
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347455574

Using Paragraph Vectors to improve our existing code review assisting tool-

CRUSO

Conference Paper · December 2020

CITATIONS

0

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Building Knowledge Warehouses and Expert systems for the auomation of SDLC tasks View project

Code review using Source Code Similarity Detection View project

Ritu Kapur

Indian Institute of Technology Ropar

11 PUBLICATIONS 39 CITATIONS

SEE PROFILE

Poojith Rao

Indian Institute of Technology Ropar

1 PUBLICATION 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ritu Kapur on 18 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347455574_Using_Paragraph_Vectors_to_improve_our_existing_code_review_assisting_tool-CRUSO?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347455574_Using_Paragraph_Vectors_to_improve_our_existing_code_review_assisting_tool-CRUSO?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Building-Knowledge-Warehouses-and-Expert-systems-for-the-auomation-of-SDLC-tasks?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Code-review-using-Source-Code-Similarity-Detection?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ritu_Kapur?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ritu_Kapur?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Technology_Ropar?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ritu_Kapur?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Poojith_Rao?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Poojith_Rao?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Technology_Ropar?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Poojith_Rao?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ritu_Kapur?enrichId=rgreq-c7d4470a5e2fa3092c5638b93c58c8c5-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ1NTU3NDtBUzo5NzAwOTI0MjY4MzgwMTlAMTYwODI5OTQ2NjQyOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Using Paragraph Vectors to improve our existing code review
assisting tool-CRUSO

Ritu Kapur∗
Poojith U Rao
Shipra Sharma
Balwinder Sodhi

ritu.kapur@iitrpr.ac.in
poojith.19csz0006@iitrpr.ac.in
shipra.sharma@iitrpr.ac.in

sodhi@iitrpr.ac.in
Indian Institute of Technology

Ropar, Punjab, India

ABSTRACT
Code reviews are one of the effective methods to estimate defective-
ness in source code. However, the existing methods are dependent
on experts or inefficient. In this paper, we improve the performance
(in terms of speed and memory usage) of our existing code review
assisting tool–CRUSO. The central idea of the approach is to es-
timate the defectiveness for an input source code by using the
defectiveness score of similar code fragments present in various
StackOverflow (SO) posts.

The significant contributions of our paper are i) SOpostsDB: a
dataset containing the PVA vectors and the SO posts information,
ii) CRUSO-P : a code review assisting system based on PVA mod-
els trained on SOpostsDB. For a given input source code, CRUSO-
P labels it as {Likely to be defective, Unlikely to be
defective, Unpredictable}. To develop CRUSO-P, we processed
>3 million SO posts and 188200+ GitHub source files. CRUSO-P is
designed to work with source code written in the popular program-
ming languages {C, C#, Java, JavaScript, and Python}.

CRUSO-P outperforms CRUSOwith an improvement of 97.82% in
response time and a storage reduction of 99.15%. CRUSO-P achieves
the highest mean accuracy score of 99.6% when tested with the C
programming language, thus achieving an improvement of 5.6%
over the existing method.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISEC ’21, 25-27 February 2021, Bhubaneswar, India.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/xx.xxx/xxx_x

KEYWORDS
Automated code review, StackOverflow, Paragraph Vector, Code
quality, Software maintenance

ACM Reference Format:
Ritu Kapur, Poojith U Rao, Shipra Sharma, and Balwinder Sodhi. 2020.
Using Paragraph Vectors to improve our existing code review assisting
tool-CRUSO. In ISEC ’21: ACM SIGSOFT Innovations in Software Engineering
Conference, Feb 25–27, 2021, Bhubaneswar, India.. ACM, New York, NY, USA,
11 pages. https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
Code reviews play a significant role in detecting potential defects
that remain undiscovered through the software testing process.
Some such examples include memory leaks, buffer overflows, and
scalability issues. However, the existing methods to perform the
code reviews are dependent on subject-matter experts (SMEs) and
being significantly time-consuming [17]. Therefore, we worked
on improving the performance of our existing code review
assisting tool– CRUSO [19].

For a given source code 𝑐 , CRUSO performs the following steps:
(1) Identifies the set of StackOverflow (SO)1 posts 𝑃 such that

each 𝑝 ∈ 𝑃 contains source code fragment(s), which suffi-
ciently resemble 𝑐 .

(2) Determines the likelihood of 𝑐 being defective by considering
all 𝑝 ∈ 𝑃 . CRUSO uses the Winnowing algorithm [18] to
represent source code as fingerprints, whose length is almost
the same as the length of input source code. When used for
source code matching, the variable-length fingerprints lead
to a large number of source code comparisons, resulting in a
significant memory usage and execution time.

To improve the performance of CRUSO, we replaced the Win-
nowing algorithm with the Paragraph vectors algorithm (PVA) [10],
which uses a fixed-length vector representation for source code. We
develop a reference dataset that stores the vector representations
for code fragments present in SO posts generated using PVA, and
the cosine similarity2 of all the code fragments from a reference
code fragment is chosen randomly. Thus, detecting relevant SO

1https://stackoverflow.com
2http://bit.ly/2ODWoEy

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
https://stackoverflow.com
http://bit.ly/2ODWoEy

ISEC ’21, 25-27 February 2021, Bhubaneswar, India. Ritu et al.

posts to given source code under review becomes a database search
query for projecting the SO posts with the similarity score above a
specific threshold value. We named the newer PVA-based version
of CRUSO as CRUSO-P.

1.1 Existing techniques for source code
representation

The representation of source code plays a significant role while
training ML models. A broad categorization of the existing ML
approaches based on their representation is as follows:

(1) Fingerprint-based approaches: A typical code fingerprint is a
compact collection of integers, which summarizes the source
code’s critical aspects. The fingerprint-based approaches
make use of code fingerprints generated by different algo-
rithms to detect the source code similarity. The algorithms
used generally comprise of Winnowing algorithm [18] and
hash-based methods such as MD5 and SHA-1. Winnowing
has been used as a source code similarity detection in soft-
ware activities such as plagiarism detection [24] and code
review [19]. Similarly, MD5 and SHA have been used to de-
tect different source code clones [1]. We use cosine similarity
measure to detect the source code similarity between differ-
ent code fragments.

(2) Abstract Syntax Tree (AST)-based approaches: ASTs capture
the syntactical details of programming constructs’ used in
source code. An AST of source code represents a hierarchical
structure (tree) comprising of the programming constructs
used in the source code in the order of their usage. However,
the usage of AST differs in various research works. For in-
stance, authors in [26] use a linear collection of programming
constructs present in the source code’s AST for training a
Deep Belief Network to perform defectiveness estimation.
In contrast, the authors in [4] use the AST fingerprints to
detect similar source code existences using exact matches’
clustering.

(3) Software metrics-based approaches: Software metrics such as
Chidamber and Kemerer’s (CK’s) OO metrics [7] and Mc-
Cabe’s cyclomatic complexity [12] have been used to extract
source code specific information from various Open Source
Software (OSS). Such software-specific information is used
to develop large datasets (such as PROMISE repository [13]),
which are used to train ML models to perform defective-
ness estimation. Programming Construct (PROCON) metrics
proposed by authors in [9] capture the usage patterns of
programming constructs occurring in source code. The spe-
cific programming constructs are fetched by using the AST
generated by parsing the source code. Authors [9] show that
the defectiveness estimation performed using PROCON met-
rics and the state-of-the-art ML technique produce effective
results and outperform the existing methods [26], [7], and
[13].

Need and opportunity for newer methods: The fingerprint
approaches have the limitations of high processing cost and storage
requirement. In contrast, the AST-based techniques generally train
the ML models using binary classifiers, such as SVM. The binary
classifiers, however, focus on classifying the input source files as

Figure 1: Basic idea of our approach

{defective, unpredictable} [9], but do not provide any information
for the source files unlikely to be defective. In our previous work
[19], we provide a method for estimating the source files unlikely
to be defective, but the method used is slower and inefficient. Thus,
a faster and efficient method is desirable. Further, to the best of
our knowledge, there do not exist efficient algorithms for assisting
code reviews. On the other hand, in our current work, we compute
fixed-size vector representations of source code. Computing the
similarity of two vectors is more efficient and speedy in comparison
to that in the case of fingerprints.

1.2 Basic tenets behind our system
The basic idea of our approach is stated as follows:

(1) Professional programmer support forums such as StackOver-
flow, contain useful information about programmers’ prob-
lems when developing software. The information includes
code fragments, the associated problem, and solution discus-
sions in a natural language.

(2) If a significant part of given source code under review 𝑐 ′ is
found sufficiently similar to the code fragments 𝑐𝑝 present
in a SO post 𝑝 , we can infer the defectiveness of the 𝑐 ′ by an-
alyzing the information available in 𝑝 . We estimate a post’s
defectiveness by considering its natural language text, vari-
ous metadata such as up-votes, and the post type.

1.3 Leveraging crowd-knowledge to identify
problems in source code

Professional programmer support venues such as SO, provide a
platform for programmers to discuss various problems related to
software development. Figure 2 shows an example SO post. In this
example, the programmer has posted a fragment of source code
in which he faces some problem. The description of the problem
is available in the post’s narrative, which is written in English.
Further, the posts are categorized with tags fields, which provide
information about the technologies, or the platforms related to the
post’s code.

SO offers a rich and large corpus of such natural language dis-
cussions and the source code fragments discussed in software

Using Paragraph Vectors to improve our existing code review assisting tool-CRUSO ISEC ’21, 25-27 February 2021, Bhubaneswar, India.

Figure 2: Example of a post on StackOverflow

development-related issues. Works such as [15, 16, 19] have shown
that it is possible to exploit the crowd-knowledge available at SO for
developing tools that address various software development tasks.
Thus, our approach makes use of the rich volume of SO content to
identify potential problems in a given source file, which is under
review.

Association between software development and crowdsourced
knowledge has been studied and confirmed by authors in [25],
where they studied data from GitHub (an accessible repository
of OSS) and StackOverflow. The type of questions that are asked
and get answered or remain unanswered on StackOverflow has
been explored by [23, 27]. There are mainly two types of posts on
StackOverflow:

(1) Questions posted by programmers soliciting help and solu-
tions for a programming or design problem they face with
code or API. We refer to such posts as the question posts.

(2) Replies posted by other experts for the above type of posts.
We refer to such posts as the answer posts.

The analysis of SO data shows3 that the count of Type-2 posts is
more than 1.5 times4 the count of Type-1 posts. Further, we find5
that more than 16% of Type-1 posts contain source code fragment(s).
In contrast, more than 12% of Type-II posts6 contain source code
fragment(s). These SO posts typically describes some problems
involving the source code fragment(s) included in the post.

Given the above, it can be argued that i) A code fragment ac-
companying a SO question is quite likely to be involved in a defect
[23, 27], and ii) The code accompanying accepted or high scoring

3Our query is available at https://bit.ly/2JSSMez
4On StackOverflow (SO), there are more than 19m questions and 29m answers as of
April 2020. See https://data.stackexchange.com/.
5Our query for finding this number is available here: https://bit.ly/3c4P79y.
6Our query for finding this percentage is available at: https://data.stackexchange.com/
meta.stackoverflow/query/edit/1223740

SO answers to such a question is quite likely to be free from the
associated question post.

Challenges and opportunities: Though the SO provides a
trove of information about the issues faced by professional program-
mers during software development, exploiting that information to
build code review assistant tools poses several challenges. Major
ones include:

(1) Accurate identification of the SO posts that contain source
code fragments matching the input source file.

(2) Efficient retrieval of the matched or relevant SO posts.
(3) Accurately determining the defectiveness of SO posts.
Addressing the above challenges: While we note the above

challenges, there exist techniques that can be exploited to address
them. For an input source code to be reviewed (𝑐 ′), we address the
existing challenges:

(1) Identifying SO posts containing similar source code to 𝑐 ′: The
Paragraph Vector algorithm (PVA) [10] has delivered state-
of-the-art results [5] in many Natural Language Processing
(NLP) tasks that require a vector representation of text. One
of this work’s goals is to evaluate the effectiveness of the
well-known PVA in computing an accurate representation
of source code. Having such a representation of source code
is useful for performing efficient and accurate source code
comparisons.

(2) Efficient retrieval of the matched SO posts (𝑃 ′): Most of the
existing source code comparison methods, such as [19, 28],
have high processing time and storage requirements. Thus,
there is a need to provide a code review solution that accel-
erates the process and has a lower storage requirement.

(3) Accurately determining the defectiveness of SO posts: To de-
termine the defectiveness of a SO post, one can analyze the
post’s narrative’s sentiment. Tools such as CoreNLP [11] and
Valence Aware Dictionary and sEntiment Reasoner (VADER)
[8] can be used to infer the “sentiment” of a given input text,
but may not prove to be effective when used in the context
of some domain-specific narrative. For instance, consider the
SO post narrative7 shown in Figure 3a. The sentiment analy-
sis tools, such as VADER, classify the post as positive with the
sentiment score of 10.4%, which is thus a misclassification.
The results obtained are shown in Figure 3b. Therefore, it is
inadequate to rely on a SO post’s narrative text to compute
the code’s defectiveness embedded in it solely.

2 PROPOSED APPROACH
Our system’s primary goal can be stated as follows: Given a source
file 𝑓 written in a programming language _, determine if 𝑓 is likely
to have semantic issues. The central idea behind our approach to
addressing the above goal is to look for any existing source code,
which is sufficiently similar to the source code present in 𝑓 , and is
known to have a semantic issue.

Thus, two tasks become crucial for our approach a) determining
the similarity of two source code samples, and b) establishing that
the given source code is Likely-to-be-defective. SO is a widely used

7SO post considered as an example: https://bit.ly/2UvZXyg

https://data.stackexchange.com/meta.stackoverflow/query/edit/1223740
https://data.stackexchange.com/meta.stackoverflow/query/edit/1223740
https://bit.ly/2UvZXyg

ISEC ’21, 25-27 February 2021, Bhubaneswar, India. Ritu et al.

(a) narrative from a SO post

(b) Results from VADER

Figure 3: An example of misclassification by the existing Sentiment
Analysis tools

channel for professional programmer support. It offers a rich corpus
of question and answers reply with relevant source code fragments.

Table 1: Table of Notation

𝐿 ≜ The set of programming languages {C, C#, Java,
JavaScript, Python}. We consider the source files written
in any one of these.

𝐺 ≜ Set of consideredGitHub repositories, containing source
files written in 𝐿.

𝑆 ≜ Set of source files in 𝐺 that are written in 𝐿.
𝑀 ≜ The set of PVA models trained using 𝑆 .
𝑇 ≜ Test-bed used for testing the performance of𝑀 .
𝐷 ≜ Database containing code, text, metadata and other com-

puted items for SO posts.
𝑅 ≜ The set of reference vectors chosen for programming

languages _ ∈ 𝐿.
𝐼 ≜ Set of metadata items of the SO posts.
𝑃 ≜ Set of PVA parameter variation scenarios.
𝑝_ ≜ An SO post containing 𝑘 code fragments written in a

language _ ∈ 𝐿. Here, 𝑘 > 0.
𝑐 ≜ A code fragment present in 𝑝_ .
𝑣 ≜ PVA computed vector representation of 𝑐 .
𝛼 ≜ Cosine similarity between two PVA vectors 𝑣 and 𝑣 ′.
𝛼 ≜ The threshold of cosine similarity between two PVA

vectors to categorize them as similar.
` ≜ The threshold for score metadata field value of various

SO posts.
𝜓 ≜ No. of training samples used for training a PVA model.
𝛾 ≜ PVA vector size.
𝛽 ≜ No. of training iterations or epochs used for training a

PVA model.
𝜒 ≜ Sentiment score of different sentiment values provided

as output by VADER.

Table-1 shows the notation used for various terms in this paper.

2.1 Steps in our approach
Figure 4 shows the architecture of the proposed system that im-
plements our approach, and the critical steps in our approach are
listed as follows. Along with each step, we highlight the relevant
design decisions that were addressed when implementing those
steps.

(1) Preparing SO posts and code vectors
(a) Download a data dump of SO posts.
(b) Extract the code, text, and metadata parts from each SO

post 𝑝_ and store in a database 𝐷 .
Design decision: How to decide whether a SO post and its
content are relevant and useful?

(c) Download source files from GitHub repositories, such that
they are written in a programming language _ ∈ 𝐿.
Design decision: Why only GitHub? How do we select a
source file? Why only these programming languages?

(d) For each language _ ∈ 𝐿, train PVA models using the
samples from GitHub source files.
Design decision: Why use GitHub source files for training?
How to decide which files to choose from them? Why use
PVA and how to choose the values of its tuning parameters?

(e) For each SO posts’ code fragment 𝑐𝑖 available in 𝐷 , com-
pute its vector representation 𝑣𝑖 using a suitable language-
specific PVA model trained above. The vector is stored
along with the corresponding code fragment in 𝐷 itself.
Design decision: Why use vector representations of source
code?

(2) Determining the defectiveness of source code under
review (𝑐 ′)

(a) Compute the vector representation 𝑣 ′ for the input source
code 𝑐 ′ after suitably preprocessing it.

(b) Find all vectors 𝑣 ∈ 𝐷 such that the similarity (𝛼) between
𝑣 and 𝑣 ′ is above a similarity threshold (𝛼).
Design decision: What should be the value of 𝛼? On what
factors does it depend?

(c) For each 𝑣 ∈ 𝐷 , compute the defectiveness value, 𝛿 , using
the narrative and metadata of the SO post 𝑝_ of 𝑣 .
Design decision: How to compute 𝛿?

(d) The defectiveness value 𝛿 ′ for the input source code 𝑐 ′ is
computed by considering all 𝛿 of ∀𝑣 ∈ 𝐷 .
Design decision: How to compute 𝛿 ′?

We discuss the crucial design decisions faced in our approach in
the next subsection.

2.2 Design considerations in our approach
In the following subsections, we describe the details of the steps
involved in developing our software artifacts and the rationale for
design decisions addressed at each step.

2.2.1 Selection of the SO posts and the programming languages.
The SO posts have mainly three types of content: i) questions, ii)
answers, and iii) comments and metadata of the post. Further, two
SO questions (or answers) may not have the same level of detail.
For instance, a question post may have very little or no source
code present in it. Alternatively, a post may have multiple code
fragments written in different programming languages. Similar
issues are present for other types of SO posts. Thus, it becomes
essential to decide if a SO post and its content are relevant and should
be considered or not.

Selecting the suitable SOposts:To address the above question,
we adopt the following criteria for selecting SO posts for our use:

Using Paragraph Vectors to improve our existing code review assisting tool-CRUSO ISEC ’21, 25-27 February 2021, Bhubaneswar, India.

Figure 4: Architecture of the proposed system

(1) Size constraint: The size of the code fragment(s) present in the
post should be greater than a certain threshold (> 100 charac-
ters without white spaces). We assume that any source code
performing a logical function is of size above this threshold.

(2) Tag constraint: The post should be tagged (i.e. categorised)
with at least one of the programming languages that we
consider.

Selecting suitable programming languages: Following fac-
tors were considered when selecting the programming languages:

(1) We should cover multiple programming paradigms, such as
object-oriented, procedural, and scripting.

(2) The languages should have a significant active deployment
in the field.

After surveying the existing literature [22] and studying the
online trends of developer-usage8, we arrived at the set 𝐿 = {C,
C#, Java, JavaScript, and Python} of actively used programming
languages.

2.2.2 The rationale for choosing PVA. A crucial design decision
that requires explanation is the use of PVA in our approach. The
following are the main reasons for our choice of PVA: i) It allows us
to compute vectors of the same length that accurately represents
the source code samples. Keeping the length of such vectors the
same for every source code sample is critical for implementing
an efficient and fast system. ii) Our experiments show that the
PVA works equally well for all the programming languages that
we considered. iii) Recent works such as [2], a close variant of
PVA, have proven that it is possible to compute accurate vector
representations of source code and that such vectors can be very
useful in computing semantic similarity between two source code
samples. Thus, we chose the PVA to compute vector representations
of source code samples in our approach.

2.2.3 The rationale for using source code samples from GitHub and
SO posts data. For training the PVA models, we used source code
samples taken from various GitHub repositories. We used source
code from GitHub repositories due to the following reason: To train
the PVA models with realistic source code samples that we expect
to encounter in real-world usage, we use source code samples from
GitHub repositories. The source code samples taken from GitHub
are syntactically complete units (e.g., a complete Java class instead
of just a method definition).

A related question is “which source files to choose fromGitHub?”.
We randomly selected repositories which met the following criteria:
8Sources of stats: https://githut.info/

Table 2: Details of the dataset used for training and testing of PVA
models

Training corpus (lines of code measured by cloc) Testing corpus
Language Files Blank Comment SLOC File pairs Corpus size Models tested

C 32099 2908784 2490163 14908295 5000 30036 21
C# 8112 303416 198693 2342959 5000 7076 21
Java 142266 437851 659172 2157881 5000 127568 21
JavaScript 15737 177587 226724 1259902 5000 12485 21
Python 6012 300109 412452 1248494 5000 5378 20

(1) The repository had the source files written in a programming
languages _ ∈ 𝐿 (see Table-1).

(2) The repository had earned 100 or more stars.
(3) The repository had more than 1000 source files.
Based on the above criteria, we selected about 105 different

repositories9 on GitHub from which the source files were taken
for training and testing of the PVA models. Table 2 presents the
detail of GitHub source files selected corresponding to various
programming languages to train the PVA models. We use the cloc
tool [6] to compute the count of comments, blank lines, and source
lines of code (SLOC) present in the source code.

We use the SO posts data to create a reference dataset to perform
the source code matching during the code review process. Using
the PVA models, we obtain the vector representations for code
fragments present in various SO posts and store them in a relational
database to perform the vector comparisons. We choose the SO
posts data for the following reason: The code present in SO posts
is a mix of syntactically partial code fragments and full ones. For
example, some posts contain the complete Java class definitions,
while others may contain only a method definition or a small code
block. On the other hand, the input code that we want to check for
defectiveness will almost always be a syntactically complete unit
of source code, such as a Java class or a Python module.

2.2.4 Choosing PVA parameters and code similarity threshold, 𝛼 .
Performance, in terms of accuracy, storage efficiency, and response
time, is determined by its input parameters such as 𝛽,𝛾 , and 𝜓

(see Table-1). Therefore, one of the key challenges in using PVA
in our system is determining the minimum threshold value of 𝛼 ,
indicating a significant similarity between two source code samples.
Further, we would also like to select the optimal values of 𝛽,𝛾 , and
𝜓 that can result in such a value of 𝛼 (see Table-1). The details of the
experiments performed to determine the optimally tuned values

9Details can be found in our dataset script available at http://bit.ly/2KJVWCh

http://bit.ly/2KJVWCh

ISEC ’21, 25-27 February 2021, Bhubaneswar, India. Ritu et al.

of 𝛽,𝛾 ,𝜓 and, 𝛼 for obtaining the best performing PVA models are
provided at https://bit.ly/2Ig3crd.

2.2.5 Computing defectiveness, 𝛿 . The essential parameters con-
sidered while computing the defectiveness are:

(1) The sentiment of a post’s narrative: This describes the view or
opinion of the problem and is computed using the VADER
sentiment analysis tool. A post’s sentiment can be positive,
negative, or neutral, depending on the problem’s narration.
A SO post consisting of a “negative” narration is most likely
to describe a problem, thus comprising a defective code.
Similarly, a SO post with a “positive” narrative is most likely
to propose a solution code for a programming problem.

(2) The score value of the post: This is an integer value, available
with every SO post, describing the approval or disapproval
of the post by various viewers. An approval increments the
score value, while the disapproval decrements it. A post with
a high score value reflects a considerable confidence value
in the post’s content. For instance, the source code present
in a high score answer post is likely to be free from defects.

(3) The type of SO post: A SO post can be classified as a question
post or an answer post. A question post generally projects a
programming problem containing a source code defect. On the
contrary, an answer post mostly provides a solution source
code, which is unlikely-to-be-defective.

To compute the defectiveness of a SO posts’ code snippet 𝑐𝑝 , we
combine the results obtained based on 𝑝’s metadata (viz., score (`𝑝)
and its post-type) and the sentiment information of the narrative
in 𝑝 . The complete procedure for computing the defectiveness (𝛿)
of a code snippet 𝑐 present in a SO post 𝑝 is listed in Algorithm
1. To obtain the thresholds of SO post’s score values, we compute
the statistical measures, viz., maximum (𝑚𝑎𝑥), minimum (𝑚𝑖𝑛),
average (𝑎𝑣𝑔), and standard deviation (𝑠𝑡𝑑𝑑𝑒𝑣) of the respective
score (`) values of different types of SO posts. To find the source
code’s programming language present in a SO post, we use the
tag metadata field. We choose the 𝑎𝑣𝑔(`) values under each of the
language category and the post types as the respective thresholds.
We represent the threshold values for question and answer posts as
𝑎𝑣𝑔(`𝑞) and 𝑎𝑣𝑔(`𝑎). By observing the threshold values, we select
the ⟨𝑎𝑣𝑔(`𝑞), 𝑎𝑣𝑔(`𝑎⟩ as ⟨1, 1.9⟩.

The defectiveness score computed based on the narrative sen-
timent of a SO post 𝑝 is represented as 𝛿𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒𝑝 . The 𝛿𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒𝑝

values assigned for the sentiment outcomes {negative, positive,
neutral} are {-1,1,300}, respectively. We label a code snippet 𝑐𝑝 as
unpredictable if it has a “neutral” narrative sentiment of post 𝑝 , and
`𝑝 is below the respective post-type thresholds (`𝑞 or `𝑎). Also, the
𝛿 values corresponding to various defectiveness labels {Likely-to-
be-defective, Unlikely-to-be-defective, Unpredictable} are {-1,1,300},
respectively. To avoid the false negatives, we compute the𝑚𝑖𝑛 de-
fectiveness score on Step 11 of Algorithm 1. We define the false
negative as a case when a defective source code gets labeled as non-
defective. A high value of 𝛿𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒𝑝 for neutral sentiment value
is chosen to consider the defectiveness inferred from the score
metadata field of 𝑝 .

Algorithm 1 Steps for computing 𝛿 of a code snippet 𝑐 present in
a SO post 𝑝
Require: 𝐼 = Set of metadata items associated with the StackOver-

flow post 𝑝 .
𝑡 = The narrative text present in 𝑝 .
`𝑞, `𝑎 = The threshold score values for question and answer
posts of SO respectively.

Ensure: 𝛿𝑝 = The defectiveness score for code snippet 𝑐 present
in 𝑝 .

1: 𝛿𝑝 = 0
2: if I(p.PostType) = question and I(p.Score) > `𝑞 then
3: 𝛿𝑝 = -1
4: else if I(p.PostType) = answer then
5: if I(p.Score) > `𝑎 then
6: 𝛿𝑝 = 1
7: else
8: 𝛿𝑝 = -1
9: end if
10: 𝛿𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒𝑝 = computeNarrativeSentiment(𝑡){Using VADER}
11: 𝛿𝑝 = min(𝛿𝑝 , 𝛿𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒𝑝)
12: saveToDatabase(𝑝.𝑖𝑑, 𝛿𝑝)
13: end if

2.3 Implementation details
We developed our software artifacts using the programming lan-
guages - Java and Python. These languages were selected because
of the available expertise.

2.3.1 Developing the SO posts database – SOpostsDB. SOpostsDB
forms the knowledge base of our code review assistant system. The
significant steps involved in developing the database are as follows:

(1) Data Collection: We downloaded a dump of SO posts [21]
between July 2008 and March 2018 containing more than 5
million posts10. We extracted various sub-components (viz.,
code, text, and metadata) of these SO posts and store them
in the database as the SOpostsData table. We also down-
loaded 105 OSS repositories from GitHub, containing differ-
ent source files written in various programming languages.
For developing the SOpostsDB, we considered the SO posts
containing source code written only in five programming
languages, viz., C, C#, Java, JavaScript, and Python. We col-
lected about 188200 source files in total from GitHub written
in these programming languages. We used the data collected
from GitHub repositories to train our PVA models, while the
source code extracted from SO posts to perform the source
code matching with given source code. The link to access
the training data and the SO posts details is provided at
https://bit.ly/39KiA7l.
Figure 5 shows the relational schema of our database. A SO
post 𝑝 may consist of multiple code fragments 𝑐𝑖 surrounded
by different narratives 𝑡𝑖 . We consider each of such 𝑐𝑖 and
the 𝑡𝑖 preceding 𝑝 as a single fragment and represent all such
fragments with distinct fragId(s). In other words, we consider
the code fragments the basic unit of source code comparison and

10https://archive.org/download/stackexchange

https://bit.ly/2Ig3crd
https://bit.ly/39KiA7l
https://archive.org/download/stackexchange

Using Paragraph Vectors to improve our existing code review assisting tool-CRUSO ISEC ’21, 25-27 February 2021, Bhubaneswar, India.

Figure 5: Relational Schema of SOpostsDB

thus obtain the PVA vectors corresponding to them. We con-
sider the SOpostsData and CodeVectors as two separate ta-
bles because a) the SOpostsData comprises of the initial
preliminary information required to obtain the information
present in the CodeVectors table, and b) The SOPostsData
majorly comprises of the metadata fields of a post which are
common to all the code fragments present in a post.

(2) Storing the vector representations of the code fragments present
in SO posts: The code fragments extracted from SO posts are
preprocessed and stored in the database. To expedite the pro-
cess of source code comparison, we perform the following:

(a) Using language-specific PVA models, we obtain the vector
representations of the extracted code fragments and store
them. We use the python implementation of the gensim
library [29] to implement PVA, preprocess the source code,
and obtain the vector representations corresponding to
them. The vector representations obtained for the code
fragments present in various SO posts are stored in the
database’ CodeVectors table.

(b) For each of the considered programming languages _ ∈
𝐿, we select a PVA vector and refer to it as a reference
vector. To select the reference vectors, we order the vector
representations 𝑣 present in the database using the postId
and the fragId of the records and select the first entry for
each of the languages as the reference vectors 𝑣𝑟 .

(c) We store the cosine similarity11 (cosSim) of the PVA vec-
tors (obtained in step 2a) with the respective reference
vectors 𝑣𝑟 . We use the sklearn library’s python imple-
mentation [14] to compute the cosine similarity measure
values between two vector representations.

The idea behind storing the cosine similarity with the
reference vectors: Consider the following scenario:

(a) If a PVA vector 𝑣 of a code fragment 𝑐 present in the
database, has a high cosine similarity score 𝛼 with the
reference vector 𝑣𝑟 , and

(b) The PVA vector 𝑣 ′ of an input source code 𝑐 ′ also repre-
sents a high cosine similarity score with 𝑣𝑟 , then

(c) The code fragments 𝑐 and 𝑐 ′ are likely to have a high
degree of code similarity between them.

The queries to the CodeVectors table for finding vectors that
are “cosine similar” to a given vector are expensive if done on
the vectors. To make such queries efficient, we pre-compute
each SO code vector’s cosine similarity with a language-
specific reference vector and store it in the database. The

11https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_
similarity.html

cosine similarity value is a scalar quantity, and we can create
an index on this relational attribute to speed up the database
queries.
A smaller version of our database, comprising theCodeVectors
table and a subset of metadata fields (the SO post’s title field)
in SOPostsData, used by our tool, is shared https://bit.ly/
2xs8CtV.

2.3.2 Developing the Code review system using SO and PVA –CRUSO-
P. CRUSO-P is an automated solution for assisting the code review
activity. For providing this assistance, CRUSO-P utilizes the knowl-
edge accumulated in SOpostsDB and code-similarity models trained
using PVA. For a given input source code 𝑐 ′, CRUSO-P labels 𝑐 ′ as
{Likely-to-be-defective, UnLikely-to-be-defective, Unpredictable}.
The major sub-modules driving CRUSO-P and their implementation
details are described next.

(1) PVA Trainer : This module is responsible for developing the
PVA models. The best performing model corresponding to
each of the programming languages _ ∈ 𝐿 is found by run-
ning several experiments. To find the optimal values of the
input parameters 𝛽,𝛾, and𝜓 , the PVA trainer learns differ-
ent models built using various parameter combinations. The
doc2vec function of the gensim library is used to learn var-
ious PVA models. Several experiments were performed to
obtain the optimal values of 𝛽,𝛾, and𝜓 , and to determine the
similarity threshold values 𝛼 for source code written in dif-
ferent programming languages. We deem two source files as
highly similar or identical when the PVA similarity score (𝛼)
is higher than a threshold value, 𝛼 . For each of the considered
programming languages _ ∈ 𝐿, the best performing models
are found using various evaluation metrics. The details of
the experiments performed to obtain the best performing
PVA models are discussed at https://bit.ly/2Ig3crd.

(2) Vectorizer: This module is used to obtain the vector repre-
sentations of code fragments present in the SO posts. The
fixed-length vector representation of source code improves
storage utilization andmakes the search and retrieval process
efficient. The best performing PVA models corresponding to
each of the programming languages _ ∈ 𝐿 are used to obtain
the vector representations. The infer_vector function of
the gensim library is used to obtain the vector representa-
tions.

(3) Posts Finder: This is the main module that interacts with the
front-end tool to provide the defectiveness estimates for an
input source code 𝑐 ′. The SOPostsDB used for performing the
source code matching comprises the vector representations
corresponding to the code fragments present in the SO posts.
The code fragments are generally of the form of code blocks
or function bodies. For the reviewed input source files, we
consider a function-definition as the basic unit of source code
comparison.
For the input source files that are reviewed, we consider a
function-definition as the basic unit of source code comparison.
Posts Finder uses the Function extractor to obtain the con-
stituent functions (𝑊) present in an input source code 𝑐 ′.
For each of the obtained constituent functions 𝜔 ∈𝑊 , Posts
Finder performs the following:

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://bit.ly/2xs8CtV
https://bit.ly/2xs8CtV
https://bit.ly/2Ig3crd

ISEC ’21, 25-27 February 2021, Bhubaneswar, India. Ritu et al.

(a) It uses the vectorizer module to obtain the PVA vector
corresponding to 𝜔 , say 𝑣𝜔 .

(b) It obtains the cosine similarity score 𝛼 between 𝑣𝜔 and
the language-specific reference vectors 𝑣𝑟 .

(c) It fetches the top K matching code fragments from the
database. The matching code fragments are obtained by
fetching the top-K PVA vectors 𝑉 having 𝛼 ′ closest to 𝛼 .
We set K = 5 for our tool.

(d) Uses the defectiveness estimator to obtain the matching
code fragments’ defectiveness estimates and thus of 𝜔 .

The final estimate on the defectiveness of 𝑓 is taken by per-
forming a majority vote on the constituent functions’ defec-
tiveness estimates.We compute the majority vote defectiveness
estimate by computing the statistical mode of the defectiveness
values obtained for the constituent functions𝑊 of 𝑓 . The com-
plete procedure followed in computing the defectiveness of
the input source code 𝑐 ′ is listed in Algorithm 2.

(4) The function extractor: This module’s goal is to extract the
constituent function definitions present in an input source
code. The Function extractor parses the input source code
using ANTLR12 and builds a custom Listener by modifying
the function or method call event definitions.We use the Java
programming language to build this module and transform
it into a JAR executable using the Apache Maven Shade
plugin13. This component works as a back-end module in
our tool.

(5) Defectiveness estimator: This module is used to obtain the
defectiveness estimates of the code fragments present in SO
posts. For an input code fragment 𝑐 of a SO post 𝑝 , the defec-
tiveness estimator reads the narration and the metadata fields.
It uses the VADER tool to compute the narrative sentiment,
which can be {positive (pos), negative (neg), or neutral (neu)}.
For an input text 𝑡 , VADER returns a sentiment score (𝜒)
associated with these sentiment values. The decision func-
tion (b) used to compute the final sentiment value for 𝑡 is as
follows:

b [𝑡] =

positive, if 𝜒[pos] > 𝜒[neg] >= 0.5
negative, if 𝜒[neg] > 𝜒[pos] >= 0.5
neutral, if 𝜒[neu] >= 0.5 and 𝜒[pos] < 0.5 and 𝜒[neg]

< 0.5
The complete procedure to compute the defectiveness of 𝑐 is
listed in Algorithm 1.

2.3.3 Testing the defectiveness of source code using the CRUSO-P
tool. CRUSO-P provides a file-uploading interface to the end-user to
submit the file to be reviewed. On submitting the source-file f to be
reviewed, CRUSO-P outputs the defectiveness decision about 𝑓 and
provides the top matching SO posts results. The complete testing
procedure used by CRUSO-P to detect the defectiveness of 𝑓 is
listed in Algorithm 2. CRUSO-P uses the PVAmodels, and the vector
database of SO posts provided as input in this testing procedure. The
database also contains the necessary metadata information, such as

12https://www.antlr.org/
13http://maven.apache.org/plugins/maven-shade-plugin/examples/executable-
jar.html

Algorithm 2 Steps for detecting defectiveness 𝛿 associated with a
source-file 𝑓
Require: 𝑓 = Source file to check for defectiveness.

_ = Programming language in which 𝑓 is written.
𝑀 = Set of PVA models trained for various programming lan-
guages (∀_ ∈ 𝐿).
𝑅 = Set of reference vectors chosen for various programming
languages 𝐿.
𝑆𝑂𝑃𝑜𝑠𝑡𝑠𝐷𝐵 = Database containing the vector representations
of code
fragments and metadata information of SO posts.

Ensure: 𝛿𝑓 = The defectiveness score for source file 𝑓 .
1: 𝛿𝑓 = 0
2: Z = 𝜙

3: 𝑀_ = fetchAndLoadModel(𝑀, _){read from the local file sys-
tem}

4: 𝑅_ = fetchRefVector(𝑅, _){a query into the SOpostsDB}
5: W = parseAndObtainFunctions(𝑓){using Function Extractor}
6: for all code fragment 𝜔 ∈𝑊 do
7: 𝑣𝜔 = obtainVectorRep(𝜔,𝑀_){using Vectorizer}
8: 𝛼𝜔 = obtainCosSim(𝑣𝜔 , 𝑅_)
9: 𝐶 = fetchTopMatchCodeFrags(𝛼𝜔 , SOPostsDB)

{Every 𝑐 ∈ 𝐶 has ⟨𝑝𝑜𝑠𝑡𝐼𝑑, 𝑓 𝑟𝑎𝑔𝐼𝑑⟩}
10: for all code fragment 𝑐 ∈ 𝐶 do
11: 𝛿𝑐 = obtainDefectivenessEstimate(c.postId, SO-

PostsDB){using Algorithm 1}
12: Z = Z ∪ ⟨𝛿𝑐 ⟩
13: 𝛿𝑓 = computeMajorityVoteDecision(Z){by computing sta-

tistical Mode(Z)}
14: end for
15: end for

the type of posts, score of various SO posts, and the defectiveness
of various SO posts (computed using Algorithm 1).

The complete testing procedure is listed in Algorithm 2. Figure
6 shows an example of the usage of our tool. Here, we test the tool
with an input source file containing the code fetched from GitHub
repository cpython14. The figure shows the defectiveness results,
the matching code fragments 𝐶 , the associated similarity score,
and defectiveness estimates. From the results shown in the figure,
4/5 matching code fragments depicted the defectiveness estimates
as Likely-to-be-defective, and thus the input post was marked as
Likely-to-be-defective as per the majority vote criterion.

It can be validated from the associated defect report link15 that
the source file contains defects, and validates our tool’s results. Our
tool (CRUSO-P) can be accessed at https://bit.ly/2V80NCT. For a
given input source file 𝑓 , CRUSO-P outputs the top matching SO
posts’ code fragments with their defectiveness estimates and the
similarity scores.

14https://bit.ly/2RyxYxe
15https://bit.ly/2yf3RnO

https://bit.ly/2V80NCT
https://bit.ly/2RyxYxe

Using Paragraph Vectors to improve our existing code review assisting tool-CRUSO ISEC ’21, 25-27 February 2021, Bhubaneswar, India.

Figure 6: Partial view of CRUSO-P code review results

3 PERFORMANCE EVALUATION AND
COMPARISON

One of this work’s critical goals is to significantly improve the speed,
efficiency, and accuracy of our previous work [19].We have achieved
this goal by improving the approach for detecting the relevant SO
posts for 𝑓 . Our tool determines the relevant SO posts by compar-
ing the cosine similarity among the vector representations of two
source codes. The vectorizer module of CRUSO-P is responsible
for producing the vector representation for an input source code
using the pre-trained PVA models. Thus, the accuracy of this task
depends on the performance of PVA models. To obtain the best
performing PVA models among all the considered programming
languages 𝐿, we performed various parameter tuning experiments
(details provided at https://bit.ly/2Ig3crd).

CRUSO-P infers the defectiveness of an input source code 𝑓 by
analyzing the defectiveness of the similar code fragments present
in SOPostsDB. Thus, the performance of CRUSO-P depends on two
essential factors:

(1) Efficacy in detecting the SO posts containing similar code
fragments

(2) Precision in computing the defectiveness of SO posts
Therefore, while evaluating the performance of CRUSO-P, we

design our experiments around the above two factors. The salient
research questions addressed in our experiments are listed below:

(1) What is the highest accuracy achieved by CRUSO-P? Is
CRUSO-P inclined to any specific programming language?

(2) How does CRUSO-P perform in comparison to CRUSO?
We used the Python programming language to implement our

experiments.

3.1 Evaluation metrics
(1) Accuracy is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑 𝑝𝑎𝑖𝑟𝑠
(1)

(2) F1 Score is the harmonic mean of precision and recall:

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(2)

Table 3: Threshold similarity scores and performance scores of
CRUSO-P

Thresholds Performance Number of
SO posts

Time taken
(in seconds)Language Avg(𝛼) StdDev(𝛼) Accuracy F1 score

C 0.963 0.0704 0.992 0.992 5000 402
C# 0.954 0.0979 0.8559 0.8365 5000 413
Java 0.97 0.0668 0.993 0.993 5000 389
JavaScript 0.967 0.0719 0.8766 0.8612 5000 451
Python 0.9617 0.0764 0.991 0.9909 5000 368

where

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(4)

We used the implementation provided by the sklearn library to
compute these evaluation metrics.

3.2 Evaluating the performance of CRUSO-P
To perform this experiment, we take a subset of code fragments
present in our SOposts database and evaluate the performance of
our tool in predicting the defectiveness of these code fragments.
Our tool can be considered to be effective if it marks a defective
code fragment as defective. and vice versa.

The research question addressed: What is the highest accu-
racy achieved by CRUSO-P? Is CRUSO-P inclined to any specific
programming language?

3.2.1 Test-bed setup: For our experiment, we selected 5000 code
fragments associated with SO posts in a random manner.

3.2.2 Procedure. The procedure to perform the performance eval-
uation is as follows:

(1) Test CRUSO-P with the code fragments present in the SO
posts, and record the defect estimates provided by CRUSO-P.

(2) Compute the Accuracy score and the F1 score based on the
defect estimates provided in the previous step.

3.2.3 Results and observations. Table 3 lists the threshold similarity
scores and the evaluation metrics (Accuracy and F1 score) values
obtained from the experiment.

• Observations: The salient observations from the experiment
are:
– All the 𝛼 values for are the cases are above 95%.
– The highest accuracy of 99.3% is achieved with source
code written in 𝐽𝑎𝑣𝑎 programming languages.

– The accuracy values and F1 score values for all the lan-
guages are generally above 86%.

• Inference: CRUSO-P performs equally well for all the pro-
gramming languages.

3.3 Comparison of CRUSO-P with CRUSO
One of this work’s key objectives is to significantly improve our
previous work’s [19] speed and efficiency.When dealing with code re-
views, a significant problem is the amount of time spent performing

https://bit.ly/2Ig3crd

ISEC ’21, 25-27 February 2021, Bhubaneswar, India. Ritu et al.

Table 4: Performance comparison of CRUSO-P and CRUSO

Tool Programming Language vs. Response time (in seconds) Avg. Response
time (in seconds)

Storage
(in MBs) Accuracy

C C# Java JavaScript Python

CRUSO-P 1.09 13.15 11.47 4.35 1.35 6.28 121.53 99.3%
CRUSO 284.74 291.09 289.15 281.81 292.8 287.92 14239 94%

them [17, 20]. A code review assisting tool that provides accurate
estimates but takes very long to deliver them will be practical of
minimal use. Therefore, in this experiment, we evaluate the per-
formance of our CRUSO-P in terms of response time and memory
usage, with its previous version CRUSO.

A short recap of our previous Code Review Assisting tool
–CRUSO [19]: For an input source code 𝑐 , CRUSO uses the Win-
nowing algorithm to identify SO posts containing code fragments
similar to 𝑐 , and analyzes the content of these relevant posts to
estimate the defectiveness of 𝑐 . CRUSO-P, in comparison to CRUSO,
replaces the Winnowing algorithm with PVA. With PVA, the source
code representation changes from the variable-length fingerprints
to the fixed-length vectors. This experiment intends to investigate
how this change in source code representation affects our tool’s
performance.

The research question addressed:How does CRUSO-P perform
in comparison to CRUSO?

3.3.1 Test-bed setup. To perform this experiment, we implemented
the existing approach [19] for the SO posts containing source code
written in the considered set of programming languages, viz., C,
C#, Java, Python, and JavaScript. To compare these tools’ perfor-
mance, we selected a random sample of 50 source files for each
of the considered programming languages from different GitHub
repositories (discussed in §2.2.3). We performed this experiment
with the help of a group of programmers involved in developing
software projects.

3.3.2 Procedure. The key steps involve the following:

(1) Compute the source code fingerprints for all the code frag-
ments present in the considered SO posts. We use the Win-
nowing algorithm to perform this step.

(2) The obtained fingerprints are populated as a database table
named as winnow.

(3) Compare the storage used by the winnow table and the vec-
tors table of SOpostsDB.

(4) Compare the response time of CRUSO and CRUSO-P on
testing with the selected random samples.

3.3.3 Results and Observations. The salient observations are:

• CRUSO-P has an average response time of 6.28 seconds,
while the prior one based on Winnowing has 287.92 seconds.

• The vectors table for CRUSO-P occupies 121.53 MBs, while
the CRUSO’s Winnowing table occupies of 14239 MBs.

Inference: CRUSO-P achieves a speed improvement of 97.82%
and a storage reduction of 99.15% over CRUSO. The highest ac-
curacy achieved by CRUSO-P is 99.3% and 94% in CRUSO [19].
Therefore, CRUSO-P achieves an improvement of 5.6% in terms of
accuracy when compared with CRUSO.

3.4 Threats to validity
As observed from the experiments, the PVA models’ accuracy de-
pends on the training data’s nature. Thus the performance of the
tool might vary if trained on a different dataset. The PVA models
are trained on the source files written in languages {C, C#, Java,
Python, JavaScript}. Therefore, CRUSO-P can detect the defective-
ness of the source files written in these programming languages
only. However, we can extend this approach to other languages as
well.

Further, while designing the function extraction interface based
on ANTLR, we could not find the ANTLR grammars of C# and
JavaScript. Therefore, C# and JavaScript, the function extractor
passes the input source code content to CRUSO-P for source code
matching.

While performing source code matching to detect the relevant
SO posts, we considered the code fragments with the length >=

100 characters (excluding the white spaces). We assume that the
source code below this length would not represent any proper
functionality, which also helps remove outliers from our dataset
and remove the dataset’s swamping effect.

Definition 9: Swamping effect is defined as the situation
where “clean” data is incorrectly labeled as an outlier due
to multiple clean sub-groupings within the data [3].

A SO post generally comprises of multiple code fragments sur-
rounding by text descriptions. One of the parameters that we use
to infer the source code’s defectiveness in SO is the text description
present in the post. Thus, there arises a need for mapping the code
fragments with the constituent text fragments in various SO posts.
While implementing this mapping procedure, we assume that “A
text description preceding a code snippet 𝑐 describes the nature of
𝑐 .” The SO posts not adhering to this structuring of text and code
fragments might result in false positives.

Further, to compute the final defectiveness estimate, we use the
majority vote principle over the matching code-fragments’ defec-
tiveness estimates. However, in the case of safety-critical software,
there exists merit in being conservative. In that case, instead of the
majority vote principle, it is safer to report the source code is likely
to be defective if there exists even a single defective code match.

4 CONCLUSION
Code review is an essential software quality assurance activity,
intended to find software defects and to estimate the software
quality. The existing code review methods are slow and inefficient.
We present a novel tool – CRUSO-P, which acts as a code review
assistant for a programmer and helps in augmenting code reviews
based on the information collected from SO posts. CRUSO-P works
by determining the code similarity between the SO code fragments

Using Paragraph Vectors to improve our existing code review assisting tool-CRUSO ISEC ’21, 25-27 February 2021, Bhubaneswar, India.

and the source code submitted as input. CRUSO-P leverages the PVA
vector representations of source code present in SO posts to perform
the code matching, thereby achieving an improvement of 97.82% in
response time and a storage reduction of 99.15%, over one of the
SOA tools. CRUSO-P achieves the best accuracy of 99.6% in case of
models trained on the C programming language. CRUSO-P and the
vectors database can be used for building software tools in related
application areas such as defectiveness estimation, code review and
recommendation. Our results show that CRUSO-P outperforms the
existing methods based on Winnowing algorithm and source code
fingerprints.

REFERENCES
[1] Junaid Akram, Zhendong Shi, Majid Mumtaz, and Ping Luo. 2018. Droidcc: A

scalable clone detection approach for android applications to detect similarity at
source code level. In 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), Vol. 1. IEEE, 100–105.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2Vec:
Learning Distributed Representations of Code. Proc. ACM Program. Lang. 3,
POPL (Jan. 2019), 40:1–40:29.

[3] Jung-Tsung Chiang et al. 2007. The masking and swamping effects using the
planted mean-shift outliers models. Int. J. Contemp. Math. Sciences 2, 7 (2007),
297–307.

[4] Michel Chilowicz, Etienne Duris, and Gilles Roussel. 2009. Syntax tree finger-
printing for source code similarity detection. In 2009 IEEE 17th International
Conference on Program Comprehension. IEEE, 243–247.

[5] Andrew M. Dai, Christopher Olah, and Quoc V. Le. 2015. Document embedding
with paragraph vectors. In NIPS Deep Learning Workshop.

[6] Al Danial. 2017. Count lines of code (cloc). Retrieved April 15, 2020 from
https://github.com/AlDanial/cloc

[7] Martin Hitz and Behzad Montazeri. 1996. Chidamber and Kemerer’s metrics suite:
a measurement theory perspective. IEEE Transactions on software Engineering 22,
4 (1996), 267–271.

[8] Clayton J Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In Eighth international AAAI conference
on weblogs and social media.

[9] Ritu Kapur and Balwinder Sodhi. 2020. A Defect Estimator for Source Code:
Linking Defect Reports with Programming Constructs Usage Metrics. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29, 2 (2020),
1–35.

[10] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. 1188–1196.

[11] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. 55–60.

[12] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[13] Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola Peters, and
Burak Turhan. 2012. The promise repository of empirical software engineering
data.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[15] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
overflow in the ide. In Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 1295–1298.

[16] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 102–111.

[17] Sasha Rezvina. 2019. Keep Code Review from Wasting Everyone’s Time: Code
Climate. https://codeclimate.com/blog/time-wasting-code-review/. Retrieved:
05-07-2020.

[18] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76–85.

[19] Shipra Sharma and Balwinder Sodhi. 2019. Using Stack Overflow content to
assist in code review. Software: Practice and Experience 49 (2019), 1255–1277.

[20] Smartbear. 2019. The 2019 State of Code Review: Trends and Insights into Col-
laborative Software Development. https://static1.smartbear.co/smartbearbrand/
media/pdf/the-2019-state-of-code-review.pdf. Retrieved: 05-07-2020.

[21] StackExchange. 2019. Files for stackexchange. https://archive.org/download/
stackexchange

[22] StackOverflow. 2019. StackOverflow Developer Survey Results 2019: Most Popular
Technologies. Retrieved Mar 24, 2020 from https://insights.stackoverflow.com/
survey/2019#technology

[23] C. Treude, O. Barzilay, and M. A. Storey. 2011. How do programmers ask and
answer questions on the web?: NIER track. In 33rd International Conference on
Software Engineering (ICSE). 804–807.

[24] Zoran Ðurić and Dragan Gašević. 2013. A source code similarity system for
plagiarism detection. Comput. J. 56, 1 (2013), 70–86.

[25] B. Vasilescu, V. Filkov, and A. Serebrenik. 2013. StackOverflow and GitHub:
Associations between Software Development and Crowdsourced Knowledge. In
2013 International Conference on Social Computing. 188–195.

[26] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 297–308.

[27] Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. An Empirical Study on
Developer Interactions in StackOverflow. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing (Coimbra, Portugal) (SAC ’13). ACM, New
York, NY, USA, 1019–1024.

[28] Thomas Zimmermann and Nachiappan Nagappan. 2009. Predicting defects with
program dependencies. In 2009 3rd international symposium on empirical software
engineering and measurement. IEEE, 435–438.

[29] Radim Řehůřek. 2019. gensim – topic modelling for humans. https:
//radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.
preprocessing.preprocess_string

View publication statsView publication stats

https://github.com/AlDanial/cloc
https://codeclimate.com/blog/time-wasting-code-review/
https://static1.smartbear.co/smartbearbrand/media/pdf/the-2019-state-of-code-review.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/the-2019-state-of-code-review.pdf
https://archive.org/download/stackexchange
https://archive.org/download/stackexchange
https://insights.stackoverflow.com/survey/2019#technology
https://insights.stackoverflow.com/survey/2019#technology
https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.preprocess_string
https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.preprocess_string
https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.preprocess_string
https://www.researchgate.net/publication/347455574

	Abstract
	1 Introduction
	1.1 Existing techniques for source code representation
	1.2 Basic tenets behind our system
	1.3 Leveraging crowd-knowledge to identify problems in source code

	2 Proposed approach
	2.1 Steps in our approach
	2.2 Design considerations in our approach
	2.3 Implementation details

	3 Performance Evaluation and Comparison
	3.1 Evaluation metrics
	3.2 Evaluating the performance of CRUSO-P
	3.3 Comparison of CRUSO-P with CRUSO
	3.4 Threats to validity

	4 Conclusion
	References

