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ABSTRACT
We perform the first analysis of methodologies for launching DNS
cache poisoning: manipulation at the IP layer, hijack of the inter-
domain routing and probing open ports via side channels. We eval-
uate these methodologies against DNS resolvers in the Internet
and compare them with respect to effectiveness, applicability and
stealth. Our study shows that DNS cache poisoning is a practical
and pervasive threat.

We then demonstrate cross-layer attacks that leverage DNS cache
poisoning for attacking popular systems, ranging from security
mechanisms, such as RPKI, to applications, such as VoIP. In addition
to more traditional adversarial goals, most notably impersonation
and Denial of Service, we show for the first time that DNS cache
poisoning can even enable adversaries to bypass cryptographic
defences: we demonstrate how DNS cache poisoning can facilitate
BGP prefix hijacking of networks protected with RPKI even when
all the other networks apply route origin validation to filter invalid
BGP announcements. Our study shows that DNS plays a much
more central role in the Internet security than previously assumed.

We recommend mitigations for securing the applications and for
preventing cache poisoning.
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1 INTRODUCTION
Domain Name System (DNS), [RFC1034, RFC1035] [59, 60], plays
a central role in the Internet. Designed and standardised in the
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80s to provide lookup services DNS has evolved into a complex
infrastructure and is being increasingly used to support a wide
variety of existing and future applications and security mechanisms.
Given the large dependency of the Internet on DNS it also became
a lucrative target for attacks.

DNS cache poisoning. In a cache poisoning attack an adver-
sary injects malicious DNS records into the cache of a victim DNS
resolver. Poisoning the cache enables the adversary to redirect the
victims using that DNS resolver to malicious hosts instead of the
genuine servers of the target domain. As a result, the adversary
intercepts all the services in the target domain.

In this work we explore how practical off-path DNS cache poi-
soning attacks are and how such attacks can be exploited to launch
cross-layer attacks against applications.

Taxonomy of cache poisoning methodologies. As we ex-
plain in Section 2, off-path DNS cache poisoning is challenging
to launch in practice. Nevertheless, there are methodologies that,
depending on different conditions, can result in practical attacks.
In this work we evaluate such methodologies for launching cache
poisoning attacks: (1) BGP prefix hijacking, (2) transport layer side
channels and (3) injections into IP defragmentation cache. These
methodologies were previously used for issuing fraudulent cer-
tificates, [21] or for hijacking bitcoins [16]. Attacks for issuing
fraudulent certificates were also carried out by [23] using IP frag-
mentation; a method initially proposed in [38]. [57] combined ICMP
error messages and rate limiting of nameservers to create a side
channel for guessing the source port in DNS requests, but have not
evaluated this attack against real Internet systems.

Which of the methods is more effective? Which has higher applica-
bility? Which is stealthier and does not trigger alerts?

To answer these questions we perform the first comparative
analysis of the methodologies for cache poisoning attacks. In addi-
tion, in order to gain a deeper understanding of the methodologies
and their impact on the Internet applications, we also extend the
evaluations in the previous work [21, 23, 57] for Internet scale mea-
surements of applicability and effectiveness of these methodologies
against multiple Internet networks.

Taxonomy of vulnerable applications. The implications of
cache poisoning for the other Internet services and applications
has not been explored. There is evidence of cache poisoning in the
wild, mostly for redirecting victims to impersonating websites [64].
Cache poisoning was also demonstrated in research against the
certificate authorities [21, 23]. But there is no comprehensive study
of exploits of cache poisoning against Internet clients and services.

What applications are at risk due to cache poisoning? How can
an attacker exploit cache poisoning to attack applications? What is
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the fraction of vulnerable applications in the Internet? What are the
challenges and what cache poisoningmethodologies are more suitable?

We answer these questions by evaluating the cache poisoning
methodologies against a range of popular applications. We defined
nine categories of applications, ranging from security mechanisms,
to VoIP, email and intermediate devices; see Table 1. We provide
the first systematic study of cache poisoning against a collection of
popular applications and security mechanisms.

Poisoning is a threat to applications. Our results demon-
strate that, although challenging to launch, off-path DNS cache poi-
soning poses a realistic threat for many Internet applications. Sur-
prisingly, we show that DNS cache poisoning can be applied for
downgrade attacks against securitymechanisms causing the victims
not to perform validation, e.g., RPKI or domain-based anti-spam
validation. Taking RPKI as an example, we developed an attack that
by redirecting the RPKI cache [RFC6810] [24] to a wrong repos-
itory via DNS cache poisoning, the attacker can cause the RPKI
validation to result in status unknown (instead of invalid). As a
result the RPKI cache will not validate correctness of the BGP an-
nouncements that it receives. Suppressing RPKI validation allows
the adversary to perform BGP prefix hijacks even of ASes which
have the corresponding RPKI material (Route Origin Authorization
and resource certificates [54]) in the public repositories and hijack
even the senders which enforce route origin validation [61].

Another example is malware distribution by causing the anti-
spam validation to fail via cache poisoning.

This is the first demonstration of the devastating power of DNS
cache poisoning, which shows that in addition to traditional threats,
such as impersonation, DNS cache poisoning can facilitate much
stronger attacks which were otherwise not possible. We also show
that DNS cache poisoning can be used to inflict Denial of Service
(DoS) on applications and their clients.

In our experimental evaluation against the applications we ex-
ploit DNS cache poisoning to subvert correctness and security of
basic Internet functions, enabling the attackers to take over IP ad-
dresses, to hijack telephony, to de-synchronise local time, and even
prevent victims from connecting to the correct VPN tunnel.

Off-path attacks. Our study is performed with off-path attack-
ers. This is the weakest attacker model in the Internet, it can merely
send packets from spoofed IP addresses, which is a realistic assump-
tion since around 30% of the Internet networks do not enforce egress
filtering [18–20, 55, 56, 58]. Essentially any adversary in the Internet
has off-path capabilities and can select networks which allow it to
send packets with spoofed source IP addresses. Stronger attackers,
most notably the on-path Man-in-the-Middle (MitM), can do more
devastating attacks. Nevertheless, MitM attackers are more rare
and even such attackers have limitations: the strong government
sponsored attackers can be on-path only to some of the Internet
victims depending on the paths that they control but even they do
not control all of the networks. Therefore, it is critical to understand
the threat that an off-path attacker poses to applications.

Disclosure and ethics. Our attacks were tested against remote
networks reliably, yet were ethically compliant. We measured and
evaluated vulnerabilities in the DNS caches of the subjects of our
study and measured which services use the caches but did not
hijack their traffic nor Internet resources and neither did we place
incorrect DNS records for Internet domains that are not under

our control in the caches of our test subjects. Specifically, to avoid
harming Internet customers and domains, we set up a victim AS
and victim domains as well as adversarial AS and adversarial hosts
on that AS, which were used by us for carrying out the attacks
against the victims. Our measurement study for evaluating the
vulnerabilities was performed using our victim domains, which
ensured that the targets of our study would not use the spoofed
records for any “real” purpose.

We believe that in addition to disclosing the vulnerabilities to
the affected entities it is critical to raise awareness to the extent
and the scope of the vulnerabilities.

Contributions. We present the first comprehensive study of
the attack surface that off-path DNS cache poisoning introduces
on the Internet ecosystem.

•We implement three methodologies for launching off-path DNS
cache poisoning attacks: (1) BGP prefix hijacking, (2) side-channels
and (3) fragmentation. We perform the first Internet-scale evalu-
ation of these methodologies against DNS resolvers and compare
them for applicability, stealthiness and success of cache poisoning.

• We apply these methodologies to launch cross-layer attacks
against widely used applications and services (see taxonomy in Ta-
ble 1). Our study shows that cache poisoning can be used to bypass
security mechanisms, to cause DoS attacks, or for impersonation
attacks.

• We provide recommendations for countermeasures for DNS
caches against cache poisoning attacks and for applications against
cross-layer attacks even when using poisoned caches.

Organisation. We review DNS cache poisoning and related
work in Section 2. In Section 3 we present the DNS cache poisoning
methodologies that we use throughout our work. In Section 4 we
demonstrate cross-layer attacks against applications using DNS
cache poisoning.We provide results of our measurements in Section
5 and recommend mitigations in Section 6. We conclude this work
in Section 7.

2 DNS CACHE POISONING OVERVIEW
Domain Name System (DNS) [60] cache poisoning allows an at-
tacker to redirect victims to attacker controlled hosts. Typically
the attackers targets recursive DNS resolvers whose caches serve
multiple clients. A single injection of a malicious DNS record prop-
agates to all the hosts that use that resolver. The attacker can then
intercept the traffic between the services (such as web, email, FTP)
in the victim domain and the hosts that use the poisoned cache.
DNS resolvers use defences to make launching successful cache
poisoning attacks difficult.

2.1 Defences Against Poisoning
The DNS resolvers are required to randomise certain fields in DNS
requests sent to the nameservers, [RFC5452] [43]. These include
a random 16 bit UDP source port and the 16 bit DNS transaction
identifier (TXID); additional defences include nameserver randomi-
sation [43] and 0x20 encoding [28]. The nameservers copy these
fields from the DNS request to the DNS response. DNS resolvers
accept the first DNS response with the correctly echoed challenge
values and ignore any responses with incorrect values.

https://doi.org/10.1145/3452296.3472933
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To launch a successful cache poisoning attack, the attacker needs
to guess the correct challenge values and make sure that his spoofed
response arrives before the genuine response from the real name-
server. This is easy for an on-path (man-in-the-middle) attacker,
which can simply copy the values from the request to the response.
Cryptographic signatures with DNSSEC [RFC6840] [73] could pre-
vent on-path attacks, however, DNSSEC is not widely deployed.
Less than 1% of the second level domains (e.g., 1M-top Alexa) are
signed, and most resolvers do not validate DNSSEC signatures, e.g.,
[25] found only 12% in 2017. Our measurements indicate that less
than 5% of the domains we studied are signed. There is however
an increase in the resolvers validating DNSSEC: we found 28.6%
validating resolvers via our ad-network study. Deploying DNSSEC
was shown to be cumbersome and error-prone [26]. Even when
widely deployed DNSSEC may not always provide security: a few
research projects identified vulnerabilities and misconfigurations
in DNSSEC deployments in popular registrars [44, 67].

Recent proposals for encryption of DNS traffic, such as DNS over
HTTPS [41] and DNS over TLS [42], although vulnerable to traffic
analysis [65, 68], may also enhance resilience to cache poisoning.
These mechanisms are not yet in use by the nameservers in the
domains that we tested. Nevertheless, even if they become adopted,
they were not designed to protect the entire resolution path, but
only the link between the client and the recursive resolver, and
hence will not prevent DNS cache poisoning attacks.

2.2 History of DNS Cache Poisoning
In 2007 Klein identified vulnerability in Bind9 DNS resolvers [50]
and in Windows DNS resolvers [51] allowing off-path attackers
to reduce the entropy introduced by the TXID randomisation. In
2008 Kaminsky [47] presented a practical cache poisoning attack
even against truly randomised TXID. Vixie suggested to randomise
the UDP source ports already in 1995 [72], subsequently in 2002
Bernstein warned that relying on randomising TXID alone is vulner-
able [17]. Following Kaminsky attack DNS resolvers were patched
against cache poisoning [43], and most randomised the UDP source
ports in queries.

Nevertheless, shortly after new approaches were developed al-
lowing cache poisoning attacks. In 2012 [37] showed that off-path
attackers can use side-channels to infer the source ports in DNS
requests. In 2015 [66] showed how to attack resolvers behind up-
stream forwarders. This work was subsequently extended by [74]
with poisoning the forwarding devices. A followup work demon-
strated such cache poisoning attacks also against stub resolvers
[15]. [57] showed how to use ICMP errors to infer the UDP source
ports selected by DNS resolvers. Recently [52] showed how to use
side channels to predict the ports due to vulnerable PRNG in Linux
kernel. In 2013 [38] provided the first feasibility result for launching
cache poisoning by exploiting IPv4 fragmentation.

For the evaluations in this work we selected three generic cache
poisoning methodologies developed in [21, 38, 57], which are not
specific to implementation or setup and do not result due to bugs
in randomness generation, such as [52]. We perform Internet-wide
measurements of these methodologies testing experimentally DNS
cache poisoning against DNS resolution platforms. We then exploit

these poisoned caches to attack applications that use the poisoned
records we injected.

2.3 DNS Cache Poisoning in the Wild
There is numerous evidence of DNS cache poisoning attempts in
the wild, [7–13, 27, 64, 69], which were predominantly launched
via short-lived BGP (Border Gateway Protocol) prefix hijacks or by
compromising a registrar or a nameserver of the domain.

We consider only attacks done by network attackers by manipu-
lating the protocols remotely but without compromising services
or networks. Hence compromises of registrars or servers is not in
our scope and in the review of works we focus only on BGP prefix
hijacks, side channels and fragmentation attacks.

In 2017 [16] simulated the effects of BGP prefix hijacks on bitcoin
without experimentally evaluating it in the wild. In 2018, [21] ex-
perimentally evaluated the impact of BGP prefix hijacks on domain
validation and [23] evaluated the impact of DNS cache poisoning on
domain validation. In 2020 a recent research project [70] evaluated
BGP prefix hijacks for cross-layer attacks on Tor (the onion routing)
[31] users, domain validation and bitcoin [34].

Except for fragmentation based DNS cache poisoning against
domain validation [23] there were no studies of cache poisoning
using different methodologies and their evaluation against appli-
cations. In this work we perform the first comprehensive study
of DNS cache poisoning against different applications, and using
different methodologies.

3 TAXONOMY OF POISONING METHODS
In our evaluations in subsequent sections we use three methodolo-
gies for poisoning DNS caches, which were shown to be practical
in previous research: (1) intercepting DNS requests with BGP prefix
hijacking [70], (2) guessing challenge values in DNS requests via
side-channel [57] or (3) injecting content into IP defragmentation
cache [38]. In this section we describe these attack methodologies,
their unique properties and explain what attacker capabilities they
assume. We compare effectiveness and stealthiness of each of these
methods for carrying out cache poisoning attacks.

Setup. To test our attacks experimentally in the Internet we
setup a victim AS and associate a /22 prefix with our AS.We register
victim domains and setup nameservers and a DNS resolver.

3.1 Intercepting DNS with BGP Hijacking
A malicious Autonomous System (AS) can exploit vulnerabilities in
BGP to hijack packets of some victim AS. A route hijack happens
when an attacker announces an incorrect prefix belonging to a
different AS. The attacker hijacks the prefix or a sub-prefix which
has the IP address of a DNS nameserver or a resolver. If the hijack
succeeds, the ASes that accepted the hijack will send all their traffic
destined to the victim prefix instead to the attacker. The goal of
the attacker is to intercept a single DNS packet, either a query sent
by the resolver or a corresponding response of the nameserver.
For simplicity in this discussion we focus on sub-prefix hijacks
and assume that the attacker attempts to hijack the DNS query;
see [21] for a taxonomy of BGP prefix hijack attacks. The attacker
intercepts the DNS query and crafts a spoofed DNS response with
malicious records and the correct challenge values, and sends it
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Figure 1: DNS Poisoning with side-channel.

to the victim DNS resolver. Additionally, to avoid detection due to
blackholing, the attacker should relay all the traffic to the legitimate
destination, except for the DNS query which it intercepted (to avoid
race condition with the response from the genuine nameserver).
We call this DNS cache poisoning attack method HijackDNS.

3.2 Guessing Challenges with Side-channel
The SadDNS off-path attack [57] uses an ICMP side channel to guess
the UDP source port selected by the victim resolver in its query to
the target nameserver. This is done via a side-channel present in
mostmodern operating systemswhich allows the attacker to test if a
given UDP port open or not. The operating systems have a constant,
global limit of how many ICMP port unreachable messages they
will return when packets are received at closed UDP ports (50 in
the case of linux). The attacker splits the range of ports to sets of N
ports and for every set performs the following: the attacker sends
50 probes with a spoofed source IP address of the nameserver to a
range of UDP ports at the resolver. If the probes arrived at closed
ports only, the returned ICMP error messages reach the global limit,
and further messages will not be issued. The attacker sends a single
probe from the IP address of the attacker to a known-closed port.
If all of the previously probed 50 ports were closed the attacker
will not receive an ICMP message in response to his own message.
However, if one of the 50 probed ports was open, the limit was not
reached, the attacker will receive a ICMP port unreachable message.
The attacker repeats this process until a set containing an open port
is found. Once a set with an open port is found, the attacker applies
divide and conquer with the technique above dividing the ports
until a single open port is isolated. This reduces the entropy of the
challenge-response parameters unknown to the attacker from 32
bit (DNS TXID + UDP port number) to 16 bit.

Once the open port is identified the attacker sends multiple
spoofed DNS responses from a spoofed IP address (of the name-
server) to that open UDP port of the resolver, for each possible TXID
value, total of 216 spoofed responses; e.g., [37, 45, 57]. A packet with
the correct TXID is accepted by the DNS resolver. The attack is
illustrated in Figure 1.
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Figure 2: Fragmentation-based DNS poisoning.

The attack applies to only about 18% of the domains with name-
servers that use rate-limiting. The rate limiting allows the adversary
to delay the response from the genuine nameserver and hence to
win the race against it. Additionally, the attack applies only against
resolvers with a global (un-patched) ICMP rate limit.

3.3 Injecting Records via IP Fragmentation
In this section we describe an attack which exploits IP fragmenta-
tion to inject spoofed fragments into the IP defragmentation cache
on the victim system. The spoofed fragments contain malicious
content, which when reassembled with the genuine fragments, ma-
nipulate the payload of the original IP packet without having to
guess the values in the challenge-response parameters, [38].

We assume that the response from the nameserver is fragmented
and arrives in at least two fragments. The fragment sent by the at-
tacker is reassembled with the first fragment sent by the nameserver.
The attacker replaces the second fragment of the nameserver with
its malicious fragment, which overwrites part of the payload of the
genuine DNS response from the nameserver, with malicious values.
Since the challenge-response values (port, TXID) are in the first
fragment, they remain unchanged. The illustration of the attack is
in Figure 2.

To cause the nameserver to fragment a DNS response the at-
tacker sends to the nameserver a ICMP Destination Unreachable
Fragmentation Needed error message (type 3, code 4) with a DF
bit set, signalling to the nameserver that the Maximum Transmis-
sion Unit (MTU) to the destination is smaller than the packet’s
length. The nameserver reduces the size of the packet accordingly
by fragmenting the IP packet to smaller fragments.

4 EXPLOITING DNS POISONING FOR
CROSS-LAYER ATTACKS

In this section we demonstrate how DNS cache poisoning can be
used to launch cross-layer attacks against popular applications.
In Section 4.1 we explain our methodology for selecting the ap-
plications. We list the categories according to which we selected
the applications in Table 1. Our analysis of the applications is per-
formed according to the key properties related to cache poisoning:
(1) control over the query, (2) which records can be injected, (3)
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Category Protocol Use Case query known query trigger Record DNS used for Methodologies Cache Poisoning
impactname method Type loc. fed. auth. Hijack SadDNS Frag

Authentication Radius Peer discovery target ✓1 direct NAPTR, SRV, A ✓ ✓ ✓ ✓ ✓ DoS: no network access
Online Chat XMPP Chat+VoIP target ✓1 bounce A, SRV ✓ ✓ ✓ ✓ ✓ Hijack: eavesdropping

Email
SMTP Mail target ✓1 direct/bounce A, MX ✓ ✓ ✓ ✓ ✓ Hijack: eavesdropping

SPF,DMARC Anti-Spam target ✓1 authentication TXT ✓ ✓ ✓ ✓ Downgrade: spoofing
DKIM Integrity Checking target ✓1 direct/bounce TXT ✓ ✓ ✓ ✓ Downgrade: spoofing

Web HTTP Web sites target ✓1 direct A ✓ ✓ ✓ ✓ Hijack: eavesdropping
SMTP Password recovery target ✓1 direct A, MX, TXT ✓ ✓ ✓ ✓ Hijack: account hijack

Sync NTP Time synchronisation known ✓ connection DoS A ✓ ✓ ✗ ✓2 Hijack: change time
Crypto-currency Bitcoin Peer discovery known ✓ waiting A ✓ ✓ ✗ ✗ Hijack: fake blockchain

Tunnelling
OpenVPN VPN config ✗ connection DoS A ✓ ✓ ✓2 ✓2 DoS: no VPN aceess

IKE VPN config ✗ connection DoS A ✓ ✓ ✓2 ✓2 DoS: no VPN aceess
IKE Opportunistic Enc. target ✓1 bounce IPSECKEY ✓ ✓ ✓ ✓2 ✓2 Hijack: eavesdropping

PKI
DV Domain Validation target ✓1 authentication A, MX, TXT ✓ ✓ ✓ ✗ ✗ Hijack: fraud. certificate
OCSP Revocation checking target ✓1 direct A ✓ ✓ ✓ ✓ Downgrade: no check
RPKI Repository sync. known ✓ waiting A ✓ ✓ ✗ ✗ Downgrade: no ROV

Intermediate
devices

– Firewall filters config ✗ waiting A ✓ ✓ ✓2 ✓2 Downgrade: no filters
HTTP/... Loadbalancers config ✗ on-demand A ✓ ✓ ✓2 ✓2 Hijack: eavesdropping
HTTP CDN’s config ✗ on-demand A ✓ ✓ ✗ ✓2 Hijack: eavesdropping
DNS ANAME/ALIAS[33] config ✗ on-demand A ✓ ✓ ✓2 ✓2 Hijack: eavesdropping

HTTP/Socks Proxies target ✓1 direct A ✓ ✓ ✓ ✓ Hijack: eavesdropping
1 : Depends on the attack scenario. 2 : Requires a third-party application to trigger queries.

Table 1: Evaluation of attacks against popular systems leveraging a poisoned DNS cache.

how the application uses the injected records, and (4) the outcome
of the attack.

4.1 Methodology for Selecting Applications
We select the applications according to the following considera-
tions: application category, usage of DNS by the application and
the impact of DNS cache poisoning on the application.

4.1.1 Category. We categorise the applications to groups, cover-
ing most of the popular applications and security mechanisms in
the Internet (left most column in Table 1). Within each category
we selected a few representative protocols and systems for that
category, see column ‘Protocol’ in Table 1.

4.1.2 Usage of DNS. One of the considerations for selecting the
applications is how the application uses DNS: how the queries are
sent by the application to the DNS resolver and how the results
from the lookups are processed. The column ‘Use-Case’ in Table
1 describes the usage scenarios of the DNS by the application. We
defined the following types:

Location (loc): DNS is used to locate a direct communication
partner, typically in form of a hostname-to-ip (A, AAAA) mapping.

Federation (fed): DNS is used to locate a user’s home-server based
on the domain part of a user address of the form user@domain.

Authorisation (auth): DNS is used to authorise a certain action
or host in the name of the domain’s owner.

4.1.3 Queries. Applications differ in flexibility in allowing external
entities to trigger queries. Our selection of applications aims to
cover the variety of options for triggering queries. To initiate the
attack, our adversary needs to cause the victim resolver to issue the
target query or to predict when the query will have been issued.

Some applications enable the attacker to send arbitrary queries,
e.g., in systems which use DNS for peer discovery in federated
systems like Radius, XMPP and SMTP. This is because in these
systems, the queried domains are part of the user’s ID. This user

ID can be controlled by the attacker to trigger a query to a domain
of its choice. The same applies to all (sub-)systems used as part
of web browsing, like HTTP, DANE and OCSP, since the attacker
can establish direct connection from the victim client to arbitrary
web servers which will trigger a DNS lookup that way. Setting
the domain name is not always possible, e.g., in NTP the query is
selected by the resolver based on the hostname that it receives from
the local NTP server.

We evaluated popular appliances and systems for their query
triggering behaviour. We list some selected systems in Table 2. As
can be seen, some allow external adversaries to trigger queries (in-
dicated with "on-demand" in column Trigger query). Other devices
use timers for issuing queries. Hence the adversaries can often
predict when the query is issued.

4.1.4 Impact of poisoning on applications. We select applications
to demonstrate the impact that cache poisoning on applications
can create: DoS (Denial of Service), downgrade of security or inter-
ception attacks.

4.2 Methodology for Attacking Applications
We developed cross-layer attacks that leverage DNS cache poison-
ing to attack applications listed in Table 1. The steps underlying all
our cross-layer attacks against applications are:

(1) Use the application to send to the victim DNS resolver a
query. In addition to the traditional ways of triggering queries,
such as with a script or Email, we also developed new ways to
trigger queries which were not known prior to our work. Some
of these techniques are specific to appliances and platforms, see
Table 2, while others are application-independent methodologies
for triggering queries. We explain our methodologies for triggering
queries in Section 4.3.

(2) Inject malicious records to poison the cache of the victim
DNS resolver. We use the methodologies in Section 3 for injecting
malicious records into the cache of the victim DNS resolver. In
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Type Provider Trigger Caching Websites in
query time Alexa 100K

Firewall pfSense timer 500s -
Sophos UTM timer 240s -

Load
balancer

Kemp Technologies timer 1h -
F5 Networks timer 1h -

CDN

Stackpath on-demand TTL 79
Fastly timer TTL 1,143
AWS on-demand TTL 11,057

Cloudflare on-demand TTL 17,393

Managed
DNS

(ALIAS)

DNSimple on-demand TTL 248
DNS Made Easy timer ∼35min 1,192

Oracle Cloud on-demand TTL 1,382
Cloudflare on-demand TTL 20,027

Table 2: Query triggering behaviour atmiddleboxes. Last col-
umn shows the number ofwebsites in 100K-topAlexawhich
use that provider.

Table 1 we summarise the applicability of the cache poisoning
methodologies for cross-layer attacks against each application, and
explain this in Section 4.4.

(3) Exploit the poisoned records to cause a victim application
to divert from the expected behaviour. The outcomes of our cross-
layer attacks against applications range from downgrading security
to denial of service attacks and to more traditional impersonation
attacks, explained in Section 4.5.

4.3 Methodologies for Triggering Queries
4.3.1 Common ways for triggering queries. The most challenging
aspect of cross layer attacks that use DNS cache poisoning is the
ability to trigger or predict DNS requests. Typically an external
adversary does not have access to internal services, such as the DNS
resolver, and hence should not be able to cause the DNS resolver to
issue arbitrary DNS requests. Adversaries can trigger queries via
bounce. For instance, by sending an Email to a non existing recipient
in the target domain the adversary will cause the Email server to
return an error message with Delivery Status Notification. To send
the error the Email server requires the IP address and hostname of
the MX server in the domain that sent the Email message which
triggered the error. This causes queries to the domain specified by
the attacker.

The adversary can also set up a web server and lure clients to
access it, this is a direct query triggering. The clients download the
web objects from the adversary’s domain, and send DNS requests to
the DNS resolvers on their networks. When resolvers receive DNS
requests from servers or clients on their networks they initiate DNS
resolution. However, these approaches are limited. For instance,
only about 18% of the Email servers trigger DNS requests when
receiving Emails, [53]. The limitation with web clients is that the
adversary must wait until the target client visits the malicious web
page. Furthermore, web clients cannot be used to poison resolvers
that are used only by servers, such as Email or NTP. In this section
we develop new approaches for triggering queries.

4.3.2 Cross-applications DNS caches. The adversary may be able to
use one application to trigger queries to inject a record that is meant

to be used for cross-layer attack against a different application that
uses the same DNS cache. For instance, when an adversary cannot
trigger queries via an application that it wishes to attack, it may
often be able to trigger queries via a different application, that
uses the same DNS cache. The adversary may also choose to inject
into such cross-applications caches an application agnostic records;
for instance, a malicious NS record, mapping the nameserver of a
domain of the target application to the attacker’s IP address, is an
example of an application agnostic record.

Such cross-applications DNS cache scenario is not uncommon.
The DNS resolvers often serve multiple applications and the net-
works use the caching of the resolver to reduce traffic and latency for
all the applications. We use open resolvers to check how common
cross-applications DNS caches are. We perform our measurements
against a list of open resolvers from censys [32] and probe their
caches for the well-known domain(s) used by the applications on
our list in Table 1, e.g., pool.ntp.org for NTP. For each application
for which the records are in the cache we consider that the resolver
is used by that application or by the clients of that application. We
found that 69% of the open resolvers are shared between two or
more of the applications on our list.

A recent study [45] analysed how an attacker can find third-party
SMTP servers to trigger queries at typically closed forwarders used
by web clients. By scanning the /24 network block of the resolver’s
outbound IP address, the study found that an adversary could find
an SMTP server which allows triggering queries from the same
resolver in 11.3% of the cases. Additionally 2.3% of the resolvers
were open resolvers in the first place.

4.3.3 Triggering queries via forwarders. In this section we show
how to trigger queries with resolvers when this is not possible from
the target application.

DNS forwarders make up the majority of open resolvers in the
internet. Finding an open forwarder which forwards to the resolver
of choice whose cache the adversary wishes to poison is not difficult.
We explore the prevalence of forwarders through which one can
force a given recursive DNS resolver to trigger a query. We perform
a two step measurement: we first collect the forwarders used by
open DNS resolvers and then which of these forwarders are used
by random clients in the Internet.

In our measurement we use the list of all open DNS resolvers
from Censys [32] (which performs a full IPv4 scan for open re-
solvers). We query all the resolvers for a custom query with a
randomised subdomain under a domain which we control. This al-
lows us upon the arrival of the DNS requests to our nameservers to
map the open resolver’s IP address to the recursive forwarder that
it uses. This forwarder is determined by the outbound IP address
in the DNS query that arrives at our nameserver.

In the second step we run a web ad-based study against random
clients in the Internet that download our object. We trigger DNS
requests via those clients to our own domain. We use a random
subdomain associated with each client. Per client, we then obtain
the list of recursive resolvers’ IP addresses that arrived at our name-
server. We search them in the list of recursive resolvers IP addresses
from our dataset of open resolvers.

Our results are as follows: focusing only on the IP addresses of
the recursive resolvers, we find 4146 addresses out of which 3275
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(79%) addresses are in the open resolver database. Consequently,
assuming that an adversary targets a DNS resolver used by a typical
web client (represented by the ad-net clients in our study), there is a
high probability (79%) that it can find an open forwarder which can
be used to poison the cache of the target victim recursive resolver
used by that web client.

4.4 Applicability to Applications
In this section we explore which cache poisoning methodology is
applicable to which of the applications listed in Table 1.

For all methodologies, the attacker requires the knowledge of
the domain which is queried. In cases where the domain is pre-
configured in the applications configuration ("config" in Table 1),
this information needs to be fetched out of band.

4.4.1 HijackDNS. The adversary can hijack a sub-prefix or same-
prefix of the victim AS. We explain the success probability of cache
poisoning through both methods.

Sub-prefix hijack. The attacker can advertise a sub-prefix of
the victim. The routers prefer more specific IP prefixes over less
specific ones, hence this announcement will redirect all traffic for
that sub-prefix to the attacker.

Same-prefix hijack. Same-prefix hijack occurs when the at-
tacker hijacks a route to an existing IP prefix of the victim. The
attacker can advertise the same prefix as the victim AS and depend-
ing on the local preferences of the ASes will intercept traffic from
all the ASes that have less hops (shorter AS-PATH) to the attacker
than to the victim AS. The success of the hijack depends on the
topological relationship between the attacking AS and the domain
and the victim resolver.

4.4.2 SadDNS. The attack is probabilistic since it depends on the
ability of the adversary to win the race, by correctly guessing the
randomised TXID before the timeout event. A prerequisite to a
successful attack is the ability to trigger a large volume of queries.
Typically, this is the case when the query domain can be set by the
attacker ("target" in Table 1, Column "query name") or when a third
party application is used to trigger the queries (marked with ✓2 in
Table 1, see Section 4.3.3).

4.4.3 FragDNS. FragDNS is also a probabilistic attack since its
success depends on correctly guessing the IP ID value in the spoofed
IP fragment. This is easy when systems have large IP defragmenta-
tion buffers, such as old linux versions which allows the adversary
to send multiple fragments with different IP ID values, or when
systems use incremental IP ID counters which can be predicted. A
successful poisoning with FragDNS typically requires more packets
than with prefix hijacks but less than with SadDNS attack.

4.5 Exploiting Poisoned Caches for Attacks
Applications that use DNS resolvers with poisoned caches are ex-
posed to a range of attacks. In this section we explain the possible
outcomes of the attacks via DNS cache poisoning.

Downgrade attacks. In downgrade attacks the attacker makes
the security mechanism not available, as a result, causing the pro-
cessing of the data to be performed without the additional informa-
tion provided by the securitymechanism. For instance, by poisoning
the responses to queries for SPF or DKIM records the attacker can

trick the victim Email server into accepting phishing Emails or
Emails with malicious attachments. Similarly, by causing the RPKI
validation to fail, the adversary can make a network, that filters
bogus BGP announcements with route origin validation, to accept
hijacked prefixes as authentic. This is due to the fact that RPKI
validation will result in status ‘unknown’ and hence will not be
used.

The attacker can also trick a security mechanism via DNS cache
poisoning. For instance, the attacker can bypass domain validation,
by redirecting the validation to run against attacker’s host [23], and
hence can issue fraudulent certificates.

Hijack attacks. In hijack attacks the victims are redirected to
attacker’s host which impersonates a genuine service in the Inter-
net. Network adversaries can hijack traffic to take over Internet
resources, such as SSO accounts at public providers. For instance,
the adversaries can take over the SSO accounts at Regional Inter-
net Registries (RIRs), by exploiting a combination of DNS cache
poisoning with password recovery [29]. The idea is to poison the
cache of the RIR, and to inject a record that maps the victim LIR to
the host of the attacker. Running a password recovery procedure
causes the password for the victim SSO account to be sent to the
attacker instead of the victim. As a result, the attacker can hijack
the digital resources, such as IP addresses and domains, that belong
to the victim LIR.

DoS attacks. The attacker can block connectivity, e.g., for radius
clients or access to services, such as secure tunnels. The idea is
that if the attacker cannot forge cryptographic material, such as a
certificate to authenticate a radius client, it can redirect the client
to the wrong host via cache poisoning, preventing the client from
connecting to the genuine target service. The adversary will not be
able to provide authenticated material which will result in a failure,
and lack of service for the victim client.

5 INTERNET MEASUREMENTS
In this section, we analyse the fraction of the vulnerable resolvers
and nameservers with respect to each DNS poisoning method. We
evaluate properties which influence the success of the cross-layer
attacks against applications. Our measurements in this section
show that the vulnerabilities do not significantly differ for most of
the application-specific datasets. The outliers can be summarised
as follows:

• Vulnerabilities to BGP sub-prefix hijacking are exceptionally
high for eduroam and low for RPKI domains. The cause may be
inherent in networks’ sizes (large in case of universities and small
for RPKI repository operators) and accordingly use BGP announce-
ments which are larger than /24 for large networks or equal to /24
for small networks.

• Vulnerabilities to fragmentation cache poisoning among open
resolvers is low compared to other resolvers in our dataset. This
may be due to the fact that the distribution of the open resolvers is
skewed towards poorly configured devices which cannot handle
fragmentation.

• Domains with MX, SRV, NAPTR (eduroam) records are more
often vulnerable to fragmentation based cache poisoning than the

https://doi.org/10.1145/3452296.3472933


SIGCOMM ’21: Proceedings of the 2021 ACM SIGCOMM 2021 Conference, August 2021, Pages 836-849
Accepted version. https://doi.org/10.1145/3452296.3472933

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

domains in the 1M-top Alexa dataset. One reason is that the re-
sponses to ANY queries result in much larger packets, which often
exceed the minimum MTU limit.

5.1 Vulnerabilities in Resolvers
We test the DNS resolvers for vulnerabilities to the three cache
poisoning methods (Section 3) for different applications. The results
of our evaluations for all datasets and all poisoning methods are
summarised in Table 3.

5.1.1 Dataset. For each application from Section 4, we gather
datasets of resolvers used by the front-end systems (i.e., Web clients,
Alexa MX records, etc.) of that application. To achieve this, we first
look for an appropriate dataset of front-end systems and then trig-
ger queries through those front-end systems. This allows us to
discover and test the corresponding resolver.

For front-end systems, we use the following datasets, listed in
Table 3: (1) Our local university eduroam service. (2) Password
recovery of popular infrastructure service providers, consisting of:
All 5 Regional Internet Registries, popular domain registrars used
by Alexa Top 100K domains and popular cloud providers [1, 2, 4, 5].
(3) Domain validation of most popular Certificate authorities [3].
(4) Popular CDNs in Alexa Top 100K (by mapping A record to
ASN). (5,6) SMTP and XMPP servers of Alexa Top 1M domains. (7)
Web clients gathered via an Ad-network. (8) Open resolvers from
Censys [32] and (9) a subset of those open resolvers who cache
pool.ntp.org. This resulted in a dataset of 89,924 resolvers (back-
end IP addresses) in 13,804 ASes associated with 33,418 prefixes.

We report the dataset size in terms of front-end systems (i.e.,
number of SMTP servers or number of open resolver front-end IP
addresses) in column "Dataset size" of Table 3. For vulnerability, we
report the percentage of vulnerable front-end systems which was
measured as described in Section 5.1.2. When a front-end system
uses multiple resolvers, we consider it vulnerable if any of the
resolvers it uses is vulnerable.

5.1.2 Measuring cache poisoning vulnerabilities in resolvers. The
results of our measurements and evaluations against resolvers for
different poisoning methodology are summarised in Table 3. In the
following sections we explain the measurements we carried out of
each attack methodology against the resolvers in our dataset.

Sub-prefix BGP hijacks (HijackDNS). Since many networks fil-
ter BGP advertisements with prefixes more specific than /24, we
consider an IP address hijackable if it lies inside a network block
whose advertised size is larger than /24. We therefore map all the
resolvers’ IP addresses to network blocks and consider those vulner-
able to sub-prefix hijacks whose advertisement is larger than /24,
since an advertisement with a smaller prefix will always take prece-
dence over a bigger one. For the remaining addresses, a BGP-hijack
may still be possible using same-prefix hijacks. To infer the scope
of DNS platforms potentially vulnerable to cache poisoning via
BGP sub-prefix hijack attacks we perform Internet measurements
checking for DNS platforms on prefixes less than /24. We collect
information on the state of the global BGP table in the Internet with
Routeview [71] and RIPE RIS [63] collectors. We analyse the BGP
announcements seen in public collectors for identifying networks
vulnerable to sub-prefix hijacks by studying the advertised prefixes

sizes. The measurements of resolvers vulnerable to BGP sub-prefix
hijacks are listed in Table 3 and plotted in Figure 3.

Same-prefix BGP hijacks (HijackDNS). We perform simulations
of same-prefix BGP hijacks using a set of randomly selected attacker
and victim AS pairs using a simulator developed in [39] and Inter-
net AS level topology downloaded from CAIDA [6]. The simulator
selects Gao-Rexford policy compliant paths [35], and considers pre-
fix lengths and AS-relationship (provider, customer and peer) and
sizes (stub, small, medium and tier one). The attackers are randomly
selected from all the ASes whereby the victim ASes are selected
from our dataset of DNS resolvers and 1M-top Alexa domains. For
each (attacker, victim)-pair we perform a simulation of same-prefix
hijack that the attacker AS launches against a victim AS. If the
attacking AS is closer to the victim, the attack succeeds. The sim-
ulation shows that the attacking AS was capable of hijacking the
traffic in 80% of the evaluations.

SadDNS. To test resolvers vulnerable to SadDNS, we test the
resolvers back-end IP addresses for a global ICMP message limit
which allows to use the side-channel identified by [57]. To limit
our dataset to functional resolvers which are still reachable, we
furthermore send an ICMP echo-response (‘ping‘) packet to the
resolver first. This is especially important for the open resolvers
dataset, since this dataset tends to include resolvers operating from
dynamic IP addresses, which may have changed since the dataset
was collected.

For the open resolver dataset we measured a vulnerability rate
of 12%, a notable reduction from the 35% vulnerability rate of the
original paper [57]. This difference could be influenced by various
factors including the fact that our dataset contained more resolvers
than [57]. The crucial difference is likely that our study was con-
ducted after the vulnerability which allowed the global rate limit
to be exploited was patched in many systems. For example, all up-
dated versions of Ubuntu should have been patched by the time we
carried out our evaluations1.

FragDNS. To test vulnerability to fragmentation-based DNS
cache poisoning, we use a custom nameserver application which
will always emit fragmented responses padded to a certain size to
reach the tested fragment size limit. The nameserver is configured
to only send CNAME responses in the first fragmented response.
This means that if the resolver receives a fragmented response, it
needs to re-query for the CNAME-alias. This allows us to verify
that the answer arrived at the resolver and thus, that the resolver
is vulnerable to this type of attack.

Using this setup, we test all resolvers by triggering queries to
our nameservers and observe if the fragmented responses are ac-
cepted. In our bigger datasets, vulnerability rates range between
31% for Open resolvers and 91% for Ad-net resolvers. For the smaller
datasets, we still observe many vulnerable services. However, all
certificate authorities’ resolvers in our dataset rejected our frag-
mented responses, maybe attributed to the fact that this attack
method was already evaluated and disclosed to CAs previously
[23]. We report results for all datasets and all poisoning methods
in Table 3.

1https://ubuntu.com/security/CVE-2020-25705
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Dataset Protocol
Vulnerable against Dataset

sizeBGP hijack Sad- Frag-
sub-prefix DNS ment

(1) Local university Radius 100% 0% 100% 1

(2) Popular services PW-
recovery 93% 16% 90% 29

(3) Popular CAs DV 75% 0% 0% 5
(4) Popular CDNs CDN 100% 0% 25% 4
(5) Alexa 1M SRV XMPP 73% 1% 57% 476

(6) Alexa 1M MX

SMTP
SPF

DMARC
DKIM

79% 9% 56% 61,036

(7) Ad-net study
HTTP
DANE
OCSP

70% 11% 91% 5,847

(8) Open resolvers All 74% 12% 31% 1,583,045
(9) Cache test NTP 79% 9% 32% 448,521

Table 3: Vulnerable resolvers.

5.2 Vulnerabilities in Domains
In this section we perform measurements of the vulnerabilities in
domains to our cache poisoning methodologies for different ap-
plications. We collect lists of the domains associated with these
applications and test all the nameservers serving each domain ac-
cording to the properties required for each cache poisoning method
(from Section 3). The results of our evaluations and measurements
for all the tested datasets and poisoning methods are summarised
in Table 4.

Dataset Protocol
Vulnerable against DNS

SEC TotalBGP hijack Sad- Fragment
sub-prefix DNS Any Global

(1) Eduroam list Radius 96% 11% 44% 18% 10% 1,152

(2) Alexa 1M
HTTP
DANE
DV

53% 12% 4% 1% 2% 877,071

(3) Alexa 1M MX

SMTP
SPF
DKIM
DMARC

44% 6% 7% 1% 3% 63,726

(4) Alexa 1M SRV XMPP 44% 4% 29% 5% 7% 2,025
(5) RIR whois PW- 59% 9% 14% 4% 4% 58,742
(6) Registrar whois recovery 51% 10% 23% 5% 6% 4,628
(7) Well-known NTP 25% 0% 25% 25% 25% 9

(8) Well-known Crypto-
currency 28% 17% 21% 3% 21% 32

(9) Well-known RPKI 14% 0% 0% 0% 67% 8

(10) Cert. Scan IKE
OpenVPN 51% 11% 5% 1% 7% 307

Table 4: Vulnerable domains.

5.2.1 Dataset. For each application in Section 4, we collect datasets
of typical domains looked up by clients (or servers) of that appli-
cation. We collect such domains from the following data sources,
listed in Table 4:

(1) Eduroam institution lists fromUnited Kingdom [46], Germany
[30] and Austria [14]. (2) Alexa Top 1 Million domains, including
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Figure 3: Announced prefixes.

subsets of domains which have (3) MX and (4) SRV (XMPP) records.
Domains from account email addresses from whois databases of
(5) RIRs and (6) Registrars. (7) Well-known NTP server domains.
(8) Well-known cryptocurrency domains. (9) Well-known RPKI
validator database domains. (10) Domains of IKE and OpenVPN
servers’ certificates. This resulted in 904,555 domains hosted on
200,086 nameservers in 24,353 ASes associated with 60,511 prefixes.

5.2.2 Measuring cache poisoning vulnerabilities in nameservers.

HijackDNS. We perform a similar analysis as in Section 5.1.2,
to check the vulnerabilities to BGP prefix hijacks. The results are
plotted in Figure 3. The differences between the fractions of name-
servers in 1M-top Alexa domains that can be sub-prefix hijacked
are not significantly different than those of the resolvers.

The resilience of the DNS infrastructure to BGP hijack attacks is
also a function of the distribution and the topological location of the
nameservers in the Internet. We measured the characteristics of the
nameservers from the Internet routing perspective. Our findings
show that the nameservers are concentrated in just a few ASes.
Our measurements show that 80% of the ASes host less than 10% of
the nameservers, and the rest of the nameservers are concentrated
on the remaining ASes. This concentration of the nameservers on
a few ASes, typically CDNs, makes it easier to intercept traffic of
multiple nameservers with a single prefix hijack.

SadDNS. For a nameserver to be vulnerable to side-channel at-
tack (Section 3.2), the attacker must be able to ‘mute‘ the name-
server to extend the time-window for the attack. This is achieved by
abusing rate-limiting in nameservers. To find out if a nameserver
supports rate-limiting, we use the following methodology: we
send to the nameserver a burst of 4000 queries in one second,
and see if this stops (or reduces) the subsequent responses received
from this server. We consider a nameserver to be vulnerable if we
can measure a reduction in responses after the burst.

Fragmentation. We evaluate the vulnerability to fragmentation-
based poisoning in nameservers and domains by testing three prop-
erties required to create a sufficiently large fragment in order to
inject malicious records into it: (1) support of IMCP fragmentation
needed, (2) record types for optimising response size, (3) by bloating
the queried domain and (4) fitting the response into the limitation
of EDNS.

PMTUD. We first check for the support of path MTU discovery
(PMTUD) with ICMP fragmentation needed: we send to the name-
server an ICMP fragmentation needed packet, which indicates that
the nameserver should fragment packets sent to our test host. Then
we send queries of different type to that domain. We consider a
nameserver vulnerable if the responses return fragmented.

Record types. We evaluated fragmentation with three record
types: ANY, A and MX. We use DNS requests of type ANY to increase
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Implementation Vulnerable Note
BIND 9.14.0 yes cached

Unbound 1.9.1 no doesn’t support ANY at all
PowerDNS Recursor 4.3.0 yes cached

systemd resolved 245 yes cached
dnsmasq-2.79 no not cached

Table 5: ANY caching results of popular resolvers.

the response size above the fragmentation limit of the nameserver.
We find that for 19.50% of domains in 1M-top Alexa there is at least
one nameserver which emits fragmented DNS responses, which can
be used for cache poisoning attacks via injection of IP fragments.
We plot the minimum fragment size emitted by those nameservers
in Figure 4, which shows that most affected nameservers (83.2%)
fragment DNS responses down to a size of 548 bytes and 7.05%
even down to 292 bytes. We tested ANY response caching in 5 of
the most popular resolver implementations and found that 3 out
of 5 use the contents of an ANY response, to answer subsequent A
queries, without issuing further queries (See Table 5). Namely, the
adversaries can often launch cache poisoning attacks by issuing
queries for ANY record type in the domain.

However, only open resolvers (or forwarders) allow the attacker
to trigger ANY queries. We repeat the same study using queries for
A record type and then for MX record type, which are the query
types typically triggered using the other query-triggering methods,
such as via email or a script in a browser. We get vulnerability rates
of 0.29% and 0.44% respectively due to the smaller response sizes
which are often not sufficiently large to reach the nameserver’s
minimum fragment size. However, these numbers represent the
lower bound.

Bloat query. The attacker can bloat the queries by concatenat-
ing multiple subdomains which increases the responses sizes. The
maximum increase is up to 255 characters. The labels are limited
to max 63 characters (+1 for the label delimiter) and the attacker
can concatenate four subdomains: 4*64 (minus the parent domain).
This increases the vulnerable resolvers to above 10%.

Fitting into response. Additionally to the requirement that the
DNS response size must be big enough to trigger fragmentation
on the nameserver side, it must also be small enough to fit in the
resolvers maximum response size advertised in EDNS.

To evaluate this, we measure the EDNS UDP size of more than
1.5K open resolvers collected from Censys [32] IPv4 Internet scans.
We query each resolver by triggering a query to our own name-
server and measure the EDNS UDP payload size advertised in the
query. The results are shown in Figure 4. Approximately 40% of
the resolvers support UDP payload sizes of up to 512 bytes, while
50% of the resolvers advertise a payload size equal or larger than
4000 bytes. The remaining 10% are between 1232 and 2048 bytes.
Given the minimum MTU size measurement of the nameservers
in 1M-top Alexa domains in Figure 4, this means that the resolver
population is essentially portioned in two groups: one group (40%)
which is vulnerable to poisoning attacks with 7% of all vulnerable
domains and one group (50-60%) which is vulnerable to poisoning
attack with all the vulnerable domains.
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Figure 5: Venn diagram of all vulnerable resolvers (by num-
ber of back-end addresses) and domains.

5.3 Comparative Analysis
Our measurements show that the methodologies for DNS cache
poisoning can often result in practical attacks, depending on the
setup, network conditions and server configurations. In this section
we compare the DNS cache poisoning methodologies with respect
to stealthiness, effectiveness and applicability.

The main insights of the experimental measurements that we
performed using each of the methods in Section 3 are summarised
in Table 6. The columns in Table 6 correspond to the attacks we
carried out against the domains and resolvers in our dataset (see
Section 5).

BGP Hijack SadDNS Fragmentation
sub- same- any IPID global IPID

Applicability
Vuln. resolvers 70%

or
80%
or

11%
and

91%
and and

Vuln. domains 53% 70% 12% 4% 1%
Effectiveness

Hitrate 100% 0.2% 0.1% 20%
Queries needed 1 497 1024 5

Total traffic (pkts) 2 987K 65K 325
Stealthiness

Visibility very
visible visible stealthy, but locally de-

tectable (Packet flood) very stealthy

Additional requirements
Additional none none max(resolver EDNS size)

requirements < min(nameserver MTU)
Table 6: Comparison of the cache poisoning methods.

5.3.1 Applicability. A method is applicable against a resolver for
some domain if it results in a practical DNS cache poisoning attack.
The applicability for each method for resolvers and domains is
listed in Table 6.
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To compare the applicability of the methodologies we use the
results of our internet measurements (Tables 3 and 4) and take
the numbers for the ad-Net resolvers and 1M-top Alexa domains
datasets. We also show the absolute number of all vulnerable re-
solvers (according to a back-end address) and domains in all our
datasets in Figure 5. This figure shows that the number of resolvers
and domains vulnerable to HijackDNS is by far the highest, while
SadDNS has more vulnerable domains and FragDNS has more vul-
nerable resolvers. The overlaps between the vulnerable domains
and resolvers can be seen as expected for a distribution of unrelated
properties, i.e., SadDNS and FragDNS have a significant overlap
with HijackDNS, which is due to the fact that 53-70% of the sys-
tems we measured are vulnerable to HijackDNS, while SadDNS
and FragDNS only have a small overlap compared to number of
vulnerable systems in each category. Only 11% of the DNS resolvers
and 12% of the domains are vulnerable to SadDNS attack. Many
more resolvers are vulnerable to injection of content via IPv4 frag-
ments, hence FragDNS attack is more applicable than SadDNS. In
addition, due to its large size, the open resolver dataset dominates
the results in our comparison.

5.3.2 Effectiveness. Attack effectiveness is demonstrated with the
traffic volume needed for a successful attack, which is a function
of the number of queries that should be triggered for a successful
attack. The larger the attack volume, the less stealthy the attack is.
We define hitrate as the probability to poison the target DNS cache
with a single query and calculate the expected number of queries
for each of the poisoning methods by inversion of the hitrate. We
estimate the expected number of packets sent to the resolver by
multiplying this with the traffic volume generated per query. For
SadDNS where the amount of traffic during the attack is not stable,
we analyse the experimental data for the amount of traffic needed.

HijackDNS. If an AS prefers a malicious BGP announcement
of the adversary to the announcement of the victim AS, then the
attack is effective, requiring only a single packet to send a malicious
BGP announcement and then another packet to send a spoofed DNS
response with malicious DNS records.

SadDNS. Using our implementation of SadDNS attack from
Section 3.2 we find that the DNS cache poisoning with SadDNS
succeeds after an average of 471 seconds (min: 39 seconds, max:
779 seconds). This is inline with the results in [57] which report an
average of 504 seconds. To achieve a successful attack we needed
to run 497 iterations on average. This is correlated with the attack
duration since we do not trigger more than two queries per second.
When more queries within one attack iteration are triggered, the
resolvers respond with servfail. By inverting this number we
get a hitrate of 0.2%. Notably however, since most of the queries
do not result in attack windows of meaningful length, an attacker
should be able to optimise the attack by analysing the exact back-
off strategies used by the target resolver, and adjusting the queries
according to this.

Using the results from our SadDNS experiment, we also obtain
statistics for how may packets are sent to the target resolver. On
average, our implementation sent 986,828 packets or 88MB of traffic,
which is again, comparable to the original attack (69MB in [57]).

FragDNS. Only about 1% of the domains allow deterministic
fragmentation-based cache poisoning attacks thanks to slowly in-
cremental global IPID counter in nameservers. More than 4% of the
domains are vulnerable to probabilistic attacks by attempting to
hit an unpredictable IPID counter and to match the UDP checksum.
When the IPID values are not predictable, the probability to hit
the correct value is roughly 0.1%. To match the UDP checksum,
the attacker needs to predict the partial UDP checksum of the sec-
ond fragment of response sent by the nameserver. This means that
the probability to match the UDP checksum is the inverse of the
number of possible second fragments emitted by the nameserver
(assuming equal distribution).

To calculate the per-nameserver hitrate of FragDNS attack for
each domain we calculate the product of both probabilities, match-
ing the IPID as well as matching the UPD checksum. We take the
average of these per-nameserver hitrates to calculate a per domain
hitrate. The results of our evaluation are: when the nameservers
use a single global counter for IPID, depending on the rate at which
queries arrive at the nameserver, the median hitrate over all vul-
nerable domains (for different rates of queries from other sources)
is 20%. When the nameserver selects IPID values pseudorandomly,
the median hitrate is 0.1% which is the probability to correctly
guess the IPID, as most servers to not randomise the records in
DNS responses.

FragDNS attack also requires large traffic volumes with 1024
packets median computed over vulnerable domains with 65K pack-
ets for an unpredictable IPID, and with only 325 packets on average
against a predictable IPID against high load servers, such as the
servers of top-level domains.

In the worst case, the attack requires 64 packets to fill the resolver
IP-defragmentation buffer and another packet to trigger the query.
Combined with a 0.1% success rate, this translates to an average of
65,000 packets.

5.3.3 Stealthiness. In BGP prefix hijacks malicious BGP announce-
ments manipulate the control plane and a single BGP announce-
ment suffices to change the forwarding information in the routers.
BGP prefix hijacks generate lower traffic volume when performing
the hijack but may be more visible in the Internet since the attack
impact is more global. The more networks are affected as a result
of the BGP hijack the higher the chance is that such attacks may
be detected. Same-prefix hijack is more stealthy in control plane
than sub-prefix hijack since it does not affect the global routing
BGP table in the Internet, but causes manipulations only locally at
the ASes that accept the malicious announcement. Furthermore,
as we already mentioned, short-lived BGP hijacks typically are
ignored and do not trigger alerts [22, 48, 49]. In contrast, guessing
the source port with SadDNS method (Section 3.2) or injecting
malicious payload via IPv4 fragmentation (Section 3.3) generate
more traffic than BGP hijacks, but only locally on the network of
the victim DNS resolver or the target nameserver. In contrast to
BGP hijacks the attack is performed on the data plane, and is hence
not visible in the global BGP routing table in the Internet.

SadDNS attack creates a large traffic volume and hence may
be detected by the affected networks. FragDNS attacks against
domains that uses a global sequentially incremental IPID counter
are the stealthiest.
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6 COUNTERMEASURES
Almost all Internet systems, applications and even security mecha-
nisms use DNS. As we showed, a vulnerable DNS introduces not
only threats to systems using it but also to security mechanisms,
such as PKI. We provide recommendations to mitigate that threat.

We also set up a tool at https://crosslayerattacks.sit.fraunhofer.de
to allow clients to check if their networks are operating DNS plat-
forms vulnerable to the cache poisoning attacks evaluated in our
work. In the rest of this section we separately explain our recom-
mendations for DNS servers to prevent cache poisoning attacks
and then for applications to prevent cross-layer attacks.

6.1 DNS servers
In addition to recommendations and best practices for patching
DNS servers, such as those in [RFC5452] [43], we recommend a
new countermeasure we call security by obscurity. Our experi-
ence of cache poisoning evaluation in the Internet showed that the
less information the adversary has, the more hard it becomes to
launch the attacks in practice. Security by obscurity proves effective
not only against off-path but also against on-path MitM attacks.
Although it is a known bad practice in cryptography it turns out
useful in practice. Specifically, for launching the attacks the attack-
ers need to collect intelligence about the target victims, such as
which caching policies are used, which IP addresses are assigned to
the resolver - randomising or blocking this information, will make
a successful attack harder. The network administrators can deploy
countermeasures to make such information difficult to leak, e.g.,
DNS resolvers should use multiple caches with different DNS soft-
ware on each, resolvers should not send ICMP errors, nameservers
should randomise records in responses.

Preventing queries. Server operators might choose to config-
ure systems to do less (or no) DNS lookups, ie. in the case of email
servers. This reduces the chance an attacker can trigger a query to
start the poisoning.

Blocking fragmentation. Resolver operators can block frag-
mented responses in firewalls to reduce the applicability of FragDNS
attacks. Some operators only implement filtering of small fragments
(i.e., Google’s 8.8.8.8) which can prevent the attack since the attacker
might not be able to cause a nameserver response of the size needed
to reach the filtering limit.

RandomiseDNS responses.Randomising nameserver responses
complicates the FragDNS attack as the attacker needs to predict
the UDP checksum of the original nameserver’s response.

0x20 Encoding. 0x20 Encoding adds entropy to the DNS query
which must be matched by the response. This complicates the
SadDNS attack to a point where it is no longer viable (ie. adding
0x20 Encoding to a domain with 16 alphanumeric characters adds
16 bits of entropy to the query). Since this randomness is only
contained in the question section of the DNS packet, it cannot
prevent the FragDNS attack as it will be in the first fragment along
with the TXID.

Securing BGP. Full deployment of RPKI (together with BGPSec)
would prevent the HijackDNS attack. However, because of several
deployment barriers, most of the prefixes are not protected by
RPKI and most ASes do not enforce Route Origin Validation (ROV)

[36, 40, 62]. We refer to [39] for a comprehensive discussion of the
deployment issues.

6.2 Applications
In the rest of this section we provide recommendations for prevent-
ing cross-layer attacks that use DNS cache poisoning.

Separate resolvers and caches. It is common in networks to
use one DNS resolver for multiple services and servers. Our attacks
exploit that. We recommend using different DNS resolvers (each
with a distinct cache) for each system.

Third party authentication (TLS). Third party authentication,
like TLS, can mitigate the attacks against all DNS use-cases which
aim to locate a server (i.e.m federation and address lookup use-
cases). However, even such mechanisms can only reduce the harm
of DNS poisoning, but not completely mitigate it, e.g., adversaries
can use DNS cache poisoning to subvert the security of DV during
certificates issuance. Furthermore, an attacker can still use cache-
poisoning for DoS attacks.

Two factor authentication. Should be enabled by default (and
not optional as it is now). This would prevent the attacker from
getting access to the account even if it has acquired the login cre-
dentials for the victim.

Secure fallback. Instead of allowing a transaction when no in-
formation about its authorisation state can be gathered (like done
currently in SPF and RPKI) a security-mechanism could decide to
not allow it. This however would mean that attacking the availabil-
ity of DNS for a certain domain would allow DoS attacks instead,
preventing a resolver from looking up a domain’s SPF records would
prevent that domain from sending any emails to the servers using
this resolver.

7 CONCLUSIONS
We evaluated methodologies for launching practical DNS cache
poisoning attacks and derived insights on the applicability, effective-
ness and stealth of these attacks.We then applied themethodologies
for a systematic evaluation of cross-layer attacks against popular
applications.

Our work demonstrates the significant role that DNS plays
in the Internet for ensuring security and stability of the applica-
tions and clients. If DNS is vulnerable, our work shows that in
addition to traditional attacks, such as redirection to adversarial
hosts, weak off-path adversaries can even downgrade protection
of security mechanisms, such as RPKI or DV. We provide recom-
mendations for mitigations and developed a public tool at https:
//crosslayerattacks.sit.fraunhofer.de to enable clients to
identify vulnerabilities in DNS platforms on their networks.
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