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ABSTRACT

We introduce a general reduction strategy that enables one to search

for solutions of parameterized linear difference equations in differ-

ence rings. Here we assume that the ring itself can be decomposed

by a direct sum of integral domains (using idempotent elements)

that enjoys certain technical features and that the coefficients of

the difference equation are not degenerated. Using this mechanism

we can reduce the problem to find solutions in a ring (with zero-

divisors) to search solutions in several copies of integral domains.

Utilizing existing solvers in this integral domain setting, we ob-

tain a general solver where the components of the linear difference

equations and the solutions can be taken from difference rings that

are built e.g., by 'ΠΣ-extensions over ΠΣ-fields. This class of dif-

ference rings contains, e.g., nested sums and products, products

over roots of unity and nested sums defined over such objects.
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1 INTRODUCTION

In the following we denote by (E, f) a difference ring (resp. field),

this means that E is a ring (resp. field) E equipped with a ring (resp.

field) automorphism f : E → E. We call (E, f) computable if the

basic operations of E and f are computable. We define the ring of

constants of (E, f) by K = constfE = {2 ∈ E | f (2) = 2}. By

construction K will be a field, called the constant field of (E, f).

Given such a difference ring (E, f) with a constant field K, we

are interested in the following problem: Given a = (00, . . . , 0<) ∈

E<+1 and f = ( 51, . . . , 53 ) ∈ E3 , find (if this is possible) a finite

representation of all solutions 6 ∈ E and 21, . . . , 23 ∈ K of the

parameterized linear difference equation (in short PLDE)

00 6 + 01 f (6) + · · · + 0< f< (6) = 21 51 + · · · + 23 53 (1)

with coefficients a and parameters f . The solution set is defined by

+ = + (a,f ,E) = {(21, . . . , 23 , 6) ∈ K
3 × E | (1) holds}

which forms a K-subspace of K3 × E. We say that we can compute

all solutions in (E, f) of an explicitly given (1) if+ is a finite dimen-

sional vector space and one can compute a basis of+ . In particular,

if E is an integral domain and 00 0< ≠ 0, we have dim(+ ) ≤< +=

by [7, Thm. XII (page 272)]. In this case we say that we can solve

(in general) parameterized linear difference equations in (A, f) if one

can compute a basis of+ (a,f ,E) for any 0 ≠ a ∈ E<+1 and f ∈ E3 .

The problem to solve PLDEs (so far only in a field or integral

domain E) plays a central rule in symbolic summation and var-

ious algorithms. It covers as special cases the telescoping prob-

lem (a = (1,−1), f ∈ E1) for, e.g., hypergeometric products [9],

∗Supported by the Austrian Science Foundation (FWF) grant SFB F50 (F5009-N15).

the creative telescoping problem (a = (1,−1) with appropriately

chosen f ∈ E3 ) for, e.g., hypergeometric products [28], or recur-

rence solving (3 = 1) for, e.g., rational or hypergeometric solu-

tions [2, 16, 17]. The parameterized version is used also in holo-

nomic summation [6] and generalizations of it [5]. Further details

can found, e.g., in [26].

In particular, Karr’s pioneering summation algorithm [12] estab-

lished a highly general solver for first-order PLDEs in the setting

of his ΠΣ-field extensions (Def. 19). In this way, the coefficients

08 , parameters 58 and the solutions 6 can be given in a ΠΣ-field

(E, f) that is built formally by indefinite nested sums and prod-

ucts. Only recently, his general first-order solver has been pushed

forward in [3] to the higher-order case (including also a solver to

find all hypergeometric solutions over E), that covers most of the

summation algorithms mentioned above as special cases.

In this article we aim at further generalizations allowing in addi-

tion difference rings that are built by basic'ΠΣ-ring extensions [23,

24] (Def. 15) where also products over roots of unity like (−1)= can

arise. Based on the observation that such rings can be decomposed

by a direct sum of integral domains using idempotent elements

(which is one of the key tools in the Galois theory of difference

equations [10, 27]), we will develop in Section 2 a general strategy

to solve non-degenerated PLDEs in idempotent difference rings

(Def. 1). Inspired by [15, 18] we separate the potential solutions in

their different components (Thm. 9) and try to combine them ac-

cordingly to the full solution (Thm. 14). Utilizing this machinery,

wewill invoke in Section 3 the general ΠΣ-field solver [3] (and vari-

ants of it) implemented within the summation package Sigma [21]

to derive various new algorithms (see Theorems 25 and 31) in order

to solve non-degenerated PLDEs in basic 'ΠΣ-rings defined over

ΠΣ-field-extensions. As a special case, the ground field can be, e.g.,

the mixed multibasic difference field [4] introduced in Remark 26.

After a concrete example in Section 4 we conclude with Section 5.

http://arxiv.org/abs/2102.03307v1
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2 PLDES IN IDEMPOTENT DIFFERENCE RINGS

It will be convenient to denote by Bmod_ with B ∈ Z the unique

value ; ∈ {0, . . . , _ − 1} with _ | B − ; .

Definition 1. Let (E, f) be a difference ring and let 4B ∈ E with

0 ≤ B < _ be elements such that

• they are idempotent (i.e., 42B = 4B ),

• pairwise orthogonal (i.e., 4B4C = 0 if B ≠ C ),

• and f (4B ) = 4B+1mod_ .

If (E, f) can be decomposed in the form

E = 40 E ⊕ 42 E ⊕ · · · ⊕ 4_−1 E (2)

such that 48E forms an computable integral domain, then (E, f) is

called an idempotent difference ring of order _.

Note that, if (E, f) is an idempotent difference ring of order _ then

(4B E, f
_) is a difference ring and f is a difference ring isomor-

phism1 between (4B E, f
_ ) and (4B+1mod_ E, f

_ ).

Lemma 2. Let (E, f) be an idempotent difference ring of order _ and

let 6 =
∑_−1
B=0 4B 6B ∈ E, then applying f means that the component

4B6B is moved cyclically to (4B+1mod_ E, f
_ )

Proof. Fix B with 0 ≤ B < _, since 6B ∈ E we can write 6B =∑_−1
8=0 48 ℎ8 for some ℎ8 ∈ E. Now applying f to 4B6B gives:

f (4B6B ) = f

(
4B

_−1∑
8=0

48 ℎ8

)
= f (4B )

_−1∑
8=0

f (48) f (ℎ8)

= 4B+1mod_

_−1∑
8=0

48+1mod_f (ℎ8) = 4B+1mod_f (ℎB ) .

Since f (ℎB ) ∈ E we have that f (4B6B ) ∈ 4B+1mod_E. �

For an idempotent difference ring (E, f) of order _, with idem-

potent elements 4B ∈ E with 0 ≤ B < _ the structure given by

Lemma 2 can be illustrated as follows:

E = 40 E

f
$$

⊕ 41 E

f

  
⊕ . . .

f
$$

⊕ 4_−2 E

f
$$

⊕ 4_−1 E

f

kk
.

The following lemma is immediate.

Lemma 3. Let (E, f) be an idempotent difference ring of order _

and let 6 =
∑_−1
B=0 4B 6B ∈ E and 9 ∈ N then

f 9 (6) =

_−1∑
B=0

4B+9 mod_f
9 (6B ) =

_−1∑
B=0

4Bf
9 (6B− 9 mod_). (3)

Definition 4. Let (E, f) be an idempotent difference ring of order

_ with idempotent elements 4B ∈ E with 0 ≤ B < _. Then c : E→

E with c (6) ↦→ 60 where 6 =
∑_−1
B=0 4B6B is called a projection.

In this article we will always consider the projection on the first

component, however each projection to an arbitrary component

would do the job. The following lemma summarizes several prop-

erties of the projection.

1A difference isomorphism g : A1 → A2 between two difference rings (A8 , f8 ) with
8 = 1, 2 is a ring isomorphism with g (f1 (5 )) = f2 (g (5 )) for all 5 ∈ A1 .

Lemma 5. Let (E, f) be an idempotent difference ring of order _

with idempotent elements 4B ∈ E with 0 ≤ B < _ and let c : E→ E

be a projection. For 6, ℎ ∈ E we have

c (6 + ℎ) = c (6) + c (ℎ) and c (6 · ℎ) = c (6) · c (ℎ). (4)

In addition, for 9 ∈ N and 0 ≤ B < _ we have

c (f 9 (4B )) =

{
1 if B + 9 = 0 (mod _)

0 if B + 9 ≠ 0 (mod _),
(5)

and for 9 ∈ N and 6 =
∑_−1
B=0 4B6B we have

c (6) = 406 and c (f 9 (6)) = f 9 (6− 9 mod_) (6)

Proof. Let 6 =
∑_−1
B=0 4B 6B ∈ E and ℎ =

∑_−1
B=0 4B ℎB ∈ E then

6+ℎ =
∑_−1
B=0 4B (6B +ℎB) ∈ E and hence c (6+ℎ) = 60 +ℎ0 = c (6) +

c (ℎ). Similarly, since 6 ·ℎ =
∑_−1
B=0 4B (6B ·ℎB) ∈ Ewe have c (6 ·ℎ) =

60 · ℎ0 = c (6) · c (ℎ). For 9 ∈ N, 0 ≤ B < _ we have that f 9 (4B ) =

4B+9 mod_ , hence c (f
9 (4B )) = c (4B+9 mod_) which clearly evalu-

ates to 1 if B + 9 = 0 (mod _) and to 0 if B + 9 ≠ 0 (mod _). Finally,

from Lemma 3we know thatf 9 (6) =
∑_−1
B=0 4Bf

9 (6B− 9 mod_), hence

c (f 9 (6)) =
∑_−1
B=0 c (4B )c (f

9 (6B− 9 mod_)) = c (f
9 (6− 9 mod_)). Since

c (f 9 (6− 9 mod_)) = 40f
9 (6− 9 mod_) = f 9 (4− 9 mod_6− 9 mod_) we

have that f 9 (6) = f 9 (6− 9 mod_). �

Definition 6. Let (E, f) be an idempotent difference ring of order

_ and let c : E → E be a projection. For a = (00, 01, . . . , 0<) ∈

E<+1 we define the (< + 1)_ −< × (< + 1)_ shift projectionmatrix

by

"f,c (a) :=

©
«

c (?0 ) c (?1 ) · · · c (?< ) 0 0 · · · 0
0 c (f (?0 ) ) · · · c (f (?<−1 ) ) c (f (?< ) ) 0 · · · 0

.

.

.

.
.
.

0 0 · · · 0 c (f: (?0 ) ) · · · c (f: (?< ) )

ª®®®®®®
¬
,

where : := (< + 1)_ −< − 1.

Definition 7. Let (E, f) be an idempotent difference ring of order

_ and let c : E→ E be a projection. A vector a = (00, 01, . . . , 0<) ∈

E<+1 is called non-degenerate if the shift projectionmatrix"f,c (a)

has full rank, i.e., the rows are linearly independent. Likewise, a

linear difference operator
∑<
8=0 08f

8 ∈ E[f] with 08 ∈ E is called

non-degenerate if a is non-degenerate.

Note, that for instance a linear difference operator ! =
∑<
8=0 08f

8 ∈

E[f] that is a multiple of an idempotent element 48 i.e., 48 | 08 for

all 0 ≤ 8 ≤ < is not non-degenerate, since for such an operator

the shift projection matrix would contain a zero row. Similarly, !

for which all coefficients vanish for a certain component is as well

degenerate, since for such an operator the shift projection matrix

would contain< + 1 zero columns, see Example 12 below.

In the following lemma, we state an immediate criterion which

implies that a linear difference operator is non-degenerate.

Lemma 8. Let (E, f) be an idempotent difference ring of order _

and let c : E → E be a projection. A linear difference operator ! :=∑<
8=0 ?8f

8 ∈ E[f], with 08 ∈ E, is non-degenerate if either 0< or 00
is a unit in E.
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Given a non-degenerate linear difference operator, the following

theorem shows, that it is possible to define non-zero linear differ-

ence operators for each component. It is inspired by [15, 18].

Theorem 9. Let (E, f) be an idempotent difference ring of order _

with idempotent elements 4B ∈ E with 0 ≤ B < _, let c : E → E

be a projection and let a = (00, . . . , 0<) ∈ E<+1 with 0< ≠ 0 be

non-degenerated. Consider the linear difference equation

<∑
8=0

08f
8 (6) = i. (7)

with i ∈ E, which is satisfied by 6 =
∑_−1
B=0 4B 6B ∈ E and let : ∈ N

with 0 ≤ : < _. Then there exist 1:,8 ∈ 4:E, not all zero, and i: ∈

4:E such that

<∑
8=0

1:,8 (f
_)8 (6: ) = i: . (8)

If (E, f) is computable, then the 1:,8 and i: can be computed.

Proof. From (7) we can deduce for 9 ∈ N that

f 9

(
<∑
8=0

08f
8 (6)

)
= f 9 (i) (9)

or equivalently

<∑
8=0

f 9 (08)
(
f8+9 (40)f

8+9 (60) + · · ·

· · · + f8+9 (4_−1)f
8+9 (6_−1)

)
= f 9 (i) .

Applying the projection c and using Lemma 5 yields

<∑
8=0

c (f 9 (08))c (f
8+9 (6−(8+9)mod_)) = c

(
f 9 (i)

)
,

since for 1 ≤ ; < _,

c (f8+9 (4; )) =

{
1 if ; = −(8 + 9) (mod _)

0 if ; ≠ −(8 + 9) (mod _).

Now, by Lemma 3 and Lemma 5 we find

<∑
8=0

c (f 9 (08))f
8+9 (6−(8+9)mod_) = c

(
f 9 (i)

)
. (10)

Now, plugging in 9 = 0, 1, 2, . . . , (< + 1)_ −< − 1 into (10) yields

the linear system

"f,c (a) ·

©«

f0 (60mod_)

f1 (6−1mod_)

f2 (6−2mod_)
...

fa (6−:mod_)

ª®®®®®®
¬
=

©«

c (f0 (i))

c (f1 (i))

c (f2 (i))
...

c (fa (i))

ª®®®®®®
¬
, (11)

where a := (< + 1)_ −< − 1. Since a is non-degenerate and hence

"f,c (a) has full rank, we can solve this system in terms of< vari-

ables. Finally, we can plug this solution into (8). Since this leads

to a linear system of at most < + 1 equations in < + 2 variables,

which has a nontrivial solution, we can determine the coefficients

1:,8 and i: of (8). In particular, if E is computable, the 1:,8 and i:
can be computed. �

Remark 10. Let (E, f) be a field extension of a difference ring (A, f ′),

i.e., A is a subring of E and f |A = f ′, and suppose that the a ∈

A<+1 and q ∈ E. Then, since we plug solutions of the linear sys-

tem (11) into (8), the right-hand sides in (8) have the form

i: =

B∑
;=0

5; c (f
; (i))

with 50, . . . , 5B ∈ A for some B ∈ N.

Example 11. Consider the idempotent difference ring (Q(G)[~], f)

with f (G) = G + 1 and f (~) = −~ and the idempotent elements

40 =
1−~
2 and 41 =

1−~
2 . Let a = (G, G, 1, ~), then the shift projec-

tion matrix"f,c (a) yields

©«

G G 1 −1 0 0 0 0

0 1 + G 1 + G 1 1 0 0 0

0 0 2 + G 2 + G 1 −1 0 0

0 0 0 3 + G 3 + G 1 1 0

0 0 0 0 4 + G 4 + G 1 −1

ª®®®®®
¬
,

which has full rank. If 6 = 4060 + 4161 ∈ E is a solution of

G6 + Gf (6) + f2 (6) + ~f3 (6) = 0

then we find for 60 and 61:

G (1 + G)(5 + 2G)60 + (7 + 7G − 3G2 − 2G3)f2 (60)

+4(1 + G)(f2)2 (60) + (1 + 2G)(f2)3 (60) = 0,

G (1 + G)61 + (3 + G − G2)f2 (61) − 2(f2)2 (61) + (f2)3 (61) = 0.

Note that even in the degenerated case it might be possible to use

the method stated in the proof of Theorem 9 to construct non-zero

linear difference equations for some of the components.

Example 12. Again we consider the idempotent difference ring

(Q(G)[~], f) with f (G) = G + 1 and f (~) = −~ and the idempotent

elements 40 =
1−~
2 and 41 =

1−~
2 . Let a = (~−1, G (~+1), ~−1, G (~+

1)), then the shift projection matrix"f,c (a) yields

©
«

−2 0 −2 0 0 0 0 0

0 0 2(1 + G) 0 2(1 + G) 0 0 0

0 0 −2 0 −2 0 0 0

0 0 0 0 2(3 + G) 0 2(3 + G) 0

0 0 0 0 −2 0 −2 0

ª®®®®®
¬
,

which clearly doesn’t have full rank. Still if 6 = 4060 + 4161 ∈ E is

a solution of

(~ − 1)6 + G (~ + 1)f (6) + (~ − 1)f2 (6) + G (~ + 1)f3 (6) = 0

then the first component 60 satisfies 60 +f
2 (60) = 0 but we do not

find a non-trivial linear difference equation for 61.

With this notion the following corollary is immediate.

Corollary 13. Let (E, f) and a ∈ E<+1 be as stated in Theorem 9.

Consider the PLDE (1) with 58 ∈ E and 28 ∈ K, which is satisfied by

6 =
∑_−1
B=0 4B 6B ∈ E and let : ∈ N with 0 ≤ : < _. Then there exist

1:,8 ∈ 4:E, not all zero, and 5:,9 ∈ 4:E such that

<∑
8=0

1:,8 (f
_)8 (6: ) = 21 5:,1 + · · · + 23 5:,3 . (12)

In particular, if (E, f) is computable, the 0:,8 and 5:,9 are computable.
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We are now ready to obtain a general strategy to solve PLDEs

under the assumption that one can solve PLDEs in (40 E, f
_). Note

that the task to compute for 50, . . . , 53 ∈ 4: E a basis of

{(21, . . . , 23 ) ∈ K
3 | 21 51 + · · · + 23 53 = 0} (13)

is a special case by setting 6 = 0 in (1).

Theorem 14. Let (E, f) be an idempotent difference ring with the

idempotent elements 40, . . . , 4_−1 and constant field K, and let a ∈

E<+1 and f ∈ E3 . If constf_40 E = 40 K and a is non-degenerated,

+ (a,f ,E) has a finite basis. If (E, f) is computable and PLDEs in

(40E, f
_ ) can be computed, a basis of + (a,f ,E) can be computed.

Proof. We look for a basis of + = + (a,f ,E) over K for a non-

degenerated a ∈ E<+1 and f ∈ E3 . By Corollary 13 there exist

1:,8 ∈ 4: E, not all zero, and 5:,9 ∈ 4: E with (12). Since 4: E

for 0 ≤ : < _ are integral domains, we can take a finite ba-

sis {(4:2
(:)
9,1 , . . . , 4:2

(:)

9,3
, 4:W

(:)
9 )}1≤ 9≤X: ⊆ (4: K)

3 × (4: E) with

2
(:)

9,;
∈ K of+: = + ((1:,0, . . . , 1:,<), ( 5:,1, . . . , 5:,3 ), 4: E) over 4: K.

If X: = 0 for some 0 ≤ : < _ it follows that + = {0} and we get

the empty basis. Otherwise, we can take a basis of

, = {(21, . . . , 23 , 4060 + · · · + 4_−16_−1) ∈ K
3 × E |

(4:21, . . . , 4:23 , 4:6: ) ∈ +: for 0 ≤ : < _}.

as follows. We define �: = (2 9,; )1≤ 9≤X: ,1≤;≤3 for 0 ≤ : < _ and

take a K-basis, say

{(3;,0,1, . . . , 3;,0,X1 , . . . , 3;,_−1,1, . . . , 3;,_−1,X_−1 )}1≤;≤A ,

of the K-vector space

{(30,1, . . . , 30,X1 , . . . , 3_−1,1, . . . , 3_−1,X_−1 ) ∈ K
X0+···+X_−1 |

(30,1, . . . , 30,X0 )�0 = · · · = (3_−1,1, . . . , 3_−1,X_−1 )�_−1}.

• If A > 0, we proceed as follows. We define for 1 ≤ ; ≤ A the

elements

6; = 6
(0)
;

+ · · · + 6
(_−1)
;

∈ E

with 6
(:)

;
= 3;,:,1 4: W

(:)
1 + · · · + 3;,:,X: 4: W

(:)

X:
where 0 ≤ : < _,

and define for 1 ≤ ; ≤ A the constants

(2;,1, . . . , 2;,3 ) = (3;,0,1, . . . , 3;,0,X1 )�1 ∈ K
3 .

Then � = {(2;,1, . . . , 2;,3 , 6; )}1≤;≤A forms a bases of, . Now we

plug in the found basis elements into (1) and obtain linear con-

straints. Fulfilling them by combining the basis elements accord-

ingly will lead finally to a basis of the solution space + . For this fi-

nal step, take� = (2;,8)1≤;≤A,1≤8≤3 with 2;,8 ∈ K and g = (61, . . . , 6A ) ∈

EA , and define

f ′ := �fC − (0<f
< (g) + · · · + 00g) ∈ E

A ;

here applying f to a vector means to apply f to each component.

Note that nonzero elements in f ′ reflect the disagreement of the

so far found basis � to be also a basis of + . To complete the con-

struction, we compute for the vector space

, ′
= {(^1, . . . , ^A ) ∈ K

A | (^1, . . . , ^A )f
′} (14)

the basis {(^8,1, . . . , ^8,A )1≤8≤B ⊆ KB ; here one collects the compo-

nents of f ′ w.r.t. the 4: for 0 ≤ : < _ (which is justified since

40, . . . , 4_−1 are linearly independent), derives the bases in the in-

tegral domains 4: E for each 0 ≤ : < _ and computes the inter-

section of the corresponding vector spaces to get a basis of , ′.

If B = 0, + = {0} and we get the empty basis of + . Otherwise,

take � = (^8, 9)1≤8≤B,1≤ 9≤A and define the entries of the matrix

(2 ′8, 9 )1≤8≤B,1≤ 9≤3 := � � and the entries of the vector (6′1, . . . , 6
′
B ) :=

� (61, . . . , 6A ) ∈ EB . By construction {(2 ′8,1, . . . , 2
′
8,3
, 6′8 )}1≤8≤B ⊆

K3 × E is a basis of+ .

• If A = 0, it follows that+ ⊂ {0}3 ×E, i.e., we only have to search

for homogeneous solutions of (1). Using the above construction

we get a basis of the form {(0,6′8 )}1≤8≤B ∪ {(1, 0)} of + (a, (0),E).

This gives the basis {(0, . . . , 0, 6′8 )}1≤8≤B ⊆ {0}3 × E of+ .

We observe that the construction above can be carried out explic-

itly if the algorithmic assumptions hold: First, we can compute the

bases of+8 ; more precisely, we move the problem with the isomor-

phism f_−8 to the zero component, solve it there and move it back

with f8 . Further, we can solve the various linear algebra problems

in K. Finally, 4: E (0 ≤ : < _) are integral domains and we can

compute a basis of (14) (by assumption a basis of (13) can be com-

puted). �

3 SOLVERS FOR (')ΠΣ-EXTENSIONS

We will now apply Theorem 14 to a rather general class of dif-

ference rings built by basic 'ΠΣ-ring extensions [23, 24] that are

defined over ΠΣ-field extensions [12]. Before we can state Theo-

rem 25 below, we will present more details on the underlying con-

struction.

Definition 15. A difference ring (E, f) is called an 'ΠΣ-ring ex-

tension of a difference ring (A, f) if A = A0 ≤ A1 ≤ · · · ≤ A4 = E

is a tower of ring extensions with constfE = constfA where for

all 1 ≤ 8 ≤ 4 one of the following holds:

• A8 = A8−1[C8 ] is a ring extension subject to the relation C
a
8 =

1 for some a > 1 where
f (C8 )
C8

∈ (A8−1)
∗ is a primitive ath

root of unity (C8 is called an '-monomial, and a is called the

order of the '-monomial);

• A8 = A8−1[C8 , C
−1
8 ] is a Laurent polynomial ring extension

with
f (C8 )
C8

∈ (A8−1)
∗ (C8 is called a Π-monomial);

• A8 = A8−1[C8 ] is a polynomial ring extension with f (C8 ) −

C8 ∈ A8−1 (C8 is called an Σ-monomial).

Depending on the occurrences of the 'ΠΣ-monomials such an ex-

tension is also called a '-/Π-/Σ-/'Π-/'Σ-/ΠΣ-ring extension.

For convenience we use A〈C〉 for three different meanings: it is

the ring A[C] subject to the relation Ca = 1 if C is an '-monomial

of order a , it is the polynomial ring A[C] if C is a Σ-monomial, or it

is the Laurent polynomial ring A[C, C−1] if C is a Π-monomial. We

will restrict 'ΠΣ-ring extensions further to basic 'ΠΣ-ring exten-

sions [24].

Definition 16. Let (E, f) be a 'ΠΣ-ring extension of (A, f) with

E = A〈C1〉 . . . 〈C4 〉. We define the product group by

[A∗]E
A
:= {5 C

<1

1 . . . C
<4
4 | 5 ∈ A∗ and<8 ∈ Z

where<8 = 0 if C8 is an 'Σ-monomial}.
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Then (E, f) is called a basic 'ΠΣ-ring extension of (A, f) if for all

Π-monomials C8 we have
f (C8 )
C8

∈ [A∗]
A〈C1 〉... 〈C8−1 〉

A
and for all '-

monomials C8 we have
f (C8 )
C8

∈ constfA
∗.

In the following we seek for algorithms that solve PLDEs in a

basic 'ΠΣ-ring extension (E, f) of a difference field (F, f) with

constant field K. By Lemma 2.22 and Proposition 2.23 in [24] it

turns out that one can collect several '-monomials to one specific

'-monomial. Thuswe assume fromnow on that (E, f) has the form

E = F[~]〈C1〉 . . . 〈C4 〉 (15)

where ~ is an '-monomial of order _ with U :=
f (~)
~ ∈ K∗ and

where the C8 with 1 ≤ 8 ≤ 4 are ΠΣ-monomials with f (C8 ) = U8 C8 +

V8 (note that either U8 = 1 or U8 ∈ [F∗]E
F
with V8 = 0). Now take

4̃B = 4̃B (~) :=
_−1∏
9=0

9≠_−1−B

(~ − U 9 )

for 0 ≤ B < _. Since U is a _th primitive root of unity, we have that

4̃B (U
_−1−B ) ≠ 0. Thus we can define

4B = 4B (~) :=
4̃B (~)

4̃B (U_−1−B )
(16)

for 0 ≤ B < _ which fulfill precisely the properties enumerated

in Definition 1. In particular, by [24, Thm. 4.3] (compare also [27,

Corollary 1.16] and [10]) it follows that (E, f) is an idempotent dif-

ference ring of order _. In particular, it is constant-stable provided

that the ground field (F, f) is constant-stable.

Definition 17. Adifference ring (resp. field) (A, f) is called constant-

stable if constf:A = constfA for all : ∈ N \ {0}.

Theorem 18 ([24, Thm. 4.3]). Let (E, f) be a basic 'ΠΣ-ring exten-

sion of a difference field (F, f) with (15)where ~ is an '-monomial of

order _ with U =
f (~)
~ . Let 40, . . . , 4_−1 be the idempotent, pairwise

orthogonal elements defined in (16) (that sum up to one). Then:

(1) We get the direct sum (2) of the rings 4B E with the multiplica-

tive identities 4B .

(2) We have that 4B E = 4B Ẽ with the integral domain

Ẽ := F〈C1〉 . . . 〈C4 〉. (17)

(3) For 0 ≤ B < _, (4B Ẽ, f
_ ) is a basic ΠΣ-ring extension of

(4B F, f
_ ).

(4) f is a difference ring isomorphism between (4B Ẽ, f
_) and (4B+1mod_Ẽ, f

_ ).

(5) Further, if (F, f) is constant-stable, constf_4B E = 4B constfF.

In this particular setting, the used constructions in Section 2 and

in Theorem 18 can be made more precise as follows. For 5 ∈ E, the

projection of the first component can be computed by

c ( 5 ) :=
_−1∑
8=0

48 (~) 5
���
~→U_−1

.

Furthermore, define for = ∈ N and 5 ∈ F the f-factorial

5 f,= =

=−1∏
8=0

f8 ( 5 ).

Then with f (C8 ) = U C8 + V8 (recall that U8 = 1 or V8 = 0) we get

f_ (C8) = Ũ8 C8 + Ṽ8 with Ũ8 = U
f,8 and Ṽ8 =

∑8−1
;=0

f; (V). In particular,

we can define for 0 ≤ B < _ the ring automorphism fB : Ẽ → �̃

with fB ( 5 ) = f
_ ( 5 ) for 5 ∈ F and

fB (C8 ) = Ũ8 C8 + (Ṽ8 |~→U_−1−B ) (18)

for all 1 ≤ 8 ≤ 4 . Then (Ẽ, fB ) and (4B Ẽ, f
_ ) are isomorphic with

the difference ring isomorphism g : Ẽ → 4B Ẽ with g ( 5 ) = 4B 5 for

5 ∈ �̃; for further details we refer to [24, page 639]. In the following

we prefer to work with (Ẽ, fB ) instead of (4BE, f
_). Note that this

representation is also more convenient for implementations.

As observed in Theorem 18 we obtain the ΠΣ-ring extension

(�̃, fB ) of (F, f
_ ) where Ẽ is an integral domain. Thus we can take

the quotient field & (�̃) = F(C1) . . . (C4 ) and by naturally extending

fB : Ẽ → Ẽ to f ′B : & (Ẽ) → & (Ẽ) with f ′B (
0
1
) =

fB (0)
fB (1)

we get

a difference field (& (Ẽ), f ′B ); from now on we do not distinguish

anymore between f ′B and fB .

Finally, we take the ring of fractions& (E) = { 0
1
| 0 ∈ E, 1 ∈ E∗}

which can be written in terms of the idempotent representation

& (E) = 40& (Ẽ) ⊕ · · · ⊕ 4=−1& (Ẽ). (19)

In particular, we can extend the automorphism f : E → E to f :

& (E) → & (E) by mapping 5 = 40 50 + · · ·+4_−1 5_−1 with 58 ∈ Ẽ to

f ( 5 ) = 40 f ( 5_−1) + 41f ( 50) + · · · + 4_−1 5_−2; compare [11, Sec. 1.3

] and [10, Cor. 6.9].

Summarizing, also (& (E), f) is an idempotent difference ring of

order _ as introduced inDefinition 1 and it seems naturally to apply

Theorem 14 to this more general situation. Here we note (compare

also [24, Prop. 66]) that each component (Ẽ, fB ) for 0 ≤ B < _ is

actually a special case of a ΠΣ-field-extension [12, 13].

Definition 19. A difference field (F, f) is called a ΠΣ-field exten-

sion of a difference field (H, f) if H = H0 ≤ H1 ≤ · · · ≤ H4 = F is

a tower of field extensions with constfF = constfH where for all

1 ≤ 8 ≤ 4 one of the following holds:

• H8 = H8−1(C8) is a rational function field extension with
f (C8 )
C8

∈ (H8−1)
∗ (C8 is called a Π-field monomial);

• H8 = H8−1(C8) is a rational function extension with f (C8 ) −

C8 ∈ H8−1 (C8 is called a Σ-field monomial).

Here we will rely on the following property ofΠΣ-field extensions;

the first statement has been shown in [12] for ΠΣ-fields. The sec-

ond statement appears also in [25].

Proposition 20. Let (E, f) be a ΠΣ-field/ΠΣ-ring extension of a

difference field (F, f) with K = constfF. Then:

(1) For : > 1, (E, f: ) is a ΠΣ-field/ΠΣ-ring extension of (F, f: ).

(2) If (F, f) is constant-stable, (E, f) is constant-stable.

Proof. (1) Let : > 1 and suppose that there is an 0 ∈ E \

F with with f: (0) = 0. Define ℎ = 0 f (0) . . . f:−1 (0). By [25,

Lemma 31.(3)] if follows that ℎ ∉ F. Since
f (ℎ)
ℎ

=
f: (0)

0 = 1, it

follows that ℎ ∈ constfE = constfF ⊆ F, a contradiction. Note

that for any Σ-monomial C with f (C) = C + V we have f: (C) − C =∑:−1
8=0 f

8 (V) and for any Π-monomial C with f (C) = U C we have

f: (C)/C = 0f,: . Thus the automorphism f: satisfies the require-

ments and consequently (E, f: ) is a ΠΣ-field/ΠΣ-ring extension

of (F, f: ).

(2) Suppose that (F, f) is constant-stable and let: > 1. Then constf: F =
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constfF. By statement (1), constfF = constfE and thus constf:E =

constf:E. Hence (E, f) is constant-stable. �

In this particular scenario, we can refine Theorem 14 as follows.

Proposition 21. Let (F, f) be a constant-stable difference field with

constant field K, and let (E, f) with (15) be a basic 'ΠΣ-ring exten-

sion with only one '-monomial ~ with
f (~)
~ ∈ K of order _. Then

one can solve non-degenerated PLDEs in (E, f) (resp. in (& (E), f)) if

(E, f) is computable and one can solve PLDEs in the ΠΣ-ring exten-

sion (Ẽ, f0) (resp. ΠΣ-field extension (Q(Ẽ), f0)) of (F, f
_) with (17).

Proof. (Ẽ, f0) is a basic ΠΣ-ring extension of (F, f_ ) by The-

orem 18.(3), and thus taking the quotient field & (Ẽ), (Q(Ẽ), f0)

is a ΠΣ-field extension of (F, f_) by iterative application of [24,

Cor. 2.6]. Since (F, f) is constant-stable, we get constf0& (Ẽ) =

constf0 Ẽ = constf_F = constfF = K. Finally, since we can solve

PLDEs in (Ẽ, f0) (resp. in (& (Ẽ), f0)) by assumption, we can ap-

ply Theorem 14 and can compute all solutions of non-degenerated

PLDEs in (E, f) (resp. in (& (E), f)). �

3.1 The general case: basic 'ΠΣ-ring extensions

over ΠΣ-field extensions

To activate Proposition 21 we have to take an appropriate differ-

ence field (F, f) such that (1) it is constant-stable and such that (2)

PLDEs can be solved in (Ẽ, f0). As it turns out, both properties can

be fulfilled if (F, f) itself is aΠΣ-field extension of a difference field

(G, f) that enjoys certain algorithmic properties. In this situation,

the first property can be settled using Proposition 20 from above.

To deal with the second property, we will introduce the following

problems; a certain subset of them have been introduced originally

in [14] (by analyzing Karr’s (telescoping) algorithms in [12]).

Definition 22 ([3]). A difference field (F, f) with constant fieldK

is f-computable if (E, f) is computable and the following holds.

(1) One can factor multivariate polynomials over F.

(2) (F, fB ) is torsion free for any B ∈ Z∗, i.e.,

∀B, A ∈ Z∗ ∀5 , 6 ∈ F∗ : 5 =
fB (6)
6 ∧ 5 A = 1 ⇒ 5 = 1.

(3) TheΠ-Regularity problem is solvable: Given (F, f) and 5 , 6 ∈

F∗; find, if possible, an = ≥ 0 with 5 f,= = 6.

(4) The Σ-Regularity problem is solvable: Given (F, f), A ∈ Z∗,

5 ,6 ∈ F∗; find, if possible, = ≥ 0 with 5 f
A ,0 + · · · + 5 f

A ,=
= 6.

(5) The parameterized pseudo-orbit problem is solvable: Given

f = ( 51, . . . , 5=) ∈ (F∗)3 ; compute a Z-basis of the module

" (f , F) = {(I1, . . . , I3 ) ∈ Z
= | ∃6 ∈ F∗

f (6)

6
= 5

I1
1 . . . 5 I

3

3
}.

(6) There is an algorithm that can compute all the hypergeomet-

ric candidates for equations with coefficients in (F, f): Given

a nonzero operator ! ∈ F[f]; compute a finite set ( ⊂ F

such that for any A ∈ F∗, if f−A is a right factor of ! in F[f],

then A = D
f (E)
E for some D ∈ ( and E ∈ F∗.

(7) PLDEs are solvable in (F, f): Given 0 ≠ a ∈ F<+1, f ∈ F3 ;

compute a K-basis of+ (a,f , F).

Then using the brandnew framework summarized in [3, Thm. 10],

we obtain the following result which has been implemented within

the summation package Sigma.

Theorem 23 ([3]). Let (E, f) be a (nested) ΠΣ-field extension of

(F, f). If (F, f) is f-computable, then also (E, f) is f-computable.

In particular, using [3, 14] (based on [12]) the properties given

in Definition 22 simplify in the special case f = id as follows.

Theorem 24. Let K be a computable field where

(1) polynomials can be factored in K[C1, . . . , C4 ],

(2) a basis of {(I1, . . . , I3 ) ∈ Z3 | 1 =
∏3

8=1 2
I8
8 } can be com-

puted,

(3) one can recognize if 2 ∈ : is an integer,

then (K, f) with constf = K is f-computable.

We can now state our first algorithmic framework to solve non-

degenerated PLDEs in (')ΠΣ-extensions..

Theorem 25. Let (F, f) be a ΠΣ-field extension of a difference field

(G, f) and let (E, f) be a basic 'ΠΣ-ring extension of (F, f) with one

'-monomial ~ with
f (~)
~ ∈ constfF of order _. Then one can solve

non-degenerated PLDEs in the quotient ring (& (E), f) or in (E, f) if

one of the following holds:

(1) (G, f) is constant-stable and (G, f_ ) is f-computable.

(2) constfG = G satisfies the properties in Theorem 24.

(3) constfG = G is a rat. function field over an alg. number field.

Proof. (1) Since (G, f) is constant-stable, it follows that (F, f)

is constant-stable by Proposition 20.(2). Furthermore, (F, f_ ) is a

ΠΣ-field extension of (G, f_ ) by Proposition 20.(1) and thus (& (Ẽ), f0)

is a ΠΣ-field extension of (G, f_). Since (G, f_ ) is f-computable,

we concludewith Theorem 23 that also (& (Ẽ), f0) isf-computable,

in particular property (7) in Definition 22 holds. Hence we can ap-

ply Proposition 21 and can solve all non-degenerated PLDEs in

(& (E), f). Given a basis in & (E) one can filter out a basis of the

subspace in E by linear algebra2.

(2) Since G = constfG, f |G = id. Thus (G, f) is trivially constant-

stable. In addition, if the properties of Theorem 24 are fulfilled,

(G, f) is f-computable and thus we can apply part (1).

(3) By [8] and [19, Thm. 3.5] if follows that the algorithms required

in Theorem 24 are available. Thus we can apply part (2). �

Remark 26. Theorem 25 (Case 3) covers, e.g., the rational (E = 0) or

themixedmultibasic difference field (G, f) withG = K(G, G1, . . . , GE)

where K =  (@1 . . . , @E) is a rational function field ( itself is a

rational function field over an algebraic number field) and with

f |K = id, f (G) = G + 1 and f (G8 ) = @8 G8 for 1 ≤ 8 ≤ E .

3.2 Simplified algorithms for special ring cases

The PLDE solver summarized in Theorem 25 assumes that (G, f)

is f-computable. In the following we restrict ourselves to some

interesting sub-classes of 'ΠΣ-ring extensions where the Σ- and

Π-regularity problem in Definition 22 (but also the hidden shift-

equivalence problemwithin the tower of extensions) can be avoided.

As a consequence one ends up at lighter implementations where

most of the highly recursive algorithms from [12] can be skipped.

Let (A〈C〉, f) be a ΠΣ-ring extension of (A, f) with constant

field K = constfA. Assume in addition that A is an integral do-

main and that one can solve PLDEs in (A, f). Then we can apply

2In Section 3.2 we will provide improved algorithms to accomplish this task directly.
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the following tactic [20] (which is inspired by [12] and is also the

backbone strategy in [3]) to find a basis of + = + (a,f ,A〈C〉) with

0 ≠ a = (00, . . . , 0<) ∈ A〈C〉<+1 and f = ( 51, . . . , 53 ) ∈ A〈C〉3 .

First, we bound the degree of the possible solutions: namely, we

compute 0,1 ∈ Z such that for any (21, . . . , 23 ,
∑1′

:=0′
68 C

8 ) ∈ +

we have 0 ≤ 0′ and 1′ ≤ 1; if C is a Σ-monomial we set 0 = 0

and search for 1 only. Then given such bounds 0,1, we make the

ansatz (1) with unknown 20, . . . , 23 ∈ K and 6 =
∑1′

:=0′
68 C

8 with

unknown 60, . . . , 61 ∈ A. By comparing coefficients in (1) w.r.t. to

the highest arising term we obtain a PLDE in (A, f) which has

21, . . . , 23 and 61 ∈ A as solution. Solving this PLDE yields all pos-

sible candidates for61 . Thus plugging these choices into (1) we can

proceed recursively (by degree reduction) to nail down 61 and the

remaining coefficients 60, . . . , 61−1.

Due to [3, Theorem 7] it follows that one can determine 1 ∈ N

and 0 = 0 for a Σ-monomial C if one can solve PLDEs in (A, f). Thus

activating this machinery recursively yields the following result.

Proposition 27. If one can solve PLDEs in (A, f), then one can solve

PLDEs in a Σ-extension (A〈C1〉 . . . 〈C4 〉, f) of (A, f)

For Π-monomials one can utilize [3, Theorem 6] to compute the

above bounds0,1 ∈ Z. If one applies thismachinery recursively (as

for Σ-monomials) one ends up at the requirement that the ground

ring is f-computable. In a nutshell, we rediscover the ring version

of Theorem 25 – but this time we solve it directly without comput-

ing first all solutions in its quotient field.

In the following we adapt slightly the proof steps of [3, Theo-

rem 6] yielding the more flexible Lemma 29. For its proof, we need

in addition the following result.

Lemma 28. Let (F〈C1〉 . . . 〈C4 〉, f) be a Π-ring extension of (F, f)

with U8 =
f (C8 )
C8

∈ F∗. Let + = " (U1, . . . , U4 , D) for some D ∈ F∗.

Then+ = ∅ or + = Z(_1, . . . , _4+1) for some _8 ∈ Z with _4+1 > 0.

Proof. Suppose that + ≠ ∅. Suppose further that we can take

0 ≠ (_1, . . . , _4 , 0) ∈ + . Thenwe get6 ∈ F∗ with
f (6)
6 = U

_1
1 . . . U

_4
4 ,

not all _8 being zero, which is not possible by [22, Thm. 9.1]. Conse-

quently, for any nonzero vector in+ we conclude that the last entry

must be nonzero. Now take, = (_1, . . . , _4+1), - = (`1, . . . , `4+1) ∈

+ \ {0}. Then _4+1, `4+1 ≠ 0. In particular, a = `4+1, − _4+1- ∈ + .

Since the last entry of a is zero, it follows that a = 0. Hence

two nonzero vectors are linearly dependent and it follows that

+ = {(_1, . . . , _4+1)}Z with _4+1 ≠ 0. If _4+1 < 0, we can choose

the alternative generator (−_1, . . . ,−_4+1) with −_4+1 > 0. �

Lemma 29. Let (E, f) with E = F〈C1〉 . . . 〈C4 〉 be a Π-ring extension

of (F, f) with U8 =
f (C8 )
C8

∈ F∗. If one can solve the parameterized

pseudo problem in (F, f) and can find all hypergeometric candidates

in (F, f), one can bound the degrees of the solutions w.r.t. C4 .

Proof. Let f = ( 51, . . . , 53 ) ∈ E
3 and (00, . . . , 0<) ∈ E<+1 with

00 0< ∈ E∗ and suppose that 6 ∈ E is a solution of (1). Let ;4
be the highest degree in 6 w.r.t. C4 . In the following we take the

lexicographic order < on " = {C
=1

1 . . . C
=4
4 | =1, . . . , =4 ∈ Z} with

C1 < C2 < · · · < C4 , and C
0
8 < C18 iff 0 < 1. Let 6̃ = ℎ C

_1
1 . . . C

_4
4 be the

highest term in 6; note that _4 = ;4 . Further, let ` = C
`1
1 . . . C

`4
4 ∈ "

be the largest monomial of the coefficients in a, and let 0̃8 ∈ F for

0 ≤ 8 ≤ < be the corresponding coefficient of `; note that one of

the 0̃8 is nonzero. Take ! := 0̃0 + 0̃1 f + · · · + ˜0< f< ∈ F[f].

Now suppose that !(6̃) = 0 and define U =
f (ℎ)
ℎ

U
_1
1 . . . U

_4
4 ∈ F∗.

Note that for !̃ = f − U ∈ F[f] we have !̃(6̃) = 0 by construction.

Now we follow the arguments of [3, Lemma 2]. Let ! = & !̃ + ' be

the right-division of ! by !̃ with & ∈ F[f] and ' ∈ F. Since 0 =

!(6̃) = & !̃(6̃)+' = ', !̃ is a right-factor of!. By assumptionwe can

compute a set ( which contains all hypergeometric candidates of

!̃. Thus we can take D ∈ ( with
f (ℎ)
ℎ
U
_1
1 . . . U

_4
4 = U = D

f (F)
F . Con-

sequently, we get U
_1
1 . . . U

_4
4 D

−1
=

f (F′)
F′ for some F ′ ∈ F∗. Now

compute a basis �D of+D = " (U1, . . . , U4 , D
−1; F). By Lemma 28 we

can assume that �D = {(aD,1, . . . , aD,4+1)} ∈ Z4+1 with aD,4+1 > 0.

Note that it follows even that aD,4+1 = 1 and ;4 = _4 = aD,4 .

Thus to bound the leading coefficient w.r.t. C4 we proceed as fol-

lows: We loop trough all D ∈ ( and compute a basis �D of +D and

take

� = max{aD,4 | +D = (aD,1, . . . , aD,4 , 1)Z for D ∈ (}.

Summarizing, let ;4 be the highest degree in the solution 6 w.r.t. C4

and let 6̃ = ℎC
_1
1 . . . C

_4
4 be the highest term in 6. If !̃(6̃) = 0. then

;4 ∈ � , i.e.,� ≠ ∅ and ;4 ≤ max(�). Otherwise, if� = ∅ or !̃(~̃) ≠ 0,

we conclude as follows. We note that !̃(~̃) = ℎ′C
_1
1 . . . C

_4
4 for some

ℎ′ ∈ F∗. Since ~̃ is the largest term in our solution ~ and since !̃ is

the contribution of the highest term in (1), it follows by coefficient

comparison in (1) that !̃(~̃)C
<1

1 . . . C
<4
4 = ℎ′C

<1+_1
1 . . . C

<4+_4
4 for

some ℎ′ ∈ F∗ must arise in 21 51 + · · · + 23 53 . Thus, if 38 is the

largest exponent in 58 w.r.t. C4 , we get<4 + _4 < max(31, . . . , 34 ).

In conclusion, if� = ∅, we get ;4 = _4 ≤ max(31, . . . , 34) −<4 =: 1.

Otherwise, we conclude that ;4 = _4 ≤ max(max(�), 1). Similarly,

we can bound the lowest term in 6 by repeating this procedure and

taking the order < with C1 < C2 < · · · < C4 and C08 < C18 , iff 0 > 1

and replacing the max operation with the min operation, etc. �

The above results yield, in comparison to Theorem 25, the follow-

ing less general but simpler (less recursive algorithms) and more

flexible (less requirements) toolbox to solve PLDEs in ΠΣ-ring ex-

tensions.

Theorem 30. Let (E, f) with E = F〈C1〉 . . . 〈C4 〉 be a ΠΣ-ring exten-

sion of a difference field (F, f) where for all Π-monomials C8 we have
f (C8 )
C8

∈ F∗. If one can solve PLDEs, the parameterized pseudo-orbit

problem and hypergeometric candidates in (F, f), then one can solve

PLDEs in (E, f).

Proof. By reordering we may assume that A = F〈C1〉 . . . 〈C; 〉

contains precisely the Π-monomials of E and that the C;+1, . . . , C4
form all Σ-monomials. By Lemma 29 we can bound the degree of

the solutions w.r.t. C; . By iteration (recursion) we can thus solve

PLDEs in (A, f). Finally, with Prop. 27we can solve PLDEs in (E, f).

�

Combining Theorem 30 with Proposition 21 yields Theorem 31.

Theorem 31. Let (E, f) be an 'ΠΣ-ring extension of a constant-

stable difference field (F, f) with one '-monomial ~ with
f (~)
~ ∈

constfF of order _ and where for each Π-monomial C in the exten-

sion E of F we have
f (C)
C ∈ F∗. If one can solve PLDEs, solve the
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parameterized pseudo-orbit problem and can find all hypergeomet-

ric candidates in (F, f_), one can solve non-degenerated PLDEs in

(E, f).

Using results of [4], this PLDE solver is, e.g., applicable if one spe-

cializes F to the mixed multibasic case introduced in Remark 26.

4 EXAMPLE
We will illustrate the whole machinery by solving the recurrence:[
(1 + =) (2 + =)

( (
2 + = + (1 + =)

=∑
8=1

1
8

)
(−1)= − (1 + =)2

=∑
8=1

(−1)8

8

) ]
� (=)

+
[
(1 + =) (2 + =)

( (
2 + = + 2(1 + =)

=∑
8=1

1
8

)
(−1)= − (1 + =)

=∑
8=1

(−1)8

8

) ]
� (= + 1)

+
[
(1 + =)2 (2 + =)

(
(−1)=

=∑
8=1

1
8 + =

=∑
8=1

(−1)8

8

) ]
� (= + 2)

= (2 + =)2 + (1 + =)
=∑
8=1

1
8 − 2(1 + =)3 (−1)=

=∑
8=1

(−1)8

8 .

Internally, we represent the recurrence in the basic 'ΠΣ-ring ex-
tension (E, f) of (Q(G), f) with E = Q(G)[~] [B] [B̄ ] where f (G) =

G + 1, f (~) = −~, f (B) = B + 1
G+1 and f (B̄) = B̄ +

−~
G+1 . Note that

(E, f) is an idempotent difference ring of order 2 with 40 =
1−~
2

and 41 =
1+~
2 . Then the recurrence turns into

∑2
8=0 08f

8 (6) = i
with

a =

(
(1 + G) (2 + G) (−B̄ (1 + G)2 + (2 + B + G + BG)~), (1 + G) (2 + G)

(−B̄ (1 + G) + (2 + G + 2B (1 + G))~), (1 + G)2 (2 + G) (B̄G + B~)
)
,

i =B (1 + G) + (2 + G)2 − 2B̄ (1 + G)3~.

With Theorem 9 we compute with the package HarmonicSums [1]

for the first component the equation
∑2
8=0 11,8f

28 (60) = i0 with
b0 = (18,0, 18,1) where

b0 =

(
G (29 + 33G + 11G2 + G3 + 2B (6 + 11G + 6G2 + G3) + B̄ (6 + 11G + 6G2

+ G3C)), −G (41 + 49G + 18G2 + 2G3 + 4B (6 + 11G + 6G2 + G3) + 2B̄ (6

+ 11G + 6G2 + G3)), G (2 + G) (3 + G)

)
,

i0 =
−G

(1 + G) (2 + G) (4 + G)

(
292 + 559G + 387G2 + 114G3 + 12G4 + 4B (22

+ 53G + 45G2 + 16G3 + 2G4) + 2B̄ (22 + 53G + 45G2 + 16G3 + 2G4)
)
.

A similar linear difference equation can be computed for the sec-

ond component. Solving these equations (activating, e.g., Theo-

rem 30 with Sigma [21]) leads to the solutions

C0 = B + 21 + 22 (B + B̄ + 2G − 4BG − 2B̄G),

C1 = −B + 31 + 32(−B + B̄ − 2G + 4BG − 2B̄G),

for 21, 22, 31, 32 ∈ Q. Plugging6 := 40 C0+41 C1 into
∑2
8=0 08f

8 (6) = i

gives us constraints for the constants (compare Theorem 14) and

we find 31 = −21 and 32 = 22. These solutions can be combined to

the general solution

−B~ − 21~ + 22 (B̄ − 2B̄G − B~ − 2G~ − 4BG~),

of
∑2
8=0 08f

8 (6) = i , i.e., {(0,~), (0, B̄−2B̄G−B~−2G~−4BG~), (1,−B~)}

is a basis of + (a, (i),E). Finally, by reinterpreting the result in

terms of sums and products we find the following general solution

of the original recurrence:

−
=∑
8=1

1
8 (−1)

= − 21 (−1)
=

+ 22

(
− 2(−1)== − (1 + 4=)(−1)=

=∑
8=1

1
8 +

=∑
8=1

(−1)8

8 (1 − 2=)
)
.

5 CONCLUSION

We have considered idempotent difference rings (heavily used in

the Galois theory of difference equations [10, 27]) and derived a

general toolbox to solve PLDEs in this setting. More precisely, we

introduced the notion of non-degenerated linear difference opera-

tors and showed that finding solutions for a given PLDE in differ-

ence rings with zero-divisors can be reduced to finding solutions in

difference rings that are integral domains (see Theorems 9 and 14).

In the second part of this article we provided two general PLDE

solvers: Theorem 25 for the most general case which assumes that

rather strong properties hold in the ground field and Theorem 31

which is less general, but where some of the complicated algorith-

mic assumptions can be dropped. In both cases, the inner core (The-

orem 23) is a PLDE solver for ΠΣ-field extensions that has been

elaborated in [3] and implemented within Sigma.

Our notion of non-degenerated operators is motivated by our

method to decompose the desired solution. An interesting ques-

tion is if there are equivalent (or even more flexible definitions)

that are easier to verify. We also indicated that the decomposition

method (implemented in the package HarmonicSums) works par-

tially if the operator is degenerated. Further investigations in this

direction, also connected to the dimension of the solution space,

would be highly interesting. Finally, we are strongly motivated to

generalize our PLDE solver summarized in Theorem 31 further to

more general classes of (basic) 'ΠΣ-ring extensions.
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