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ABSTRACT
Two operads are said to belong to the same Wilf class if they have

the same generating series. We discuss possible Wilf classifications

of non-symmetric operads with monomial relations. As a corollary,

this would give the same classification for the operads with a finite

Groebner basis.

Generally, there is no algorithm to decide whether two finitely

presented operads belong to the sameWilf class. Still, we show that

if an operad has a finite Groebner basis, then the monomial basis of

the operad forms an unambiguous context-free language. Moreover,

we discuss the deterministic grammar which defines the language.

The generating series of the operad can be obtained as a result of an

algorithmic elimination of variables from the algebraic system of

equations defined by the Chomsky–Schützenberger enumeration

theorem. We then focus on the case of binary operads with a single

relation. The approach is based on the results by Rowland on pat-

tern avoidance in binary trees. We improve and refine Rowland’s

calculations and empirically confirm his conjecture. Here we use

both the algebraic elimination and the direct calculation of formal

power series from algebraic systems of equations. Finally, we dis-

cuss the connection of Wilf classes with algorithms for calculation

of the Quillen homology of operads.
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1 INTRODUCTION
An algebraic operad (either symmetric or not) is the union of a

sequence of vector spaces, 𝑃 = 𝑃0 ∪ 𝑃1 ∪ . . . So, the first invariant

of the operad is the sequence of dimensions dim 𝑃0, dim 𝑃1, . . .

either per se or in the form of the generation function, which is

called the generating series of the operad.

Suppose that we know a Groebner basis of the operad. Note that

the generating series is equal to the one of the associated monomial

operad. The generating series of the monomial operad is equal to

the generating series of the set of trees avoiding certain patterns,

see [12]. These patterns correspond to the leading monomials of the

Groebner basis. Two sets of tree patterns are called Wilf equivalent
if the corresponding sets of avoiding trees have the same gener-

ating series [4, 18]. Similarly, we call two operads (with the same

generating sets) Wilf equivalent if their generating series coincide.

We see that two operads belong to the same Wilf equivalence

class if the sets of leading monomials of their Groebner bases

(with respect to the same generators, for arbitrary orderings) are

Wilf equivalent as the sets of tree patterns. Since both operads

are defined via the same sequence of vector space dimensions

dim 𝑃0, dim 𝑃1, . . . , in some (weak) sense, they can be considered as

flat deformations of each other. Under some additional conditions

(such as Koszulity) all operads of the same Wilf classe have the

same homological invariants. Wilf equivalence can be considered

as the weakest version of the isomorphism of operads.

In this paper, we focus on non-symmetric operads. Is there an

algorithm to determine if two finitely presented operads (defined by

finite lists of generators and relations over a computable
1
field) are

Wilf equivalent? Generally, there is not. Such a general algorithm

does not exist even if we assume that the operads are quadratic (see

Proposition 3.1 below).

A number of important operads, however, have finite Groebner

bases, so that they belong to the Wilf classes of finitely presented

monomial operads. The generating series of the finitely presented

monomial operads are algebraic functions [12]. To determine the

Wilf class, one needs to (1) construct a system of algebraic equations

which defines the generating series and (2) find the generating

series from the system. The problem (2) is a standard problem

of the algebraic elimination theory; its solution is based on the

Groebner bases theory. Three algorithms for the problem (1) are

discussed in [12] and one algorithm is given in [11]; the first two

are generalized versions of the algorithms by Rowland [18] for

enumeration pattern avoiding binary trees.

Here we go further by proving that such a series is N-algebraic,
that is, it is equal to the generating function of some unambiguous

context-free language. It follows from

1
We call a field computable if there exist finite presentations for all its elements and

algorithms for the arithmetic operations.
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Theorem 1.1 (Corollary 4.3). Let 𝑃 be a finitely generated non-
symmetric operad having a finite Groebner basis of relations. Then its
natural monomial basis forms a deterministic context-free language.

In Section 4, we discuss the algorithm to construct the un-

ambiguous grammar defining the language. Then the Chomsky–

Schützenberger enumeration theorem gives a way to construct

the system of algebraic equations from the grammar. We also see

that the systems obtained by the methods of [12, Section 2.2] give

equivalent systems.

Unfortunately, this algorithm in some cases produces different

systems for two operads of the same Wilf class (see example in

Section 5). So, we should provide an elimination of variables. We

provide a number of computer experiments in the case of operads

generated by one binary operation with one monomial relation.

Such operads encode the varieties of binary (non-associative) al-

gebras which have been widely studied for decades. If we fix the

degree (= the arity) of the relation, then Wilf classes for operads

correspond to the Wilf classes of the binary tree patterns with a

given fixed number of leaves. The number of Wilf classes for the

relation of arity 𝑛 is then equal to the value 𝐴(𝑛) of the sequence
A161746 in Sloane’s On-Line Encyclopedia of Integer Sequences

(https://oeis.org/A161746). Such Wilf classes have been studied by

Rowland [18].

We particularly improve the results by Rowland. That is, we

calculate the term 𝐴(8) = 43 (the previous terms are calculated

in [18]) and give an upper bound and conjectural values for the

terms 𝐴(9)–𝐴(12). The exact value 𝐴(8) = 43 is based on the alge-

braic elimination of the variable. It is provided using the Wolfram

Mathematica tool based on the Groebner elimination. However, we

have found that the value 𝑛 = 8 is the practical limit for recent

Groebner algorithms performance (at least on a standard PC), that

is, for 𝑛 = 9 some cases cannot be practically treated. We have

developed a Python package that calculates the values dim 𝑃𝑡 step-

by-step using recurrent relations from the system of algebraic equa-

tions. After some value of 𝑡 , the number of truncated generating

functions looks stable. We conjecture that the number of different

truncated generating functions is the number of Wilf classes. At

least, these are the lower bounds for the number of Wilf classes.

The resulted values are given in Section 5.

One surprising observation by Rowland is that, for all patterns

with at most 7 leaves, the Wilf class determines the so-called enu-

meration generating functions which encode the number of occur-

rences of the pattern inside all trees. We show that this result is

connected to some homological construction related to operads.

We confirm the Rowland observation in the new cases and discuss

the connection with the Quillen homology of operads in the final

Section 6. This gives new conjectures and new algorithms for the

estimation of the Betti numbers of operads.

The paper is organized as follows. After a background in Sec-

tion 2, we prove the general algorithmic indecidability for Wilf

classes in Section 3. In Section 4 we show that the finitely presented

monomial operads are described by unambiguous context-free lan-

guages. We also discuss the implications for their generating func-

tions. In Section 5, we discuss and particularly improve some of the

results of Rowland on pattern avoidance in binary trees. This gives

some results and conjectures concerning one-relator binary oper-

ads. In Section 6, we briefly discuss the homological interpretation

of these results and conjectures.

2 BACKGROUND: OPERADS, GENERATING
SERIES, AND GROEBNER BASES

2.1 Operads and generating functions
For the details on algebraic operads we refer the reader to the

monographs [15] and [14]; see also the textbook [1].

We consider multioperator linear algebras over a field k of zero

characteristics. A variety𝑊 of k–linear algebras2 is the set of al-
gebras admitting a given collection (signature) of multilinear op-

erations Ω and satisfying some fixed polynomial identities. We

assume that Ω is a finite union of finite sets Ω = Ω2 ∪ · · · ∪ Ω𝑘

where the elements 𝜔 of Ω𝑡 act on each algebra 𝐴 ∈𝑊 as 𝑡-linear

operations, 𝜔 : 𝐴⊗𝑡 → 𝐴. The variety is defined by two sets, the

signature Ω and a set of defining identities 𝑅. By the linearization

process, one can assume that 𝑅 consists of multilinear identities.

Consider the free algebra 𝐹𝑊 (𝑥) on a countable set of indetermi-

nates 𝑥 = {𝑥1, 𝑥2, . . . }. Let P𝑛 ⊂ 𝐹 be the subspace consisting of all

multilinear generalized homogeneous polynomials on the variables

{𝑥1, . . . , 𝑥𝑛}, that is, P𝑛 is the component 𝐹𝑊 (𝑥) [1, . . . , 1, 0, 0, . . . ]
with respect to the Z∞ grading by the degrees on 𝑥𝑖 .

Definition 2.1. Given such a variety𝑊 , the sequence P𝑊 = P :=
{P1,P2, . . . } of the vector subspaces of 𝐹𝑊 (𝑥) is called an operad3.

The 𝑛-th component P𝑛 may be identified with the set of all

derived 𝑛-linear operations on the algebras of𝑊 ; in particular, P𝑛

carries the natural structure of a representation of the symmetric

group 𝑆𝑛 . Such a sequence𝑄 = {𝑄 (𝑛)}𝑛∈Z of representations𝑄 (𝑛)
of the symmetric groups 𝑆𝑛 is called an S–module, so that an operad

carries a structure of S-module with P𝑛 = P(𝑛). The compositions

of operations (that is, a substitution of an argument 𝑥𝑖 by a result

of another operation with a subsequent monotone re-numbering of

the inputs to avoid repetitions) gives natural maps of 𝑆∗-modules

◦𝑖 : P(𝑛) ⊗ P(𝑚) → P(𝑛 +𝑚 − 1). Note that the axiomatization

of these operations gives an abstract definition of operads, see [15].

The signature Ω can be considered as a sequence of subsets of

P with Ω𝑛 ⊂ P𝑛 . Then Ω generates the operad P up to the S–
module structure and the compositions ◦𝑖 so that it is called the set
of generators of the operad.

More generally, the S-module 𝑋 generated by Ω is called the

(minimal) module of generators of the operad P. It can be also

defined independently of Ω as 𝑋 = P+/(P+ ◦ P+) where P+ =

P2 ∪ P3 ∪ . . . and ◦ denotes the span of all compositions of two

S-modules. Then one can define a variety𝑊 corresponding to a

(formal) operad P by picking a set Ω of generators of 𝑋 to be the

signature and considering all relations inP as the defining identities

of the variety, so that the variety𝑊 can be recovered by P “up to

a change of variables”. One can consider the algebras from𝑊 as

vector spaces𝑉 with the actions P(𝑛) : 𝑉 ⊗𝑛 → 𝑉 compatible with

compositions and the S-module structures, so that the algebras of

𝑊 are recovered by P up to isomorphisms.

2
We consider here varieties of algebras without constants, with the identity operator

and without other unary operations

3
More precisely, symmetric connected k–linear operad with identity.



Given an S-module 𝑋 , one can also define a free operad F (𝑋 )
generated by 𝑋 as the span of all possible compositions of a basis

of 𝑋 modulo the action of symmetric groups. For example, the free

operad F (SΩ) on the free S-module SΩ corresponds to the variety

of all algebras of signature Ω.
Suppose that the defining identities 𝑅 of the variety𝑊 can be

chosen in such a way that for each

𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑖

𝛼𝑖 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) ∈ 𝑅,

where 𝛼𝑖 ∈ k and 𝑓𝑖 are monomials (that is, the compositions of

the operations from Ω), in all monomials 𝑓𝑖 the variables 𝑥1, . . . , 𝑥𝑛
occur in the same relative order. A standard example is the variety

of associative algebras, see below. Then one can associate to𝑊 a

simpler non-symmetric operad.
Generally, a non-symmetric operad is a union 𝑃 = 𝑃1 ∪ 𝑃2 ∪ . . .

with the compositions ◦𝑖 as above but without the actions of the
symmetric groups. To distinguish them, we refer to the operads

defined above as symmetric. Each symmetric operad can be con-

sidered as a non-symmetric one. To each non-symmetric operad 𝑃

one can assign a symmetric operad P where P𝑛 = 𝑆𝑛𝑃𝑛 is a free

𝑆𝑛 module generated by 𝑃𝑛 . Then P is called a symmetrization of

𝑃 . In particular, here dimP𝑛 = 𝑛!dim 𝑃𝑛 .

An 𝑛-th codimension of a variety𝑊 is just the dimension of the

respective operad component: 𝑐𝑛 (𝑊 ) = dim 𝑘P𝑛 for P = P𝑊 . We

consider both exponential and ordinary generating functions for

this sequence:

𝐸P (𝑧) :=
∑︁
𝑛≥1

dimP(𝑛)
𝑛!

𝑧𝑛,𝐺P (𝑧) :=
∑︁
𝑛≥1

dimP(𝑛)𝑧𝑛 . (2.1)

For example, if P is a symmetrization of a non-symmetric operad 𝑃

then 𝐸P (𝑧) = 𝐺𝑃 (𝑧). By a generating series of a symmetric operad

P we mean the exponential generating function P(𝑧) = 𝐸P (𝑧).
In contrast, for a non-symmetric operad 𝑃 its generating series is

defined as the ordinary generating function 𝑃 (𝑧) = 𝐺𝑃 (𝑧). In the

case of varieties, both the ordinary and exponential versions of the

codimension series are studied.

If the set Ω is finite then the series P(𝑧) defines an analytic func-

tion in the neighborhood of zero. For example, the non-symmetric

operad Ass of associative algebras is the operad defined by one bi-

nary operation 𝑚 (multiplication) subject to the relation

𝑚(𝑚(𝑥1, 𝑥2), 𝑥3)) = 𝑚(𝑥1,𝑚(𝑥2, 𝑥3)) which is the associativity

identity. Its 𝑛-th component consists of the only equivalence class

of all arity 𝑛 compositions of 𝑚 with itself modulo the relation,

so that Ass(𝑧) = 𝐺Ass (𝑧) = 𝑧
1−𝑧 . Its symmetrization is the sym-

metric operad A𝑠𝑠 generated by two operations 𝑚(𝑥1, 𝑥2) and
𝑚′(𝑥1, 𝑥2) = 𝑚(𝑥2, 𝑥1) with the 𝑆2 action (12)𝑚′ = 𝑚 subject to

all the relations of the form𝑚(𝑚(𝑥𝑖 , 𝑥 𝑗 ), 𝑥𝑘 )) = 𝑚(𝑥𝑖 ,𝑚(𝑥 𝑗 , 𝑥𝑘 )).
By the above, we have 𝐸 A𝑠𝑠 (𝑧) = A𝑠𝑠 (𝑧) = Ass(𝑧) = 𝐺Ass (𝑧),
so that dim A𝑠𝑠 𝑛 = 𝑛!.

2.2 Monomial bases and Groebner bases in
operads

As the motivation for studying the monomial operads in the operad

theory comes often via Groebner bases, we briefly recall here some

basic facts of the theory of Groebner bases (essentially, in non-

symmetric operads). The reader who is interested in monomial

operads only can skip this subsection.

The Groebner bases in (shuffle) operads are introduced in [5];

see also [14]. The Groebner bases for non-symmetric operads are

discussed in [1].

Fix a discrete set Ω of generators of a non-symmetric free operad.

A nonsymmetric monomial is a multiple composition of operations

from Ω. We refer to them simply as monomials. Each monomial is

represented by a rooted planar tree with internal vertices labelled

by operations. We assume that the edges of the tree lead from the

root to the leaves which are free edges.

All monomials (including the empty monomial corresponding

to the identical operation) form a linear basis of the free non-

symmetric operad generated by Ω. Two monomials are called iso-

morphic if they are isomorphic as labelled trees. A monomial 𝑃 is

divisible by a monomial 𝑄 if 𝑄 is isomorphic to a submonomial of

𝑃 where ’submonomial’ means a labelled subtree.

There are families of orderings on the sets of non-symmetric

monomials which are compatible with the corresponding composi-

tions. This defines the notion of the leading term of an element of a

free operad and leads to the rich Groebner bases theory. The theory

includes a version of the Buchberger algorithm [5] and even the

triangle lemma [1]. We will call the Groebner basis of the relation

ideal of an operad P simply the Groebner basis of P. Whereas a

general operad could have no finite Groebner basis, a number of

important operads (including the operad of associative algebras

and their generalized versions) admit such bases.

The first known implementation of Groebner base algorithms

for an operad is the Haskell package Operads [8]. Its slightly im-

proved version with some bugs fixed by A. Lando can be down-

loaded at https://github.com/Dronte/Operads . A new Haskell pack-

age for operadic Groebner bases (due to Dotsenko and Heijltjes)

has been recently published at http://irma.math.unistra.fr/ dot-

senko/Operads.html .

2.3 Growth and generating series for operads
with finite Groebner bases

The generating series of an operad with a known Groebner basis

is equal to the generating series of the corresponding monomial
operad, that is, a shuffle operad or a non-symmetric operad whose

relations are the leading monomials of the corresponding Groebner

basis. The dimension of the 𝑛-th component of a monomial operad

is equal to the number of the monomials of arity 𝑛 which are not

divisible by the monomial relations of the operad. In this section,

we consider monomial operads only.

For such an operad, the calculation of the dimensions of its

components is a purely combinatorial problem of the enumeration

of the labelled trees which do not contain a subtree isomorphic

to a relation as a submonomial (a pattern avoidance problem for

labelled trees), see [7]. Unfortunately, this problem is too hard to be

treated in its full generality. In this section we discuss some partial

methods based on the results of [12]. Note that the generating series

of general monomial quadratic nonsymmetric operads were first

discussed by Parker [16] in other terms.

First, let us discuss a simpler case of non-symmetric operads.



Theorem 2.2 ([12], Th. 2.3.1). The ordinary generating series of
a non-symmetric operad with finite Gröbner basis is an algebraic
function.

One of the methods for finding the algebraic equation for the

generating series of a non-symmetric operad 𝑃 defined by a finite

number of monomial relations 𝑅 is the following. We consider the

monomials (called stamps) of the level less than the maximal level

of an element of 𝑅 which is nonzero in 𝑃 . For each stamp𝑚 =𝑚𝑖 ,

we consider the generating function 𝑦𝑖 (𝑧) of the set of all nonzero
monomials which are left divisible by𝑚𝑖 and are not left divisible

by𝑚𝑡 with 𝑡 < 𝑖 . Then the sum of all 𝑦𝑖 (𝑧) is equal to 𝑃 (𝑧). The
divisibility relation on the set of all stamps leads to a system of 𝑁

equations of the form:

𝑦𝑖 = 𝑓𝑖 (𝑧,𝑦1, . . . , 𝑦𝑁 )
for each 𝑦𝑖 = 𝑦𝑖 (𝑧), where 𝑓𝑖 is a polynomial and 𝑁 is the number

of all stamps. Note that the degree 𝑑𝑖 of the polynomial 𝑓𝑖 does not

exceed the maximal arity of the generators of the operad 𝑃 . Then

the elimination of the variables leads to an algebraic equation of

degree at most 𝑑 = 𝑑21 . . . 𝑑
2
𝑁

on 𝑃 (𝑧).
A couple of similar algorithms which in some cases reduce either

the number or the degrees of the equations are also discussed in [12].

Knowing an algebraic equation for 𝑃 (𝑧), one can evaluate the

asymptotics for the coefficients dim 𝑃𝑛 by well-known methods [9,

Theorem D].

3 THE NON-EXISTENCE OF A GENERAL
ALGORITHM

Proposition 3.1. Suppose that the basic field k is computable.
Consider the set𝐻𝑋 of non-symmetric quadratic operads 𝑃 defined

by a fixed finite set 𝑋 of binary generators and some finite set 𝑅 of
quadratic relations on𝑋 . Then there is a natural𝑛 such that if |𝑋 | ≥ 𝑛

then
(i) the set of Wilf classes of operads from 𝐻𝑋 is infinite;
(ii) there does not exist an algorithm which takes as an input two

sets 𝑅1, 𝑅2 of relations of two operads 𝑃1, 𝑃2 ∈ 𝐻𝑋 which returns
TRUE if the operads belong to the same Wilf class and FALSE if not.

Proof. We use Part (ii) of [17, Theorem 3.1]. It states that, under

the conditions of Proposition, for some rational function𝑄 (𝑧) there
does not exist an algorithm which takes as an input the list 𝑅

of relations of the operad 𝑃 such that there is a coefficient-wise

inequality 𝐺𝑃 (𝑧) ≤ 𝑄 (𝑧) and returns TRUE if the equality𝐺𝑃 (𝑧) =
𝑄 (𝑧) holds and FALSE if not. It follows that the set 𝐻𝑋 contains

both operads with 𝐺𝑃 (𝑧) = 𝑄 (𝑧) and operads with 𝐺𝑃 (𝑧) ≠ 𝑄 (𝑧),
and there is no algorithm to separate these two subsets. If 𝑅1 is

an operad of the first kind and 𝑅2 is an operad of the second kind,

then there is no general algorithm to check whether they belong

to the same Wilf class. This proves (ii). Part (i) obliviously follows

from (ii). □

The rest of our results are positive.

4 OPERADS, TREE PATTERN AVOIDANCE,
AND UNAMBIGUOUS CONTEXT-FREE
LANGUAGES

In this section, we prove Theorem 1.1.

First, let us recall the notation concerning operads and trees.

We consider planar rooted trees with finite possible type of

vertices. These types are the following: the root (as a vertex of a

special type) and a finite set 𝑋 of types for the internal vertices

and the leaves such that the vertices of the same type have the

same number of children. Then the set 𝑋 is decomposed into the

disjoint union 𝑋 = 𝑋0 ∪ · · · ∪ 𝑋𝑑 for some 𝑑 > 0, where 𝑋𝑖 is the
set of the types of vertices with 𝑖 children (the leaves are assumed

to have zero children). We fix some type of leaves 𝑥 ∈ 𝑋0 and refer

to the leaves of type 𝑥 as free ends. Below we consider trees with

no leaves but with free ends, so that we assume that 𝑋0 = {𝑥} is a
singleton. We call such trees labelled trees or simply trees (with the

set of labels 𝑋 = 𝑋0 ∪ · · · ∪ 𝑋𝑑 ).

One can graft (compose) trees by attaching the root of one tree

to a free end of another one or replacing free ends with variables.

Let us fix a (finite) set 𝑌 of labelled trees called patterns. We say

that a tree 𝑇 avoids the pattern set 𝑌 if there is no way to obtain 𝑇

by a subsequent grafting of several trees to each other and at least

one of them is a pattern. In other words, a tree does not avoid the

patterns if it contains a subtree isomorphic to some element of 𝑌 .

The problem is to enumerate all the trees avoiding the patterns.

Some cases of this problem have been discussed in a number

of papers. The case 𝑋 = 𝑋0 ∪ 𝑋2, 𝑋0 = {𝑥} of binary trees has

been considered by Loday [13] and [18] (with 𝑋2 = {𝑚}). The
ternary tree case has been discussed in [10]. The case of quadratic

patterns in binary trees has been under consideration in [16]. The

general labelled trees case has been considered in [12, Section 2],

see also [11].

In Polish notation, each such tree can be encoded by a word

on the alphabet 𝑋 . So, all labelled trees avoiding the pattern set 𝑌

are in a one-to-one correspondence to some formal language on

the alphabet 𝑋 . We denote this language as 𝐿(𝑋 |𝑌 ). The language
𝐿(𝑋 |∅) is referred to as free and is denoted by 𝐹𝑋 .

For example, let 𝑋 = 𝑋0 ∪ 𝑋2, where 𝑋2 = {𝑚1, . . . ,𝑚𝑠 } and
𝑋0 = {𝑥} (where 𝑥 is a mark for free end). Suppose that𝑌 = 𝑌1∪𝑌2,
where 𝑌1 = {𝑚𝑖𝑥𝑚 𝑗𝑥𝑥 |𝑖, 𝑗 = 1..𝑠} and 𝑌2 is some set of trees which

are not divisible by the elements of 𝑌1. The last condition means

that any right-sided branch cannot have length 2 or more. Then

the elements of 𝑌2 should have the form𝑤𝑥...𝑥 , where𝑤 ∈ 𝑋 ∗
2 is a

word on the alphabet 𝑋2 and the number of 𝑥-s is length (𝑤) + 1.
So,

𝐿(𝑋 |𝑌 ) = {𝑢𝑥 length (𝑢)+1 |𝑢 ∈ 𝑋 ∗
2and no subword of 𝑢 belongs to 𝑌2}.

(Note that a word 𝑣 is called a subword of a word 𝑢 if 𝑢 = 𝑎𝑣𝑏 for

some words 𝑎 and 𝑏.) This means that the words of the language

𝐿(𝑋 |𝑌 ) are in a one-to-one correspondence with the words on 𝑋2

which have no subwords lying in 𝑌2, that is, with the monomial

basis of the monomial associative algebra k⟨𝑋2⟩/(𝑌2).
On the other hand, the words of the free language 𝐿(𝑋 |∅) with𝑋

as above are in a one-to-one correspondence with the generalized

Dyck language with 𝑠 pairs of parentheses.

We will prove the following.

Theorem 4.1. Suppose that the sets 𝑋 and 𝑌 as above are finite.
Then the language 𝐿(𝑋 |𝑌 ) is deterministic context-free.

Given an alphabet 𝑋 , one can associate to it a weight function

𝑤 : 𝑋 ∗ → Z+𝑠 by assigning nonzero weights 𝑤 (𝑎) ∈ Z+𝑠 to



each letter 𝑎 ∈ 𝑋 and expanding the weight to 𝑋 ∗
by the rule

𝑤 (𝑢𝑣) = 𝑤 (𝑢) +𝑤 (𝑣). For a language 𝐿 on 𝑋 , one can consider the

generating function

𝐻𝐿 (𝑧) =
∑︁
𝑢∈𝐿

𝑧𝑤 (𝑢) ,

where 𝑧 = (𝑧1, . . . , 𝑧𝑠 ) and 𝑧 (𝑛1,...,𝑛𝑠 ) = 𝑧
𝑛1

1 . . . 𝑧
𝑛𝑠
𝑠 . For example,

in the case 𝑤 (𝑥1) = · · · = 𝑤 (𝑥𝑠 ) = 1 ∈ Z+ the formal power

series 𝐻𝐿 (𝑧1) is the generating function for the growth function

𝑔𝐿 (𝑛) = #{𝑢 ∈ 𝐿 |length (𝑢) = 𝑛} of the language 𝐿.
The famous enumeration theorem by Chomsky and Schützen-

berger [2] describes growth functions of unambiguous context-free

languages. Using this and the theorem by D’Alessandro, Intrigila,

and Varricchio about generating function of sparse context free

languages [3], we get

Corollary 4.2. Let 𝐻 (𝑧) be the generating function of the lan-
guage 𝐿(𝑋 |𝑌 ) above, where the sets 𝑋 and 𝑌 are finite and 𝑧 =

(𝑧1, . . . , 𝑧𝑠 ) is a vector of variables. Then the formal power series
𝐻 (𝑧) satisfies a non-trivial algebraic equation with coefficients in
Z[𝑧]. If, moreover, the growth of the language is sub-exponential,
then the function 𝐻 (𝑧) is rational.

The Chomsky–Schützenberger theorem gives a way to construct

a system of algebraic equations for 𝐻 (𝑧). Its variables are the gen-
erating functions of the sub-languages of 𝐿(𝑋 |𝑌 ) which can be

derived from the non-terminals of the unambiguous context-free

grammar. If we use the grammar 𝐺 for the language 𝐿(𝑋 |𝑌 ) (see
Lemma 4.5), we get a system equivalent to the one described in Sub-

section 2.3 and [12, 2.2.1]. Moreover, after a triangular linear change

of variables, it is also equivalent to another system of equations de-

scribed in [12, 2.2.2]. In the case of binary one-relator operads, these

two kinds of systems were created earlier by Rowland (see [18]; we

discuss this case in Section 5 below).

Corollary 4.3. Let 𝑃 be a finitely generated non-symmetric op-
erad having a finite Groebner basis of relations. Then its natural
monomial basis forms a deterministic context-free language 𝐿(𝑋 |𝑌 )
for some finite 𝑋 and 𝑌 . In particular, the generating series of the
operad satisfy the conclusion of Corollary 4.2.

Given a tree 𝑡 ∈ 𝐹𝑋 , its height ht 𝑡 is the maximal number of

internal nodes lying on the same branch. Let 𝑑 = max{ht 𝑡 |𝑡 ∈ 𝑌 }
be the maximal pattern height. In the case of empty 𝑌 , we put 𝑑 = 0.

We say that a tree 𝑡 is a rooted subtree of a tree 𝑣 (notation: 𝑡 ⪯ 𝑣)

if 𝑣 can be obtained from 𝑡 by grafting some other trees onto it. If,

in addition, 𝑡 ≠ 𝑣 , we write 𝑟 ≺ 𝑡 .

In the notation of Theorem 4.1, let us denote 𝐿 = 𝐿(𝑋 |𝑌 ) and
𝐿′ = 𝐿′(𝑋 |𝑌 ). For 𝑛 ≥ 0, let 𝐿𝑛 (resp., 𝐿′𝑛) denote the set of all trees
in 𝐿 (resp., 𝐿′) having a height of at most 𝑛.

Let 𝑡 ∈ 𝐿. Let𝑀𝑡 = {𝑣 ∈ 𝐿 |𝑡 ⪯ 𝑣} denotes the set of all the trees
of 𝐿 obtained from 𝑡 by grafting other trees onto it. Put

𝑀𝑡 = 𝑀𝑡 \
⋃

𝑠∈𝐿𝑑 :𝑡≺𝑠
𝑀𝑠 .

Lemma 4.4. The language 𝐿 = 𝐿(𝑋 |𝑌 ) is the disjoint union of the
subsets𝑀𝑡 with 𝑡 ∈ 𝐿𝑑 .

Proof. Obviously, the union of all such sets𝑀𝑡 is the same as

the union of all sets 𝑀𝑡 , where 𝑡 runs 𝐿𝑑 . Since 𝑀1 = 𝐿 (where 1

is the tree consisting of the root and single free end), this union is

equal to 𝐿. Let us prove that the union is disjoint.

Ad absurdum, suppose that for some different 𝑠, 𝑡 ∈ 𝐿𝑑 there

exists a tree 𝑝 ∈ 𝑀𝑠 ∩ 𝑀𝑡 . Since 𝑝 ∈ 𝑀𝑠 ∩ 𝑀𝑡 , the both trees 𝑠

and 𝑡 are rooted subtrees of 𝑝 . So, there is the minimal (w. r. t.

the relation "≺") rooted subtree 𝑟 of 𝑝 such that both 𝑠 and 𝑡 are

rooted subtrees of 𝑟 . The set of internal nodes of 𝑟 (as a subgraph

of 𝑝) is the union of the sets of internal nodes of 𝑠 and 𝑡 , so that

ht 𝑟 ≤ max{ht 𝑠,ht 𝑡} ≤ 𝑑 . Since 𝑟 is a rooted subtree of 𝑝 ∈ 𝐿,

it follows that 𝑟 ∈ 𝐿, so that 𝑟 ∈ 𝐿𝑑 . Then 𝑝 ∈ 𝑀𝑟 . If 𝑡 ≠ 𝑝 (or,

respectively, 𝑠 ≠ 𝑝), then

𝑝 ∈ 𝑀𝑡 ⊂ 𝑀𝑡 \𝑀𝑟

(resp., 𝑝 ∈ 𝑀𝑠 \𝑀𝑟 ), in contradiction to the condition 𝑝 ∈ 𝑀𝑟 . So,

𝑝 = 𝑠 = 𝑡 : this contradicts the choice of 𝑠 and 𝑡 . □

Now, let us define a context-free grammar 𝐺 for the languages

𝐿 as follows. Let the sets of terminal symbols be 𝑋 , and let 𝑉 =

{𝑇𝑣 |𝑣 ∈ 𝐿𝑑 } ∪ {𝑆} be the set of non-terminal symbols. The sets of

rules of these grammars are the following. First, for each 𝑣 ∈ 𝐿𝑑 , let

𝑚 =𝑚𝑣 be the label of the root vertex of 𝑣 , and let 𝑘 be the number

of children of this vertex (so that𝑚 ∈ 𝑋𝑘 ). If 𝑘 ≥ 1 then the rule

𝑇𝑣 →𝑚𝑇𝑣1 . . .𝑇𝑣𝑘

exists for some 𝑣1, . . . , 𝑣𝑘 ∈ 𝐿𝑑 iff𝑚𝑣1 . . . 𝑣𝑘 ∈ 𝑀𝑣 . Next, there is a

rule

𝑇𝑥 → 𝑥 .

The initial rules are

𝑆 → 𝑇𝑣

for all 𝑣 ∈ 𝐿𝑑 .

Lemma 4.5. The grammar 𝐺 is unambiguous and generates the
languages 𝐿 = 𝐿(𝑋 |𝑌 ).

Proof. Let us prove that for each word𝑤 from 𝐿 there exists a

unique rightmost derivation in the grammar 𝐺 .

Let us first show that for each such word 𝑤 ∈ 𝑀𝑣 there is a

rightmost derivation beginning with 𝑆 → 𝑇𝑣 . Indeed, if 𝑤 = 𝑥 ,

then there is unique derivation 𝑆 → 𝑇𝑥 → 𝑥 . Otherwise, there

are unique 𝑣, 𝑣1, . . . , 𝑣𝑘 , and𝑚 such that 𝑤 = 𝑚𝑣1 . . . 𝑣𝑘 ∈ 𝑀𝑣 . By

the induction argument, for each 𝑣𝑖 there is a unique rightmost

derivation. It has the form

𝑆 → 𝑇ℎ𝑖 → · · · → 𝑣𝑖 ,

where 𝑣𝑖 ∈ 𝑀ℎ𝑖 . Then there is a rightmost derivation

𝑆 → 𝑇𝑣 →𝑚𝑇ℎ1
. . .𝑇ℎ𝑘−1𝑇ℎ𝑘 → . . .𝑚𝑇ℎ1

. . .𝑇ℎ𝑘−1𝑣𝑘

→ · · · →𝑚𝑇ℎ1
. . . 𝑣𝑘−1𝑣𝑘

→ · · · →𝑚𝑣1 . . . 𝑣𝑘 = 𝑤. (4.1)

Let us show that this derivation is unique. By the induction argu-

ment, it is sufficient to show that the first step is unique. Moreover,

we can assume by induction that the unique rightmost derivation

for any word 𝑏 of length less than the one 𝑤 begins with 𝑆 → 𝑇𝑐
where 𝑏 ∈ 𝑀𝑐 .

So, assume that there is a rightmost derivation 𝑆
∗→𝑤 with

the initial step 𝑆 → 𝑇𝑣′ ; we need to show that 𝑣 = 𝑣 ′. The next
step of the derivation must be of the form 𝑇𝑣′ → 𝑚′𝑇𝑣′1 . . .𝑇𝑣′𝑘′ ,



where𝑚′𝑣 ′1 . . . 𝑣
′
𝑘′

∈ 𝑀𝑣′ . It follows that 𝑤 =𝑚′𝑤 ′
1 . . .𝑤

′
𝑘′
, where

for each 𝑖 there exists a (rightmost) derivation 𝑇𝑣′
𝑖

∗→𝑤 ′
𝑖
. Here𝑚′

corresponds to the mark of the root of the tree𝑤 and the subwords

𝑤 ′
1, . . . ,𝑤

′
𝑘′

correspond to its branches. It follows that 𝑚′ = 𝑚,

𝑘 ′ = 𝑘 , and𝑤 ′
𝑖
= 𝑤𝑖 for each 𝑖 = 1, . . . , 𝑘 . Moreover, since for each

𝑤𝑖 there are two rightmost derivations

𝑆 → 𝑇𝑣′
𝑖

∗→𝑤 ′
𝑖 = 𝑤𝑖

and

𝑆 → 𝑇𝑣𝑖
∗→𝑤𝑖 ,

we use the induction assumption to conclude that 𝑣 ′
𝑖
= 𝑣𝑖 . Thus,

the word𝑚𝑣1 . . . 𝑣𝑘 =𝑚′𝑣 ′1 . . . 𝑣
′
𝑘′

belongs to both𝑀𝑣 and𝑀𝑣′ , so

that 𝑣 = 𝑣 ′. □

Lemma 4.6. The grammar 𝐺 is deterministic.

Proof. We have to show that each word 𝑎 appearing in the

derivation process for some 𝑤 ∈ 𝐿 (respectively, 𝑤 ∈ 𝐿′) has a
forced handle. If𝑤 ∈ 𝑋 , then bothwords appearing in the derivation

𝑆 → 𝑇𝑤 → 𝑤 obviously coincide with their one-symbol handles,

so that the handles are forced.

It remains to show that each word 𝑎 appearing in the deriva-

tion (4.1) for a word𝑤 of length at least 2 has a forced handle. Let 𝑟

be the maximal prefix of 𝑎 which ends with a non-terminal, so that

𝑎 = 𝑟𝑠 where 𝑟 ∈ 𝑋 ∪𝑉 ∗𝑉 ∪ {1} and 𝑠 ∈ 𝑋 ∗
consists of variables.

On the other side, the word 𝑎 has the form 𝑎 = 𝑢ℎ𝑞, where

𝑢,ℎ ∈ (𝑋 ∪𝑉 )∗, ℎ is the handle, and 𝑞 ∈ 𝑋 ∗
is a word consisting of

terminal symbols. The handle ℎ of 𝑎 is the right-hand-side of some

grammar rule, so that it has either the form 𝑇𝑣 for some 𝑣 ∈ 𝐿𝑑 , or

the form 𝜇𝑇𝛼1 . . .𝑇𝛼𝑠 for some 𝜇, 𝛼1, . . . , 𝛼𝑠 , or is equal to 𝑥 .

Let us compare both decompositions 𝑟𝑠 and 𝑎ℎ𝑞 of the same

word 𝑢. Obviously, if ℎ = 𝑇𝑣 for some 𝑣 ≠ 𝑥 , then 𝑎 = 𝑇𝑣 and this is

the first step 𝑆 → 𝑇𝑣 of the derivation. Still, if 𝑎 = 𝑇𝑣 for some 𝑣 ∈ 𝐿,

then ℎ = 𝑎 is forced, because no word but 𝑎 derived from 𝑆 can

begin with 𝑇𝑣 . We will not consider this case further. Next, if the

handle ℎ is of the form 𝜇𝑇𝛼1 . . .𝑇𝛼𝑠 , then it consists of the rightmost

sequence of non-terminals in 𝑢ℎ accompanied with the preceding

terminal symbol, so that 𝑟 = 𝑢ℎ and 𝑠 = 𝑞. Finally, if ℎ = 𝑥 , then

𝑠 = 𝑠1𝑥𝑞, where 𝑠1 does not contain 𝑥 , so that 𝑠1 ∈ (𝑋 \ 𝑋0)∗.
Let 𝑡 ∈ [1, 𝑘] be the maximal number such that 𝑎 appears before

the (𝑘 + 1)-symbol initial segment of the word𝑚𝑇ℎ1
. . .𝑇ℎ𝑘 in (4.1)

is changed, so that the derivation of𝑤 splits as

𝑆 → 𝑇𝑣 →𝑚𝑇ℎ1
. . .𝑇ℎ𝑘 → . . .𝑚𝑇ℎ1

. . .𝑇ℎ𝑘−1𝑣𝑘

→ · · · →𝑚𝑇ℎ1
. . .𝑇ℎ𝑡−1𝑇ℎ𝑡 𝑣𝑡+1 . . . 𝑣𝑘

→ · · · → 𝑎 → . . .𝑚𝑇ℎ1
. . .𝑇ℎ𝑡−1𝑣𝑡𝑣𝑡+1 . . . 𝑣𝑘

→ · · · →𝑚𝑣1 . . . 𝑣𝑘 = 𝑤.

Then 𝑎 has the form 𝑎 =𝑚𝑇ℎ1
. . .𝑇ℎ𝑡−1𝑎

′
with 𝑎′ = 𝑎′′𝑣𝑡+1 . . . 𝑣𝑘 ,

where the word 𝑎′′ appears in the derivation

𝑆 → 𝑇ℎ𝑡 → . . . 𝑎′′ → · · · → 𝑣𝑡 (4.2)

of the word 𝑣𝑡 .

Ad absurdum, suppose that the rightmost derivation of some

word 𝑤 ∈ 𝐿 (or 𝑤 ∈ 𝐿′, in the case of grammar 𝐺 ′
) contains a

word 𝑎 = 𝑢ℎ𝑞 (where 𝑞 ∈ 𝑋 ∗
) which has another handle ℎ̃. If both

handles ℎ and ℎ̃ are of the form 𝜇𝑇𝛼1 . . .𝑇𝛼𝑠 , then each of them is

uniquely defined as the rightmost subword of 𝑢 having this form,

so that ℎ̃ = ℎ, a contradiction. Now, suppose that both handles ℎ

and ℎ̃ are single symbols 𝑥 . Then the handles are uniquely defined

as the leftmost occurrences 𝑥 in the words 𝑢ℎ𝑞 and, respectively,

𝑢ℎ𝑞. Then we again get ℎ̃ = ℎ, a contradiction.

Now, it remains to consider the case when both handles are of

different kinds. We can assume that ℎ = 𝜇𝑇𝛼1 . . .𝑇𝛼𝑠 and ℎ̃ = 𝑥 ,

so that 𝑎 = 𝑢ℎ𝑠 and 𝑎 = 𝑢ℎ𝑠1ℎ̃𝑞. Then ℎ is the handle of the word

𝑎′ = 𝑢 ′ℎ𝑠 ′ appearing in the derivation (4.2) of the word 𝑣𝑡 , where

𝑠 = 𝑠 ′𝑣𝑡+1 . . . 𝑣𝑘 . On the other hand, since the initial symbol of the

word 𝑤 is 𝑚, then 𝑤 = 𝑚𝑣1 . . . 𝑣𝑘 for some 𝑣1, . . . , 𝑣𝑘 . Then the

derivation of𝑤 has the following form similar to (4.1)

𝑆 → 𝑇𝑣 →𝑚𝑇
ℎ̃1

. . .𝑇
ℎ̃𝑘

→ . . .

→𝑚𝑇
ℎ̃1

. . .𝑇
ℎ̃𝑘−1

𝑣𝑘 → · · · →𝑚𝑇
ℎ̃1

. . .𝑇
ℎ̃𝑡−1

𝑇
ℎ̃𝑡
𝑣𝑡+1 . . . 𝑣𝑘

→ · · · → 𝑎 → · · · →𝑚𝑇
ℎ̃1

. . .𝑇
ℎ̃𝑡−1

𝑣𝑡𝑣𝑡+1 . . . 𝑣𝑘
→ · · · →𝑚𝑣1 . . . 𝑣𝑘 = 𝑤.

Here ℎ̃1 = ℎ1, . . . , ℎ̃𝑡−1 = ℎ𝑡−1, because the initial segments 𝑢ℎ

of the words 𝑎 and 𝑎 coincide. Then ℎ̃ is the handle of the word

𝑎′′ = 𝑢 ′ℎ𝑠 ′ in the induced derivation

𝑆 → 𝑇
ℎ̃𝑡

→ · · · → 𝑎′′ → · · · → 𝑣𝑡

of the word 𝑣𝑡 . By induction, the handle ℎ is forced in the word

𝑎′′ = 𝑢 ′ℎ𝑠 ′. This means that ℎ must coincide with any handle in a

word of the form 𝑢 ′ℎ𝑔 for any 𝑔 ∈ 𝑋 ∗
. So, the handle ℎ̃ of the word

𝑎′′ = 𝑢 ′ℎ𝑠 ′ must coincide with ℎ, a contradiction. □

Proof of Theorem 4.1. It follows from Lemmata 4.5 and 4.6

that the language 𝐿(𝑋 |𝑌 ) is defined by deterministic context-free

grammars. Since this language is a subset of the prefix-free language

𝐿(𝑋 |∅), it is prefix-free. So, the language is deterministic context-

free. □

5 ONE-RELATOR BINARY OPERADS AND
TREE PATTERN AVOIDANCE

Consider an operad 𝑃 with a single binary generator. Then, all

internal vertices of the monomials of the operad have the same

label (corresponding to the generator), so, these monomials can be

enumerated by planar binary trees with no labels. Let the operad

have a single monomial relation 𝑡 . Then the monomial linear basis

of the operad is in natural bijection with the binary trees without

labels avoiding pattern 𝑡 .

For example, the single relation𝑚(𝑚(𝑥𝑖 , 𝑥 𝑗 ), 𝑥𝑘 ))−𝑚(𝑥𝑖 ,𝑚(𝑥 𝑗 , 𝑥𝑘 ))
of the non-symmetric associativity operad Ass (see Subsection 2.1)

looks as a difference of two trees, see Figure 1. The leading mono-

Figure 1: The associativity relation

mial of the relation is the monomial 𝑡 corresponding to the tree in

Figure 2. Then a linear basis of each componentAss𝑛 of the operad

consists of the monomials avoiding 𝑡 , that is, the ones with the trees

in Figure 3.



Figure 2: The leading monomial (𝑡 )

Figure 3: A monomial avoiding 𝑡

The methods of enumeration of such trees and the Wilf classes

has been introduced by Rowland [18]; here we recall some of his

results. Let 𝑎𝑛 denote the number of words with 𝑛 vertices (both

internal and external) which avoids pattern 𝑡 . The generating func-

tion

𝐴𝑣𝑡 (𝑥) =
∑︁
𝑛≥1

𝑎𝑛𝑥
𝑛

is called the avoidance function of 𝑡 . Two patterns are Wilf equiva-

lent (or avoidance equivalent, in terms of [18]) if their avoidance

functions are equal. Obviously, Wilf equivalent patterns have the

same number of leaves.

Note that the binary tree with 𝑛 vertices has (𝑛 − 1)/2 leaves.

Since the 𝑘-th component 𝑃𝑘 of the operad is spanned by trees with

𝑘 leaves, the generation function of the operad is

𝐺𝑃 (𝑧) =
∑︁
𝑛

𝑎𝑛𝑧
(𝑛−1)/2 = 𝐴𝑣𝑡 (

√
𝑧)/

√
𝑧.

The Wilf classes of these operads correspond to the Wilf classes of

the patterns.

Now, let 𝑎𝑛,𝑘 be the number of binary trees with 𝑛 vertices which

contains exactly 𝑘 copies of pattern 𝑡 . The enumerating generating
function of 𝑡 is

𝐸𝑛𝑡 (𝑥,𝑦) =
∑︁

𝑛≥1,𝑘≥0
𝑎𝑛,𝑘𝑥

𝑛𝑦𝑘 .

Two patterns are enumerating equivalent if their enumerating gen-

erating functions are equal. As𝐴𝑣𝑡 (𝑥) = 𝐸𝑛𝑡 (𝑥, 0), this is a stronger
version of Wilf equivalence.

The next conjecture states that the strong and weak version of

Wilf classes should coincide.

Conjecture 5.1 (Rowland). If two patterns 𝑠 and 𝑡 are Wilf
equivalent, then they are enumerating equivalent.

In the next section, we discuss a homological interpretation

of the enumerating generating function and the above Rowland

conjecture.

In [18], the algebraic equations defining the functions𝐴𝑣𝑡 (𝑥) and
𝐸𝑛𝑡 (𝑥,𝑦) are listed for all patterns with at most 6 leaves. Moreover,

the number 𝐴(𝑛) of Wilf classes of the 𝑛-leaves patterns are calcu-

lated up to 𝑛 = 8. These numbers are 1, 1, 1, 2, 3, 7, 15, 44. Moreover,

the calculations for 𝑛 ≤ 7 confirm Conjecture 5.1.

Note that the sequence𝐴(𝑛) is listed in Sloane’s On-Line Encyclo-
pedia of Integer Sequences as A161746, see https://oeis.org/A161746.

Now, we have tried to take the next step toward the enumeration

of Wilf classes of one-relator binary operads.

Table 1: Lower bounds for the numbers Wilf classes of one-
relator quadratic operads (the generating functions are cal-
culated up to 𝑜 (𝑥𝑘 ))

𝑛 8 9 10 11 12

𝐴(𝑛) = 43

𝐴(𝑛) ≥ 136 458 1662 6096
𝑘 257 257 257 257 201

𝐸 (𝑛) ≥ 43 136 458 1662 6096
𝑘 257 257 257 201 157

First, we have provided a calculation similar to Rowland’s. We

have used the methods from [18] to construct the systems of alge-

braic equations. The systems of equations were generated by an

ad hoc C# software. We then proceeded with theWolfram Mathe-
matica elimination of variables procedure. As both Groebner bases

methods and computer performance have been improved within

the last decade, we hoped to calculate the number 𝐴(𝑛) of Wilf

classes 𝐴(𝑛) and the number 𝐸 (𝑛) of enumeration classes for the

next values of 𝑛. However, we have done no more than confirm

Rowland’s calculation, that is, to list 15 equations for 𝐸𝑛(𝑥,𝑦) for
𝑛 = 7 and 44 equations for 𝐴𝑣 (𝑥) for 𝑛 = 8.

The systems of algebraic equations over the polynomials give re-

current equations for the coefficients of the power series solutions.

As our systems are of a rather special kind, these recurrent equa-

tions are rather simple in our case. Following this, we developed a

Python package (called Friend reduce, as we have parallelized the

calculations among our friends’ laptops) which, for each of our

systems of algebraic equations, finds its solution in the form of the

collection of truncated formal power series. Given a number 𝑛 of

the leaves, for each pattern 𝑡 with 𝑛 leaves we have, particularly,

calculated all formal power series 𝐴𝑣𝑡 (𝑥) and 𝐸𝑛𝑡 (𝑥) truncated up

to some power 𝑥𝑘 . The numbers 𝐴(𝑛) and 𝐸 (𝑛) of such truncated

series give lower bounds for the numbers 𝐴(𝑛) and 𝐸 (𝑛).
Both packages can be downloaded at

https://github.com/atcherkasov/tree-Wilf-classes.

The results of the calculations are presented in Table 1.

Note that for 𝑛 = 8, we give the exact value𝐴(8) = 43 in place of
the lower bound. Moreover, this equality contradicts the value 44 of
𝐴(8) listed in [18, p. 756]. Nevertheless, we are sure of this equality

for the following reasons. After the elimination of variables, we

get 44 different equations for 𝐴𝑡 (𝑥) with 8-leave patterns 𝑡 . Still,

one can show that two of these equations define the same algebraic

power series. These are the equations

(−𝑥 + 𝑥3 − 𝑥5 − 𝑥7 + 𝑥9 + 𝑥13)
+𝐺 · (1 − 2𝑥2 + 4𝑥4 + 2𝑥6 − 6𝑥8 + 2𝑥10 − 4𝑥12 + 3𝑥14)

+𝐺2 · (−3𝑥3 + 9𝑥7 − 8𝑥9 + 7𝑥11 − 8𝑥13 + 3𝑥15)
+𝐺3 · (−3𝑥6 + 7𝑥8 − 8𝑥10 + 6𝑥12 − 3𝑥14 + 𝑥16)

+𝐺4 · (3𝑥9−2𝑥11−3𝑥13 +2𝑥15) +𝐺5 · (2𝑥12−3𝑥14 +𝑥16) = 0
(5.1)



and

(𝑥 − 𝑥3 + 2𝑥5 + 𝑥9) +𝐺 · (−1 + 2𝑥2 − 6𝑥4 + 2𝑥6 − 3𝑥8 + 2𝑥10)
+𝐺2 · (4𝑥3 − 3𝑥5 + 3𝑥7 − 3𝑥9 + 𝑥11)
+𝐺3 · (−𝑥6 + 𝑥10) +𝐺4 · (−2𝑥9 + 𝑥11) = 0, (5.2)

where 𝐺 = 𝐴𝑣 (𝑥). Indeed, the polynomial on the left hand side

of (5.1) is divisible by the one in (5.2), as we have checked by Wol-
fram Mathematica. Therefore, any formal power series solution

of (5.2) is also a solution of (5.1). As the solutions satisfying the

initial conditions are unique for each equation, these solutions are

the same. This gives the inequality 𝐴(8) ≤ 43. Using the result

𝐴(8) ≥ 43 obtained by the calculation of truncated series, we

conclude that 𝐴(8) = 43.
We see that the number of different formal power series stabilizes

at some values of 𝑘 . That is why we establish

Conjecture 5.2. The values of the numbers 𝐴(𝑛) and 𝐸 (𝑛) of
the Wilf classes and enumeration classes of one-relator operads with
the relation of degree 𝑛 for 𝑛 = 8, 9, 10, 11, 12 are equal to the upper
bounds listed in Table 1.

This conjecture would imply that Conjecture 5.1 holds for all

𝑛 ≤ 12.

6 WILF CLASSES AND HOMOLOGY
The purpose of this section is to discuss a direction for future

research. We believe that this research would give methods and

algorithms to study refined versions of the Wilf classes based on

homological invariants.

In [6] Dotsenko and Khoroshkin have introduced a differen-

tial graded resolution of a shuffle monomial operad 𝑃 (moreover,

the construction is generalized to the case of a general operad

using Groebner bases). The version of this construction for non-

symmetric operads is described in [12, 2.2.3]. It is a free operad

generated by the generators of 𝑃 and additional trees that are in

one-to-one correspondence with the monomials covered by the

monomial relations of 𝑃 in an “indecomposable” way. Let 𝑏𝑘,𝑛 de-

note the number of the degree 𝑛 generators containing exactly 𝑘

copies of the relations. For some particular monomial operads (such

as the quadratic ones and the operads defined by the patterns of

Class 4.2 from [18]), the above resolution is minimal, so that the

numbers 𝑏𝑘,𝑛 are equal to the Betti numbers 𝛽𝑘,𝑛 of 𝑃 in the sense

of Quillen homology (that is, the number of the minimal generators

of internal degree 𝑛 and homological degree 𝑘 in the minimal dif-

ferential graded model of 𝑃 ). In general, we have useful inequalities

𝑏𝑛,𝑘 ≥ 𝛽𝑛,𝑘 .

Let 𝐵𝑃 (𝑧,𝑦) =
∑
𝑘,𝑛 𝑏𝑘,𝑛𝑧

𝑛𝑦𝑘 be the generating function. One

can consider it as a version of the Poincare series of 𝑃 . One can

consider “homological” Wilf classes of the operads by saying that

two operads are homologically equivalent if their functions 𝐵𝑃 (𝑠,𝑦)
coincide.

Proposition 6.1. The functions 𝐵𝑃 (𝑧,𝑦) and 𝐸𝑛𝑡 (𝑥,𝑦) can be
uniquely defined in terms of each other. Therefore, two one-relator
binary operads belong to the same homological Wilf class if and only
if their relations are enumeration equivalent.

Then Rowland’s Conjecture 5.1 implies

Conjecture 6.2. In the class of one-relator binary operads 𝑃 ,
the Betti numbers 𝑏𝑛,𝑘 are uniquely defined by the generating series
𝐺𝑃 (𝑧).

The calculations described in Section 5 confirm this conjecture

provided that the degree of the operad relation is less or equal to

12. If the conjecture turns out to be true, it will be interesting to

get an answer to the question: are Quillen Betti numbers 𝛽𝑘,𝑛 of

one-relator binary operads also determined by the Wilf class?

For the direct calculation of Quillen homology using the irre-

ducible elements of this resolution, one can use the simplicial ho-

mology (cf. chain complexes of simplices mentioned in Subsetcion

2.1 of [6]). It is our future plan to apply computational topology soft-

ware for evaluating the Poincare series of operads and to provide a

stronger homological classification.
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