
On Exact Division and Divisibility Testing
for Sparse Polynomials

Pascal Giorgi Bruno Grenet Armelle Perret du Cray
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
{pascal.giorgi,bruno.grenet,armelle.perret-du-cray}@lirmm.fr

November 11, 2021

Abstract

No polynomial-time algorithm is known to test whether a sparse polynomial G divides another sparse
polynomial F . While computing the quotient Q = F quo G can be done in polynomial time with respect to
the sparsities of F , G and Q, this is not yet sufficient to get a polynomial-time divisibility test in general.
Indeed, the sparsity of the quotient Q can be exponentially larger than the ones of F and G. In the favorable
case where the sparsity #Q of the quotient is polynomial, the best known algorithm to compute Q has a
non-linear factor #G#Q in the complexity, which is not optimal.

In this work, we are interested in the two aspects of this problem. First, we propose a new randomized
algorithm that computes the quotient of two sparse polynomials when the division is exact. Its complexity
is quasi-linear in the sparsities of F , G and Q. Our approach relies on sparse interpolation and it works over
any finite field or the ring of integers. Then, as a step toward faster divisibility testing, we provide a new
polynomial-time algorithm when the divisor has a specific shape. More precisely, we reduce the problem to
finding a polynomial S such that QS is sparse and testing divisibility by S can be done in polynomial time. We
identify some structure patterns in the divisor G for which we can efficiently compute such a polynomial S.

1 Introduction

The existence of quasi-optimal algorithms for most operations on dense polynomials yields a strong base for
fast algorithms in computer algebra [10] and more generally in computational mathematics. The situation
is different for algorithms involving sparse polynomials. Indeed, the sparse representation of a polynomial
F =

∑D
i=0 fiX

i ∈ R[X] is a list of pairs (ei , fei
) such that each fei

is nonzero. Therefore, the size of the sparse
representation of F is O(#F(B + log D)) bits, where B and #F bound respectively the size of the coefficients
and the number of nonzero coefficients of F . Polynomial-time algorithms for sparse polynomials need to
have a (poly-)logarithmic dependency on the degree. On the one hand, several NP-hardness results rule out
the existence of such fast algorithms unless P = NP, for instance for GCD computations [27]. On the other
hand, polynomial-time algorithms are known for many important operations such as multiplication, division
or sparse interpolation. We refer to Roche’s survey [30] for a thorough discussion on their complexity and on
the remaining major open problems.

The main difficulty with sparse polynomial operations is the fact that the size of the output does not
exclusively depend on the size of the inputs, contrary to the dense case. For instance, the product of two
polynomials F and G has at most #F#G nonzero coefficients. But it may have as few as 2 nonzero coeffi-
cients [12]. The size growth can be even more dramatic for sparse polynomial division. For instance, the
quotient of F = X D−1 by G = X −1 is F/G =

∑D−1
i=1 X i . The output can therefore be exponentially larger than

the inputs. Such a growth is a major difficulty to design efficient algorithms for Euclidean division since it is
hard to predict the sparsity of the quotient and the remainder, which can range from constant to exponential.

One important line of work with sparse polynomials is to find algorithms with a quasi-optimal bit com-
plexity Õ(T (log D + log C)) where T is the number of nonzero coefficients of the input and output, D the
degree and log C a bound on the coefficient bitsize. The problem is trivial for addition and subtraction. For
multiplication, though many algorithms have been proposed [3, 29, 23, 16, 15, 21, 8, 26], none of them was
quasi-optimal in the general case. Only recently, we proposed a quasi-optimal algorithm for the multiplication
of sparse polynomials over finite fields of large characteristic or over the integers [12]. We note that similar
results have been given in a more recent preprint, assuming some heuristics [14].

1

ar
X

iv
:2

10
2.

04
82

6v
2

 [
cs

.S
C

]
 1

9
M

ay
 2

02
1

These fast output-sensitive multiplication algorithms strongly rely on sparse polynomial interpolation. In
the latter problem, a sparse polynomial is implicitly represented by either a straight-line program (SLP) or
a blackbox. Though efficient output-sensitive algorithms exist in the blackbox model [22] they are not well
suited for sparse polynomial arithmetic since one probe of the blackbox is assumed to take a constant time
while it is not in our case. Using sparse interpolation algorithms on SLP is not a trivial solution either since
no quasi-optimal bit complexity bound is known despite the remarkable recent progress [19, 1, 5, 4, 2, 17,
11, 9, 6, 18]. The best known result due to Huang [19] has bit complexity Õ(L(T log D log C)) to interpolate
an SLP of length L representing a T -sparse polynomial of degree at most D with coefficient of size log C .

In this work, we are interested to use fast sparse interpolation to derive a better complexity bound for
sparse polynomial division, in the special case where the division is exact. As a second goal, we make progress
on the very related problem of testing the divisibility of two sparse polynomials.

1.1 Previous work

Euclidean division of sparse polynomials. Let F = GQ+R ∈K[X]where F and G are two polynomials with
at most T nonzero coefficients (#F , #G ≤ T), D = deg(F)> n= deg G, and deg R< deg G. Computing Q and
R through classic Euclidean division requires O(#G#Q) operations in K. Yet keeping track of the coefficients
of the remainder during the computation dominates the cost, due to many exponent comparisons. The total
complexity is O(#F +#Q(#G)2) using sorted lists, or O(#F +#Q#G log(#F +#Q#G)) using binary heaps
or the geobucket structure [31]. Heap technique has been improved to further lower down the size of the
heap. Johnson proposes an algorithm that uses a heap of size #Q+1 [21], and Monagan and Pearce provide
a variant that maintains a heap of size O(#G) [25]. The best solution to date for sparse polynomial division
is to switch from a quotient heap to a divisor heap whenever the quotient is getting larger than the divisor.
The complexity becomes O(#F +#Q#G log min(#Q, #G)) [24].

To the best of our knowledge, no algorithm has been specifically designed for the special case of exact
division.

Sparse divisibility testing. The problem of sparse divisibility testing is to determine, given two sparse
polynomials F and G, whether G divides F . It is an open problem whether this problem admits a polynomial-
time algorithm, that is an algorithm that runs in time (T log D)O(1) where T bounds the number of nonzero
terms of the inputs and D their degrees. We note that the division algorithms do not settle the problem.
Indeed, the quotient of two sparse polynomials F and G can be exponentially larger than F and G.

The only general complexity result on this problem is due to Grigoriev, Karpinksi and Odlyzko [13] who
show that the problem is in coNP under the Extended Riemann Hypothesis (ERH). Besides, the problem
admits polynomial-time algorithms in the easy cases where deg(G), deg(F)−deg(G) or #Q are polynomially
bounded [30]. On the other hand, some related problems are coNP-hard, such as the divisibility of a product
of sparse polynomials by a sparse polynomial, the computation of the constant coefficient of the quotient or
the degree of the remainder [27].

1.2 Our contributions

We focus on the exact division of sparse polynomials. We first provide algorithms whose bit complexity are
quasi-linear in the input and the output sparsities. Our algorithms work over finite fields and the integers, and
are randomized. Over a finite field Fq of characteristic larger than the degree D of the inputs, it computes the
quotient of two polynomials in Õε(T log D log q) bit operations with probability at least 1−ε, where T bounds
the number of nonzero terms of both the inputs and the output. For smaller characteristic, the complexity
bound is Õε(T log2 D(log D+log q)). For polynomials over Zwith coefficients bounded by C in absolute value,
our algorithm performs Õε(T (log C+log D log S)+log3 S) bit operations where S is the maximum of D and the
absolute value of the coefficients of the result. Our main technique is to adapt sparse polynomial interpolation
algorithms to our needs. Our work focuses on the univariate case but it can be straightforwardly extended
to the multivariate case using (randomized) Kronecker substitution [2]. We shall mention that the technique
behind our exact division generalizes to the sparse interpolation of SLPs with divisions.

We also provide a polynomial time algorithm for special cases of the sparse polynomial divisibility testing
problem when deg(F) = O(deg(G)). We prove that if G contains a small chunk of coefficients, with large gaps
surrounding it, then one can test in polynomial time whether G divides F . More precisely, we require G to be
written as G0+X kG1+X `G2 with deg(G1) = (T log D)O(1), k−deg(G0) = Ω(D) and `−deg(X kG1) = Ω(D). This

We let Õ(f (n)) = f (n)(log f (n))O(1) and Õε(f (n)) = Õ(f (n)) logO(1) 1
ε .

2

encompasses polynomials of the form G0+X kG1 or G1+X `G2. Our technique is to prove that in this situation,
even if the quotient F/G may have an exponential number of nonzero terms, we are able to efficiently compute
a multiple of the quotient that is sparse.

Notations. Let F =
∑T

i=1 fiX
ei . We use #F = T to denote its sparsity (number of nonzero terms) and

supp(F) = {e1, . . . , eT } for its support. If F ∈ Z[X], we use ‖F‖∞ = maxi | fi | to denote its height. The
reciprocal of F is the polynomial F? = X deg(F)F(1/X).

2 Exact division

Our method to compute the exact quotient F/G of two sparse polynomials F and G relies on sparse inter-
polation algorithms. These algorithms usually take as input a straight-line program (SLP), or sometimes a
blackbox, representing a sparse polynomial Q, together with bounds on the sparsity and the degree of Q. The
output is the sparse polynomial Q given by the list of its nonzero monomials.

There are two main families of sparse polynomial interpolation algorithms. The first one, which originates
with the work of Prony [28] and Ben-Or and Tiwari [6], uses evaluations of Q on geometric progressions. The
second one, initiated by Garg and Schost [9], computes the reduction of Q modulo X p − 1 for some random
prime p. This second line of work is more suitable to our case, to obtain the best complexity bounds.

For polynomials over Fq, we rely on the best known sparse interpolation algorithms due to Huang [19]
when q > degQ and to Arnold, Giesbrecht and Roche [5] otherwise. These two algorithms compute the
reduction of Q modulo X p − 1 for some random prime p. This computation is known as SLP probing and
it can use dense polynomial arithmetic when p is small enough. The goal is then to reconstruct Q from
Qp = Q mod X p − 1. One difficulty comes from exponent recovery since a monomial cX e of Q is mapped to
cX e mod p in Qp. A second one, called exponent collision, is when two distinct exponents e1, e2 ∈ supp(Q) are
congruent modulo p. These collisions create the monomial (c1 + c2)X e in Qp, from which neither c1X e1 nor
c2X e2 can be directly recovered.

The latter difficulty is handled similarly in [5] and [19]. Taking p at random in a large enough set of prime
numbers, one can show that a substantial fraction of the monomials of Q do not collide during the reduction
modulo X p − 1. Therefore, working with several random primes p allows the full reconstruction. The two
algorithms mainly differ in the way they overcome the first difficulty.

Huang’s very natural approach is to consider the derivative Q′ of Q [19]. If the characteristic of Fq is larger
than the degree of Q, a monomial cX e of Q is mapped to ceX e−1 in Q′. Then it is mapped to ceX (e−1)mod p

in [Q′]p = Q′ mod X p − 1. Given an SLP for Q, one can efficiently compute an SLP for Q′ using automatic
differentiation [7]. If the monomial cX e does not collide modulo X p − 1, it can be retrieved from its images
in Qp and [Q′]p using a mere division on the coefficients.

With smaller characteristic, Huang’s idea is no longer working since not all the integer exponents exist
in Fq. Instead, Arnold, Giesbrecht and Roche work modulo several primes pi and use the Chinese remainder
theorem to recover the exponent. For, they introduce the diversification technique to be able to match the
corresponding monomials in Q mod X pi − 1. Indeed, replacing Q with Q(α jX) for several randomly chosen
α j ’s, the nonzero coefficients of Q(α jX) are pairwise distinct with a good probability.

The main difficulty to adapt these approaches to the computation of Q = F/G is that the division in
Fq[X]/(X p−1) is not well-defined. In the next section we show that taking α at random in a sufficiently large
set is enough for G(αX) and (αX)p−1 to be coprime. We shall mention that this technique may be extended to
other sparse polynomial interpolation algorithms. In particular, this includes slightly faster algorithms [18],
but they rely on unproven heuristics.

2.1 Computation of a reduced quotient

Given F , G ∈ Fq[X] such that F = GQ, our aim is to compute Q mod X p − 1 ∈ Fq[X] for some prime p. Let
Fp = F mod X p − 1, Gp = G mod X p − 1 and Qp =Q mod X p − 1, then

Fp = GpQp mod X p − 1. (1)

If gcd(Gp, X p−1) = 1, then Gp is invertible modulo X p−1, and Qp can be computed. Otherwise, Equation (1)
admits several solutions and does not define Qp. The following lemma defines a probabilistic approach to
overcome the latter difficulty.

3

Lemma 2.1. Let A and B ∈ Fq[X] be two nonzero polynomials with B(0) 6= 0, and α randomly chosen in some
extension Fqs of Fq. Then A(αX) and B(X) are coprime with probability at least 1− deg(A)deg(B)/qs.

Proof. Let β be a root of B in an algebraic closure Fq of Fq. Then β is a root of A(αX) if and only if A(αβ) = 0,
that is α is a root of A(βX). Since A(βX) is nonzero and deg(A(βX)) = deg(A), there exist at most deg(A) roots
of A(βX) in Fq. Since B has at most deg(B) roots in Fq, there are at most deg(A)deg(B) values of α such that
there exists a common root β of A(αX) and B(X). Therefore, with probability at least 1− deg(A)deg(B)/qs,
A(αX) and B(X) do not share a common root in Fq, that is they are coprime.

Notations. For A∈ Fq[X], α ∈ Fqs and p ≥ 0, let A[α] be the polynomial A(αX), Ap be the polynomial A(X)mod
X p − 1 and A[α]p be the polynomial A[α](X)mod X p − 1= A(αX)mod X p − 1.

We remark that A[α]p 6= Ap(αX). The idea is to apply Lemma 2.1 to G and X p − 1. Instead of applying
Equation (1) to F and G, we apply it to F [α] and G[α] to get Q[α]p = Q(αX)mod X p − 1. In other words, we
compute Q[α]p from the equation F [α]p = G[α]p Q[α]p mod X p − 1. If α is chosen at random in some extension
Fqs of Fq, G[α] and X p − 1 are coprime with probability at least 1− p deg(G)/qs and G[α]p is invertible modulo
X p − 1 with the same probability. Since we compute Q[α]p for any α, we can adapt the algorithm of Arnold,
Giesbrecht and Roche [5].

In order to adapt Huang’s algorithm [19], we need to compute Q′(X)mod X p−1. To this end, we rely on
the equality

[F ′]p − [G′]pQp mod X p − 1= Gp[Q
′]p mod X p − 1 (2)

where [A′]p denotes A′(X)mod X p−1 for any A∈ Fq[X]. We notice that this equation is similar to Equation (1).
Knowing Qp, the equation defines [Q′]p if and only if Gp is invertible modulo X p − 1. This means that if α is
chosen at random in Fqs , Equations (1) and (2) allow to compute both Q[α]p and [(Q[α])′]p with probability at
least 1− p deg(G)/qs, where [(Q[α])′]p is the polynomial (Q(αX))′ mod X p − 1. Next lemmas give the cost of
these operations.

Lemma 2.2. Let A∈ Fq[X] of degree D, sparsity T and α ∈ Fqs . Then A[α] can be computed in Õ(T log Ds log q)
bit operations, and A[α]p in O(T log D log log p+ Ts log q) more bit operations.

Proof. Computing A[α] = A(αX) requires T exponentiations of α, that is O(T log D) operations in Fqs , which
gives a bit complexity of Õ(T log Ds log q). Computing A[α]p from A[α] requires T exponent divisions, that can

be performed in O(T log D
log p) divisions on integers of size log p, and T − 1 coefficient additions.

Lemma 2.3. Let F and G ∈ Fq[X] such that G divides F, and let p ≥ 0 and α ∈ Fqs such that G[α] and X p − 1
are coprime. If Q = F/G, the polynomials Q[α]p and [(Q[α])′]p can be computed in Õ(T log Ds log q+ ps log q) bit
operations, where D = deg(F) and T is a bound on the sparsities of F and G.

Proof. To get Q[α]p , the first step computes F [α]p and G[α]p . Then we invert G[α]p modulo X p − 1 using dense
arithmetic and we multiply the result by F [α]p . Then to get [(Q[α])′]p, we compute the derivatives of F [α] and
G[α] and perform two more multiplications and one addition of dense polynomials, according to Equation (2).
All dense polynomial operations cost Õ(ps log q) bit operations while the first step cost is given by Lemma 2.2.
This concludes the proof since derivative cost is negligible.

Huang’s algorithm recovers monomials of Q from Qp and [Q′]p. In our approach, we compute Q[α]p and
[(Q[α])′]p instead, and thus recover monomials of Q[α] instead of Q. Yet, if cX e is a monomial of Q[α], the
corresponding monomial in Q is cα−eX e and it can be computed in Õ(log(e)s log q) = O(log Ds log q) bit
operations.

2.2 Case of large characteristic

We first consider the case where the characteristic of Fq is larger than the degree D of the input polynomials.
We begin with the main ingredient of Huang’s algorithm to further adapt it to our needs. Recall that the idea
is to recover Q from Qp and [Q′]p.

Definition 2.4. Let Q ∈ Fq[X] and p a prime number. Then DLIFT(Qp, [Q′]p) is the polynomial Q̂ =
∑

e cX e

where the sum ranges over all the integers e such that Qp contains the monomial cX e mod p and [Q′]p contains the
monomial ceX (e−1)mod p.

4

Clearly, if one knows both Qp and [Q′]p, DLIFT(Qp, [Q′]p) can be computed in Õ(p log q) bit operations.
Next lemma revamps the core of Huang’s result [19]. Similar results are used in several interpolation algo-
rithms [11, 4, 20].

Lemma 2.5. Let Q ∈ Fq[X] of degree at most D and sparsity at most T . Let p1, . . . , pk be randomly chosen
among the first N prime numbers, where N = max(1, d12(T − 1) log De). Let i that maximizes #Qpi

and Q̂ =
DLIFT(Qpi

, (Q′)pi
). Then with probability at least 1− 2−k, #(Q− Q̂)≤ T/2.

The main idea in Huang’s algorithm is to use this lemma log(T) times to recover all the coefficients of
Q with probability at least (1− 2−k)log T . To extend the algorithm to our case, we need to compute Qp and
[Q′]p by choosing α in a suitable extension of Fq and compute F(αX)/G(αX)mod X p − 1 as explained in
Section 2.1. Next corollary establishes the size of that extension.

Corollary 2.6. Let G ∈ Fq[X] of degree at most D, and α be a random element of Fqs where s = dlogq(
965
ε D4)e.

Then with probability at least 1− ε, G(αX) is coprime with X p − 1 for each of the N first prime numbers, where
N is defined as in Lemma 2.5.

Proof. The polynomial G(αX) is coprime with all these polynomials if and only if it is coprime with their
product. The degree of their product is the sum of the N first prime numbers, which is bounded by N2 ln N
(for N > 3). By Lemma 2.1, the probability that G(αX) be coprime with this product is at least 1−DN2 ln N/qs

if α is chosen at random in Fqs . Since s ≥ logq(
144
ε D4), qs ≥ 144

ε D4. Furthermore, since T ≤ D, N ≤ 12D log D.
This implies

DN2 ln N
qs

≤
144D3 log2(D) ln(12D log D)

965
ε D4

≤ ε

since 144 log2(D) ln(12D log D)≤ 965D for all D ≥ 1.

By hypothesis on Fq, we have q ≥ D. This implies that s = O(1) in Corollary 2.6 as long as 1
ε remains

polynomial in D. We now provide an algorithm for the exact division of sparse polynomials over large finite
fields, given a bound on the sparsity of the quotient.

Algorithm 1 SPARSEDIVLARGECHARACTERISTIC

Input: F , G ∈ Fq[X] such that G divides F ; a bound T on #F , #G and #(F/G); 0< ε < 1
Output: F/G ∈ Fq[X] with probability ≥ 1− ε

1: Let k = dlog(2
ε log T)e and N =max(1, d12(T − 1) log De)

2: Compute the set P of the first N prime numbers
3: Compute an extension field Fqs where s = dlogq(

1930
ε D4)e

4: Choose α at random in Fqs

5: Compute F [α] = F(αX) and G[α] = G(αX) and set Q̂[α] = 0
6: loop dlog T e times
7: Choose p1, . . . , pk at random in P
8: for each pi do
9: Compute F [α]pi

, G[α]pi
. Lemma 2.2

10: if G[α]pi
is not coprime with X pi − 1 then return failure

11: Compute Q[α]pi
and [(Q[α])′]pi

. Lemma 2.3

12: Let p ∈ {p1, . . . , pk} such that #Q[α]p is maximal

13: Add DLIFT(Q[α]p − Q̂[α]p , [(Q[α])′]p − [(Q̂[α])′]p) to Q̂[α]

14: Return Q̂[α](α−1X)

Theorem 2.7. Algorithm 1 is correct. It uses Õε(T log D log q) bit operations.

Proof. For the algorithm to succeed, G(αX)must be coprime with all the polynomials X p−1 used in the loop.
By Corollary 2.6, it is coprime with all the polynomials X p−1 for p ∈ P with probability at least 1− ε

2 . Next,
the algorithm succeeds if at each iteration, the number of monomials of Q[α] − Q̂[α] is halved. According to
Lemma 2.5, this probability is at least (1−2−k)log T ≥ 1−2−k log T ≥ 1− ε

2 . Therefore, the overall probability
of success is at least 1− ε.

Let us first note that s log q = Oε(log q) since D ≤ q. Step 2 takes Õ(N) = Õ(T log D) bit operations
while step 3 takes Õ(s3 log q) = Õε(log q) bit operations. Computing the polynomials F [α] and G[α] costs

5

Õ(T log Ds log q) = Õε(T log D log q) bit operations by Lemma 2.2. In the loop, as pi = O(N log N), computing
F [α]pi

and G[α]pi
costs Õε(T (log D + log q)) bit operations. Then operations on polynomials of degree at most p

take Õ(ps log q) bit operations, that is Õε(T log D log q) bit operations. Since this must be done for Õε(log T)
primes in total, the overall cost of the algorithm is Õε(T log D log q) bit operations.

2.3 Case of small characteristic

When the field Fq has a characteristic smaller than the degree, Huang’s technique is no more possible, and the
best alternative is to use the algorithm of Arnold, Giesbrecht and Roche [5]. As mentioned before, their sparse
interpolation algorithm computes Q[α]p = Q(αX)mod X p − 1 for several values of α and p and they use the
Chinese Remainder Theorem to recover the coefficients of Q. This is the last part of [5, procedure BuildAp-
proximation], and we denote it by CRTLIFT. Next lemma summarizes their approach. It is the combination
of [5, Lemma 3.1] for the value of λ, [5, Corollary 3.2] for γ and [5, Lemma 4.1] for m and s.

Lemma 2.8 ([5]). Let Q ∈ Fq[X] a sparse polynomial of degree D and sparsity T . Let 0 < µ < 1, λ =
max(21, d 40

3 (T−1) ln De), γ= dmax(8 logλ D, 8 ln 2
µ)e, m= dlog 1

µ+2 log(T (1+ 1
2 dlogλ De))e and s ≥ logq(2D+

1). Let Q̂ = CRTLIFT((Q[α j]
pi
)i j) where Q[α j]

pi
=Q(α jX)mod X pi − 1 for random primes p1, . . . , pγ in]λ, 2λ[and

random nonzero elements α1, . . . , αm of Fqs . Then with probability at least 1−µ, #(Q− Q̂)≤ T/2.

In order to use such a lemma for sparse polynomial division, we need to compute Q[α j]
pi

for the γ primes
pi and the m points α j . As explained in Section 2.1, Q[α j]

pi
can be efficiently computed as soon as G(α jX) and

X pi −1 are coprime. To ensure, with good probability, that the coprimality property holds for every pi and α j ,
we choose the α j ’s in a somewhat larger extension of Fq. That is, we need to increase the bound on s given
in Lemma 2.8 according to Lemma 2.1.

Lemma 2.9. Let G ∈ Fq[X] of degree-D, 0 < µ < 1, λ, γ, m three integers and p1, . . . , pγ be prime numbers in

]λ, 2λ[. Let s = dlogq(2
λγ
µ mD)e and α1, . . . , αm be random elements of Fqs . Then with probability at least 1−µ,

G(α j) and X pi − 1 are coprime for all pairs (i, j), 1≤ i ≤ γ and 1≤ j ≤ m.

Proof. Let Π =
∏γ

i=1 X pi − 1. Its degree is
∑γ

i=1 pi ≤ 2λγ. For any α j , G(α jX) is coprime with all the
polynomials X pi − 1 if and only if G(α jX) is coprime with Π. Since α j is randomly chosen in Fqs then by
Lemma 2.1, the probability that G(α jX) and Π are not coprime is at most (2λγD)/qs ≤ µ/m by definition of
s. Therefore the probability that there is at least one α j such that G(α jX) and Π are not coprime is at most
µ.

Using Lemmas 2.8 and 2.9, we can adapt the sparse interpolation algorithm from [5] to the exact quotient
of two sparse polynomials. It requires a larger extension than the original algorithm, but the growth is
negligible by Lemma 2.8.

Algorithm 2 SPARSEDIVSMALLCHARACTERISTIC

Input: F , G ∈ Fq[X] such that G divides F ; a bound T on #F , #G and #(F/G); 0< ε < 1
Output: F/G ∈ Fq[X] with probability ≥ 1− ε

1: Let µ= ε
2dlog T e and set λ, γ and m as in Lemma 2.8

2: Compute the set P of the prime numbers in]λ, 2λ[
3: Compute an extension field Fqs where s = dlogq(2

λγ
µ mD)e

4: Set Q̂ = 0
5: loop dlog T e times
6: Choose p1, . . . , pγ at random in P
7: Choose α1, . . . , αm at random in Fqs

8: for each pair (pi ,α j) do
9: Compute F [α j]

pi
, G[α j]

pi
. Lemma 2.2

10: if G[α j]
pi

is not coprime with X pi − 1 then return failure

11: Compute Q[α]pi
. Lemma 2.3

12: Add CRTLIFT((Q[α j]
pi
− Q̂[α j]

pi
)i, j) to Q̂

13: Return Q̂

6

Theorem 2.10. Algorithm 2 is correct. It uses Õε(T log2 D(log D+ log q)) bit operations where D = deg(F).

Proof. The algorithm is a modification of [5, Procedure MajorityVoteSparseInterpolate]. The algorithm suc-
ceeds if at each iteration, every G[α j]

pi
is coprime with X pi − 1 and if CRTLIFT succeeds in recovering at least

half of the terms of Q− Q̂. Both conditions hold with probability 1−µ at each step. The global probability of
success is thus at least (1−µ)2dlog T e ≥ 1− 2µdlog T e ≥ 1− ε.

As in the original algorithm, the cost is dominated by the computation of all the Q[α j]
pi

. There are γmdlog T e
such polynomials to compute. Since pi < 2λ and α j ∈ Fqs , each computation costs Õ((T log D+λ)s log q) bit
operations according to Lemma 2.3. As λ= O(T log D), γ= Õε(log D), m is logarithmic and s = Õε(1+logq D),
the algorithm requires Õε(T log2 D(log D+ log q)) bit operations.

2.4 Output sensitive algorithm

Both interpolation algorithms presented in the previous sections require a bound on the sparsity of the quo-
tient. To overcome this difficulty, we use the same strategy as for sparse polynomial multiplication [12]. The
idea is to guess the sparsity bound as we go using a fast verification procedure. For verifying exact quotient,
we can directly reuse Algorithm VERIFYSP from [12] that verifies if F = GQ, with an error probability at most
ε if F 6= GQ. It requires Õε(T (log D + log q)) bit operations over Fq and Õε(T (log D + log C)) bit operations
over Z where C is a bound on the heights of F , G and Q.

Algorithm 3 SPARSEEXACTDIVISION

Input: F , G ∈ Fq[X] such that G divides F ; 0< ε < 1
Output: F/G ∈ Fq[X] with probability at least 1− ε

2
1: t ← 1
2: repeat
3: t ← 2t
4: Compute a tentative quotient Q̂ using Algorithm 1 or 2,

with sparsity bound t and probability ε
2

5: until VERIFYSP(F, G, Q̂, ε2t)
6: return Q̂

Theorem 2.11. Let F, G ∈ Fq[X] such that G divides F, 0< ε < 1, D = deg(F) and T =max(#F, #G,#(F/G)).
With probability at least 1 − ε, Algorithm 3 returns F/G in Õε(T log D log q) bit operations if char(Fq) > D
or Õε(T log2 D(log D+ log q)) otherwise.

Proof. The probability 1−ε concerns both the correctness and the complexity of the algorithm. More precisely,
we prove that the algorithm is correct with probability ≥ 1− ε

2 and that it performs the claimed number of
bit operations with probability ≥ 1− ε

2 .
The algorithm is incorrect when F 6= GQ̂. This happens if at some iteration, Algorithm 1 or 2 returns an

incorrect quotient but the verification algorithm fails to detect it. In other words, for the algorithm to return
a correct answer, all the verifications must succeed. This happens with probability at least 1−

∑

t
ε
2t ≥ 1− ε

2
since the sum ranges over powers of two.†

For the complexity we first need to bound the number of iterations. Since the values of t are powers of
two, the first value ≥ #(F/G) is at most 2#(F/G). If t attains this value, Algorithm 2.7 or 2.10 correctly
computes F/G with probability at least 1− ε2 according to Theorems 1 and 2. That is, with probability at least
1− ε

2 , t is bounded by 2T and the number of iterations is O(log T). Depending on the characteristic, using
Theorems 2.7 or 2.10 and the complexity of [12, Algorithm VERIFYSP], we obtain the claimed complexity
with probability at least 1− ε

2 .

2.5 Algorithm over the integers

For polynomials over Z[X], we cannot directly use Algorithm 3 with the variant of Huang’s algorithm over
Z [19]. Indeed, the coefficients arising during the computation may be dramatically larger than the inputs
and the output. This is mostly due to the inversion of G modulo X p−1. Instead we use the standard technique
that maps the computation over some large enough prime finite field. As we cannot tightly predict the size

†The error probability analysis of [12, Algorithm 2] is flawed and should be replaced by this new one.

7

of the coefficients, we can again reuse our guess-and-check approach with several prime numbers of growing
size to discover it as we go. In order to use the fastest algorithm (Algorithm 1) we consider prime finite fields
Fq such that q is larger than the input degree.

We first define a bound on the coefficient of the quotient of two sparse polynomial over Z[X] as the classic
Mignotte’s bound [10] on dense polynomial is too loose and it has no equivalent in the sparse case.

Lemma 2.12. Let F, G, Q ∈ Z[X] be three sparse polynomials such that F = QG and T = #Q is the number of
nonzero coefficient of Q. Then

‖Q‖∞ ≤ (‖G‖∞ + 1)d
T−1

2 e‖F‖∞.

Proof. Write Q =
∑T

i=1 qiX
ei with e1 > e2 > · · · > eT . We use induction on the remainder and quotient

sequence in the Euclidean division algorithm. Let Q j =
∑ j

i=1 qiX
ei and R j = F −Q jG be the elements of that

sequence, starting with R0 = F and Q0 = 0. The integer coefficients of Q are defined as qi = LC(Ri−1)/LC(G)
where LC denote the leading coefficient. We know from the algorithm that Ri = Ri−1 − qiX

ei G and Q i =
Q i−1 + qiX

ei . Since R0 = F and

‖Ri‖∞ ≤ ‖Ri−1‖∞ + |qi | × ‖G‖∞ ≤ ‖Ri−1‖∞(1+ ‖G‖∞)

we have ‖Ri‖∞ ≤ ‖F‖∞(1+ ‖G‖∞)i . Since the reciprocal Q? of Q is defined by the quotient F?/G?, we also
get ‖Ri‖∞ ≤ ‖F‖∞(1+ ‖G‖∞)T−i . Therefore,

‖Q‖∞ =max
i
(|qi |)≤max

i
‖Ri‖∞ ≤ ‖F‖∞(1+ ‖G‖∞)d

T−1
2 e.

Algorithm 4 SPARSEEXACTDIVISIONOVERZ
Input: F , G ∈ Z[X] such that G divides F ; 0< ε < 1
Output: F/G with probability at least 1− ε

2
1: Let n= deg(F), i = 2
2: repeat
3: i← 2i
4: Choose q at random in]n, 2n[, prime with prob. ≥ 1− ε

2i
5: Compute the reductions Fq = F mod q and Gq = G mod q
6: Compute Q̂ = SPARSEEXACTDIVISION(Fq, Gq, ε2i)
7: n← n2

8: until VERIFYSP(F, G, Q̂, εi)
9: return Q̂

Theorem 2.13. Let F, G be two sparse polynomials in Z[X] such that G divides F, 0 < ε < 1, D = deg(F),
C =max(‖F‖∞ + ‖G‖∞) and T =max(#F,#G,#(F/G)). With probability at least 1− ε, Algorithm 4 returns
F/G in Õε(T (log C + log2 D) + log3 D) bit operations if D > 2‖F/G‖∞ or Õε(T (log C + log D log‖F/G‖∞) +
log3 ‖F/G‖∞) bit operations otherwise.

Proof. The proof goes along the same lines as for Theorem 2.11. With the same arguments, the probability
that the algorithm returns an incorrect quotient is at most ε2 .

In Step 4, we can use a Miller-Rabin based algorithm to compute a number q that is prime with probability
at least 1− ε

2i in Õε/i(log3 q) bit operations. Step 5 performs O(T) divisions in Õ(T log C) bit operations. Thus
by Theorem 2.11, an iteration of the loop correctly computes Fq/Gq in Fq[X] in Õε/i(T log D log q+ T log C +
log3 q) bit operations with probability at least 1− ε

i . Let Q = F/G. As soon as n > 2‖Q‖∞, Fq/Gq is actually
Q. Therefore, the algorithm stops with n < 4‖Q‖2

∞ with probability ≥ 1 − ε
i . If D > 2‖Q‖∞, q satisfies

2‖Q‖∞ < q < 2D at the first iteration. Hence, the algorithm correctly computes Q in one iteration with
probability ≥ 1− ε

2 . Its bit complexity is then Õε(T log2 D+ T log C + log3 D).
Otherwise, at most j = dlog log‖Q‖∞e iterations are needed to get 2‖Q‖∞ < n < q < 4‖Q‖2

∞. Thus i is
bounded by 2 j+1 and Q is correctly computed in Õε/2 j (T log D log‖Q‖∞+ T log C + log3 ‖Q‖∞) bit operations

with probability at least 1 −
∑

k≥2
ε
2k ≥ 1 − ε

2 . By Lemma 2.12, ‖Q‖∞ ≤ (‖G‖∞ + 1)d
T−1

2 e‖F‖∞, whence

log 2 j

ε = O(log T + log log C + log 1
ε) and Õε/2 j (·) is Õε(·).

In both cases, the cost of the loop body is as stated with probability at least 1− ε
2 . Since the verification

with probability of success at least 1− ε
2i requires Õε/2i(T (log D + log C + log‖Q‖∞)) bit operations and the

maximal value of i is expected to be O(log‖Q‖∞), its cost is negligible compared to the loop body. Thus the
algorithm works as stated with probability at least 1− ε.

8

3 Divisibility testing

Given two sparse polynomials F , G ∈ K[X], we want to check whether G divides F in polynomial time. If
deg(F) = m+ n− 1, deg(G) = m and #F , #G ≤ T , then the input size is O(T log(m+ n)) and the divisibility
check must cost (T log(m+ n))O(1). We first remind the only known positive results.

Proposition 3.1. Let F, G ∈ K[X] of degrees m+ n− 1 and m respectively, and sparsity at most T . If either m
or n is polynomial in T log(m+ n), one can check whether G divides F in polynomial time.

Proof. Let F = GQ+ R be the Euclidean division of F by G. When n is polynomially bounded, the Euclidean
division algorithm runs in polynomial time and the verification is trivial. When m is polynomially bounded,
the degree of the remainder is polynomial and it can be computed in polynomial time without computing Q.
Indeed, it suffices to compute X e mod G for each exponent e ∈ supp(F) in polynomial time by fast exponen-
tiation.

The rest of the section can be seen as a generalization of the proposition. As long as one has a polynomial
bound on the size of the quotient, the divisibility test is polynomial by either computing F − GQ or asserting
that F = GQ. We begin with a very simple remark, that we shall use repeatedly.

Remark 3.2. Let F, G ∈K[X], and F? = X deg F F(1/X) and G? = X deg GG(1/X) be their reciprocal polynomials.
Then G divides F if and only if G? divides F?. In this case, the quotient Q? = F? quo G? is the reciprocal of the
quotient Q = F quo G.

Proof. From the definition, (AB)? = A?B? for A, B ∈K[X]. Therefore, if there exists Q such that F = GQ, then
F? = G?Q?. The converse follows since the reciprocal is involutive.

We note that the equality (F quo G)? = F? quo G? is not true in general when G does not divide F . Let
F = GQ+R with deg(R)< deg(G). Then F? = X deg(F)G(1/X)Q(1/X)+X deg(F)R(1/X) = G?Q?+X deg(F)R(1/X).
Therefore Q? = F? quo G? if and only if R= X deg(F)R(1/X).

3.1 Bounding the sparsity of the quotient

In this section, we provide a bound on the sparsity of the quotient Q = F quo G, depending on the gap between
the highest and second highest exponents in G. We make use of the following estimation.

Lemma 3.3. Let G ∈ K[X] of degree m and sparsity #G, such that G = 1 − X kG1 with G1 ∈ K[X] of degree
m− k. Then for all t ≥ 0, 1/G mod X kt has at most 1

(t−1)! (#G + t − 2)t−1 nonzero monomials.

Proof. Since G(0) = 1, it is invertible in the ring of power series. Let φ =
∑

i≥0 X kiG i
1 ∈K[[X]] be its inverse.

As soon as i ≥ t, X ki mod X kt = 0. Therefore

φ mod X kt =
t−1
∑

i=0

X kiG i
1 mod X kt .

Note that the support of G t−1 is a subset of S = {
∑t−1

j=1 e j : e j ∈ supp(G)} which has size at most
�#G+t−2

t−1

�

≤
1

(t−1)! (#G + t − 2)t−1. Using the expansion G t−1 =
∑t−1

i=0

�t−1
i

�

(−1)iX kiG i
1, one can see by identification that

supp(φ mod X kt) ⊆ S, whence the result.

Corollary 3.4. Let F and G ∈K[X] of respective degrees m+n−1 and m, and respective sparsities #F and #G.
If G = X m − G0 with G0 ∈ K[X] of degree m− k then the quotient Q = F quo G has at most 1

(dn/ke−1)! #F(#G +
dn/ke − 2)dn/ke−1 nonzero monomials.

Proof. Let F = GQ+R with deg(R)< m. It is classical that the reciprocal Q? of Q equals F?/G? mod X n [10].
We can apply Lemma 3.3 to G? since G? = 1−X kG?0. Hence, 1/G? mod X n has at most 1

(dn/ke−1)! (#G−dn/ke−
2)dn/ke−1 nonzero monomials, using t = dn/ke and noting that n ≤ kt. This implies that the sparsity of Q?,
that is the sparsity of Q, is at most 1

(dn/ke−1)! #F(#G + dn/ke − 2)dn/ke−1.

Corollary 3.5. Let F, G ∈ K[X] of respective degrees m+ n− 1 and m. If G = 1− X kG1 and G divides F, then
the quotient Q = F quo G has at most 1

(dn/ke−1)! #F(#G + dn/ke − 2)dn/ke−1 nonzero monomials.

Proof. We apply Corollary 3.4 to F? and G?. Indeed, G? = X m − G0 for some G0 of degree m− k and since G
divides F , we have F quo G = (F? quo G?)?.

9

Next example shows that the bound does not hold anymore if G does not divide F .

Example 1. Let F = X m+n−1 − 1 and G = X m − X m−1 + 1. Then F quo G =
∑n−1

i=0 X i is as dense as possible.

If F = GQ+ R with some nonzero R then obviously F − R= GQ, that is G divides F − R. This implies that
if R has few nonzero monomials, then Q as well since F − R is a sparse polynomial. Conversely, if Q has few
nonzero monomials, R = F − GQ as well. As a result, we observe that the sparsities of the quotient and the
remainder in the Euclidean division of F by G = 1+ X kG1 are polynomially related.

3.2 Algorithmic results

Let F , G ∈ K[X] of respective degrees m + n − 1 and m, with n = O(m). Results of the previous section
show that if G = X m − G0 with deg(G0) ≤ m− k for some k = O(m), the sparsity of the quotient F quo G is
polynomially bounded in the input size. If G = 1+ X kG1, the same holds for the quotient F? quo G?. In both
cases, this implies that one can check whether G divides F by a mere application of the Euclidean division
algorithm. Our aim is to extend this approach to a larger family of divisors G through a generalization of
Lemma 3.3. It is based on the following lemma.

Lemma 3.6. Let F, G and C ∈K[X], C 6= 0. Then G divides F if and only if G divides FC and C divides FC/G.

Proof. If G divides F , then G clearly divides FC . Writing F = GQ1, it is also clear that C divides FC/G =Q1C .
Conversely, if G divides FC and C divides FC/G, we can write FC/G = CQ2. Hence F = GQ2 and G divides
F .

The generalization of Lemma 3.3 is given by the following lemma.

Lemma 3.7. Let G ∈ K[X] of degree m and sparsity #G, such that G = G0 − X kG1 with deg(G0) < k and
G(0) 6= 0. Then for all t, G t

0/G mod X tk has at most 1
(t−1)! (#G + t − 2)t−1 nonzero monomials.

Proof. Expanding G0/G = 1/(1 − X kG1G−1
0) =

∑

i≥0 X kiG i
1G−i

0 , we get G t
0/G =

∑

i≥0 X kiG i
1G t−i−1

0 for all t.
Since X ki mod X kt = 0 for i ≥ t,

G t
0/G mod X kt =

t−1
∑

i=0

X kiG i
1G t−1−i

0 mod X kt .

The support of G t
0/G mod X kt is also a subset of S defined in the proof of Lemma 3.3 since G t−1 =

∑t−1
i=0

�t−1
i

�

(−1)iX kiG i
1G t−1−i

0 . Therefore, its sparsity is at most 1
(t−1)! (#G + t − 2)t−1.

Theorem 3.8. Let F and G ∈K[X] be two sparse polynomials, of degrees m+n−1 and m respectively, and sparsity
at most T . One can check whether G divides F in polynomial time if G = G0 − X kG1 where k− deg(G0) = Ω(n)
and either deg(G0) or deg(G1) is bounded by a polynomial function of the input size.

Proof. We first note that we can first remove any power of X that divides F or G. If X a divides F and X b

divides G, then G divides F if and only if b ≤ a and G/X b divides F/X a. Therefore, we assume from now on
that G(0) and F(0) are nonzero. This implies in particular that G and G0 are both invertible in the ring of
power series over K. We treat the case deg(G0) = (T log(m+ n))O(1). The second case is directly obtained by
taking reciprocals.

By Lemma 3.6, for any integer t ≥ 0, G divides F if and only if G divides G t
0F and G t

0 divides FG t
0/G. Our

algorithm checks these conditions for some t such that k− `≥ n/t, where `= deg(G0).
By Lemma 3.7, G t

0/G mod X kt has at most 1
(t−1)! (T + t − 2)t−1 nonzero terms, whence FG t

0/G mod X kt at

most 1
(t−1)! T (T+t−2)t−1. Note that t = O(1) since k−`= Ω(n), and that kt ≥ n+`t. Since G t

0/G mod X n+`t =
((FG t

0)
? quo G?)?, the sparsity of (FG t

0)
? quo G? is at most T O(1). One can compute this quotient and check

whether the remainder vanishes to test in polynomial time if G divides FG t
0. If the test fails, G does not

divide F . Otherwise, we have computed a polynomial Q0 such that FG t
0 =Q0G. It remains to check whether

G t
0 divides Q0. Proposition 3.1 provides a polynomial-time algorithm for this since deg(G t

0) is polynomially
bounded.

The previous proof extends to more general divisors. It only requires a polynomial bound on the sparsity
of Q0 and a polynomial-time algorithm to test whether G t

0 divides Q0. The second step can be a recursive call
if G t

0 satisfies the conditions in the theorem. This provides the following generalization of the theorem.

10

Corollary 3.9. Let F and G ∈ K[X] be two sparse polynomials, of degrees m + n − 1 and m respectively, and
sparsity at most T . One can check whether G divides F in polynomial time if G = G0 + X kG1 − X `G2 with G0,
G1, G2 ∈K[X] such that k− deg(G0) and `− k− deg(G1) are both Ω(n) and deg(G1) = (T log(m+ n))O(1).

Proof. We assume that T log(m + n) = no(1). Otherwise, one can use Proposition 3.1. Using Lemma 3.7,
F(G0 + X kG1)t/G mod X kt has at most T O(1) nonzero monomials for t = O(1). Therefore, as previously, we
can compute the quotient (F(G0 + X kG1)t)? quo G? for t = dn/(` − k − deg(G1))e, in polynomial time. If
the remainder is nonzero, G does not divide F . Otherwise, we have computed a polynomial Q01 such that
F(G0+X kG1)t =Q01G. It remains to test whether H = (G0+X kG1)t divides Q01. We show that the polynomial
H satisfies the conditions of Theorem 3.8. Let us write

H =
t
∑

i=0

�

t
i

�

X kiG i
1G t−i

0 = X kt G t
1 +

t−1
∑

i=0

�

t
i

�

X kiG i
1G t−i

0 = X kt G t
1 +H0

where H0 has degree at most k(t − 1) + deg(G1)(t − 1) + deg(G0). Then kt − deg(H0) ≥ k − deg(G0)− (t −
1)deg(G1) = Ω(n) since k− deg(G0) = Ω(n) and deg(G1) = (T log(m+ n))O(1) = no(1). One can test whether
H divides Q01 in polynomial-time using Theorem 3.8.

Theorem 3.8 and Corollary 3.9 cover cases were the quotient of the polynomials and the quotient of their
reciprocals are both dense, as shown in the following example.

Example 2. Let F = X 2n−1 − X n − X n−1 + X 2 − X + 1 and G = G0 + X n−1G1 where G0 = G1 = 1 − X . Then
F quo G =

∑n−1
i=0 X i and F? quo G? = X n−1 +

∑n−3
i=0 X i .

Acknowledgments

We are grateful to the reviewers for their insightful comments.

References

[1] A. Arnold, M. Giesbrecht, and D. S. Roche. Faster sparse multivariate polynomial interpolation of
straight-line programs. J. Symb. Comput., 75:4–24, 2016. DOI:10.1016/j.jsc.2015.11.005.

[2] A. Arnold and D. S. Roche. Multivariate sparse interpolation using randomized Kronecker substitutions.
In ISSAC’14, pages 35–42, 2014. DOI:10.1145/2608628.2608674.

[3] A. Arnold and D. S. Roche. Output-sensitive algorithms for sumset and sparse polynomial multiplication.
In ISSAC’15, pages 29–36, 2015. DOI:10.1145/2755996.2756653.

[4] A. Arnold, M. Giesbrecht, and D. S. Roche. Faster Sparse Interpolation of Straight-Line Programs. In
CASC’13, pages 61–74, 2013. DOI:10.1007/978-3-319-02297-0_5.

[5] A. Arnold, M.. Giesbrecht, and D. S. Roche. Sparse interpolation over finite fields via low-order roots of
unity. In ISSAC’14, pages 27–34, 2014. DOI:10.1145/2608628.2608671.

[6] M. Ben-Or and P. Tiwari. A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation.
In STOC’88, pages 301–309, 1988. DOI:10.1145/62212.62241.

[7] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren
der mathematischen Wissenschaften. Springer, 1997.

[8] R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard matching. In STOC’02,
pages 592–601, 2002. DOI:10.1145/509907.509992.

[9] S. Garg and É. Schost. Interpolation of polynomials given by straight-line programs. Theor. Comput.
Sci., 410(27):2659–2662, 2009. DOI:10.1016/j.tcs.2009.03.030.

[10] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd edition,
2013.

[11] M. Giesbrecht and D. S. Roche. Diversification improves interpolation. In ISSAC’11, pages 123–130,
2011. DOI:10.1145/1993886.1993909.

11

https://doi.org/10.1016/j.jsc.2015.11.005
https://doi.org/10.1145/2608628.2608674
https://doi.org/10.1145/2755996.2756653
https://doi.org/10.1007/978-3-319-02297-0_5
https://doi.org/10.1145/2608628.2608671
https://doi.org/10.1145/62212.62241
https://doi.org/10.1145/509907.509992
https://doi.org/10.1016/j.tcs.2009.03.030
https://doi.org/10.1145/1993886.1993909

[12] P. Giorgi, B. Grenet, and A. Perret du Cray. Essentially optimal sparse polynomial multiplication. In
ISSAC’20, pages 202–209, 2020. DOI:10.1145/3373207.3404026.

[13] D. Grigoriev, M. Karpinski, and A. M. Odlyzko. Short proofs for nondivisibility of sparse polynomials
under the extended riemann hypothesis. Fund. Inform., 28(3-4):297–301, 1996.

[14] J. van der Hoeven. Probably faster multiplication of sparse polynomials. preprint, 2020. URL: https:
//hal.archives-ouvertes.fr/hal-02473830.

[15] J. van der Hoeven and G. Lecerf. On the Complexity of Multivariate Blockwise Polynomial Multiplication.
In ISSAC’12, pages 211–218, 2012. DOI:10.1145/2442829.2442861.

[16] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial and series multiplication.
J. Symb. Comput., 50:227–254, 2013. DOI:10.1016/j.jsc.2012.06.004.

[17] J. van der Hoeven and G. Lecerf. Sparse Polynomial Interpolation in Practice. ACM Commun. Comput.
Algebra, 48(3/4):187–191, 2014. DOI:10.1145/2733693.2733721.

[18] J. van der Hoeven and G. Lecerf. Sparse polynomial interpolation. Exploring fast heuristic algorithms
over finite fields. preprint, 2019. URL: https://hal.archives-ouvertes.fr/hal-02382117.

[19] Q. Huang. Sparse polynomial interpolation over fields with large or zero characteristic. In ISSAC’19,
pages 219–226, 2019. DOI:10.1145/3326229.3326250.

[20] Q. Huang and X. Gao. Faster interpolation algorithms for sparse multivariate polynomials given by
straight-line programs. J. Symb. Comput., 101:367–386, 2020. DOI:10.1016/j.jsc.2019.10.005.

[21] S. C. Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bulletin, 8(3):63–71, 1974. DOI:10.1145/
1086837.1086847.

[22] E. Kaltofen and W.-s. Lee. Early termination in sparse interpolation algorithms. J. Symb. Comput.,
36(3):365–400, 2003. DOI:10.1016/S0747-7171(03)00088-9.

[23] M. Monagan and R. Pearce. Parallel sparse polynomial multiplication using heaps. In ISSAC’09, pages
263–270, 2009. DOI:10.1145/1576702.1576739.

[24] M. Monagan and R. Pearce. Sparse polynomial division using a heap. J. Symb. Comput., 46(7):807–822,
2011. DOI:10.1016/j.jsc.2010.08.014.

[25] M. Monagan and R. Pearce. Polynomial division using dynamic arrays, heaps, and packed exponent
vectors. In CASC’07, pages 295–315, 2007.

[26] V. Nakos. Nearly optimal sparse polynomial multiplication. IEEE T. Inform. Theory, 66(11):7231–7236,
2020. DOI:10.1109/TIT.2020.2989385.

[27] D. A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems. Theor.
Comput. Sci., 31(1):125–138, 1984. DOI:10.1016/0304-3975(84)90130-0.

[28] R. Prony. Essai expérimental et analytique sur les lois de la dilatabilité de fluides élastique et sur celles
de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J.
École Polytechnique, 1(Floréal et Prairial III):24–76, 1795. URL: https://gallica.bnf.fr/ark:
/12148/bpt6k433661n/f32.item.

[29] D. S. Roche. Chunky and equal-spaced polynomial multiplication. J. Symb. Comput., 46(7):791–806,
2011. DOI:10.1016/j.jsc.2010.08.013.

[30] D. S. Roche. What can (and can’t) we do with sparse polynomials? In ISSAC’18, pages 25–30, 2018.
DOI:10.1145/3208976.3209027.

[31] T. Yan. The Geobucket Data Structure for Polynomials. J. Symb. Comput., 25(3):285–293, 1998. DOI:10.
1006/jsco.1997.0176.

12

https://doi.org/10.1145/3373207.3404026
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://doi.org/10.1145/2442829.2442861
https://doi.org/10.1016/j.jsc.2012.06.004
https://doi.org/10.1145/2733693.2733721
https://hal.archives-ouvertes.fr/hal-02382117
https://doi.org/10.1145/3326229.3326250
https://doi.org/10.1016/j.jsc.2019.10.005
https://doi.org/10.1145/1086837.1086847
https://doi.org/10.1145/1086837.1086847
https://doi.org/10.1016/S0747-7171(03)00088-9
https://doi.org/10.1145/1576702.1576739
https://doi.org/10.1016/j.jsc.2010.08.014
https://doi.org/10.1109/TIT.2020.2989385
https://doi.org/10.1016/0304-3975(84)90130-0
https://gallica.bnf.fr/ark:/12148/bpt6k433661n/f32.item
https://gallica.bnf.fr/ark:/12148/bpt6k433661n/f32.item
https://doi.org/10.1016/j.jsc.2010.08.013
https://doi.org/10.1145/3208976.3209027
https://doi.org/10.1006/jsco.1997.0176
https://doi.org/10.1006/jsco.1997.0176

	1 Introduction
	1.1 Previous work
	1.2 Our contributions

	2 Exact division
	2.1 Computation of a reduced quotient
	2.2 Case of large characteristic
	2.3 Case of small characteristic
	2.4 Output sensitive algorithm
	2.5 Algorithm over the integers

	3 Divisibility testing
	3.1 Bounding the sparsity of the quotient
	3.2 Algorithmic results

