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ABSTRACT

Conditional lower bounds based on P ≠ NP, the Exponential-Time
Hypothesis (ETH), or similar complexity assumptions can provide
very useful information about what type of algorithms are likely
to be possible. Ideally, such lower bounds would be able to demon-
strate that the best known algorithms are essentially optimal and
cannot be improved further. In this tutorial, we overview different
types of lower bounds, and see how they can be applied to prob-
lems in database theory and constraint satisfaction.
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1 INTRODUCTION

The design of efficient algorithms is in the focus of a large part of
theoretical computer science research. The practical need to solve
computational problems efficiently makes the systematic study of
algorithmic efficiency highly motivated. Decades of research in
algorithm design discovered mathematically beautiful and some-
times very practical algorithmic techniques that gave us deep in-
sights into efficient computation in a wide range of contexts and
application domains. The field of computational complexity treats
algorithmic problems and computation as formal mathematical ob-
jects and tries to prove relationships between them [8, 55].

Given the abundance of computation in our modern word, it is
justified to consider algorithms and computation as a fundamental
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mathematical objects, on par with basic objects in geometry, alge-
bra, and combinatorics. Researchers in computational complexity
try to learn as much as possible about the mathematical nature
of computation. But more pragmatically, computational complex-
ity can give very important messages to algorithm designers. By
giving information about limits of computation, it can prevent re-
searchers fromwasting time in dead ends of study: trying to design
algorithm for problems that cannot be efficiently solved.

Having techniques to prove negative results can profoundly change
the way research in algorithms is done. For example, the theory of
NP-hardness changed the search for polynomial-time algorithms
from a hit and miss effort to a more systematically doable project.
Without NP-hardness, we would not be able to distinguish prob-
lems that do not admit polynomial-time algorithms from problems
where we just were not yet successful in finding algorithms. But
with the possibility of giving negative evidence in the form of NP-
hardness, the lack of a known answer means that the question is
still an active research problem: we typically expect that the al-
gorithmic problem at hand can be eventually classified as either
polynomial-time solvable or NP-hard, and it is worth trying to re-
solve the question one way or the other.

In a sense, computation complexity has not progressed much in
the past 50 years despite intense efforts: the core questions under-
lying the hardness of computation, such as the celebrated P ≠ NP
problem, are still wide open. However, by accepting certain well-
chosen complexity assumptions, such as the P ≠ NP hypothesis,
we can obtain conditional lower bounds explaining the apparent
complexity of a large number of problems. As a general theme in
computational complexity research, we can see a proliferation of
new assumptions. These assumptions typical postulate that a cer-
tain type of algorithm does not exist for a particular fundamen-
tal problem (e.g., for Boolean satisfiability). The assumptions are
chosen to be both plausible and have strong explanatory power:
in many cases, they are able to show that the algorithms that we
currently have are optimal and cannot be improved any further.
Indeed, from the viewpoint of algorithm design, this is precisely
the role of computation complexity: to separate problems where
our current knowledge is complete from problems where there are
still algorithmic ideas waiting to be discovered.

Some of the complexity assumptions are standard (such as P ≠

NP), while others may be more controversial (such as the Strong
Exponential-Time Hypothesis (SETH)). Therefore, the reader may
wonder about the usefulness of proving conditional lower bounds
based on unproven assumptions. It is important to point out that
these conditional lower bounds are valuable even if we have doubts
about the validity of the assumptions. Suppose we use a complex-
ity assumption - to prove that a certain type of algorithm does
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not exists for a specialized problem % , perhaps in an application
domain such as database theory. Even if we do not believe in the
validity of the assumption - , this conditional lower bound shows
that the difficulties we face when attacking problem % have noth-
ing to do with the specific details of problem - or the application
area: we are really facing assumption - in disguise and we need
to disprove that first before any progress can be made on problem
% . In other words, the conditional lower bound shows that we can
stop trying to obtain the desired algorithm for problem % , as any
such effort would be better spent on trying to disprove the (typi-
cally more fundamental) assumption - .

The purpose of this article is to highlight some of the lower
bound techniques and show what kind of results they can deliver
in the context of database theory. We will introduce a number of
assumptions, contrast them, and show examples of their use. It has
to be emphasized that this article does not aim to be an up to date
survey of lower bounds in the area of database theory. The focus
is more on the diverse set of assumptions and lower bound tech-
niques that exist, rather than on presenting an exhaustive list of
applications for each technique. Some of these example applica-
tions come directly from the literature on database query evalua-
tion, but otherswere stated in essentially equivalent forms in other
domains: for constraint satisfaction problems (CSP) or for graph-
theoretic problems. Therefore, we begin with introducing the ter-
minology for all these domains and then discuss the results using
the most appropriate terminology.

2 THE FOUR DOMAINS

Conjunctive query evaluation is a fundamental problem in data-
base theory. This problem can be equivalently seen as a CSP in-
stance and therefore some of the results in the CSP literature are
directly relevant. A large part of the CSP literature uses a formu-
lation using the homomorphism of relational structures, which in
some special cases degenerate to traditional graph problems. In
this section, we introduce the terminology for all these domains
and show how they are connected to each other.

2.1 Database queries

A join query & is an expression of the form

'1 (011, . . . , 01A1 ) ⊲⊳ · · · ⊲⊳ '< (0<1, . . . , 0<A< ),

where the '8 are relation names with attributes 081, . . . , 08A8 . Let �
be the set of all attributes occurring in & and = = |�|. A data-

base instance D for & consists of a domain dom(D) and relations
'8 (D) ⊆ dom(D)A8 of arity A8 . It is common to think of the rela-
tion '8 (D) as a table whose columns are labeled by the attributes
081, . . . , 08A8 and whose rows are the tuples in the relation. The an-
swer, or set of solutions, of the query & in D is the =-ary relation
& (D) with attributes � consisting of all tuples C whose projection
on the attributes of '8 belongs to the relation '8 (D), for all 8 . Given
the query & and the database � , the task in the Join �ery prob-
lem is to compute the set & (D). In the Boolean Join�ery prob-
lem, we only need to decide if& (D) is empty or not. One can also
define the counting version of the problem (i.e, compute |& (D) |).

The primal graph of the query has the set � of attributes as ver-
tex set and two variables are adjacent if there is a relation con-
taining both of them. The hypergraph of the instance is defined
similarly: the vertex set is �, and each relation '8 (081, . . . , 08A8 ) is
represented by a hyperedge {081, . . . , 08A8 }.

2.2 Constraint satisfaction problems

Constraint satisfaction is a general framework that includes many
standard algorithmic problems such as satisfiability, graph color-
ing, database queries, etc. A constraint satisfaction problem (CSP)
instance consists of a set + of variables, a domain � , and a set �
of constraints, where each constraint is a relation on a subset of
the variables. The task is to assign a value from � to each variable
in such a way that every constraint is satisfied. For example, 3SAT
can be interpreted as a CSP instance where the domain is {0, 1}
and the constraints in � correspond to the clauses (thus the arity
of each constraint is 3).

Formally, an instance � of a constraint satisfaction problem is a
triple � = (+ ,�,�), where:

• + is a set of variables,
• � is a domain of values,
• � is a set of constraints, {21, 22, . . . , 2@}. Each constraint 28 ∈
� is a pair 〈B8 , '8 〉, where:
– B8 is a tuple of variables of length<8 , called the constraint
scope, and

– '8 is an<8-ary relation over � , called the constraint rela-
tion.

For each constraint 〈B8 , '8 〉 the tuples of '8 indicate the allowed
combinations of simultaneous values for the variables in B8 . The
length <8 of the tuple B8 is called the arity of the constraint. A
solution to a constraint satisfaction problem instance is a function
5 from the set of variables + to the domain � of values such that
for each constraint 〈B8 , '8 〉 with B8 = (E81 , E82 , . . . , E8< ), the tuple
( 5 (E81 ), 5 (E82 ), . . . , 5 (E8< )) is a member of'8 . Given a CSP instance
� , we can consider the problem of deciding if a solution exists, the
problem of finding all solutions, or the problem of counting the
number of solutions.

We say that an instance is binary if each constraint relation is
binary, that is,<8 = 2 for every constraint1. The primal graph (or
Gaifman graph) of a CSP instance � = (+ , �,�) is a graph � with
vertex set + , where G,~ ∈ + form an edge if and only if there is a
constraint 〈B8 , '8 〉 ∈ � with G, ~ ∈ B8 . The hypergraphof an instance
� = (+ , �,�) has+ as its vertex set and for every constraint in� a
hyperedge that consists of all variables occurring in the constraint.

Given a join query & and a database D, we can turn the query
problem into a CSP instance � in a straightforwardway: the domain
of � is dom(D), the set of variables correspond to the attributes �
of & , and for each relation '8 , there is a corresponding constraint
28 on the variables 081, . . . , 08A8 . It is clear that the tuples in the
answer set of & in D are in one to one correspondence with the
solutions of the CSP instance � . This establishes a correspondence
between the basic algorithmic problems of the two domains.

1It is unfortunate that while some communities use the term “binaryCSP” in the sense
that each constraint is binary (as does this dissertation), others use it in the sense that
the variables are 0-1, that is, the domain size is 2.



It is worth pointing out that even though the two problems are
equivalent, a large part of CSP research focuses on problem in-
stances where the domain has small constant size and the number
of constraints is large (for example, 3SAT is such a problem). This
has to be contrasted with the typical setting in database theory
research where we assume that there are only a small number of
attributes and relations have low arity, but the domain can be large
and the number of tuples in a relation can be large.

2.3 Graph problems

Given a binary CSP instance � = (+ ,�,�), we can equivalently
formulate it as a graph problem. We construct a graph � the fol-
lowing way: let us introduce |+ | · |� | vertices FE,3 (E ∈ + , 3 ∈ �)
and for ever constraint 28 = 〈(D, E), '8 〉, let us makeFD,31 andFE,32
adjacent if and only if (31, 32) ∈ '8 . Let,8 = {F8,3 | 3 ∈ �} and
consider the partition P = {,1, . . . ,, |+ |}. We say that a subgraph
� of� respects the partition P if every class of the partition P con-
tains exactly one vertex of � .

Let 5 : + → � be a solution of � . If we consider the vertices
{FE,5 (E) | E ∈ + }, then it is easy to see that they induce a sub-
graph � that respects P and isomorphic to the primal graph of � .
Conversely, it is not difficult to see that if� has a subgraph that re-
spectsP and is isomorphic to the primal graph of � , the it describes
a solution of � . Therefore, the CSP instance can be described by an
instance of partitioned subgraph isomorphism: given graphs � and
� , and partition P of+ (�) into |+ (� ) | classes, find a subgraph of
+ that respectsP and is isomorphic to� . This problem is a natural
variant of the standard subgraph isomorphism problem (find a sub-
graph of� isomorphic to � ) and, as we have seen, its complexity
is tightly connected to the complexity of CSP instances where the
primal graph is � .

There is another way in which graph-theoretic notions can de-
scribe the solutions of a CSP instance. Consider a binary CSP in-
stance � = (+ ,�,�) where every constraint 28 = 〈(D, E), '8 〉 con-
tains the same binary relation '8 = ', which we further assume to
be symmetric (that is, (31, 32) ∈ ' if and only (32, 31) ∈ '). Let� be
the primal graph of � and let� be a graph with vertex set � where
31, 32 ∈ � are adjacent if and only if (31, 32) ∈ '. A homomorphism

from� to� is a mapping 5 : + (� ) → + (�) such that ifD and E are
adjacent in � , then 5 (D) and 5 (E) are adjacent in � . Note that 5
does not have to be injective (i.e., 5 (D1) = 5 (D2) is possible) and ifD
and E are not adjacent, then we do not require that 5 (D) and 5 (E) be
nonadjacent as well. It is easy to see that every solution 5 : + → �

of � describes a homomophism from � to � , in fact, these homo-
morphisms are in one to one correspondence with the solutions
of � . Therefore, the complexity of finding a homomorphism from
a fixed graph � to the input graph � is tightly connected to the
complexity of CSP for instances with primal graph � where the
same symmetric relation ' appears in every constraint. If the rela-
tion ' is not symmetric, then a similar connection can be made to
the homomorphism problem in directed graphs.

2.4 Relational structures

The connection between CSP and graph homomorphisms that we
have seen in the previous section has two major limitations: it
worked only for binary CSP instances and only if every constraint

contained the same relation '. These limitations can be removed
if we move from graphs to the much more general setting of rela-
tional structures.

A vocabulary g is a finite set of relation symbols of specified ar-
ities. The arity of g is the maximum of the arities of all relational
symbols it contains. A g-structureA consists of a finite set� called
the universe of A and for each relation symbol ' ∈ g , say, of arity
: , a :-ary relation 'A ⊆ �: . A homomorphism from a g-structure
A to a g-structure B is a mapping ℎ : � → � from the universe
of A to the universe of B that preserves all relations, that is, for
all ' ∈ g , say, of arity : , and all tuples (01, . . . , 0: ) ∈ 'A it holds
that (ℎ(01), . . . , ℎ(0:)) ∈ 'B. Note that if g contains only a single
relational symbol, which has arity 2, then g-structures are essen-
tially directed graphs and the homomorphism problem between g-
structures is equivalent to the homomorphism problem on directed
graphs.

More generally, we can express every CSP instance � = (+ ,�,�)
as a homomorphism problem the following way. Let 2 = |� | be the
number of constraints. Let the vocabulary g contain 2 symbols&1,
. . . &2 , where symbol &8 has the same arity<8 as the constraint
28 = 〈B8 , '8 〉. We define g-structureA over the universe+ such that
&A

8 contains only the tuple B8 . We define g-structure B over the

universe � such that &B

8 is precisely the relation '8 appearing in
constraint 28 . Now it can be verified that a mapping 5 : + → � is
a solution of � if and only if 5 is a homomorphism from A to B.

3 UNCONDITIONAL LOWER BOUNDS

Ideally, we would like to prove negative results and lower bounds
that are incontestably truemathematical statements. However, our
inability to prove the P ≠ NP hypothesis is a major barrier that pre-
vents us from proving most negative statements of interest. For all
we know, it is still possible that P = NP and we can solve all data-
base query and CSP instances in polynomial time, and hence at the
moment we cannot expect to unconditionally prove any result that
rules out such algorithms. As long as we are in the classical setting
of computation typically studied in computational complexity (al-
gorithm is given an input, needs to compute a yes-no output), there
is little hope in proving strong unconditional lower bounds.

We can hope to obtain unconditional lower bounds only if we
deviate from the classical setting: for example, the problem involves
the cost of accessing the input or the cost of communication. We
show a particular, very simple setting in which we have tight un-
conditional lower bounds. If the task is to compute the answer to
a join query, then the size of the answer is obviously an uncondi-
tional lower bound on the number of steps needed for computing
the answer. This raises the question: what bounds can we give on
the size of the answer and are there query evaluation algorithms
that match this lower bound?

Formally, let & = '1 (011, . . . , 01A1) ⊲⊳ · · · ⊲⊳ '< (0<1, . . . , 0<A< )
be a join query and let D be a database instance for & such that
every relation '8 (D) contains at most # tuples. What can we say
about the size of the answer? It is easy to see that#< is an obvious
upper bound: every tuple appearing in the answer chooses one
of the at most # possibilities in each of the < relations. But this
bound is often very far from being tight. For example, for the query
& = '1 (01, 02) ⊲⊳ '2 (01, 03) ⊲⊳ '3 (02, 03), it is known that the



upper bound is # 3/2 instead of # 3. The fractional number 3/2 in
the exponent of # suggests that obtaining the bound cannot be
completely obvious. Still, precise bounds can be obtained in a clean
way using known combinatorial techniques.

Let us define the hypergraph � of the query & the following
way: the vertices are the attributes and we introduce a hyperedge
{081, . . . , 08A8 } for each relation '8 (081, . . . , 08A8 ). A fractional cover

of a hypergraph � is a mapping 5 : + (� ) → [0, 1] such that for
every vertex E ∈ + (� ), we have

∑

4∈� (� ),E∈4 5 (4) ≥ 1. That is,
5 is a weight assignment on the edges such that the total weight
put on each vertex E is at least 1. The weight of 5 is

∑

4∈� (� ) 5 (4)
and the fractional edge cover number d∗ (� ) of � is the minimum
weight of a fractional edge cover of � . For example, for the query
& = '1 (01, 02) ⊲⊳ '2 (01, 03) ⊲⊳ '3 (02, 03), the hypergraph � is
a triangle and d∗ (� ) = 3/2 (assigning weight 1/2 to each edge
is a fractional edge cover and a quick analysis shows that this is
optimal).

Using a simple application of Shearer’s Lemma [24], which is
a purely combinatorial statement on entropy, one can show that
# d∗ (� ) is an upper bound on the number of solutions.

Theorem3.1 (Atserias,Grohe,Marx [9]). Let& be a join query

with hypergraph � . Let D be a database for & where every relation

has at most # tuples. Then the answer of & in D has size at most

# d∗ (� ) .

Conversely, we can show that# d∗ (� ) is essentially a tight lower
bound. As it is usual with lower bound statements, we have to be
a bit more careful with the formulation.

Theorem3.2 (Atserias,Grohe,Marx [9]). Let& be a join query

with hypergraph � . For infinitely many # ≥ 1, there is a database

D# for & where every relation has at most # tuples and the answer

of & in D# has size at least # d∗ (� ) .

Theorem 3.2 provides an unconditional lower bound for any al-
gorithm computing the full answer of & (but of course it does not
provide any bound on algorithms that just decide whether the an-
swer is empty or compute the size of the answer). Are there algo-
rithms that match this lower bound? The combinatorial proof of
Theorem 3.1 can be turned into an algorithm with a constant over-
head in the exponent, that is, to obtain # d∗ (� )+$ (1) running time.
With additional techniques, it is possible to give tight algorithms
that tightly match the lower bound.

Theorem 3.3 ([54, 61]). Let& be a join query with hypergraph� .

Let D be a database for & where every relation has at most # tuples.

Then the answer of & in D can be computed in time $ (# d∗ (� ) ).

4 NP-HARDNESS

Since its conception and development in the early 70s [26, 38, 47],
NP-hardness has been themainworkhorse of providing intractabil-
ity results for computational problems. The class NP contains deci-
sion problems that can be solved in nondeterministic polynomial
time. This robust definition covers (the decision version of) most
combinatorial and optimization problems of interest. If a problem
% is NP-hard, then this means in particular that a polynomial-time
algorithm for % would give polynomial-time algorithms for every

problem in NP, which we take as strong evidence that such an algo-
rithm is unlikely.We prove NP-hardness of% by giving a polynomial-

time reduction from a known NP-hard problem & ; this reduction
shows that a polynomial-time algorithm for % would give a polynomial-
time algorithm for & and hence for every problem in NP.

Most of the problems studied in database theory or in CSP re-
search are obviously NP-hard, as they contain basic hard problems
as special cases. Therefore, it is not completely obvious how to ask
reasonable questions about NP-hardness where the answer is not
trivial. One direction is to consider restricted parameter values. For
example, for CSP problems, one may ask if the problem remains
NP-hard if we restrict the domain size |� | to 2 (yes, as 3SAT is still a
special case), or restrict the constraints to binary (yes, 3-Coloring
is a special case), or we apply both restrictions (no, with |� | = 2

and binary constraints the problem becomes the polynomial-time
solvable 2SAT). Restricting the number |+ | of variables to any con-
stant, say 10, gives a polynomial-time solvable special case even if
the domain size |� | is arbitrarily large (as we can try the at most
|� |10 possible assignments in polynomial time).

More generally, we can introduce restrictions on the problem
in a systematic way and determine which of the restrictions lead
to polynomial-time solvable and NP-hard special cases. In CSP re-
search, a very well studied family of special cases arise from re-
stricting the type of relations that are allowed in the constraints.
Formally, let � be a finite domain and let R be a finite set of re-
lations over � . Then we denote by CSP(R) the special case of the
general CSP problemwhere the instance is allowed to contain only
constraints 2 = 〈B, '〉 where ' ∈ R . Equivalently, we can state this
restriction in the language of the homomorphismproblem in a very
compact way. Let g be a vocabulary and letB be a g-structure. Then
HOM(_,B) is the special case of the general homomorphism prob-
lem where the input is a pair (A,B) of g-structures, where A is
arbitrary.

A classic result of Schaefer [59] characterized the complexity of
CSP(R) for any fixed finite set R of relation over the Boolean do-
main (i.e., |� | = 2). More precisely, Schaefer’s Dichotomy Theorem
showed that every suchCSP(R) problem is either polynomial-time
solvable or NP-hard, and gave a clean characterization of the two
cases. For several years, it was an outstanding open problem to
prove an analog of this result for larger fixed domains (the Feder-
Vardi Conjecture [35]). After partial progress, the conjecture was
resolved in 2016 independently by Bulatov [21] and Zhuk [63].

While these classification results are cornerstones of modern
CSP research, translating them into the language of database the-
ory does not give much useful insight. Indeed, these characteriza-
tion results would concern special cases where the domain of the
attributes have constant size and every database relations is of con-
stant size. From the viewpoint of database theory, a more relevant
family of special cases can be obtained by restricting the structure
of the query. Let us focus on Boolean Join �ery, the problem
of deciding if the answer set is empty or not. If we assume, for ex-
ample, that the primal graph of the query is a tree (acyclic graph),
then it is easy to solve the problem in polynomial time, while the
problem may remain NP-hard under other restrictions (for exam-
ple, under the assumption that the primal graph has maximum de-
gree 3 or is a planar graph etc.). Formally, in the language of CSPs,



if G is any class of graphs, we may want to understand the com-
plexity of the problem CSP(G), which is CSP under the restriction
that the primal graph belongs to class G.

Can we identify every class G that leads to polynomial-time
solvable special cases and use NP-hardness to give evidence of
hardness for every other case? It is known that if G contains only
graphs of bounded treewidth, then CSP(G) becomes polynomial-
time solvable. Treewidth is a combinatorial measure of graphs that
can be though of as a number expressing how treelike the graph
is: treewidth is 1 if and only if the graph is an acyclic forest, while
other fixed values mean that the graph is similar to a tree with each
node being replaced by a small graph. While the formal definition
of treewidth is technical, it models very faithfully the requirements
that make the algorithmic paradigm “split on small separators and
recurse” work and its mathematical naturality is further evidenced
by the fact that it was independently discovered in equivalent for-
mulations at least three times [14, 41, 57]. The precise definition of
treewidth is not essential for this paper; we include the definition
here only for completeness.

Definition 4.1. A tree decomposition of a graph� is a pair (B,) )
where) is a tree and B = {�C | C ∈ + () )} is a collection of subsets
of + (�) such that:

• ⋃

C ∈+ () ) �C = + (�),
• for each edge G~ ∈ � (�), {G,~} ⊆ �C for some C ∈ + () );
• for each G ∈ + (�) the set {C | G ∈ �C } induces a connected
subtree of ) .

The width of the tree decomposition is maxC ∈+ () ) {|�C | − 1}. The
treewidth of a graph � is the minimum width over all tree decom-
positions of� . We denote by tw(�) the treewidth of graph� .

Freuder [37] showed that if the primal graph has bounded treewidth,
then the instance can be solved in polynomial time. By now, the
result can be obtained by standard dynamic programming tech-
niques on tree decompositions.

Theorem 4.2 (Freuder [37]). For every fixed : , a CSP instance

� = (+ ,�,�) can be solved in time$ ( |+ | · |� |:+1) if the primal graph

has treewidth at most : .

It follows from Theorem 4.2 that CSP(G) is polynomial-time
solvable if G has bounded treewidth, and it is easy to find graph
classes G with unbounded treewidth (e.g., cliques) where the prob-
lem remains NP-hard. But, surprisingly, there seem to be cases that
are neither polynomial-time solvable or NP-hard, thus a full clas-
sification into these two categories does not seem to be possible.

In the introduction, we mentioned that typically we expect that
the problem at hand can be eventually classified as either polynomial-
time solvable or NP-hard. While this may be true in most cases,
there is no mathematical reason why this should be true in general.
In fact, Ladner’s Theorem [48] states that if P ≠ NP, then there are
NP-intermediate problems in the class NP: problems that are nei-
ther polynomial-time solvable nor NP-hard. The proof of Ladner’s
Theorem produces NP-intermediate problems that are highly arti-
ficial, so it is a different question whether there are natural prob-
lems that are NP-intermediate. There are two problems that are
often highlighted as natural candidates for being NP-intermediate:
Graph Isomorphism and Integer Factorization. These two prob-
lems are not expected to be polynomial-time solvable, and the fact

that they can be solved much more efficiently than brute force
[10, 11, 49] suggests that they are not NP-hard either.

One could say that the reason why Graph Isomorphism and In-
teger Factorization are NP-intermediate is that the deep alge-
braic and number-theoretic structures underlying these problems
make them occupy a special place in the complexity landscape of
NP problems. However, it is important to point out that problems
can be (probably) NP-intermediate for more pedestrian reasons: it
is possible to scale down an NP-hard problem in a way that it no
longer NP-hard, but still not sufficiently easy to be polynomial-
time solvable. We will refer to the following (artificial) example
also in later sections.

Definition 4.3. A graph � is special if it has exactly two con-
nected components: a clique of size : for some integer : ≥ 1 and
a path of exactly 2: vertices. Special CSP and Special Boolean

Join�ery are the restricted cases of the general problems where
we assume that the primal graph is special.

Let us give some intuitive arguments why these problems could
be NP-intermediate (we will make this more formal in later sec-
tions). First, the path part can be solved efficiently in polynomial
time. Then we need to solve the clique part, which can certainly be
done by brute force in time$ (=:), where= is the total length of the
input. But as already the primal graph has size larger than 2: , we
have = ≥ 2: and hence : ≤ log=. Thus we can solve the problem
in quasipolynomial time =$ (log=) , which would be an exception-
ally unusual property of an NP-hard problem. Moreover, it is not
clear what substantial improvements we can expect on this algo-
rithm: one would need to solve the clique part significantly faster
than brute force. Therefore, it seems that these problems variants
are likely to be NP-intermediate with best possible running time
around =$ (log=) .

This example shows that even if we just want to understand
which special cases are polynomial-time solvable, thenNP-hardness
may not be sufficient for this purpose. As we shall see in later sec-
tions, we need to use other lower bound techniques for this type
of classification. Additionally, these lower bound techniques can
provide stronger lower bounds beyond just ruling out polynomial-
time algorithms, showing the optimality of certain algorithms in a
tighter way.

5 PARAMETERIZED INTRACTABILITY

Parameterized complexity considers algorithmic problems where
each input instance has a parameter : associated with it. This pa-
rameter is typically either the size of the solution we are looking
for or some measure of the input, such as the number of variables
in a formula, the dimension of the input point set, the maximum
degree of the input graph, or perhaps the alphabet size of the input
strings. The central goal of parameterized complexity is to develop
algorithms that are efficient on instances where the value of the
parameter is small. Formally, we say that a parameterized prob-
lem is fixed-parameter tractable (FPT) if it can be solved in time
5 (:) ·=$ (1) , where = is the size of the input and 5 is a computable
function depending only on : . This form of running time has to be
contrasted with the running time =$ (:) of brute force algorithms
that are often easily achievable if : is the size of the solution we



are looking for. Research in the past three decades has shown that
many of the natural NP-hard problems are FPTwith various param-
eterizations, leading to algorithms that are often highly nontrivial
and combinatorially deep [29, 31, 32, 36].

As an example, let us consider Vertex Cover: given a graph
� and an integer : , the task is to find a vertex cover ( of size at
most : , that is, a set ( of at most : vertices such that every edge of
� has at least one endpoint in ( . Clearly, we can solve the prob-
lem by brute force on an =-vertex graph by trying each of the
$ (=: ) sets ( of size at most : . But more efficient algorithms are
available: a standard application of the bounded-depth search tree
technique already delivers a 2: · =$ (1) algorithm, which can be
further refined with additional techniques [23]. This means that
Vertex Cover is FPT parameterized by the size of the solution.
For Cliqe, the trivial $ (=:) brute force search can be improved
to about $ (=l:/3)) (where l < 2.3729 is the exponent for matrix
multiplication [6, 53, 53]), but no FPT algorithm is known despite
significant efforts.

Motivated by this apparent difference between Vertex Cover

and Cliqe, Downey and Fellows introduced the notion of W[1]-
hardness and the FPT ≠ W[1] hypothesis [31]. We omit here the
technical definitions related to the class W[1]; for the purpose of
proving negative evidence, it is sufficient to know that FPT ≠ W[1]
is equivalent to the statement “Cliqe is not FPT” (or to “Independent
Set is not FPT”, as the two problems are equivalent by taking the
complement of the graph). To define W[1]-hardness, we need first
the following notion of reduction:

Definition 5.1. Let % and & be two parameterized problems. A
parameterized reduction transforms an instance G of % with param-
eter : to an instance G ′ of& with parameter : ′ such that

(1) (G, :) is a yes-instance of % if and only if (G ′, : ′) is a yes-
instance of& .

(2) The running time of the reduction is 5 (:) |G |$ (1) for some
computable function 5 .

(3) We have : ′ ≤ 5 (:) for some computable function 5 .

The third requirement is what makes this notion very different
from usual polynomial-time reductions: we have to pay extra atten-
tion not to blow up too much the parameter : in the reduction. Pa-
rameterized reductions were designed in a way that they transfer
the property of being FPT: it can be shown that if there is a param-
eterized reduction from % to& and & is FPT, then % is FPT as well.
We can define W[1]-hardness by saying that a problem % is W[1]-
hard if there is a parameterized reduction from Cliqe to % . We
can interpret this as evidence that % is not FPT: an FPT algorithm
for % would show that Cliqe is FPT, violating the FPT ≠ W[1]
hypothesis.

Let us have a look at the complexity of CSP via the lens of pa-
rameterized complexity. Given a instance � = (+ ,�,�), we can
introduce the number : = |+ | of variables as the parameter of
the instance. We can decide if there is a solution by trying each of
the |� |: = $ (=: ) possible assignments. The NP-hardness of the
problem implies that this cannot be improved to =$ (1) (assuming
P ≠ NP), but this does not rule out the possibility that the prob-
lem is FPT parameterized by : , that is, there is a 5 (:) · =$ (1) time

algorithm. Such an algorithmwould be certainly of interest in con-
texts where we can assume that : is small, but � is large (which is
typically true in database applications). However, it is easy to see
that the problem of finding a clique of size : in a graph � can be

expressed as a CSP problem with : variables,
(:
2

)

constraints, and
domain� = + (�). That is, there is a parameterized reduction from
Cliqe toCSP parameterized by the number of variables, showing
that the latter problem is unlikely to be FPT either.

We can now return to the question left open at the end of Sec-
tion 4: what are those classes G for which CSP(G) is polynomial-
time solvable? As we have seen, NP-hardness does not seem to be
sufficiently strong to highlight all the negative cases. Instead, let us
look at the fixed-parameter tractability of CSP(G), parameterized
by the number : of variables. Now if CSP(G) can be proved to be
W[1]-hard for some G, then this implies in particular that it is not
polynomial-time solvable, assuming FPT ≠ W[1].

For example, let G contain every special graph, as defined in
Definition 4.3, and let us consider Special CSP (that is, CSP(G))
parameterized by the number of variables. Given an instance of
Cliqe (a graph � where it has to be decided if there is a clique
of size :), then we can express it as a Special CSP instance as fol-

lows.We introduce: variables connected by
(:
2

)

binary constraints
to express the problem of finding a :-clique, and additionally we
introduce 2: dummy variables connected by constraints forming a
path. The primal graph is a :-clique plus a path on 2: vertices, as
required in Special CSP. The reduction turns the problem of find-
ing a :-clique to a Special CSP instance on 5 (:) = : +2: variables,
hence this is a proper parameterized reduction. It follows that Spe-
cial CSP is W[1]-hard parameterized by the number of variables,
and hence unlikely to be polynomial-time solvable.

More generally, Grohe, Schwentick, and Segoufin [40] proved
that if G has unbounded treewidth, then CSP(G) is W[1]-hard,
leading to a complete classification.

Theorem 5.2 (Grohe, Schwentick, and Segoufin [40]). Let G
be a decidable class of graphs. Assuming FPT ≠ W[1], the following
are equivalent:

(1) G has bounded treewidth,

(2) CSP(G) is polynomial-time solvable,

(3) CSP(G) is FPT parameterized by the number : of variables.

Observe that there is a major coincidence here: the polynomial-
time solvable cases are exactly the same as the FPT cases (which in
principle could have been a more general class). This coincidence
makes it possible to useW[1]-hardness to identify those cases that
are not polynomial-time solvable.

A more general result gives a classification in the framework
of homomorphism problem for relational structures (which can be
directly translated to results for Boolean Join �ery). Let g be a
vocabulary and let A be a class of g-structures. Then HOM(A, _)
is the special case of the general homomorphism problem where
given two g-structures (A,B) with A ∈ A and B arbitrary, the
task is to decide if there is a homomorphism from A to B. The
polynomial-time solvable cases again depend on treewidth, but in
a slightly more complicated manner. If A′ is a substructure of A
such that there is a homomorphism from A to A

′, then the prob-
lem instances (A,B) and (A′,B) are equivalent. The smallest such



substructureA′ ofA is called the core ofA (it is known to be unique
up to isomorphism). It is the treewidth of this core that determines
the complexity of the problem.

Theorem 5.3 (Grohe [39]). Let g be a finite vocabulary and let

A be a decidable class of g-structures. Assuming FPT ≠ W[1], the
following are equivalent:

(1) the cores of the structures in A have bounded treewidth,

(2) HOM(A, _) is polynomial-time solvable,

(3) HOM(A, _) is FPT parameterized by the size : of the universe

of A.

Again, we have that the polynomial-time solvable and FPT cases
coincide, allowing the use of W[1]-hardness for the classification
of both properties.

6 THE EXPONENTIAL-TIME HYPOTHESIS

Parameterized complexity gives a finer understanding of the com-
plexity of problems: for example, the negative results not only tell
us that Cliqe is not polynomial-time solvable, but they rule out
algorithms with running time 5 (:)=$ (1) . However, this is still a
qualitative result that rules out a certain running time, but does not
tell us the exact complexity of the problem: can the =: brute force

search be improved to, say,=
√
: , or to=$ (log:) , or to=$ (log log log log:) ,

or to . . .? For all we know, such algorithms cannot be ruled out
based on the P ≠ NP or FPT ≠ W[1] conjectures. Similarly, for
FPT problems such as Vertex Cover where the best known al-
gorithms have running time of the form 2$ (:) · =$ (1) , we cannot
rule out that these algorithms can be significantly improved to, say,

2$ (
√
:) · =$ (1) .

The Exponential-TimeHypothesis (ETH), formulated by Impagli-
azzo, Paturi, and Zane [43, 44], makes the assumption P ≠ NP
more quantitative: informally, it not only tells us that NP-hard
problems do not have polynomial-time algorithms, but it postu-
lates that NP-hard problems really require exponential time and
cannot be solved in subexponential time. The formal statement of
the ETH is somewhat technical and for most applications it is more
convenient to use the following assumption instead, which is an
easy consequence of the ETH:

Hypothesis 1 (Conseqence of the ETH, Impagliazzo, Pa-

turi, and Zane [43, 44]). 3SAT with = variables cannot be solved

in time 2> (=) .

3SAT is the fundamental satisfiability problem where, given a
Boolean formula in conjunctive normal formwith at most 3 literals
in each clause (e.g., (G1∨Ḡ3∨G5)∧(Ḡ1∨G2∨G3)∧(Ḡ2∨G3∨G4)), the
task is to decide whether a satisfying assignment exists. For com-
pleteness, let us recall the formal statement of the ETH, of which
Hypothesis 1 is an easy consequence. Let B: be the infinum of all
real numbers X for which there exists an $ (2X=) time algorithm
for :-SAT. Then the ETH is the assumption that B: > 0 for every
: ≥ 3. It is easy to show that this assumption implies Hypothesis 1,
hence if we can show that some statement would refute Hypothe-
sis 1, then it would refute the ETH as well.

As 3SAT can interpreted as a special case of CSP with domain
size 2 and constraints of arity 3, we can translate Hypothesis 1 into

the language of CSPs to obtain a lower bound for solving instances
with constant domain size.

Corollary 6.1. Assuming the ETH, there is no algorithm that

solves every CSP instance � = (+ , �,�) in time 2> ( |+ |) · =$ (1) , even
if |� | = 2 and every constraint has arity at most 3.

Hypothesis 1 rules out the existence of algorithms that are subex-
ponential in the number= of variables. But the number< of clauses
in a 3SAT instance can be up to cubic in the number of variables,
thus the length of the instance can bemuch larger than$ (=). There-
fore, Hypothesis 1 does not rule out the existence of algorithms
that are subexponential in the length of the instance: it could be
potentially the case that all the really hard instances of 3SAT have,

say, Ω(=2) clauses, hence a 2> (
√
=+<) algorithmwould be still com-

patiblewithHypothesis 1. Impagliazzo, Paturi and Zane [44] showed
that this is not the case: the Sparsification Lemma implies that, for
the purposes of Hypothesis 1, 3SAT remains hard already when
restricted to instances with a linear number of clauses. With the
Sparsification Lemma, the following stronger assumption follows
from Hypothesis 1:

Hypothesis 2 (Conseqence of the ETH + Sparsification

Lemma, Impagliazzo, Paturi, and Zane [44]). 3SAT with = vari-

ables and< clauses cannot be solved in time 2> (=+<) .

This stronger assumption turns out to be very useful to prove
lower bounds for other problems. Reductions from 3SAT to other
problems typically create instances whose size depends not only
on the number = of variables, but also on the number< of clauses,
hence it is important to have lower bounds on 3SAT in terms of
both = and<. For example, if we look at textbook reductions from
3SAT to 3-Coloring, then they transform a formula with = vari-
ables and< clauses into a graphwith$ (=+<) vertices and$ (=+<)
edges. Such a reduction together with Hypothesis 2 implies a lower
bound for binary CSP over a constant domain size.

Corollary 6.2. Assuming the ETH, there is no algorithm that

solves every CSP instance � = (+ ,�,�) in time 2> ( |+ |+ |� |) · =$ (1) ,
even if |� | = 3 and every constraint is binary.

Let us turn our attention now to parameterized problems. A key
result in parameterized complexity states that, assuming ETH, the
=: brute force search for Cliqe cannot be improved better than a
constant factor in the exponent, even if we allow an arbitrary 5 (:)
factor in the running time.

Theorem 6.3 (Chen et al. [22]). Assuming ETH, Clique cannot

be solved in time 5 (:) · => (:) for any computable function 5 .

The same is true for the PartitionedCliqe, which, as we have
seen in Section 2.3, is essentially equivalent to a binary CSP in-
stance where the primal graph is clique. Therefore, we can trans-
late Theorem 6.3 into the language of CSPs.

Theorem 6.4. Assuming ETH, there is no algorithm that solves

every binary CSP instance � = (+ , �,�) in time 5 ( |+ |) · |� |> ( |+ |) | ·
=$ (1) , where 5 is an arbitrary computable function.

Moreover, we have seen in Section 5 that :-Cliqe can be re-
duced to a Special CSP instance with : + 2: variables. Together
with Theorem 6.3 it follows that, assuming the ETH, there is no



5 ( |+ |)=> (log |+ |) time algorithm for Special CSP. This makes the
NP-intermediate status of the problem very precise: it is indeed
=$ (log |+ |) the best possible running timewe can hope for this prob-
lem.

Note that the treewidth of a :-clique is : − 1. Therefore, The-
orem 6.4 shows that if : is the treewidth of the primal graph of
the CSP instance, then the =$ (:) time algorithm of Freuder [37]
is essentially optimal in the sense that the exponent cannot be im-
proved by more than a constant factor.

Theorem 6.5. Assuming ETH, there is no algorithm that solves

every binary CSP instance � = (+ ,�,�) in time 5 ( |+ |) ·=> (:) , where
: is the treewidth of the primal graph and 5 is an arbitrary com-

putable function 5 .

One could interpret Theorem 6.5 as saying that the treewidth-
based algorithm of Freuder is an optimal way of solving CSP in-
stances. However, this interpretation is misleading. What Theo-
rem 6.5 really says is that there is one type of primal graphs, namely
cliques, where the=$ (:) running time that follows using that treewidth-
based algorithm is essentially optimal. This does not rule out the
possibility that there are some graph classes, maybe planar graphs,
bounded-degree graphs, interval graphs, etc. where it is possible to
solve the problem => (:) time, where : is the treewidth of the pri-
mal graph. Formally, we can approach this possibility in the spirit
of Theorem 5.2, by considering the problemCSP(G), where the pri-
mal graph is restricted some class G. The following lower bound
shows that the treewidth-based algorithm is still optimal for any
such CSP(G), up to a logarithmic factor in the exponent.

Theorem 6.6 ([52]). Let G be a class of graphs with unbounded

treewidth. Assuming ETH, there is no algorithm that solves every in-

stance � = (+ , �,�) of CSP(G) in time 5 ( |+ |)=> (:/log:) , where : is

the treewidth of the primal graph and 5 is an arbitrary computable

function.

The formulation of Theorem 6.6 was originally chosen in a way
to be analogous to the formulation of Theorem 5.2. However, it
later turned out that it is possible to state it in a slightly more
robust and expressive way that shows the precise complexity of
individual primal graphs.

Theorem 6.7 ([25]). Assuming the ETH, there exists a universal

constant U > 0 such that for any fixed primal graph� with treewidth

: ≥ 2, there is no algorithm deciding the binary CSP instances � =

(+ , �,�) whose primal graph is� in time $ ( |� |U ·:/log: ).

7 THE STRONG EXPONENTIAL-TIME

HYPOTHESIS

Despite the usefulness of the ETH, there are complexity lower bounds
that seem to be beyond the reach of what can be proved as a con-
sequence of this hypothesis. Impagliazzo, Paturi, and Zane [44]
proposed an even stronger assumption on the complexity of NP-
hard problems: the so-called Strong Exponential-Time Hypothe-
sis (SETH). Using the notation introduced at the beginning of Sec-
tion 6, the SETH assumes that lim:→∞ B: = 1. The following con-
sequence of the SETH is a convenient formulation that can be used
as a starting point for lower bounds on other problems:

Hypothesis 3 (Conseqence of the SETH, Impagliazzo, Pa-

turi, and Zane [44]). SAT with = variables and< clauses cannot

be solved in time (2 − n)= ·<$ (1) for any n > 0.

Intuitively, Hypothesis 3 states that there is no better algorithm
for SAT than the brute force search of trying each of the 2= pos-
sible assignments. Note that here SAT is the satisfiability problem
with unbounded clause length. For fixed clause length, algorithms
better than 2= are known: for example, the best known algorithms
for 3SAT and 4SAT have running times 1.308= and 1.469= , respec-
tively [42]. The SETH states that the base of the exponent has to
get closer and closer to 1 as the clause length increases, and it is
not possible to have an algorithm with base 2 − n that works for
arbitrary large clause length.

It is important to note that there is no known analogue of the
Sparsification Lemma for the SETH. That is, we cannot assume
that the hard instances stipulated by Hypothesis 3 have only a lin-
ear number of clauses: for all we know, the number of clauses can
be exponential in the number = of variables. This severely limits
the applicability of lower bounds based on the SETH as any reduc-
tion from the SAT instance would create instances whose sizes are
potentially exponentially large in =. Nevertheless, the SETH has
found applications in parameterized complexity, for example, giv-
ing tight lower bounds on how the running time has to depend on
treewidth [15, 27, 28, 30, 33, 45, 46, 51].

An important parameterized problem for which the SETH gives
a very tight lower bound is Dominating Set. The closed neighbor-
hood# [E] = # (E)∪{E} of a vertex E consists of the vertex itself and
its neighbors. A dominating set ( is a set of vertices that contains
a vertex from the closed neighborhood of every vertex, in other
words, every vertex is either selected or has a selected neighbor. In
the Dominating Set problem, given a graph � and an integer : ,
the task is to find a dominating set ( of size at most : . If � is an
=-vertex graph, then the trivial brute force algorithm enumerates
the$ (=: ) subsets of size at most : and needs $ (=2) time for each
of them to check if they form a solution. This results in a$ (=:+2)
time algorithm, which can be improved to =:+> (1) [34]. The fol-
lowing lower bound shows that any small constant improvement
beyond : in the exponent would violate the SETH.

Theorem 7.1 (Patrascu and Williams [56]). If there is an in-

teger : ≥ 3 and a real number n > 0 such that :-Dominating Set

can be solved in time $ (=:−n) on =-vertex graphs, then the SETH is

false.

As a demonstration, we show how Theorem 7.1 allows us to
make Theorem 6.5 tighter. We are not just ruling out |� |> (:) time,
but any potential improvement in the exponent of the domain size
beyond : , getting closer to the upper bound of Theorem 4.2.

Theorem 7.2. If there are integers : ≥ 3, 2 ≥ 1, and a real num-

ber n > 0 such that there is an algorithm solving CSP instances

� = (+ ,�,�) whose primal graph has treewidth at most : in time

$ ( |+ |2 · |� |:−n ), then the SETH is false.

Proof. Let 6 ≥ 1 be the smallest integer such that6n > 2+n and
let C = 6: . First we present a generic reduction from C-Dominating

Set on an =-vertex graph to a CSP instance with domain size =
where the treewidth of the primal graph is C . Let � be an =-vertex



graph where we need to find a solution ( of size at most C . For
simplicity of notation, let us assume that+ (�) = [=]. We construct
a CSP instance � = (+ , �,�) the following way. The set+ contains
C + = variables B1, . . . , BC , G1, . . . , G= . The domain � is + (�) = [=].
The intended meaning of the value of B8 is the 8-th vertex of the
solution, and the intended meaning of G 9 = 8 is that the solution
vertex represented by B8 is in # [ 9]. To enforce this interpretation,
for every 8 ∈ [C] and 9 ∈ [=], we introduce a constraint 28, 9 =

〈(B8 , E 9 ), '8, 9 〉, where

'8, 9 = {(0,1) | 0 ∈ [=], 1 ∈ [C], 1 ≠ 8}
⋃

{(0,1) | 0 ∈ [=], 1 ∈ [C], 1 = 8, 0 ∈ # [ 9]}

It is not difficult to check that if there is a solution to this CSP
instance, then {B1, . . . , BC } is a dominating set (as vertex BG 9

is in
the closed neighborhood # [ 9] of 9). Conversely, a solution ( of C-
Dominating Set can be turned into a solution of this CSP instance.
Observe that the primal graph is complete bipartite graph with C

vertices on one side and = vertices on the other side. Such a graph
has treewidth at most C .

To obtain the required form of the lower bound, we need tomod-
ify the constructed CSP instance. Let us group the variables G1, . . . ,
GC into C/6 = : groups of size 6 each. If we increase the domain
from � to �6 (having size =6), we can represent each group with a
single new variable (and modify the constraints accordingly). This
way, we can obtain an equivalent CSP instance � ′ = (+ ′, � ′,� ′)
where |� ′ | = =6 and treewidth of the primal graph is at most : .
By our assumption, this CSP instance � ′ (and hence the original
C-Dominating Set instance) can be solved in time

$ ( |+ ′ |2 · |� ′ |:−n ) = $ (=2 · =6 (C/6−n))
= $ (=C+2−6n ) = $ (=C−n).

The size of the constructed instance � ′ can be generously bounded
by $ (=26+1) which is less than $ (=C−n). The reduction presented
above can be done in time linear in the size of � ′, hence the run-
ning time of the reduction itself is dominated by the running time
of solving � ′ with the assumed algorithm. Therefore, we obtain an
algorithm for solving C-Dominating Set in time$ (=C−n). By The-
orem 7.1, this violates SETH. �

In recent years, the SETH has been successfully used to give
lower bounds for polynomial-time solvable problems, for exam-
ple, by showing that the textbook $ (=2) dynamic programming
algorithm for Edit Distance cannot be significantly improved: it
cannot be solved in time $ (=2−n) for any n > 0, unless the SETH
fails [12, 19]. Many other tight results of this form can be found
in the recent literature under the name “fine-grained complexity”
[1, 3, 5, 12, 17–20, 56, 58, 62].

8 OTHER CONJECTURES

We finish the overview of lower bound techniques with a few other
complexity conjectures that have appeared recently in the litera-
ture. This section does not contain any strong results or nontrivial
reductions; the goal is to present assumptions that have direct con-
sequences when translated into the language of database theory

and CSP. The aim is to raise awareness of the existence of these
conjectures, which may be the starting point of future research.

The:-clique conjecture.Matrixmultiplication techniques can
be used to detect if a graph contains a triangle: if � is the adja-
cency matrix of� , then� contains a triangle if and only if �3 has
a nonzero value on the diagonal. Therefore, if we have an algo-
rithm for multiplying two = × = matrices in time $ (=l ) for some
l (the current best known algorithm has l < 2.3729 [6]), then we
can detect in time $ (=3) if an =-vertex graph contains a triangle.
Nesetril and Poljak [53] showed in 1985 that this can be general-
ized further for detecting a clique of size : in time$ (=l:/3) (if : is
divisible by 3). As no significant improvement over this approach
appeared in the past 35 years, one can conjecture that there is no
$ (= (l−n):/3+2) time algorithm for :-Cliqe for any n, 2 > 0. Ab-
boud, Backurs, and Vassilevska Williams [2] used this conjecture
to give evidence that Valiant’s $ (=l ) time parsing algorithm [60]
from 1975 is optimal.

As discussed in Section 2.3, :-Cliqe on an =-vertex graph can

be represented as a CSP with : variables,
(:
2

)

constraints, and do-
main size =. Therefore, the :-clique conjecture further refines The-
orem 6.4 by ruling out not only a |� |> ( |+ |) dependence in the run-
ning time, but also |� | (l−n) |+ |/3+2 for any n, 2 > 0.

The 3-uniform hyperclique conjecture. A hypergraph is 3-
uniform if every hyperedge contains exactly3 vertices. The analog
of a :-clique in a3-uniform hypergraph is a set ( of : vertices such

that each of the
(:
3

)

possible hyperedges are present in ( . Some-
what surprisingly, matrix multiplication techniques seem to speed
up the search for :-cliques only for 3 = 2 (ordinary graphs). For
any fixed 3 ≥ 3, nothing substantially better is known than trying
every set of size : . This suggests the conjecture that there is no
$ (= (1−n):+2) time algorithm for detecting :-cliques in 3-uniform
hypergraphs for any fixed 3 ≥ 2 and n, 2 > 0 [50]. We can again
translate this conjecture into the language of CSPs: we can show
that even if the arity of every constraint is at most 3, there is no
5 ( |+ |) · |� | (1−n) |+ |+2 · =$ (1) algorithm for CSP for any n, 2 > 0
and computable function 5 . Therefore, we get very tight lower
bounds showing that essentially the brute force search of all assign-
ments cannot be avoided. The 3-uniform hyperclique conjecture
was used to rule out the possibility of constant-delay enumeration
algorithms [13, 16].

The triangle conjecture. In database query problems it ismore
relevant to express the running time in terms of the size of the
database relations rather than the size of the domain. For example,
given the query & = '1 (01, 02) ⊲⊳ '2 (01, 03) ⊲⊳ '3 (02, 03) whose
primal graph is the triangle, matrix multiplication can be used to
check in time $ (3l ) if the answer is empty, where 3 is the size of
the domain of the attributes. But what can we say about the run-
ning time expressed as a function # of the maximum size of the
relations? As we have seen in Section 3, the size of the solution is
$ (# 3/2), we can enumerate it in time $ (# 3/2), and this is tight.
However, this does not rule out the possibility that there are faster
algorithms for deciding if the answer is empty. In particular, can
this be solved in linear time? Note that this question is equivalent
to asking for the best possible running time for detecting triangles,
where the running time is now expressed as a function of the num-
ber< of edges. The best known algorithm of this form detects the



existence of a triangle in time$ (<2l/(F+1) ) [7] and one can state
as a conjecture (Strong Triangle Conjecture [4]) that this is indeed
best possible.

9 CONCLUSIONS

We have seen a sequence of complexity lower bounds of various
strengths. The results were based on assumptions with different
levels of plausibility, going all the way from unconditional bounds,
classic NP-completeness, to novel conjectures. The results also dif-
fer in the tightness of the lower bound: they can be only qualitative
results (polynomial-time vs. NP-hard, FPT vs. W[1]-hard) or quan-
titative lower bounds showing the optimality of current algorithms
to various levels of tightness.

What can we learn from all these results? First, when aiming
for a lower bound, we need to select a precise form of the bound.
Ideally, we would like to have negative results that rule out the pos-
sibility of any improved algorithm compared towhat is known cur-
rently, showing that they are already optimal. Themeaning of “any
improved algorithm” needs to be clarified precisely and the choice
of this meaning can greatly influence the technical difficulty of the
lower bound proof and the required assumptions. Second, we need
to choose a suitable complexity assumption that we can base the re-
sult on. There are established conjectures, such as the ETH, that are
widely used in different domains. But we should be ready to con-
nect our database theory or CSP problem at hand with other, less
celebrated open question as well. The general theme of conditional
lower bounds is to transform a relatively specialized question to a
more fundamental question that was studied from multiple direc-
tions. If we can formally establish that the main challenge in un-
derstanding our problem is really some other, more fundamental
problem in disguise, then this means that spending further efforts
on finding improved algorithms is not timely and we can assume
for the time being that any algorithm matching the lower bound is
optimal. This is a common situation in complexity theory: as it is
often said, computational complexity progresses by reducing the
number of questions, without increasing the number of answers.
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