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ABSTRACT

Consider a superelliptic integral I =
∫

P/(QS1/k)dx with
K = Q(ξ), ξ a primitive kth root of unity, P,Q, S ∈ K[x] and
S has simple roots and degree coprime with k. Note d the
maximum of the degree of P,Q, S, h the logarithmic height of
the coefficients and g the genus of yk − S(x). We present an
algorithm which solves the elementary integration problem of
I generically in O((kd)ω+2g+1hg+1) operations.

Categories and Subject Descriptors: 68W30

Keywords: Symbolic Integration, Divisors, Superel-
liptic curves

A superelliptic integral is an integral of the form

I(x) =

∫

P (x)

Q(x)S(x)1/k
dx

with P,Q, S ∈ K[x], and we can assume the multiplicity of
roots of S to be < k. We add the technical condition that
the roots of S are simple and its degree is coprime with k. If
the degree is multiple of k, then infinity is a regular point,
and a root of S can be sent to infinity by a Moebius trans-
formation, which however often requires a field extension of
the coefficients. The case k = 1 is well known [11], is always
elementary integrable, and thus we can assume k ≥ 2. When
k = 2, the roots of S are always simple, and the integral I is
hyperelliptic. For general k, the integral I is called superel-
liptic, and is, although of specific form, wildly encountered,
see for example [2, 5] where all “random” examples where in
fact superelliptic. The purpose of this article is to present an
efficient algorithm to decide if I is an elementary integral.

Definition 1. A superelliptic integral is called
• elementary if I can be written

I(x) = G0(x) +
∑

i

λi lnGi(x), Gi ∈ Q(x,S1/k)

• reduced if Q is square free coprime with S and degP <
degQ+ k−1 degS − 1

• of first kind if reduced and Q is constant.
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• of torsion if it is a sum of an elementary integral and a
first kind integral.

The integration process starts with a Hermite reduction,
which consists in finding an algebraic function G0 such that
∂xG0 − PQ−1S−1/k has only simple poles and no pole at in-
finity. If such function can be found, the resulting integral
is reduced. This part is well known [2, 1], and in our case is
even simpler as the notion of integral basis can be avoided.
This part and its complexity will be recalled at the beginning
of section 2.

Much more difficult is to find the logarithmic part. An in-
tegral of the first kind is never elementary except 0. If we are
able to find a sum L of logarithms of algebraic functions such
that their residues coincides with the ones of the integral, the
difference I − L is of first kind and thus I is of torsion, and
then I is elementary if and only if I − L = 0. This is where
expedients as heuristic approaches are used to speed up the
computation [5]. The base approach is given by Trager [11],
and improved by Bertrand in the hyperelliptic case. Three
major difficulties happen in these approaches.

Problem 1. For a reduced superelliptic integral, the resi-
dues λ are roots of the polynomial

R(λ) = resultantx(P k − λkQ′kS,Q),

which factorizes in K[λ] under the form

R(λ) =

l
∏

i=1

Ri(λ
ki), ki | k,

We say that R is generic if for all i the Galois group of Ri(λ
ki)

is maximal Zdeg Ri
ki

⋉ Sdeg Ri . Following Trager, we need to
compute a Q-basis of these residues. However, generically
l = 1 and R is generic, and thus the splitting field of R is
of degree kdd!. Worse, this computation has to be done at
the beginning, even if I was not elementary in the end. The
generic case is thus typically intractable [10], which is prob-
ably the main reason this algorithm is still not implemented
in Maple and Mathematica. Theorem 1 presents a similar de-
composition much cheaper, and sufficient to conclude in the
generic case.

Theorem 1 Given a field extension K[α] and a reduced su-
perelliptic integral I, the algorithm TraceIntegrals computes a

set of integrals Sα such that

• The residues of the integrals are in Z[ξ].

• If the integral I is elementary, then all integrals are of
torsion.

If R is generic, I is a linear combination of the (Sα)R(α)=0

and an integral of the first kind.
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The generic condition is sufficient but not necessary, and
no examples were found for which I could not be decom-
posed as such. Taking a larger K[α] containing simultane-
ously all the roots of R reduces to original Trager’s approach
and thus provably works in all cases, but the cost then rises to
O((kdd!)3). Remark however that even if the decomposition
is not possible, the integrals Sα being of torsion is still a nec-
essary condition for elementary integration, and thus gives a
quick test to prove an integral is non-elementary.

A particular behaviour of superelliptic integrals is the Ga-
lois action on the k-th root, which multiplies the integral by ξ.
Because of this, the space of residues of a superelliptic integral
is always invariant by ξ. Thus our decomposition is similar
to Trager’s one but done on K instead of Q, as keeping this
invariance by multiplication by ξ is essential for the following.

Problem 2. For each integral of Sα, we need to decide
if they are of torsion. Possibly more than one log is neces-
sary, but they have to respect a precise pattern to ensure the
invariance by ξ, leading us to introduce

LS(P ) =

k−1
∑

i=0

ξi ln

(

k−1
∑

j=0

P
(

x, ξjS1/k
)

)

with P ∈ C[y]≤k−1[x]. Now, a single function LS is necessary
(see Propositions 4,6). Trager’s approach is to build a divisor
on the superelliptic curve, and then to test its principality
using linear algebra. Bertrand uses a nice representation of
divisors on hyperelliptic curves to make the process more effi-
cient. However, both are polynomial in the size of the output,
and the degree of P depends on the residues, and so can be
extremely large as they are not even bounded by a function
of d. It happens however that testing principality of a divisor
can be done in logarithmic time of its height.

Theorem 2 Consider a reduced superelliptic integral I with
residues in Z[ξ]. If I = LS(P ) up to an integral of the first
kind for a polynomial P , then it can be written

I =

l
∑

i=0

(−2)iLS(Pi)

up to a first kind integral where degx Pi ≤ degQ+ 1
k

degS and
l ≤ max

r residues
(log2 | r |). Algorithm JacobianReduce compute

this decomposition in time O((kd)ωl) if it exists.

Remark that simplifying the sum to have just one LS func-
tion would have an exponential cost in l, thus this is thank to
this specific representation of the solution that such a fast al-
gorithm is possible. Testing principality of a divisor is equiva-
lent to test if its reduction in the Jacobian of the superelliptic
curve is 0. The technical condition allows to have an efficient
representation of divisors. If the support of the divisor is
small but height is large, then a fast multiplication technique
in the Jacobian is very efficient [3]. This was overlooked by
Bertrand [1]. This allows a fantastic speed up as Trager and
Bertrand algorithm were exponential in logarithmic height,
and ours is linear. However, the coefficients size grows fast
which decreases the usefulness of the algorithm, except when
computed modulo a prime number. This gives a quick test for
proving that the divisor is not principal, which is generically
the case as, except in genus 0, most superelliptic integrals are
not elementary.

Problem 3. Theorem 2 does not solve the elementary
integration problem, as we could have I = 1

N
LS(P ) with

N ∈ N, N ≥ 2 and this would not be found by Theorem

2. In this case, the corresponding divisors are not princi-
pal but of torsion, i.e. a multiple of the divisor is principal.
This problem is solved by Trager using two “good reduction
primes” p [11], and then deducing a unique possible candi-
date for N . We know that all divisors are of torsion modulo
p. Thus given a divisor and two good reductions p, q, we test
the principality of multiples of the divisor modulo p and q
until we find a multiple principal. A large prime is used to
confirm with high probability this candidate.

Theorem 3 Consider a reduced superelliptic integral I with
residues in Z[ξ] with coefficients in K(α) with α algebraic of
degree r. Note ∆ the discriminant of the square free part
of QS. If I = 1

N
LS(P ) for a polynomial P and N ∈ N∗,

then algorithm TorsionOrder finds a non zero multiple of N

which is expected to be less than (1 +
√

rφ(k) ln(k∆))2g in

time Õ((kd)ω+ghg+1rg). Else algorithm TorsionOrder returns
0 with probability 1 − ǫ.

The probabilistic part is important because having a false
positive can be very costly in characteristic zero, as the binary
complexity of JacobianReduce is not logarithmic in divisor
height.

1. INTEGRAL DECOMPOSITION

1.1 Hermite reduction
The Hermite reduction for algebraic integral is described

in [2, 1, 5]. In our simpler superelliptic case, let us recall it
to precise its complexity. We note sf(Q) square free part of Q.

HermiteReduction

Input: A superelliptic integral P/(QS1/k).
Output: A rational function G ∈ K(x) such that the integral

∫

P

QS1/k
− ∂x

(

G

S1/k

)

dx

is reduced or “FAIL”.

1. Note Q̃ = Q/sf(Q), Q̂ = sf(Q)/(sf(Q) ∧ S) and G =
T/Q̃ with T an unknown polynomial with deg T ≤
degP − deg sf(Q) + 1

2. Solve the linear system coming from the condition
(

P

QS1/k
− ∂x

(

T

Q̃S1/k

))

S1/kQ̂ ∈ K<deg Q̂+ 1
k

deg S−1[x]

3. If one solution return T/Q̃ else “FAIL”

Such reduction is not always possible due to the condition
on the degree at infinity, as for example elliptic integral of
the second kind are not reducible by this process.

Proposition 1 If
∫

P

QS1/k is elementary, the algorithm

HermiteReduction is successful and runs in O(dω).

Proof. If
∫

P

QS1/k is elementary, then it can be written as

a sum of an algebraic function and logs of algebraic functions.
Thus P

QS1/k can be written as the derivative of an algebraic

function plus an algebraic function with simple poles. Now
if an extension of C(x, S1/k) was necessary, then acting the
Galois group on this extension would allow to find another
decomposition in C(x, S1/k). Thus we can write

P

QS1/k
= ∂x

(

T

Q̃S1/k

)

+
R

Q̂S1/k



with T,R ∈ C[x]. Now multiplying both sides by Q̂S1/k,

we obtain that ( P

QS1/k − ∂x
T

Q̃S1/k )S1/kQ̂ should be a poly-

nomial. Knowing that R

Q̂S1/k is the derivative of logs and

as k ∧ degS = 1, there are no residues at infinity and so
the exponent at infinity is < −1. Thus we have degR <
deg Q̂ + 1

k
degS − 1 which is exactly the condition of step 2.

Thus a solution T as step 2 should be found, and step 3 then
returns G = T/Q̃. The complexity comes from step 2 where a

system of size deg(PSQ̂) should be solved. This size is linear
in d, and thus the complexity is O(dω)

1.2 Trace integrals
Following Trager, if

∫

P/(QS1/k)dx is reduced and elemen-
tary, then it can be written

∫

P/(QS1/k)dx =

l
∑

i=1

λi lnGi(x) (1)

where Gi ∈ K[x, S1/k] and the λi form a Q basis of the

residues of P/(QS1/k).

Definition 2. Consider field extension L ⊃ K(α) ⊃ K. The
trace of β ∈ L over K(α) is

trK(α)(β) = − coeffzdeg T −1 (T )

deg T

where T ∈ K(α)[z] is minimal unitary polynomial of β.

Proposition 2 We can build functions Pi/(QiS
1/k) without

pole at ∞ such that Qi | Q and ∀β ∈ Q−1(0) we have

resβ
Pi

QiS1/k
= dicoeffαi trK(α)

(

resβ
P

QS1/k

)

with di ∈ N∗ chosen minimal such that all residues are in Z[ξ].
Algorithm TraceIntegrals computes these functions in O(d2e2)

with e = [K(α) : K].

TraceIntegrals

Input: A reduced superelliptic integral
∫

P/(QS1/k)dx and

α ∈ K with minimal polynomial E ∈ K[z].

Output: A list Pj/(QjS
1/k) with Pj , Qj ∈ K(α)[x] such that

resβPjQ
−1
j S−1/k = djcoeffαj trK[α]resβPjQ

−1
j S−1/k ∈ Z[ξ],

(2)
∀β ∈ Q−1(0), dj ∈ N∗ minimal.

1. Factorize Q = Q1 . . . Ql in K(α)

2. Pose d = 1. For i = 1 . . . l do

3. If yk − S solves in K(α)[x]/(Qi), note y ∈ K(α)[x]/(Qi)
one of its solutions, else go to next i.

4. Compute tj = coeffαj trK(α)P (x)/(Q′(x)y), j = 0 . . .
degE − 1, and reassign dj the minimal multiple of dj

such that djtj ∈ Z[ξ].

5. Solve equation Ri,j(x) − tjQ
′
i(x)y = 0 mod Qi with

degRi,j ≤ degQi − 1.

6. Return






(

dj

l
∑

i=1

Ri,j

QiS1/k

)

j=0... deg E−1







Proof. Let us first check that algorithm TraceIntegrals

compute the integrals. Consider a factor Qi obtained in step
2 and β one of its roots. Either yk −S is irreducible or it fully
factorizes as all its solutions in y are the same up to a power
of ξ. If it is irreducible, the residue P (β)/(Q′(β)S(β)1/k)
has a minimal polynomial in K(α)[λk], and thus its second
leading coefficient is 0, and so the trace is 0. If it factorizes,
then step 5 builds functions Ri,j/(QiS) whose residues are
the coefficients tj in α of the trace. As Qi is irreducible,
it has degQi simple roots on which neither Q′

i or S van-
ishes. Thus equation Ri,j(x) − tQ′

i(x)y = 0 mod Qi is an
interpolation problem and thus admits a unique solution with
degRi ≤ degQi − 1. The integer dj is the minimal one such
that djtj ∈ Z[ξ] and should be a multiple of the old dj to still
satisfy this same condition for previous i’s. In step 6, the sum
is made over all factors Qi, and as they have distinct roots,
equation (2) is satisfied. We factorize a polynomial of degree
d in K(α), which costs Õ(de). Step 3 uses factorization in an
extension of degree de, so Õ(d2e). Step 4 uses a resultant to
compute the minimal polynomial, which costs O(d2e). Step
5 computes e interpolations which costs O(e2d2). Thus the
global cost is O(e2d2).

Proposition 3 If
∫

P/(QS1/k)dx is reduced and of torsion,
then the output of TraceIntegrals are integrals of torsion.

Proof. Let us note β1, . . . , βp the residues of the integral
at singular points on the superelliptic curve C = {(x, y) ∈
C2, yk −S(x)}. There exists M ∈ Mp,l(Q) such that β = Mλ.
The λ’s, β’s and the α are in some field extension L ⊃ K.
Let us note τj the operator extracting the αj coefficient of
the trace over K(α). As the trace Q linear, τj is also, and we
have

τj(β) = Mτj(λ).

As
∫

P/(QS1/k)dx =
l
∑

i=1

λi lnGi(x) up to an integral of first

kind, each column of M defines the list of residues of ∂x lnGi

(and so are in fact integers). Note π1, . . . , πφ(k) the projectors
to a basis B of Q(α)(ξ) over Q(α) and the functions

Fs =

l
∏

i=1

G
d̃j πs(τj (λi))

i

with d̃j ∈ N∗ such that all exponents are in Z. The ∂x lnFs

have for residues πs(τj(β)), and then ∂x

∑

Bs lnFs has for
residue τj(β). Thus the integral Ij of TraceIntegrals is such

that Ij − ∂x

∑

Bs lnFs is reduced and has no residues, and
thus is of first kind. Thus Ij is of torsion.

1.3 Completeness
Once trace integrals have been computed over K(α) we can

consider the conjugated sums

Ĩi,j =
∑

α∈E−1(0)

αjIi,α, j = 0 . . .degE − 1

We now want to compute enough such integrals such that I
can be written as a linear combination of them and an integral
of the first kind.

Proof of Theorem 1. Consider the trace over K(α1)
where α1 is a residue of the integral, and so a root of R. One

of the factor Ri(λ
k′

) of R is the minimal unitary polynomial



of α1, and note l = degRi −1. The other roots of Ri(λ
k′

) are

noted ξiαj . By assumption, its Galois group is Zl+1
k′ ⋉ Sl+1.

Now the trace over K(α1) of the roots of Ri(λ
k′

) are

(ξjα1)j=0...k−1, (ξ
jt)j=0...k−1, . . . , (ξ

jt)j=0...k′−1

and α1 + lt = u ∈ K where u is minus the second leading

coefficient of Ri(λ
k′

) (it is zero for k′ > 1). Now applying

the Galois group of Ri(λ
k′

), we can permute the root α1 to

any root αi, and the factorization of Ri(λ
k′

) in K(αi)[λ] will
have the same structure. We obtain then from algorithm
TraceIntegrals integrals whose residues are any line of the ma-
trix

M =

(

α1 (u − α1)/l . . . (u− α1)/l
. . .

(u− αl+1)/l . . . (u− αl+1)/l αl+1

)

and their multiples by ξ. This matrix is invertible if u 6=
0, and ImM = {x ∈ Cl+1,

∑

xi = 0} for u = 0. Thus
(α1, . . . , αl+1) is in the image of M in both cases, and thus
a K linear combination of the integrals of TraceIntegrals will

have the residues (α1, . . . , αl+1) at suitable poles. Doing this
for all (conjugacy classes of) residues, we can subtract to I a
linear combination of integrals of TraceIntegrals removing all
residues, and thus all poles, so leaving an integral of the first
kind.

Similar proofs can be done with smaller Galois group. In
particular, the same proof works when replacing Sl+1 by any
2 transitive group, and other groups could lead to a different
matrix M , but still invertible.

Example: (see [6]) I1 =

535423

(x4 − 8x3 + 236x2 − 880x+ 12964)(x − 15)(x2 + 118)1/3

The residues are solutions up to multiplication by ξ of

λ− 1, λ2 +
3527

220
λξ +

11261

5280
λ− 449219897

6082560
− 12314729

276480
ξ,

λ2 +
73387

5280
λξ − 11261

5280
λ− 12314729

276480
− 449219897

6082560
ξ

Now applying TraceIntegrals with these extensions gives

174584x4 + 700160x3
− 45841128x2 + 306988544x − 11145996240

(x4
− 8x3 + 236x2

− 880x + 12964)(x − 15)(x2 + 118)1/3

(3)
for the trace over K and 4 more complicated expressions for

the two extensions of degree 2. For the integrals
∫

(xn + x− 3)−1(x2 + 118)−1/3

we obtain for n = 2 with α6 − 1
191867

α3 − 1
32425523

= 0

13α2(2494271α3 − 29531)

(2494271α3 − 243x− 128)(x2 + 118)1/3
.

n 4 5 6 7 8
Degree 12 15 18 21 24
Galois 1944 29160 524880 11022480 264539520
Time 1.21 10.3 31.6 1138 2333

Galois groups of the residue polynomials R have been com-
puted with Magma, but this computation is not necessary to
perform the algorithm, however this ensures that R is generic

and show how useful it is to avoid computations in the split-
ting field. Remark that the trace integrals do not always split
the poles of the integral when there are K relations between
the residues, and in particular in I1 the K-dimension of the
residues is 2 instead of expected 5 (but this is still a generic
R!).

2. COMPUTATIONS IN JACOBIANS

2.1 Superelliptic divisors
Let us recall the definition of divisor and a introduce a

specific notion for superelliptic curves.

Definition 3. A divisor D on a curve C is a function C → Z
with finite support. It is said to be principal if there exists a
rational function f on C such that D(z) = ordx=zf(x). It is
said to be of torsion if there exists N ∈ N∗ such that ND is
principal. The height of a divisor is

∑

(x,y)∈C
| D(x, y) |.

A superelliptic divisor D on a superelliptic curve C is a func-
tion C → Z[ξ] with finite support and D(σ(z)) = ξD(z) with
σ : C → C the kth order shift on branches. It is said to be
principal if D =

∑l

i=1
aiDi with ai ∈ Z[ξ] and Di principal

divisors. It is said to be of torsion if there exists N ∈ Z[ξ]∗

such that ND is principal. The superelliptic divisor of a su-
perelliptic integral is defined by

D(z) = reszP/(QS
1/k)

provided that all the residues are in Z[ξ].

The divisors are usually defined as a function on the places
of C̄, which can be different than simply points of C̄, however
the technical condition implies that any ramification point
is maximally ramified including infinity, and thus there is
a unique place over a ramification point. The value of the
divisor at infinity is recovered using the fact that the sum
over all points ∈ C̄ should be zero. Remark that the notion
of torsion order for divisors is well defined (the minimal N),
however it is not always the case for superelliptic divisors.
The set of possible N forms an ideal of Z[ξ], and from k = 23,
this ideal is not always principal. In the following, we will
not try to find the optimal one anyway.

A divisor will be represented by a list of triples of a irre-
ducible polynomial Q in x, a polynomial R, and a list of k
integers. The roots of Q are the abscissas of the support of
D, R evaluated at Q−1(0) defines the ordinate of a point at
such abscissa, and the list are the value of the divisor at this
point and the other obtained by multiplication by ξ of the
ordinate.

Proposition 4 Any superelliptic divisor D can be written
uniquely

kD(z) =

k−1
∑

i=0

ξiD̃(σi(z)) (4)

where D̃ is a divisor on C such that

k−1
∑

i=0

D̃(σi(z))ξij = 0, ∀j ∧ k 6= 1 (5)

and D̃(z) = 0 on ramification points. We have D of torsion

if and only if D̃ is of torsion. Algorithm Divisor computes

the D̃ associated to the superelliptic divisor of a superelliptic
integral.



Proof. Let us note [d0, . . . , dk−1] the values of D̃ over a

given abscissa (not ramified), and note U(z) =
∑k−1

i=0
diz

i.
We have from (4)

D(z) =

k−1
∑

i=0

ξiD̃(σi(z)) =

[

k−1
∑

i=0

ξidi+l

]

l=0...k−1

=
[

ξ−lU(ξ)
]

l=0...k−1

where indices are taken modulo k. As shifting branches on D
multiplies it by ξ, this equality is satisfied if and only if it is
satisfied for l = 0. We also know that di ∈ Z, and thus we
can apply on (4) the Galois action ψj ∈ Gal(K : Q) which
substitutes ψj(ξ) = ξj with j ∧ k = 1. Thus we know the
values of U(ξj), j ∧ k = 1. The condition (5) is U(ξj) =
0, ∀j ∧ k 6= 1. Thus we know U on all roots of unity, and
U is of degree ≤ k − 1. By polynomial interpolation, there
exists a unique d satisfying these conditions. On ramification
points, we have D(z) = 0 thus (4) is satisfied with D̃(z) = 0.

If D̃ is of torsion, then D̃(σi(z)), i = 0 . . . k− 1 is also, and
thus D is of torsion. If D is of torsion, the Galois action ψj

gives that ψj(D) is also a torsion divisor. Then

∑

j∧k=1

kψj(D) =
∑

j∧k=1

k−1
∑

i=0

ξijD̃(σi(z)) =

and using (5)

k−1
∑

j=0

k−1
∑

i=0

ξijD̃(σi(z)) =

k−1
∑

i=0

(

k−1
∑

j=0

ξij

)

D̃(σi(z)) = kD̃(z).

Proposition 5 The principality of a divisor on C does not
depend of its values on ramification points.

Proof. Consider a divisor D′ whose support is only on
ramification points. Noting xi the abscissa of these points
and di the values of D′, the rational function on C

♯S−1(0)
∏

i=1

(x− xi)
di

has for divisor D′, and thus D′ is principal. Thus for a divisor
D on C, we have

D principal ⇔ D +D′ principal

and thus the principality of D is independent of its values on
the zi.

From now, we will thus work with divisors modulo the divi-
sors over ramification points, and thus in their representation
we will not consider values over ramification points.

2.2 Reduction in the Jacobian

Proposition 6 A divisor D on C with non negative values
is principal if and only if there exists f ∈ K[y]<k[x] such that

ord(x,y)f = D(x, y),∀(x, y) ∈ C

and wdegf =
∑

z∈C
D(z) where wdeg(xiyj) = ki+ (degS)j.

Proof. The existence of a rational f satisfying the order
condition is equivalent to the condition of principality of a
divisor after multiplying f by a rational function in x (which
shifts all the values of D over a given abscissa). As the quan-
tity D(x, y) is always non negative and S has only simple
roots, f should then be a polynomial. The number of ze-
ros of f on C counting multiplicity is wdegf . The number
of zeros with multiplicity required by the order condition is
∑

(x,y)∈C
D(x, y).

Remark that the simple roots condition on S is necessary, as
for C : y3 − x2(x2 + 1), y2/x has not a pole at 0, its divisor is
always non negative, but is not polynomial.

If the divisor D corresponds to a superelliptic divisor, with
Proposition 4, we can recover the principality of the superel-
liptic divisor as it is the divisor of the function LS(f), using
the fact that the function LS is invariant by multiplication of
f by a function of x only.

With this proposition, testing principality of a divisor re-
duces to a linear system solving problem. However, the size
of this system grows as the height of D, and as the coefficients
of the divisor come from residues of the integral, the height
of D can be very large, rendering this approach impractical
except for small examples.

Let us introduce a divisor reduction process. Recall that
the Jacobian of C is defined by its divisors modulo the princi-
pal divisors. It is a g dimensional Abelian variety, and thus
it is possible to reduce divisors to a set of divisors depending
of g parameters.

Proposition 7 Given a divisor D over C with non negative
values, there always exists a principal divisor D′ such that
D′ −D has at most (k− 1)(degS− 1)/2 points in its support.

Proof. Consider a the expression

fN =

k−1
∑

j=0

(

⌊(N+(k−1)(deg S−1)/2)/k−j deg S/k⌋
∑

i=0

ai,jx
iyj

)

Its number of roots on C counting multiplicity is N + (k −
1)(degS − 1)/2, and using the technical condition, it has

k−1
∑

j=0

⌊(N + (k − 1)(degS − 1)/2)/k − j degS/k + 1⌋ =

k+N + (k− 1)(degS − 1)/2 − (k− 1)(degS + 1)/2 = N + 1

parameters. We write down the condition

fN |C
(j)(x, y) = 0, ∀j < D(x, y), ∀(x, y) ∈ C

This is a linear system on the ai,j with
∑

(x,y)∈C
D(x, y) equa-

tions. Thus for N =
∑

(x,y)∈C
D(x, y), it always admits a

non zero solution. Among the roots of fN there will be the
points in the support of D with required multiplicity, but
also (k − 1)(degS − 1)/2 additional points (or multiplicity
increases). Thus the divisor of fN minus D will have at most
(k − 1)(deg S − 1)/2 points in its support.

Remark that if (k − 1)(degS − 1)/2 = 0, then k = 1
or degS = 1. Proposition 7 allows then to reduce D to
a divisor with empty support, so 0, and thus all divisors
are principal, which is indeed the case as the genus of C is
then 0. Also, the genus using Riemann Hurwitz formula is
g = (k − 1)(♯S−1(0) − 1)/2, and as S has only simple poles,
our reduction is optimal.



2.3 Negabinary expansion
Recall that any integer n ∈ Z can be written uniquely

n =

l
∑

i=0

ai(−2)i, ai ∈ {0, 1}, l ∈ N

Similarly, a divisor D on C is defined by a vector of integers
over each abscissa, and thus we can write

D =

l
∑

i=0

(−2)iDi, Im(Di) ⊂ {0, 1}, l ∈ N

JacobianReduce
Input: A divisor D on C.
Output: A sequence of polynomial ∈ K[y]<k[x], and a reduced
divisor D̄

1. if D = 0, return [1], 0.

2. Reduce D modulo 2, note D0 the rest and D1 such that
D = D0 − 2D1.

3. Compute f̃ , D̃ := D0 + 2JacobianReduce(D1).

4. N :=
∑

(x,y)∈C
D̃(x, y)

5. Note f =
∑k−1

j=0
Qj(x)yj with degQj = ⌊(N + (k −

1)(degS − 1)/2)/k − j degS/k⌋

6. Solve the linear system ord(x,y)f ≥ D̃(x, y), ∀(x, y) ∈ C,
and note f the solution of lowest weighted degree.

7. Compute D′ the divisor of f . Return [f, f̃ ],D′ − D̃.

We will prove that algorithm JacobianReduce returns a zero
reduced divisor if and only if the integral I whose superelliptic
divisor gave D thanks to Proposition 4 is of torsion, and then
can be written up to a first kind integral

I =

l
∑

i=0

(−2)iLS(fi).

Proof of Theorem 2. Let us prove by recurrence that
D+JacobianReduce(D) is a principal divisor. For D of height
0, step 1 returns a correct answer. Now assume it is true
for all divisor of height less than D. In step 3, there is a
recursive call on D1 which is the quotient of D by −2. Thus
D1 has strictly smaller height than D, thus by hypothesis,
D1+JacobianReduce(D1) is a principal divisor. ThusD−D̃ =
−2(JacobianReduce(D1) + D1) is a principal divisor. In step
7, D′ is principal by construction, and thus

D + JacobianReduce(D) = D +D′ − D̃

is principal.
Thus if D is principal, JacobianReduce(D) is also principal.

Let us prove that if D is principal, then JacobianReduce(D) =
0. In step 7, we have D′ ≥ D̃ by construction, and thus
JacobianReduce always return non negative value divisors. So
in step 3, D̃ has non negative values, and is principal. Now
applying Proposition 6, we know that in steps 5, 6 we will find
a f such that D′ − D̃ = 0. As D′ ≥ D̃, this will be reached
for the minimal weighted degree solution of equation in step
6, and this is the one we choose.

We must now check termination and complexity. Recursive
calls in step 3 are made on a divisor of strictly lower height,
except 0, which is dealt in step 1. In step 6, a solution f

always exists thanks to Proposition 7 as D̃ has non negative
values. For complexity, steps 6, 7 are in Nω where N is the
height of D̃. However by Proposition 7, the outputted divisor
of JacobianReduce is of height at most (k − 1)(degS − 1)/2,
and D0 is of height at most k degQ, and thus the cost is
O(((k−1)(degS−1)+k degQ)ω). In recursive calls, the sup-
port of D0 is always at most k degQ, thus the same bound ap-
plies. The number of recursive calls is at most log2 height(D),
thus giving complexity O((kd)ω log2 height(D). Now the co-
efficients of D are from the residues of I , and thus the roots
of the residue polynomial R, which comes from a resultant
computation. Thus the the residues are bounded by a poly-
nomial in the coefficients of I , and thus log2 height(D) is in
O(h) with h the height of the coefficients of I . Thus complex-
ity is O((kd)ωh).

Example (see [9])

I2 =
8(7

√
5 − 15)

(x− 20 + 8
√

5)
√
x3 + 5x2 − 40x+ 80

The integral I2 is a trace integral of a superelliptic integral
over K(

√
5). The divisor of I2 is D2 = [x− 20 + 8

√
5,−120 +

56
√

5, [1,−1]]. Consider also the integral

I3 =
3

(x− 1)
√
x3 + 8

, D3 = [x− 1,−3, [−1, 1]]

We compute the divisor reduction in the Jacobian of 3nD2

and 3nD3

n 3 4 5 6 7
D2 time 0.21 0.06 0.09 0.48 1.6

D̄2 digits 1 1 1 1 1
D3 time 0.06 0.45 20 5109 > 104

D̄3 digits 828 7446 67008 603071 > 106

D3 mod time 0.55 0.62 0.86 1.21 1.23

The reduction time (in s) for D2 is negligible, but D3 reduc-
tion time grows exponentially instead of linearly. This is only
because the coefficient size of the reduced divisor grows expo-
nentially, and the timings become as expected when comput-
ing mod 65521. The D2 reductions do not grow in size, in fact
because this is a torsion divisor and thus reductions are peri-
odic in n. Thus in practice, we want to run JacobianReduce
either in positive characteristic, or on torsion divisors. For a
good reduction prime, if the divisor is not principal mod p,
it is not principal in characteristic 0. For example (3), the
divisor is

[x2 + 24ξx + 8x − 48ξ − 130, 8 + 22ξ + 2x, [95909, −158035, 62126]],

[x2
−24ξx−16x+48ξ −82, 2ξx+8ξ +22, [62126, −158035, 95909]],

[x − 15, −7 − 7ξ, [−10560, 21120, −10560]]

To test principality of this divisor, it is enough (!) to look for
a LS function with a polynomial of degree 1928100. Trager’s
approach reduces this to solving a linear system of this size.
Applying JacobianReduce to it modulo 13 allows to reduce
this divisor in 0.39s to [x + 11, 11, [1, 0, 0]] and thus it is not
principal.

3. TORSION OF DIVISORS

3.1 Hasse Weil Bound

Definition 4. A good reduction (p,J ) for a reduced su-
perelliptic integral I on C with coefficients in K(α) is such
that

• p does not divide k.



• J is a prime ideal factor in characteristic p of < Φk(ξ),
P (α) > where P ∈ K[z] is the minimal polynomial of
α.

• All poles of I and roots of S stay distinct under reduc-
tion modulo J .

It is a very good reduction when moreover J has a single
point.

Good reduction primes have important properties [11, 3].

• All divisors of the Jacobian of a curve mod p are of
torsion.

• The mod p reduction on the Jacobian restricted to tor-
sion divisors of order coprime with p is an isomorphism.

Thus the reduction conserves the torsion order provided the
divisor is of torsion with order coprime with p. Following [11],
reducing with two different good primes allows to recover a
unique candidate for the torsion order.

Proposition 8 (Hasse Weil bound) The torsion order of

a divisor on a curve of genus g on Fpq is less than (1+
√
pq)2g.

The torsion order modulo p will be computed by testing
principality of nD for n up to the bound (1+

√
pq)2g. Thus we

want to minimize the upper bound in which q = ♯J −1(0). Us-
ing Tchebotarev theorem [7], the probability of having a fac-
tor J with ♯J −1(0) = 1 is (φ(k) degP )−1, so we can increase
probabilistically p by a factor φ(k) degP to ensure q = 1.
As typically pq < pq, we will then only consider very good
reductions.

3.2 Torsional Test
TorsionOrder
Input: A divisor D on C, ǫ > 0.
Output: An integer n, candidate for torsion order.

1. Find p1 < p2 < p3 primes, p3 > 1/ǫ, such that pi ∤
∆(Qsf(S)) and (Φk(ξ), P (α)) has a prime ideal factor
mod pi with one solution, and note them J1,J2,J3.

2. For n ∈ N∗, Compute JacobianReduce(nD) mod J1 un-
til it reduces to zero.

3. For m ∈ N∗, Compute JacobianReduce(mD) mod J2

until it reduces to zero.

4. Solve equation npu
1 = mpv

2, and if a solution, note N =
npu

1 . Else return 0.

5. Compute JacobianReduce(ND) mod J3. If 0, return N
else return 0.

Proof of Theorem 3. Steps 1 compute three different
very good reduction prime ideals with p3 > 1/ǫ. As mod-
ulo a good reduction prime all divisors are of torsion, then
steps 2, 3 terminate. Now the true torsion order (if it exists)
should be both of the forms npu

1 and mpv
2. As p1 6= p2, this

equation has a most one solution. If none, then D is not of
torsion, thus algorithm returns 0. Else we test in step 5 if
ND is principal modulo J3. If ND is not principal in charac-
teristic 0, its reduction modulo J3 is a random element in a
group of at least (1 +

√
p3)2g elements, thus its probability to

be by chance 0 is ≤ 1/(1 +
√
p3)2g ≤ r−g < ǫ. For g = 0 all

elements are principal and thus this case would not happen,
and for g ≥ 1, the probability is verified.

Now for complexity, in step 1 we need to avoid prime factors
of ∆(Qsf(S)), which are in O(ln ∆(Qsf(S)). Being unlucky, it
is possible that for the first primes, we either have a factor or
that (Φk(ξ), P (α)) has no prime factor of degree 1. The prob-
ability for factorization is 1/(φ(k) degP ), and thus we will
find a prime in O(φ(k) degP ln ∆(Qsf(S)) tests. For steps 2, 3,
the Hasse Weil bound applies and we will find a suitable N in
less than (1 +

√
p)2g = O(pg) = O((φ(k) degP ln ∆(Qsf(S))g)

tests. Each of these tests cost O((kd)ωh ln n), and thus total
cost is in Õ((kd)ωh(k degP ln ∆(Qsf(S))g).

We note r = degP , and d is the number of abscissa in
the support of D, which is also bounded by the degree of Q.
Finally h is the logarithmic height of the coefficients, and thus
ln ∆(Qsf(S) = O(h). Thus the cost is Õ((kd)ω+ghg+1rg).

Remark that step 5 is important for checking with good
probability that indeed the divisor is of torsion. In binary
complexity, arithmetic in Fp costs O(ln p), and thus the check-
ing cost will be in O(ln ǫ). In arithmetic complexity, ǫ does
not matter, in the examples ǫ = 1 was enough and did not
left false positives.

Example (see [8, 10]) I4 =

8
29

(5x3 + 267x2 + 2688x − 10240)(x2 + 40x+ 512)−1

√
x5 + 113x4 + 4864x3 + 102400x2 + 1048576x + 4194304

The divisor of this integral is D4 = [x2 + 40x + 512, 8x +
512, [−1, 1]]. In 2.3s TorsionOrder finds the candidate 29 us-
ing primes 3, 5 and checking with 11. JacobianReduce(29D4)
reduces it to 0 in 0.17s, thus integral is of torsion, with can-
didate integral (not simplified!)

1
29

(LS(x2 + 40x + 512) − 2LS(x3 + 92x2 + 2560x + 4y + 24576)+

4LS(x4 + 104x3 + 4096x2 + 73728x + 524288)−

8LS(−3x3
− 248x2

− 6144x − 49152 + (x + 40)y)+

16LS(x3 + 78x2 + 1792x − 2y + 12288)−

32LS(x5 + 106x4 + 4688x3 + 107520x2 + 1277952x + 6291456+

(2x2 + 80x + 1024)y) + 64LS(x2 + 40x + 512))

This proves that I4 is of torsion, and this expression is indeed
an integral and so the integral of I4 is elementary. Going back
to integral I1, the divisor of (3) has very good reduction for
p = 13, 19, and is respectively of torsion order 2, 19 (found in
3.7s). Thus no compatible torsion order is found in step 4,
and thus this is not a torsion integral, and thus the integral
of I1 is not elementary.

3.3 Elementary Integration Algorithm
We can now put together all these parts. We first compute

minimal polynomials for the residues modulo multiplication
by ξ.

Residues
Input: A reduced superelliptic integral I .
Output: A list of irreducible polynomials in K[λ] whose solu-
tions are the residues of I up to multiplication by ξ.

1. Compute R(λ) = resultantx(P k − λkQ′kS,Q)

2. Factorise R = R1 . . . Rl in K[λ]. L = [].

3. For i = 1 . . . l, if ∀j,Ri(ξ
jλ) /∈ L then add Ri to L.

4. Return L



We will then run TraceIntegrals with the field extension gen-
erated by a root of a polynomial in L. Removing factors of R
having the same roots up to multiplication by ξ avoid doing
the same calculation several times.

ElementaryIntegrate

Input: A superelliptic integral I .
Output: An elementary expression or “Not elementary” or
“Not handled”

1. Apply HermiteReduction(I). If FAIL, return “Not ele-
mentary”, else note Ĩ the reduced integral and A the
algebraic part.

2. L = Residues(Ĩ). For i = 1 . . . ♯L do

(a) Ti = Traceintegrals(Ĩ ,K[L−1
i (0)]). For j = 1 . . . ♯Ti

do

i. D = Divisor(Ti,j), N = TorsionOrder(D, 1), if
N = 0 return “Not elementary”.

ii. (D′, Gi,j) = Jacobianreduce(D). If d′ 6= 0 re-
turn “Not elementary”.

3. Compute Ints = [xiS−1/k, 0]i=0...⌊deg S/k⌋,




∑

α∈L−1

i
(0)

αsTi,j ,
∑

α∈L−1

i
(0)

αs
∑

(−2)rLS(Gi,j)





s=0... deg Li−1
j=1...♯Ti,i=1...♯L

4. Look for a linear combination of the first elements of
Ints which gives Ĩ. If none, return “Not handled”.

5. Apply this same linear combination to the second ele-
ments of Ints, obtain an expression Out.

6. If I − ∂x(A+Out) = 0 return A+Out else return “Not
elementary”.

Proposition 9 If ElementaryIntegrate returns “Not elemen-

tary”, then I is not elementary. If ElementaryIntegrate re-

turns an expression, this is an elementary expression of I. If
ElementaryIntegrate returns “Not handled”, the residue poly-

nomial R is not generic.

Proof. In step 1, if HermiteReduction(I) fails, then I is not

elementary. If Ĩ is elementary, then all the Ti,j are of torsion
with proposition 3. In step 2(a)i if TorsionOrder returns 0,

then Ti,j is not of torsion, thus Ĩ is not elementary. The same
for step 2(a)ii. In step 3, the integrals of first elements and
the second elements differ by an integral of first kind. Thus Ĩ
and Out differ by an integral of first kind. Thus I and A+Out
differ by an integral of first kind. If I − ∂x(A + Out) 6= 0,
then this is a non zero integral of first kind and thus not
elementary. Step 6 is the only case returning an expression,
it is elementary by construction and the result is checked in
step 6. Finally the case “Not handled” can only occur if Ĩ is
not a linear combination of the Ti,j and an integral of first
kind, and by Theorem 1 this does not occur when R is generic.

For complexity, the first loop is executed at most d times,
and note ei the degree of extension for computing Ti, which
costs O(d2e2

i ). The dominant cost of steps 2(a) is the torsion
order calculation, which cost Õ((kd)ω+ghg+1eg

i ). This test is
done ei times, which give total cost of

♯L
∑

i=1

Õ((kd)ω+ghg+1eg+1
i + d2e2

i )

As function of ei, torsion cost is dominant in positive genus,
and as

∑

i
ei ≤ kd by convexity the maximum is reached

when ♯L = 1 and e1 = kd, which gives Õ((kd)ω+2g+1hg+1).
The steps 4, 5, 6 are linear algebra in dimension

∑

i
e2

i which
is maximized when ♯L = 1 and e1 = kd. Thus the cost is
in O((kd)2ω), which is less than the torsion part for positive
genus as ω < 3.

4. CONCLUSION
We proved that generically, a similar decomposition as done

by Trager for rational integrals can be done for superellip-
tic integrals, and thus unusable large field extensions can be
avoided. However it is unproven that it is always possible.
In particular, we would like to prove that the traces of the
roots of a polynomial over its rupture field are enough to
find all K linear relations among the roots. The known al-
gorithms have still factorial in degree complexity [4], even if
generically factorization in the rupture field is enough to find
the relations. We then use fast multiplication techniques in
Jacobians to test fast for principality and torsion of divisors.
However, the principality test in characteristic 0 is still slow
in binary complexity as the coefficient size of reduced divisor
grows very fast. Still we do this computation only when we
are reasonably sure that the divisor is of torsion. Over Q for
elliptic curves, the Nagell-Lutz Theorem gives a bound on the
size of torsion points. If we had a similar bound for the size
of torsion points in the Jacobian of superelliptic curves on
number fields, we could then ensure that the principality test
would also be fast in binary complexity. Also, our algorithm
for finding torsion order relies to test principality of lots of
multiples of D. As the cost is logarithmic, the total cost is
Õ(N) for computing all of them up to N . However, all N
are probably not possible, as for example for elliptic curves
up to quartic fields we already have a complete (small) list of
torsion orders.
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