
e1︷ ︸︸ ︷

L|ℓRoL rR︸ ︷︷ ︸
e2

· oL,

where the vertical bar | is added to indicate a distinguished position. It can now be verified that q is not a factor
of p, because of the alternation of e1 and e2 which does not occur in q. This contradicts the hypothesis of the
lemma. In particular, the words that start at position | are r and ℓ in, respectively, q and p. We conclude by
contradiction that e2 cannot be right-repeating over a length > |oL|. Thus, following the right-most occurrence
of e1, the word q can contain fresh word r, followed by RoL, which is a suffix of e1. This is exactly the form B2b.

A remaining, and simpler, case is where two episodes overlap by a single symbolR = L, giving q := · · ·
e1︷︸︸︷
LℓL rL︸︷︷︸

e2

· · · ,

where e1 is the right-most episode that is left-repeating, and L is the first symbol after e1 that also occurs in e1.
Therefore, L does not occur in ℓ · r, and ℓ ̸= r. Indeed, if ℓ = ε = r, then e1 is not right-most; and if ℓ ̸= ε ̸= r,
then first(ℓ) ̸= first(r), or else e1 would not be right-most, a contradiction. The word q rewinds to a word p with

factor

e1︷︸︸︷
LℓL r

e1︷︸︸︷
LℓL rL,︸︷︷︸

e2

︸︷︷︸
e2

and |p| − |q| = |ℓ| + |r| + 2. It is easily verified that e2 cannot be right-repeating for > 0

symbols. For instance, consider the case where r ̸= ε and e2 is right-repeating for 1 symbol, meaning that q has

suffix

e1︷︸︸︷
LℓL rL · first(r),︸︷︷︸

e2

and p has suffix

e1︷︸︸︷
LℓL r

e1︷︸︸︷
LℓL rL · first(r).︸︷︷︸

e2

︸︷︷︸
e2

If we left-align these suffixes, then there is a

mismatch between first(r) and the leftmost symbol of Lℓ. The other possibility is to right-align these suffixes, but
then e1 cannot be genuinely left-repeating within q.

A.4 Proof of Lemma 3

Proof of Lemma 3. Assume that q satisfies C3. By Lemma 2, q satisfies B2a, B2b, or B3.
1 =⇒ 2 By contraposition. Assume that (2) does not hold. Then, either q satisfies B2a or q satisfies B2b.

Assume that q = aRb1Rb2Rc for three consecutive occurrences of R such that b1 ̸= b2. It suffices to show that Rc
is a prefix of Rb1. It is easily verified that b1 ̸= b2 cannot happen if q satisfies B2a. Therefore, q satisfies B2b. The
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word in (uv)
k
wv in B2b indeed allows for suffix vu · vw · v where the first and second occurrence of v are followed,

respectively, by u and w. Then, in q, we have that w is followed by a prefix of v, and therefore C2 is satisfied.
2 =⇒ 3 The hypothesis is that q satisfies B3, but falsifies both B2a and B2b. We can assume k ≥ 0 and

self-join-free word uvw such that q is a factor of uw (uv)
k
, but q falsifies B2a and B2b. It must be that u ̸= ε and

the offset of q in uw (uv)
k
is < |u|, for otherwise q is a factor of w (uv)

k
and therefore satisfies B2a, a contradiction.

Also, one of v or w must not be the empty word, or else q is a factor of u (u)
k
, and therefore satisfies B2a (and also

satisfies B2b). We now consider the length of q. The word uwuvu is a factor of (wu)
2
vu, and thus satisfies B2b. If

v = ∅, then the word uwuu is a factor of (wu)
2
u, and thus satisfies B2b. It is now correct to conclude that one of

the following must occur:

• v ̸= ∅ and last(u) · wuvu · first(v) is a factor of q; or

• v = ∅, w ̸= ∅ and last(u) · w (u)
2 · first(u) is a factor of q.

3 =⇒ 1 Assume (3). Consider first the case v ̸= ε. Let u = ûR and v = Sv̂. We have R ̸= S, since uv is
self-join-free. By item (3a), q has a factor R · wûRSv̂ûR · S, with three consecutive occurrences of R. It is easily
verified that wû ̸= Sv̂û, and that RS is not a prefix of Rwû. Therefore q falsifies C2.

Consider next the case v = ε (whence w ̸= ε). Let u = ûR. By item (3b), q has a factor R · wûRûR · first(u),
with three consecutive occurrences of R. Since wû ̸= û and first(u) ̸= first(w), it follows that q falsifies C2.

B Proofs for Section 8

B.1 Proof of Lemma 21

Lemma 21 is an immediate corollary of Lemma 27, which states that whenever a generalized path query starts with
a constant, then CERTAINTY(q) is in FO. Its proof needs two helping lemmas.

Lemma 25. Let q = q1 ∪ q2 ∪ · · · ∪ qk be a Boolean conjunctive query such that for all 1 ≤ i < j ≤ k, vars(qi) ∩
vars(qj) = ∅. Then, the following are equivalent for every database instance db:

1. db is a “yes”-instance for CERTAINTY(q); and

2. for each 1 ≤ i ≤ k, db is a “yes”-instance for CERTAINTY(qi).

Proof. We give the proof for k = 2. The generalization to larger k is straightforward.
1 =⇒ 2 Assume that (1) holds true. Then each repair r of db satisfies q, and therefore satisfies both q1 and

q2. Therefore, db is a “yes”-instance for both CERTAINTY(q1) and CERTAINTY(q2).

2 =⇒ 1 Assume that (2) holds true. Let r be any repair of db. Then there are valuations µ from vars(q1) to
adom(db), and θ from vars(q2) to adom(db) such that µ(q1) ⊆ r and θ(q2) ⊆ r. Since vars(q1) ∩ vars(q2) = ∅ by
construction, we can define a valuation σ as follows, for every variable z ∈ vars(q1) ∪ vars(q2):

σ(z) =

{
µ(z) if z ∈ vars(q1)

θ(z) if z ∈ vars(q2)

From σ(q) = σ(q1) ∪ σ(q2) = µ(q1) ∪ θ(q2) ⊆ r, it follows that r satisfies q. Therefore, db is a “yes”-instance for
CERTAINTY(q).

Lemma 26. Let q be a generalized path query with

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, c)},

where c is a constant, and each si is either a constant or a variable for all i ∈ {1, . . . , k}. Let

p = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1), N(sk+1, sk+2)},

where sk+1, sk+2 are fresh variables to q and N is a fresh relation to q. Then there exists a first-order reduction
from CERTAINTY(q) to CERTAINTY(p).
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Proof. Let db be an instance for CERTAINTY(q) and consider the instance db ∪ {N(c, d)} for CERTAINTY(p)
where d is a fresh constant to adom(db).

We show that db is a “yes”-instance for CERTAINTY(q) if and only if db ∪ {N(c, d)} is a “yes”- instance for
CERTAINTY(p).

=⇒ Assume db is a “yes”-instance for CERTAINTY(q). Let r be any repair of db ∪ {N(c, d)}, and thus
r \ {N(c, d)} is a repair for db. Then there exists a valuation µ with µ(q) ⊆ r \ {N(c, d)}. Consider the valuation
µ+ from vars(q)∪{sk+1, sk+2} to adom(db)∪{c, d} that agrees with µ on vars(q) and maps additionally µ+(sk+1) = c
and µ+(sk+2) = d. We thus have µ+(p) ⊆ r. It is correct to conclude that db ∪ {N(c, d)} is a “yes”-instance for
CERTAINTY(p).

⇐= Assume that db ∪ {N(c, d)} is a “yes”-instance for the problem CERTAINTY(p). Let r be any repair of
db. Then r∪{N(c, d)} is a repair of db∪{N(c, d)}, and thus there exists some valuation θ with θ(p) ⊆ r∪{N(c, d)}.
Since db contains only one N -fact, we have θ(sk+1) = c. It follows that θ(q) ⊆ r, as desired.

Lemma 27. Let q be a generalized path query with

q = {R1(s1, s2), R2(s2, s3), . . . , Rk(sk, sk+1)}

where s1 is a constant, and each si is either a constant or a variable for all i ∈ {2, . . . , k + 1}. Then the problem
CERTAINTY(q) is in FO.

Proof. Let the 1 = j1 < j2 < · · · < jℓ ≤ k + 1 be all the indexes j such that sj is a constant for some ℓ ≥ 1. Let
jℓ+1 = k + 1. Then for each i ∈ {1, 2, . . . , ℓ}, the query

qi =
⋃

ji≤j<ji+1

{Rj(sj , sj+1)}

is a generalized path query where each sji is a constant.
We claim that CERTAINTY(qi) is in FO for each 1 ≤ i ≤ ℓ. Indeed, if sji+1

is a variable, then the claim follows
by Lemma 12; if sji+1

is a constant, then the claim follows by Lemma 26 and Lemma 12.
Since by construction, q = q1 ∪ q2 ∪ · · · ∪ qℓ, we conclude that CERTAINTY(q) is in FO by Lemma 25.

The proof of Lemma 21 is now simple.

Proof of Lemma 21. If q contains no constants, the lemma holds trivially. Otherwise, CERTAINTY(p) is in FO by
Lemma 27.

B.2 Elimination of Constants

In this section, we show how constants can be eliminated from generalized path queries. The extended query of a
generalized path query is defined next.

Definition 22 (Extended query). Let q be a generalized path query. The extended query of q, denoted by ext(q),
is defined as follows:

• if q does not contain any constant, then ext(q) := q;

• otherwise, char(q) = {R1(x1, x2), R2(x2, x3), . . . , Rℓ(xℓ, c)} for some constant c. In this case, we define

ext(q) := {R1(x1, x2), . . . , Rℓ(xℓ, xℓ+1), N(xℓ+1, xℓ+2)},

where xℓ+1 and xℓ+2 are fresh variables and N is a fresh relation name not occurring in q.

By definition, ext(q) does not contain any constant.

Example 10. Let q = R(x, y), S(y, 0), T (0, 1), R(1, w) where 0 and 1 are constants. We have ext(q) = R(x, y), S(y, z), N(z, u).

We show two lemmas which, taken together, show that the problem CERTAINTY(q) is first-order reducible to
CERTAINTY(ext(q)), for every generalized path query q.

Lemma 28. For every generalized path query q, there is a first-order reduction from CERTAINTY(q) to CERTAINTY(char(q)).
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Proof. Let p := q \ char(q). Since vars(char(q)) ∩ vars(p) = ∅, Lemmas 25 and 27 imply that the following are
equivalent for every database instance db:

1. db is a “yes”-instance for CERTAINTY(q); and

2. db is a “yes”-instance for CERTAINTY(char(q)) and a “yes”-instance for CERTAINTY(p).

To conclude the proof, it suffices to observe that CERTAINTY(p) is in FO by Lemma 27.

Lemma 29. For every generalized path query q, there is a first-order reduction from CERTAINTY(char(q)) to
CERTAINTY(ext(q)).

Proof. Let q be a generalized path query. If q contains no constants, the lemma trivially obtains because char(q) =
ext(q) = q. If q contains at least one constant, then there exists a first-order reduction from CERTAINTY(char(q))
to CERTAINTY(ext(q)) by Lemma 26.

B.3 Complexity Upper Bounds in Theorem 4

Lemma 30. Let q be a generalized path query that contains at least one constant. If q satisfies D3, then q satisfies
D2 and ext(q) satisfies C2.

Proof. Assume that q satisfies D3. Let char(q) = [[p, c]] for some constant c. We have ext(q) = p ·N where N is a
fresh relation name not occurring in p.

We first argue that ext(q) is a factor of every word to which ext(q) rewinds. To this end, let ext(q) = uRvRwN
where p = uRvRw. Since q satisfies D3, there exists a homomorphism from char(q) = [[uRvRw, c]] to [[uRvRvRw, c]],
implying that uRvRw is a suffix of uRvRvRw. It follows that uRvRwN is a suffix of uRvRvRwN . Hence ext(q)
satisfies C3.

The remaining test for C2 is where ext(q) = uRv1Rv2RwN for consecutive occurrences of R. We need to
show that either v1 = v2 or RwN is a prefix of Rv1 (or both). We have p = uRv1Rv2Rw. Since q satisfies D3,
there exists a homomorphism from char(q) = [[uRv1Rv2Rw, c]] to [[uRv1Rv2Rv2Rw, c]]. Since c is a constant, the
homomorphism must map Rv1 to Rv2, implying that v1 = v2. It is correct to conclude that q satisfies D2 and
ext(q) satisfies C2.

Lemma 31. For every generalized path query q,

• if q satisfies D1, then ext(q) satisfies C1;

• if q satisfies D2, then ext(q) satisfies C2; and

• if q satisfies D3, then ext(q) satisfies C3.

Proof. The lemma holds trivially if q contains no constant. Assume from here on that q contains at least one
constant.

Assume that q satisfies D1. Then char(q) must be self-join-free. In this case, ext(q) is self-join-free, and thus
ext(q) satisfies C1.

For the two remaining items, assume that q satisfies D2 or D3. Since D2 logically implies D3, q satisfies D3. By
Lemma 30, ext(q) satisfies C2. Since C2 logically implies C3, q satisfies C3.

We can now prove the upper bounds in Theorem 4.

Proof of upper bounds in Theorem 4. Since first-order reductions compose, by Lemmas 28 and 29, there is a first-
order reduction from the problem CERTAINTY(q) to CERTAINTY(ext(q)). The upper bound results then follow by
Lemma 31.
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B.4 Complexity Lower Bounds in Theorem 4

The complexity lower bounds in Theorem 4 can be proved by slight modifications of the proofs in Sections 7.1
and 7.2. We explain these modifications below for a generalized path query q containing at least one constant.
Note incidentally that the proof in Section 7.3 needs no revisiting, because, by Lemma 30, a violation of D2 implies
a violation of D3.

In the proof of Lemma 18, let char(q) = [[uRvRw, c]] where c is a constant and there is no prefix homomorphism
from char(q) to [[uRvRvRw, c]]. Let p = q \ char(q). Note that the path query uRv does not contain any constant.
We revise the reduction description in Lemma 18 to be

• for each vertex x ∈ V ∪ {s′}, we add ϕx⊥[u];

• for each edge (x, y) ∈ E ∪ {(s′, s), (t, t′)}, we add ϕyx[Rv];

• for each vertex x ∈ V , we add ϕcx[Rw]; and

• add a canonical copy of p (which starts in the constant c).

An example is shown in Figure 11. Since the constant c occurs at most twice in q by Definition 16, the query q can
only be satisfied by a repair including each of ϕx⊥[u], ϕ

y
x[Rv], ϕ

c
y[Rw], and the canonical copy of p. NL-hardness

can now be proved as in the proof of Lemma 18.

s′ s a t t′

c

u u u u

Rw
Rw

Rwp

Rv Rv Rv Rv

Figure 11: Database instance for the revised NL-hardness reduction from the graph G with V = {s, a, t} and
E = {(s, a), (a, t)}.

(x2 ∨ x3)

(x1 ∨ x2)

x3

x2

x1

c

u

uRv

u

uRv

p

+

Rw−
RvRw
+

Rw

− RvRw

+

Rw

−

RvRw

Figure 12: Database instance for the revised coNP-hardness reduction from the formula ψ = (x1 ∨x2)∧ (x2 ∨x3).

In the proof of Lemma 19, let char(q) = [[uRvRw, c]] where c is a constant and there is no homomorphism from
char(q) to [[uRvRvRw, c]]. Let p = q \ char(q). Note that both path queries uRv and u do not contain any constant.
We revise the reduction description in Lemma 19 to be

• for each variable z, we add ϕcz[Rw] and ϕ
c
z[RvRw];

• for each clause C and positive literal z of C, we add ϕzC [u];

• for each clause C and variable z that occurs in a negative literal of C, we add ϕzC [uRv]; and

• add a canonical copy of p (which starts in the constant c).

An example is shown in Figure 12. Since the constant c occurs at most twice in q, the query q can only be satisfied
by a repair r such that either
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• r contains ϕzC [uRv], ϕ
c
z[Rw], and the canonical copy of p; or

• r contains ϕzC [u], ϕ
c
z[RvRw], and the canonical copy of p.

coNP-hardness can now be proved as in the proof of Lemma 19.

B.5 Proof of Theorem 5

Proof of Theorem 5. Immediate consequence of Theorem 4 and Lemma 30.
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