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ABSTRACT

In this article, we show that each semidefinite relaxation of a

ball-constrained noncommutative polynomial optimization prob-

lem can be cast as a semidefinite programwith a constant tracema-

trix variable. We then demonstrate how this constant trace prop-

erty can be exploited via first order numerical methods to solve ef-

ficiently the semidefinite relaxations of the noncommutative prob-

lem.
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1 INTRODUCTION

Polynomial optimization problems (POP) are present in many ar-

eas of mathematics, and science in general. There are many appli-

cations in global optimization, control and analysis of dynamical

systems to name a few [13], and being able to efficiently solve POP

is of great importance.

In this article we focus on noncommutative (nc) polynomial opti-

mization problems (NCPOP), that is, polynomial optimization with

non-commuting variables. NCPOP has several applications in con-

trol [26] and quantum information [6, 19, 21].

Since the advent of interior point methods for semidefinite pro-

grams (SDP) [2], there have been many approaches to solving POP,

using powerful representation results from real algebraic geometry

for positive polynomials. Inspired by Schmüdgen’s solution to the

moment problem on compact semialgebraic sets [25], these meth-

ods aim to provide certificates of global positivity. There are natu-

ral analogues to these approaches in the nc setting, coming from

free algebraic geometry [9], and the tracial moment problems [4].
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A standard approach in the commutative setting, is Lasserre’s

Hierarchy [12], which provides a sequence lower bounds on the op-

timal values for POPs, with guaranteed convergence under some

natural constraints according to Putinar’s Positivstellensatz [24].

This hierarchy and its nc extension to eigenvalue/trace optimiza-

tion [5, 23], involve solving SDPs over the space of multivariate

moment and nc Hankel matrices, respectively.

Due to the current capacity of interior-point SDP solvers such as

Mosek [1, 20], these hierarchies can only be applied when the mul-

tivariate moment (or nc Hankel) matrices are of “moderate” size.

Often restricting their use to polynomials of low degrees, or in few

variables, with the situation being worse in the nc setting.

A strategy for reducing the size of the SDP hierarchies is to

exploit the sparsity structures of POPs. They include correlative

sparsity (CS) in [11] and term sparsity (TS), CS-TS in [28] all of

which are the analogs of the commutative works about CS [27],

TS [29, 30] and CS-TS [31].

Encouraged by [7, 33], in [17, 18] the first and third authors

showed how to exploit the Constant Trace Property (CTP) for SDP

relaxations of POPs, which is satisfied when the matrices involved

in the SDP relaxations have constant trace. By utilizing first or-

der spectral methods to solve the required SDP relaxations, they

attained significant computational gains for POPs constrained on

simple domains, e.g., sphere, ball, annulus, box and simplex.

In this article, we extend the exploitation of the CTP to NCPOPs.

Our twomain contributions are the following: First, we obtain anal-

ogous results to [17, 18], which ensure the CTP for a broad class of

dense NCPOPs. In particular, if nc ball (or nc polydisc) constraint(s)

is present, then CTP holds. We also extend this CTP-framework to

some NCPOPs with correlative sparsity. Secondly, We provide a Ju-

lia package for solving NCPOPs with CTP. The package makes use

of first order methods for solving SDPs with CTP. We also demon-

strate the numerical and computational efficiency of this approach,

on some sample classes of dense NCPOPs and NCPOPs with cor-

relative sparsity.

2 DEFINITIONS & PRELIMINARIES

Here we introduce some basic preliminary knowledge needed

in the sequel. For a more detailed introduction to the topics intro-

duced in this section, the reader is referred to [5].

2.1 Noncommutative polynomials

We denote by- the noncommuting letters-1, . . . , -= . Let 〈- 〉 =
〈-1, . . . , -=〉 be the free monoid generated by - , and call its ele-

ments words in - . Given a word F = -81 . . . -8A , F
∗ is its reverse,

i.e., F∗ = -8A . . . -81 . Consider the free algebra R〈- 〉 of polynomi-

als in - with coefficients in R. Its elements are called noncommu-

tative (nc) polynomials. Endow R〈- 〉 with the involution 5 → 5 ∗

http://arxiv.org/abs/2102.02162v1
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which fixes R ∪
{
-
}
pointwise. The length of the longest word

in a polynomial 5 ∈ R〈- 〉 is called the degree of 5 and is de-

noted deg( 5 ). We write R〈- 〉3 for all nc polynomials of degree

at most 3 . The set of symmetric elements of R〈- 〉 is defined as

SymR〈- 〉 =
{
5 ∈ R〈- 〉 : 5 ∗ = 5

}
. We employ the graded lexico-

graphic ordering on all structures and objects we consider.

We write 〈- 〉3 for the set of all words in 〈- 〉 of degree at most

3 , and we letW3 (- )≡ W3 be the column vector of words in 〈- 〉3 ,
and V3 (- )≡ V3 the column vector of words of degree 3 . We also

denote by W3 (resp. V3 ) the set of all entries of W3 (- ) (resp.

V3 (- )). The length of W3 is equal to s(3,=) :=
∑3
8=0 =

8 , which

we write as s(3), when contextually appropriate. Given a poly-

nomial 5 ∈ R〈- 〉3 , let f = ( 5F)F∈W3
∈ Rs(3) be its vector of

coefficients. It is clear that every polynomial 5 ∈ R〈- 〉3 is of

the form 5 =
∑

F∈W3
5FF = f∗W3 = W∗

3
f . For 5 ∈ R〈- 〉 let

⌈5 ⌉ = ⌈deg( 5 )/2⌉, and given some : ∈ N, we define :5 := : − ⌈5 ⌉,
e.g., W:−⌈5 ⌉ = W:5 . We use standard notations on R< , i.e., given

a ∈ R< , ‖a‖2 denotes the usual 2-norm of a.

Let SA denote the space of real symmetric matrices of size A , we

will normally omit the subscript A when we discuss matrices of

arbitrary size, or if the size is clear from context. Given A ∈ S,
A is positive semidefinite (psd) (resp. positive definite (pd)), if all

eigenvalues of A are non-negative (resp. positive), and we write

A � 0 (resp. A ≻ 0). We denote by Tr(A) the trace (∑A
8=1�8,8) of

the matrixA ∈ SA and tr(A) = 1
A Tr(A) is the normalized trace. Let

S+ (resp. S++) be the cone of psd (resp. pd) matrices. For a subset

S ⊆ S, we define S+ := S ∩ S+ and S++ := S ∩ S++. We write

� = (A1, . . . ,A=) ∈ S= , and given @ ∈ R〈- 〉, by @(�) we mean the

evaluation of @(- ) on �, i.e., replacement of the nc letters -8 with

the matrices A8 . We write diag(B1, . . . ,BA ) for the block diagonal

matrix with diagonal blocks being B8 .

Finally, given a positive< ∈ N, we writeN≥< = {<,< + 1, . . . },
[<] = {1, . . . ,<}, and we use |·| to denote the cardinality of a set.

2.2 Algebraic and geometric structures

Let g = {60, . . . , 6<} and h = {ℎ1, . . . , ℎℓ } be subsets of SymR〈- 〉,
with the requirement that 60 = 1, unless otherwise stated.

2.2.1 �adratic modules. The quadratic module generated by g is

the set

& (g) :=



<∑
8=0

A 9∑
9=1

?
( 9)∗
8 68?

( 9)
8 : A 9 ∈ N≥1 , ? ( 9)8 ∈ R〈- 〉



.

The ideal generated by the set h is the set � (h) := & ({±ℎ1, . . . ,±ℎℓ}).
The quadratic module associated to g = {60}, is the set of sums of

Hermitian squares (SOHS).

Given : ∈ N, the :th-order truncation of & (g) (resp. � (h)), de-
noted by &: (g) (resp. �: (h)), is the set of all polynomials in & (g)
(resp. � (h)) with degree at most 2: . Moreover, one has

&: (g) =
{

<∑
8=0

Tr(G8W:68
68W

∗
:68

) : G8 � 0

}
,

�: (h) =
{

ℓ∑
8=1

Tr(H8W:ℎ8
ℎ8W

∗
:ℎ8

) : H8 ∈ S
}
.

We say that& (g) + � (h) is Archimedean if for all @ ∈ R〈- 〉, there is
a positive ' ∈ N such that ' − @∗@ ∈ & (g) + � (h).

2.2.2 Semialgebraic sets. We define the semialgebraic set associ-

ated to g as

Dg =
{
� ∈ S= : ∀6 ∈ g, 6(�) � 0

}
.

We can naturally extend this notion frommatrix tuples of the same

order, to bounded self-adjoint operators on some Hilbert spaceH ,

which make 6(�) psd for all 6 ∈ g. This extension is called the

operator semialgebraic set associated to g, and we denote it as D∞
g .

Similarly we define the variety associated to h as

Dh =
{
� ∈ S= : ∀ℎ ∈ h, ℎ(�) = 0

}
,

and the natural extension to the operator variety D∞
h
.

2.2.3 Hankel matrices and the Riesz functional. Suppose we have

a truncated real valued sequence y = (~F)F∈W23
. For each such

sequence, we define the Riesz functional, !y : R〈- 〉23 → R as

!y (@) :=
∑

F @F~F for @ =
∑

F @FF ∈ R〈- 〉23 .
Suppose further that y satisfies~F = ~F∗ for allF ∈ W23 .We as-

sociate to such y the nc Hankel matrix of order3 ,M3 (y), defined as
(M3 (y))D,E = !y (D∗E), where D, E ∈ W3 . Given @ ∈ SymR〈- 〉, we
define the localizing matrix M3@ (@y) as (M3@ (@y))D,E = !y (D∗@E),
where now D, E ∈ W3@ .

2.3 Eigenvalue minimization

Given 5 ∈ SymR〈- 〉, g, h ⊂ SymR〈- 〉, the minimal eigenvalue

of 5 over D∞
g ∩ D∞

h
is given by:

_min ( 5 , g, h) = inf
{
v∗ 5 (�)v : � ∈ D∞

g ∩ D∞
h
, ‖v‖2 = 1

}
. (2.1)

We will assume that the eigenvalue minimization problem (EG) (2.1)

has at least one global minimizer. We can approximate the solution

of EG (2.1) from below with a hierarchy of converging SOHS relax-

ations [23], indexed by : ∈ N:
d: := sup {b ∈ R : 5 − b ∈ &: (g) + �: (h)} .

Each relaxation gives rise to the following SDP

d: = sup
b,G8 ,H9




b

�������������

5 − b =

<∑
8=0

Tr
(
G8W:68

68W
∗
:68

)

+
ℓ∑
9=1

Tr

(
H9W:ℎ9

ℎ 9W
∗
:ℎ9

)
,

H9 ∈ S, and G8 � 0




. (2.2)

Our primary interest is in the dual formulation of this SDP, which

can be stated as

g: := inf
y∈Rs (2: )



!y ( 5 )

�������
~1 = 1,M: (y) � 0,

M:68
(68y) � 0, 8 ∈ [<],

M:ℎ9
(ℎ 9y) = 0, 9 ∈ [ℓ]



. (2.3)

Let

:min := max{⌈5 ⌉, ⌈68 ⌉, ⌈ℎ 9 ⌉ : 8 ∈ [<], 9 ∈ [ℓ]} .
When& (g)+� (h) is Archimedean, both (d: ):∈N≥:min and (g: ):∈N≥:min

converge to _min ( 5 , g, h) due to an nc analog of Putinar’s Posi-

tivstellensatz [8].
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2.4 Trace minimization

Let 5 , g, h be as above. The minimal trace of 5 over Dg ∩ Dh is

trmin ( 5 , g, h) = inf
{
tr( 5 (�)) : � ∈ Dg ∩ Dh

}
. (2.4)

For trace optimization, we need some additional definitions that

capture the specific properties of the tr operator.

Let us start first, with cyclic equivalence. Given two polynomials

?, @ ∈ R〈- 〉, we say that ? is cyclically equivalent to @ if ? − @ is

a sum of commutators, i.e., ? − @ =
∑:
8=1(D8E8 − E8D8) for some

: ∈ N and D8 , E8 ∈ R〈- 〉, and we write ?
cyc∼ @. One can now define

the cyclic quadratic module &cyc (g), as the set of all polynomials

5 ∈ SymR〈- 〉 which are cyclically equivalent to some element of

& (g) (see [5, Definition 1.56]).

We cannot in general work with the sets D∞
g ,D∞

h
, since the al-

gebra of bounded operators over a Hilbert spaceH does not admit

a trace ifH is infinite dimensional. Instead we restrict to a certain

subset of finite von Neumann algebras of type I and II, a subset

of the algebra of bounded operators on H , and we denote this by

DII1
g . Then we consider the following relaxation of (2.4):

trII1
min

( 5 , g, h) = inf
{
tr( 5 (�)) : � ∈ DII1

g ∩ DII1
h

}
. (2.5)

A discussion of von Neumann algebras is beyond the scope of this

article, and we refer the reader to [5, Definition 1.59] for more de-

tails. An SOHS relaxation hierarchy, indexed by : ∈ N, for (2.5)
can be written as

dtr
:
:= sup

{
b ∈ R : 5 − b ∈ &

cyc

:
(g) + �

cyc

:
(h)

}
(2.6)

which once again, can be written and solved as an SDP. The dual

formulation of this SDP, which is our primary interest, is

g tr
:
:= inf

y∈Rs (2: )



!y ( 5 )

����������

~1 = 1, and ~D = ~E if D
cyc∼ E,

M: (y) � 0,

M:68
(68y) � 0, 8 ∈ [<],

M:ℎ9
(ℎ 9y) = 0, 9 ∈ [ℓ]



. (2.7)

Compared to the relaxation (2.3) for EG, (2.7) has several addi-

tional linear constraints arising from cyclic equivalences. Under

Archimedeanity of & (g), (dtr
:
):∈N≥:min is monotonically increas-

ing, and converges to trII1
min

( 5 , g, h), see [5, Corollary 5.5].

3 CTP FOR NC OPTIMIZATION

In this section we develop a framework which exploits CTP for

NCPOPs. Our results below hold for both eigenvalue (2.1) and trace

(2.5) minimization hierarchies (2.3) and (2.7) respectively. We pro-

vide sufficient conditions under which CTP is guaranteed, as well

as simple linear programming methods to check these conditions.

We conclude by examining some special cases.

3.1 CTP for Dual Hierarchies

We first give a precise definition of CTP for NCPOP. Recall the

sets g and h from §2. For every : ∈ N≥:min , define s: :=
∑<
8=0 s(:68 ),

and the set S (:) ⊆ Ss: as

S (:) :=
{
Y ∈ Ss: : Y = diag(Y0, . . . ,Y<), and each Y8 ∈ Ss(:68 )

}
.

LettingD: (y) := diag(M: (y),M:61
(61y), . . . ,M:6<

(6<y)), SDP
(2.3) can be rewritten as

g: = inf
y∈Rs (2: )

{
!y ( 5 )

�����
~1 = 1,D: (y) ∈ S (:)

+ ,

M:ℎ9
(ℎ 9y) = 0, 9 ∈ [ℓ]

}
(3.1)

and we can similarly reformulate SDP (2.7) to

g tr
:
:= inf

y∈Rs (2: )



!y ( 5 )

��������
~1 = 1, and ~D = ~E if D

cyc∼ E,

D: (y) ∈ S (:)
+ ,

M:ℎ9
(ℎ 9y) = 0, 9 ∈ [ℓ]



. (3.2)

Definition 3.1 (CTP). We say that an NCPOP has CTP if for every

: ∈ N≥:min , there exists 0: > 0 and P: ∈ S (:)
++ such that for all

y ∈ Rs(2:) ,

M:ℎ9
(ℎ 9y) = 0, 9 ∈ [ℓ],

~1 = 1

}
⇒ Tr(P∗:D: (y)P: ) = 0: .

In other words, we say that NCPOP (2.1) or (2.5) has CTP if each

dual SDP relaxation (3.1) or (3.2) has an equivalent form involving

a psd matrix whose trace is constant. In this case, 0: is the constant

trace and P: is the change of basis matrix. The next proposition is

an example of an NCPOP which has CTP.

Proposition 3.2 (nc polydisc eqality). Let< = 0, ℓ ≥ = and

ℎ 9 = - 2
9 − 1, for 9 ∈ [=]. Then

M:ℎ9
(ℎ 9y) = 0, 9 ∈ [ℓ],

~1 = 1

}
⇒ Tr (D: (y)) = s(:). (3.3)

Proof. Note that D: (y) = M: (y) since g = {1}. Suppose that
M:ℎ9

(ℎ 9y) = 0, 9 ∈ [ℓ], and ~1 = 1. This implies that for every 9 ∈
[=], the diagonal of M:ℎ9

(ℎ 9y) is zeros, i.e., !y (D∗(- 2
9 − 1)D) = 0,

for allD ∈ W:−1. This now implies, for everyF = -81 . . . -8A ∈ W:

~F∗F = !y (F∗F) = !y (-8A . . . -81-81 . . . -8A )
= !y (-8A . . . -82 (- 2

81
− 1)-82 . . . -8A )

+ !y (-8A . . . -82-82 . . . -8A )
= !y (-8A . . . -82-82 . . . -8A )
= · · · = !y (-8A-8A ) = !y (- 2

8A
− 1) + !y (1) = ~1 = 1.

This yields Tr(M: (y)) =
∑

F∈W:
~F∗F = s(:). �

A general solution method for solving NCPOPs which satisfy

CTP can be described as follows. We first convert the :-th order re-

laxation (3.1) or (3.2) to a standard (primal) SDP with CTP and then

leverage appropriate first-order algorithms, such as CGAL [32] or

spectral method (SM) [17, Appendix A.3], which exploit CTP to

solve the SDP.

For a detailed exposition on how the SDP (3.1) or (3.2) can be

converted to a standard (primal) form, the reader is invited to con-

sult [18]. There one will also find explanations of how the pri-

mal and dual forms of the SDP are related, and their use with

CGAL/SM.
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3.2 Sufficient condition to have CTP

Wenow provide a sufficient condition for NCPOP to satisfy CTP.

For : ∈ N≥:min , let&◦
:
(g) be the interior of the truncated quadratic

module&: (g), i.e.,

&◦
:
(g) :=

{
<∑
8=0

Tr(G8W:68
68W

∗
:68

) : G8 ≻ 0

}
.

Theorem 3.3. Suppose that for every : ∈ N, the following inclu-

sion holds:

R
>0 ⊂ &◦

:
(g). (3.4)

Then NCPOP (2.1) and (2.4) satisfy CTP.

Proof. Let : ∈ N≥:min and 0: > 0 such that 0: ∈ &◦
:
(g). Then

we can write

0: =

<∑
8=0

Tr
(
G8W:68

68W
∗
:68

)
, (3.5)

with each G8 ∈ S++. We denote by G
1/2
8 the square root of G8 . Set

P: = diag(G1/2
0 , . . . ,G

1/2
< ). From this and (3.5),

0: = !y

(∑<
8=0 Tr

(
G8W:68

68W
∗
:68

))
=
∑<
8=0 Tr

(
G8M:68

(68y)
)

=
∑<
8=0 Tr

(
G
1/2
8 M:68

(68y)G1/2
8

)
= Tr (P:D: (y)P: ) .

�

The following lemmas will be used later on.

Lemma 3.4. For every A ∈ N≥1, there exists a positive real se-

quence (2 (A−1)D )D∈WA−1 such that

∑
F∈VA

F∗F = 1 +
∑

D∈WA−1

2
(A−1)
D D∗ ©­

«
∑
9 ∈[= ]

- 2
9 − 1

ª®
¬
D . (3.6)

Proof. We intend to prove (3.6) by induction on A . One has∑
F∈V1

F∗F =
∑

9 ∈[= ] -
2
9 = 1+(∑9 ∈[= ] -

2
9 −1) sinceV1 = (- 9 ) 9 ∈[= ] ,

yielding that (3.6) is true with A = 1. Assume that (3.6) is true with

A = C . We claim that (3.6) is true with A = C + 1 when we choose

∀D ∈ WC , 2
(C)
D :=

{
2
(C−1)
D + 1 if D ∈ WC−1 ,

1 otherwise .
(3.7)

Indeed, it holds that∑
F∈VC+1 F

∗F
=

∑
81,...,8C+1∈[= ] -81 . . . -8C+1-8C+1 . . . -81

=
∑
81,...,8C+1∈[= ] -81 . . . -8C (- 2

8C+1
− 1/=)-8C . . . -81

+ 1
=

∑
81,...,8C+1∈[= ] -81 . . . -8C-8C . . . -81

=
∑
81,...,8C ∈[= ] -81 . . . -8C (

∑
8C+1∈[= ] -

2
8C+1

− 1)-8C . . . -81

+∑F̃∈WC
F̃∗F̃

=
∑

E∈WC
E∗ (∑9 ∈[= ] -

2
9 − 1)E

+1 +∑
D∈WC−1 2

(C−1)
D D∗

(∑
9 ∈[= ] -

2
9 − 1

)
D ,

where the latter equality is due to the induction assumption. �

Lemma 3.5. For every : ∈ N≥1, there exists a positive real se-

quence (3 (:−1)
D )D∈W:−1 such that

∑
F∈W:

F∗F = 1 + : +
∑

D∈W:−1

3
(:−1)
D D∗ ©­«

∑
9 ∈[= ]

- 2
9 − 1

ª®
¬
D . (3.8)

Proof. Let : ∈ N. From Lemma 3.4, we obtain that∑
F∈W:

F∗F = 1 +
∑
A ∈[: ]

∑
F∈VA

F∗F

= 1 + : +
∑

A ∈[: ]

∑
D∈WA−1

2
(A−1)
D D∗ ©­«

∑
9 ∈[= ]

- 2
9 − 1

ª®
¬
D ,

yielding the selection3
(:−1)
D =

∑
A ∈[deg(D)+1] 2

(A−1)
D , forD ∈ W:−1

in (3.8). Hence the desired result follows. �

The next result shows that CTP is satisfied whenever an NCPOP

involves a ball constraint. For a real symmetric matrix A, denote

the largest eigenvalue of A by _max (A).

Theorem 3.6. If 1−∑
9 ∈[= ] -

2
9 ∈ g then the inclusions (3.4) hold

and therefore NCPOP (2.1) and (2.4) have CTP.

Proof. Without loss of generality, set 6< := 1−∑
9 ∈[= ] -

2
9 and

let : ∈ N≥:min be fixed. By Lemma 3.5,

0: = Tr(W:W
∗
: ) + Tr(G<W:−16<W∗

:−1) ,

where 0: = 1 + : and G< = diag((3 (:−1)
D )F∈W:−1 ) is pd. Denote

by IC the identity matrix of size s(C) for C ∈ N. Let U be a real

symmetric matrix such that

<−1∑
8=1

Tr(W:68
68W

∗
:68

) = Tr(UW:W
∗
:
) .

Let X > 0 such that I: − XU ≻ 0, namely, X = 1/(|_max(U) | + 1).
Note G0 := I: − XU. Then

0: = Tr(G0W:W
∗
:
) + X ∑<−1

8=1 Tr(W:68
68W

∗
:68

)
+Tr(G<W:−16<W∗

:−1) ,

which implies 0: ∈ &◦
:
(g), the desired result. �

Even though this is not of crucial interest in the context of this

paper, we mention that Theorem 3.6 can be used to prove that

strong duality holds for the primal-dual (2.2)-(2.3) for all : ≥ :min

(see also [28, Theorem 3.6] which is an nc analog of [10]). The

following corollary states that polynomials positive definite on a

semialgebraic set belong to the interior of the truncated quadratic

module for a sufficiently large truncation order when an nc ball

constraint is present.

Corollary 3.7. Assume that& (g) Archimedean. Let@ ∈ SymR〈-〉,
such that @(�) ≻ 0 for all � ∈ Dg . If 1 − ∑

9 ∈[= ] -
2
9 ∈ g, then

@ ∈ &◦
:
(g) for : sufficiently large.

Proof. Let 1 −∑
9 ∈[= ] -

2
9 ∈ g. Then for all � = (A1, . . . ,A=) ∈

Dg , I −
∑

9 ∈[= ] A
2
9 � 0, so I � A2

9 , 9 ∈ [=], where I is the identity
matrix. It implies that Dg is bounded. Thus there exists a small

enough Y > 0 such that (@ − Y)(�) = @(�) − YI ≻ 0 for all � ∈ Dg .

By using the nc analog of Putinar’s Positivstellensatz [5, Theorem

1.32], there exists :̃ ∈ N such that @ − Y ∈ &: (g) for all : ≥ :̃ .

Let : ∈ N≥:̃ be fixed. By Theorem 3.6, Y ∈ &◦
:
(g) and therefore

@ = (@ − Y) + Y ∈ &◦
:
(g), which yields the desired conclusion. �
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Remark 3.8. Combining the proof of Theorem 3.6 with the proof

of Theorem 3.3, one can obtain explicit expressions for 0: and P:
in Definition 3.1. Namely, 0: = 1 + : and

P: = diag
(
G
1/2
0 ,

√
X I:61

, . . . ,
√
XI:6<−1

,G
1/2
<

)
.

However, in our experience this choice leads to poor numerical

properties. In the next section we provide a hierarchy of linear

programs (LPs) inspired from the inclusions (3.4), to obtain the con-

stant trace 0: and the change of basis matrix P: which achieve a

better numerical performance.

3.3 Verifying CTP via linear programming

For any : ∈ N≥:min , let Ŝ (:) be the set of real diagonal matrices

of size s(:) and consider the following linear program (LP)

inf
b,G8 ,H9




b

��������������

b =

<∑
8=0

Tr
(
G8W:68

68W
∗
:68

)

+
ℓ∑
9=1

Tr

(
H9W:ℎ9

ℎ 9W
∗
:ℎ9

)
,

G8 − I8 ∈ Ŝ (:68 )
+ , 8 ∈ {0} ∪ [<]




, (3.9)

where I8 is the identity matrix of size B (:68 ) for 8 ∈ {0} ∪ [<].

Lemma 3.9. If LP (3.9) has a feasible solution (b: ,G8,: ,H9,: ) for
every : ∈ N≥:min , then NCPOP (2.1) and (2.4) have CTPwith 0: = b:

and P: = diag(G1/2
0,:

, . . . ,G
1/2
<,:

).

The proof of Lemma 3.9 is similar to that of Theorem 3.3 with

0: = b: and G8 = G8,: , 8 ∈ {0} ∪ [<].
We provide in the following proposition amore detailed descrip-

tion of some feasible solutions to (3.9) in the special cases of the nc

polydisc and the nc ball.

Proposition 3.10. Suppose either g =
{
1, 1 −∑

8 ∈[= ] -
2
8

}
or that

g =
{
1
= − - 2

8 : 8 ∈ [=]
}
∪ {1}. Then LP (3.9) has a feasible solution

for every : ∈ N≥:min , and therefore NCPOP (2.1) and (2.4) satisfy

CTP.

Proof. It is sufficient in both cases to show that (3.9) has a fea-

sible solution for every : ∈ N≥:min .

Let< = 1 and61 = 1−∑9 ∈[= ] -
2
9 . By Lemma 3.5,0: = Tr(W:W

∗
:
)+

Tr(G1W:−161W
∗
:−1), where G1 = diag((3 (:−1)

D )F∈W:−1 ) is pd.

Denote by IB (:) the identity matrix of size B (:). Thus with large

enough A > 0, (A0: , (A IB (:) , AG1), 0) is a feasible solution of (3.9),

for every : ∈ N≥:min .

On the other hand, if< = = and 6 9 =
1
= − - 2

9 , for 9 ∈ [=], then
by Lemma 3.5, 0: = Tr(W:W

∗
:
) +Tr(GW:−1(

∑
9 ∈[= ] 6 9 )W∗

:−1) =
Tr(W:W

∗
:
) +∑9 ∈[= ] Tr(GW:−16 9W∗

:−1) ,where the diagonal ma-

trix G = diag((3 (:−1)
D )F∈W:−1 ) is pd. Thus with large enough

A > 0, (A0: , (A IB (:) , AG), 0) is a feasible solution of (3.9), for every

: ∈ N≥:min . �

Since small constant traces are highly desirable for efficiency of

first-order algorithms (e.g. CGAL), we search for an optimal solu-

tion of LP (3.9) instead of just a feasible solution.

3.4 Universal algorithm

Algorithm 1 below solves EG (2.1) where CTP can be verified by

LP. A similar algorithm solves NCPOP (2.4).

Algorithm 1 SpecialEP-CTP

Input: EG (2.1) and a relaxation order : ∈ N≥:min

Output: The optimal value g: of SDP (3.1)

1: Solve LP (3.9) to obtain an (optimal) solution (b: ,G8,: ,H9,: ) ;
2: Let 0: = b: and P: = diag(G1/2

0,:
, . . . ,G

1/2
<,:

) ;
3: Compute the optimal value g: of SDP (3.1) by running an algorithm

based on first-order methods, and which exploits CTP.

Two examples of algorithms based on first-order methods and

which exploit CTP are CGAL [32] or SM [17, Appendix A.3].

4 CTP WITH CORRELATIVE SPARSITY

In this section, we show that the CTP can analogously be ex-

ploited for EG (2.1) with sparse nc polynomials. For brevity, we

focus on EG, and show only the framework for correlative sparsity

(CS) [11], however the trace minimization setting, as well as the

frameworks for term sparsity (TS) as well as correlative-term spar-

sity (CS-TS) [28] are very similar. We note that the proofs are very

similar to those presented in §3, and so we omit them for brevity.

To begin with, we define CS and present the associated approx-

imation hierarchies for EG (2.1) satisfying CS, which were initially

proposed in [11, 27].

4.1 EPs with CS

For F = -81 . . . -8A , let var(F) := {81, . . . , 8A }. For � ⊆ [=], let
- (� ) :=

{
- 9 : 9 ∈ �

}
and W�

3
(- ) := {F ∈ W3 (- ) : var(F) ⊆

- (� )}with length s(3, |� |) := ∑3
8=0 |� |8 . Similarly, we note V�

3
(- ) :={

F ∈ V3 (- ) : var(F) ⊆ - (� )
}
. Given y = (~F)F∈W23

, and � ⊆
[=], the nc Hankel submatrix associated to � of order 3 is defined

as

(M3 (y, � ))D,E := !y (D∗E), for D, E ∈ W�
3

and for @ ∈ R〈- (� )〉, the localizing (sub)matrix is

(M3@ (@y, � ))D,E := !y (D∗@E), for D, E ∈ W�
3@
.

Assume that
{
� 9
}
9 ∈[? ] (with = 9 := |� 9 |) are the maximal cliques

of (a chordal extension of) the correlative sparsity pattern (csp)

graph associated to EG (2.1), as defined in [11, 27]. Let
{
� 9
}
9 ∈[? ]

(resp.
{
,9

}
9 ∈[? ] ) be a partition of [<] (resp. [ℓ]) such that for all

8 ∈ � 9 , 68 ∈ R〈- (� 9 )〉 (resp. 8 ∈ ,9 , ℎ8 ∈ R〈- (� 9 )〉), for every
9 ∈ [?]. For each 9 ∈ [?], let < 9 := |� 9 |, ; 9 := |,9 | and g� 9 :={
68 : 8 ∈ � 9

}
, h,9

:=
{
ℎ8 : 8 ∈,9

}
. Then & (g� 9 ) (resp. � (h,9

)) is a
quadratic module (resp. an ideal) in R〈- (� 9 )〉, for each 9 ∈ [?].

For each : ∈ N≥:min , consider the hierarchy of sparse SOHS

relaxations

dcs
:

:= sup



b : 5 − b ∈

∑
9 ∈[? ]

(
& (g� 9 ): + � (h,9

):
)

. (4.1)

This relaxation can be stated as a primal SDP similar to (2.2), but

we are mostly interested in the dual SDP, which can be stated as
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follows

gcs
:

:= inf
y∈Rs (2: )



!y ( 5 )

�������
~1 = 1,M: (y, � 9 ) � 0, 9 ∈ [?] .
M:68

(68y, � 9 ) � 0, 8 ∈ � 9 , 9 ∈ [?],
M:ℎ8

(ℎ8y, � 9 ) = 0, 8 ∈,9 , 9 ∈ [?]



. (4.2)

It is shown in [11, Corollary 6.6] that the primal-dual SDP pair

arising from (4.1) are guaranteed to converge to the optimal value

if there are ball constraints present on each clique of variables.

4.2 Exploiting CTP with correlative sparsity

Consider EG (2.1) with CS described in §4.1. Given 9 ∈ [?], : ∈
N
≥:min , and y ∈ Rs(2:) , let

D: (y, � 9 ) := diag(M: (y, � 9 ), (M:68
(68y, � 9 ))8 ∈� 9 ),

with size denoted by B:,9 . Then SDP (4.2) can be rewritten as

gcs
:

= inf
y∈Rs (2: )

{
!y ( 5 )

�����
~1 = 1,D: (y, � 9 ) � 0, 9 ∈ [?],
M:ℎ8

(ℎ8y, � 9 ) = 0, 8 ∈,9 , 9 ∈ [?]

}
. (4.3)

As in the dense case, let us define

S (:,9) :=
{
Y ∈ Ss:,9 : Y = diag(Y0, (Y8 )8 ∈� 9 ),Y0 ∈ Ss(:,= 9 )

and each Y8 ∈ Ss(:68 ,=8 )
}
.

We define CTP for EP with CS as follows.

Definition 4.1. (CS-CTP) We say that EG (2.1) with CS has CTP if

for every : ∈ N≥:min and for every 9 ∈ [?], there exists a positive
number 0

( 9)
:

and P
( 9)
:

∈ S (:,9)
++ such that for all y ∈ Rs(2:) ,

M:ℎ8
(ℎ8y, � 9 ) = 0, 8 ∈,9 ,

~1 = 1

}
⇒ Tr

(
P
( 9)
:

D: (y, � 9 )P
( 9)
:

)
= 0

( 9)
:

.

The following result provides a sufficient condition for an EG

(2.1) with CS to satisfy CTP.

Theorem 4.2. Assume that there is an nc ball constraint on each

clique of variables, i.e., 1 − ∑
8 ∈� 9 -

2
8 ∈ g� 9 , for every 9 ∈ [?]. Then

one has R>0 ⊆ &◦
:
(g� 9 ), for all : ∈ N≥:min and for all 9 ∈ [?]. As a

consequence, EG (2.1) has CTP.

A proof of Theorem 4.2 can be obtained in a similar fashion to

§3.2, by considering each clique of variables.

4.3 Verifying CS-CTP via linear programming

As in the dense case, given an EG (2.1) with CS, we can verify

if CS-CTP is satisfied via a hierarchy of LPs. For every : ∈ N≥:min

and for every 9 ∈ [?], let Ŝ (:,9) be the set of real diagonal matrices

of size s(:,= 9 ) and consider the following LP

inf
b,G8 ,H8




b

�������������

G8 − I
( 9)
8 ∈ Ŝ (:68 , 9)

+ , 8 ∈ � 9 ∪ {0} ,

b =
∑

8 ∈{0}∪� 9
Tr

(
G8W

� 9
:68

68 (W
� 9
:68

)∗
)

+
∑
8 ∈,9

Tr
(
H8W

� 9
:ℎ8

ℎ8 (W
� 9
:ℎ8

)∗
)




, (4.4)

where I
( 9)
8 is the identity matrix of size B (:68 , 9), for every 8 ∈ {0}∪

� 9 .

Lemma 4.3. Let EG (2.1) with CS be as described in §4.1. If LP

(4.4) has a feasible solution (b ( 9)
:

,G
( 9)
8,:

,H
( 9)
8,:

), for every : ∈ N≥:min

and for every 9 ∈ [?], then EG (2.1) satisfies CS-CTP with P
( 9)
:

=

diag((G( 9)
0,:

)1/2, ((G( 9)
8,:

)1/2)8 ∈�8 ) and 0
( 9)
:

= b
( 9)
:

, for : ∈ N≥:min

and for 9 ∈ [?].

Similar to §3, two special cases where CS-CTP can be verified

through LP (4.4), are the nc polydisc, and the nc ball on each clique

of variables.

Proposition 4.4. Let EG (2.1) with CS be as described in §4.1.

Suppose either of the following holds

• Case 1: g� 9 =
{
1 −∑

8 ∈� 9 -
2
8

}
, 9 ∈ [?].

• Case 2: g� 9 =
{

1
|� 9 | − - 2

8 : 8 ∈ � 9

}
, 9 ∈ [?].

Then LP (4.4) has a feasible solution for every : ∈ N≥:min , and there-

fore EG (2.1) satisfies CS-CTP.

The proof of the Proposition 4.4 is similar to the dense setting.

4.4 Universal algorithm

Algorithm 2 below solves EG (2.1) with CS and whose CS-CTP

can be verified by solving LP (4.4).

Algorithm 2 SpecialEP-CS-CTP

Input: An EG (2.1) with CS and a relaxation order : ∈ N≥:min

Output: The optimal value gcs
:

of SDP (4.2)

1: for 9 ∈ [? ] do
2: Solve LP (4.4) to obtain an optimal solution (b ( 9 )

:
,G

( 9 )
8,:

,H
( 9 )
9,:

) ;
3: Let 0

( 9 )
:

= b
( 9 )
:

and P
( 9 )
:

= diag( (G( 9 )
0,:

)1/2, . . . , (G( 9 )
<,:

)1/2) ;
4: Compute the optimal value gcs

:
of SDP (4.3) by running an algorithm

based on first-order methods and which exploits CTP.

5 NUMERICAL EXPERIMENTS

In this section we report results of numerical experiments con-

ducted on the eigenvalue minimization problem (2.1). These results

were obtained by executing Algorithm 1 and Algorithm 2, respec-

tively for dense and sparse randomly generated instances of nc

quadratically constrained quadratic problems (QCQPs) with CTP.

In the dense case, one computes the first and second order SDP

relaxations, namely the optimal values g1 and g2 of SDP (3.1). Sim-

ilarly in the sparse case, one computes the optimal values gcs1 and

gcs2 of SDP (4.3). The experiments are performed in Julia 1.3.1 with

the following software packages:

• NCTSSOS [28] is a modeling library for solving Moment-SOS

relaxations of sparse EPs based on JuMP (with Mosek 9.1

used as SDP solver).

• Arpack [15] is used to compute the smallest eigenvalues and

the corresponding eigenvectors of real symmetric matrices

of (potentially) large size, which is based on the implicitly

restarted Arnoldi method [14].

Both implementation of Algorithm 1 and 2 are available online:

https://github.com/maihoanganh/ctpNCPOP.

https://github.com/maihoanganh/ctpNCPOP
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Table 1: Numerical results for randomly generated dense QCQPs

with nc ball constraint

• EP size: < = 1, ; = ⌈=/4⌉; SDP size: l = 2, 0max = 3; CGAL

accuracy: Y = 10−4.

EP size SDP size Mosek CGAL

= ; : Bmax Z val time val time

10 3
1 11 5 -3.2413 1 -3.2411 2

2 111 815 -3.1110 28 -3.1107 59

20 5
1 21 7 -3.5534 0.03 -3.5525 1

2 421 5587 − − -3.5026 203

30 8
1 31 10 -4.6984 0.1 -4.6954 1

2 931 18415 − − -4.6819 1392

We use a desktop computer with an Intel(R) Core(TM) i7-8665U

CPU @ 1.9GHz × 8 and 31.2 GB of RAM.

We use the following notation for the numerical results. The

number of variables, inequality and equality constraints are de-

noted by =, < and ; , respectively. We denote by : the relaxation

order used to solve the dense SDP (3.1) and the sparse SDP (4.3).

For NCPOP with CS, let us denote by Dmax the largest size of vari-

able cliques and ? the number of variable cliques. We notel , Bmax,

Z and 0max the number of psd blocks, the largest size of psd blocks,

the number of affine equality constraints and the largest constant

trace of matrices involved in the SDP relaxations, respectively. Let

“val” stand for the approximate optimal value of the SDP relaxation

with desired accuracy Y for CGAL, and let “time” be the correspond-

ing running time in seconds. We use “−” to indicate that the calcu-
lation runs out of space. For all examples tested in this paper, the

modeling time for both NCTSSOS and ctpNCPOP is typically negligi-

ble compared to the solving time of Mosek and CGAL. Hence the

total running time mainly depends on the solvers and we compare

their performances below.

5.1 Randomly generated dense QCQPs

Test problems: We construct randomly generated dense QCQPs

with nc ball and nc polydisk constraints as follows:

(1) Generate a dense quadratic polynomial objective function

5 = 1
2

∑
F∈W2

5̄F (F +F∗) ∈ SymR〈- 〉2 with coefficients 5̄F
randomly chosen w.r.t. the uniform probability distribution

on (−1, 1).
(2) Do one of the following two cases:

• nc ball: let< = 1 and 61 := 1 −∑
A ∈[= ] -

2
A ;

• nc polydisk: let< = = and 68 :=
1
= − - 2

8 , 8 ∈ [=];
(3) Take a random point a in {G ∈ R= : 68 (G) ≥ 0, 8 ∈ [<]} w.r.t.

the uniform distribution;

(4) For every 9 ∈ [ℓ], generate a dense quadratic polynomial

ℎ 9 =
1
2

∑
F∈W2

ℎ̄
( 9)
F (F +F∗) ∈ SymR〈- 〉2:

(i) for each F ∈ W2\{1}, select a random coefficient ℎ̄
( 9)
F

in (−1, 1) w.r.t. the uniform distribution;

(ii) set ℎ̄
( 9)
1 := −∑

F∈W2\{1} ℎ̄
( 9)
F F (a).

Then a is a feasible solution of EG (2.1).

The numerical results are displayed in Tables 1 and 2. The re-

sults show that CGAL is typically the fastest solver and returns an

Table 2: Numerical results for randomly generated dense QCQPs

with nc polydisk constraints

• EP size:< = =, ; = ⌈=/7⌉; SDP size: l = = + 1, 0max = 3, CGAL

accuracy: Y = 10−4.

EP size SDP size Mosek CGAL

= ; : Bmax Z val time val time

10 2
1 11 13 -3.2165 0.009 -3.2154 0.4

2 111 1343 -3.2039 26 -3.2037 229

20 3
1 21 24 -4.5773 0.03 -4.5767 2

2 421 9514 − − -4.5147 753

30 3
1 31 36 -5.1182 0.8 -5.1172 3

2 931 31311 − − -5.0717 2215

approximate optimal value which differs from 1% w.r.t. the one re-

turned by Mosek when = ≤ 20. Mosek runs out of memory when

= ≥ 20 and : = 2, while CGAL still works well. With our current

setting for the CGAL accuracy, the approximate optimal value is

correct up to the two first accuracy digits, so we can guarantee that

the bound improves from : = 1 to : = 2.

5.2 Randomly generated QCQPs with CS

Test problems: Weconstruct randomly generated ncQCQPs with

CS and ball constraints on each clique of variables as follows:

(1) Take a positive integer D , ? := ⌊=/D⌋ + 1 and let

� 9 =



[D], if 9 = 1 ,

{D ( 9 − 1), . . . , D 9}, if 9 ∈ {2, . . . , ? − 1} ,
{D (? − 1), . . . , =}, if 9 = ? ;

(5.1)

(2) Generate a quadratic polynomial objective function 5 =
∑

9 ∈[? ] 59
such that for each 9 ∈ [?], 59 =

∑
F∈W� 9

2

5̄
( 9)
F (F + F∗) ∈

SymR〈- (� 9 )〉2, and the coefficients are randomly generated

as in the dense setting;

(3) Take< = ? and 6 9 := 1 −∑
8 ∈� 9 -

2
8 , 9 ∈ [<].

(4) Take a random point a as in the dense setting;

(5) Let A := ⌊;/?⌋ and

,9 :=

{
{( 9 − 1)A + 1, . . . , 9A }, if 9 ∈ [? − 1] ,
{(? − 1)A + 1, . . . , ;}, if 9 = ? .

(5.2)

For every 9 ∈ [?] and every 8 ∈ ,9 , generate a quadratic

polynomial ℎ8 =
1
2

∑
F∈W� 9

2

ℎ̄
(8)
F (F +F∗) ∈ SymR〈- (� 9 )〉2

as in the dense setting to ensure that a is a feasible solution

of EG (2.1).

The number of variables is fixed as = = 1000. We increase the

clique size D so that the number of variable cliques ? decreases

accordingly. The numerical results are displayed in Table 3. Again

results in Table 3 show that CGAL is slower than Mosek for : = 1

but is faster for : = 2 and returns an approximate optimal value

which differs from 1%w.r.t. the one returned byMosek (forD ≤ 10).

Mosek runs out of memory for : = 2 when D ≥ 15, while CGAL is

once again able to obtain improved lower bounds.
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Table 3: Numerical results for randomly generated QCQPs with CS

and nc ball constraint on each clique of variables

• EP size: = = 1000,< = ? , ; = 143, Dmax = D + 1; SDP size: l = 2? ,

0max = 3; CGAL accuracy: Y = 10−3.

EP size SDP size Mosek CGAL

D ? : l Bmax Z val time val time

10 100
1 200 12 541 -2.9659 3 -2.9662 206

2 200 133 91850 -2.9594 32008 -2.9598 7790

15 66
1 132 27 405 -2.3230 1 -2.3225 38

2 132 703 185592 − − -2.3179 10051

20 50
1 100 22 341 -2.1517 4 -2.1515 54

2 100 463 290908 − − -2.1260 11791

6 CONCLUSION

We have provided a constructive proof that the constant trace

property holds for semidefinite relaxations of eigenvalue or trace

optimization problems, whenever an nc ball constraint is present.

This property can be easily verified by solving a hierarchy of linear

programs, when the only involved inequality constraints are either

noncommutative ball or nc polydisk constraints. This allows one to

use first order methods exploiting the constant trace property (e.g.,

CGAL) to solve the semidefinite relaxations of large-scale eigen-

value problems more efficiently than with second order interior-

point solvers (e.g., Mosek). We have experimentally demonstrated

some of these computational gains on eigenvalue minimization.

Similar gains shall be achievable for trace minimization. For many

testing examples in this paper, the relative optimality gap of CGAL

w.r.t. Mosek is always smaller than 1%.

As a topic of further research, we intend to rely on our frame-

work to tackle applications arising from quantum information and

condensed matter, including bounds on maximal violation levels

for Bell inequalities [21] or ground state energies of many body

Hamiltonians [3]. Preliminary experiments not reported in this pa-

per show that relying on CGAL improves some existing bounds for

Bell inequalities, while Mosek runs out memory. We intend to im-

prove our software implementation to overcome the accuracy is-

sues arising when using CGAL. A related investigation track is to

design a numerical method for finding the constant trace and the

change of basis for noncommutative problems with arbitrary in-

equality constraints (possibly including nc ball constraint). Ideally,

first order semidefinite solvers should have rich numerical prop-

erties when combined with the constant trace and the change of

basis matrix obtained in our method. This will allow us to design,

implement and analyze a hybrid numeric-symbolic scheme as in

[16, 22], to obtain exact nonnegativity certificates of noncommuta-

tive problems.
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