
HAL Id: hal-03349819
https://hal.science/hal-03349819

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective Optimization of Data Placement in a
Storage-as-a-Service Federated Cloud

Amina Chikhaoui, Laurent Lemarchand, Kamel Boukhalfa, Jalil Boukhobza

To cite this version:
Amina Chikhaoui, Laurent Lemarchand, Kamel Boukhalfa, Jalil Boukhobza. Multi-objective Opti-
mization of Data Placement in a Storage-as-a-Service Federated Cloud. Transactions on Storage, 2021,
17 (3), pp.1-32. �10.1145/3452741�. �hal-03349819�

https://hal.science/hal-03349819
https://hal.archives-ouvertes.fr

HAL Id: hal-03349819
https://hal.archives-ouvertes.fr/hal-03349819

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective Optimization of Data Placement in a
Storage-as-a-Service Federated Cloud

Amina Chikhaoui, Laurent Lemarchand, Jalil Boukhobza, Kamel Boukhalfa

To cite this version:
Amina Chikhaoui, Laurent Lemarchand, Jalil Boukhobza, Kamel Boukhalfa. Multi-objective Op-
timization of Data Placement in a Storage-as-a-Service Federated Cloud. Transactions on Storage,
Association for Computing Machinery, 2021, 17 (3), pp.1-32. �10.1145/nnnnnnn.nnnnnnn�. �hal-
03349819�

https://hal.archives-ouvertes.fr/hal-03349819
https://hal.archives-ouvertes.fr

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated
Cloud

AMINA CHIKHAOUI1,2,3, LAURENT LEMARCHAND1, JALIL BOUKHOBZA1, and KAMEL BOUKHALFA2,
1Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France, France,
2University of Science and Technology Houari Boumediene, Algeria, and
3Ecole Normale Supérieure, Kouba, Algeria

Cloud federation enables service providers to collaborate to provide better services to customers. For cloud storage services, I/O
performance and network latency are important to ensure end-to-end QoS. Therefore, effectively placing customer objects for a cloud that
is a member of a federation is a real challenge. In order to optimize data placement, storage, migration and latency costs need to be
considered. These costs are contradictory in some cases. In this paper, we modeled object placement as a multi-objective optimization
problem. The proposed model takes into account parameters related to the local infrastructure, the federated environment, customer
workloads and their SLAs. For resolving this problem, we propose CDP-NSGAII𝐼𝑅 , a Constraint Data Placement matheuristic based on
NSGAII with injection and repair functions. The objective of the injection function is to enhance the solutions’ quality. It consists to
calculate some solutions using an exact method then inject them into the initial population of NSGAII. The repair function was designed
to ensure that the solutions obey the problem constraints in term of storage and so prevents from exploring large sets of infeasible solutions.
It allows to reduce the execution time of NSGAII. Our experimental results show that, the injection function improves the HV of NSGAII
and the exact method by up to 94% and 60% respectively while the repair function reduces the execution time by an average of 68%.

CCS Concepts: • Federated cloud → Hybrid storage system; • Data placement → Cost optimization.

Additional Key Words and Phrases: Data placement, optimization, cloud, cloud federation, NSGAII

ACM Reference Format:
Amina chikhaoui1,2,3, Laurent Lemarchand1, Jalil Boukhobza1, and Kamel Boukhalfa2. 2020. Multi-objective Optimization of Data
Placement in a Storage-as-a-Service Federated Cloud. 1, 1 (November 2020), 32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Cloud computing [67] is the most popular distributed computing paradigm [31]. It provides IT resources to users under
the form of ready-to-use services. Storage-as-a-Service (STaaS) is one of the most important services [32, 51] offered by
Cloud Service Providers (CSPs) to customers to manage the storage of their data. For STaaS, the storage I/O performance
is a primary QoS indicator. In fact, I/Os take about 90% of a transaction execution time [65].

Authors’ address: Amina chikhaoui1,2,3, achikhaoui@usthb.dz; Laurent Lemarchand1, laurent.lemarchand@univ-brest.fr; Jalil Boukhobza1, boukhobza@
univ-brest.fr; Kamel Boukhalfa2, k.boukhalfa@usthb.dz,
1Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France, Brest, France,
2University of Science and Technology Houari Boumediene, Algiers, Algeria,
3Ecole Normale Supérieure, Kouba, Algiers, Algeria.

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2

Cloud federation [12, 52] may constitute a key solution for such an issue. It consists in making several CSPs cooperate
by sharing resources. Thus, CSPs can insource and outsource their customers’ data and services to offer them a better QoS
and at the same time to increase their own revenue (or reduce costs, for instance, by deploying less hardware resources).
Cloud federation may give the opportunity to small and medium size CSPs to become very competitive [19].
Providing a storage service with the required I/O performance and network latency at a minimum cost is the main

objective of CSPs. To handle the I/O bottleneck, cloud infrastructures host different storage classes. These are mechanical
Hard Disk Drive (HDD) and Solid State Disks (Flash-based SSD and 3D XPoint memories, such as Intel Optane
memory)[18, 45]. On the other hand, to manage network latency, CSPs try to dynamically bring data close to their users.
This helps to reduce the latency experienced by the users and lower the overall traffic among data-centers [82].
In the context of a Cloud federation, a CSP member tries to leverage both local and the other CSPs storage services to

place customers data in order to reduce costs and at the same time meet the required QoS. This is a complex problem
because of the heterogeneity of storage and network resources on one hand, and because of the variable federation
environment and customers workloads and their respective SLAs on the other hand.
The global data placement cost is roughly composed of the storage, the migration and the network latency costs. These

are interdependent and in some cases contradictory costs. For instance, placing data locally may not be expensive in terms
of storage and migration costs but may generate a high latency for customers located in far regions. So, trade-offs are
inevitable for this type of data placement problem.
The problem of data placement has been widely investigated in the Cloud environment. The proposed techniques

have considered many issues related to the hybrid storage system of a centralized cloud as in [17, 35, 41, 57, 62, 78, 81]
and distributed clouds like [30, 43, 46, 50, 72, 76, 79, 83]. State-of-the-art studies have considered different objectives
under different constraints. Mono and multi-optimization techniques have been proposed to reach the desired objective(s).
Existing work on data placement in centralized cloud cannot be applied in distributed environment because the network
factor was not considered. On the other hand, we noticed that the storage cost in existing work is mainly based on volume
in terms of GB and I/O performance was not always considered. Furthermore, the storage-related SLA metrics were
seldom considered especially when it comes to a distributed cloud.
In this paper, we address the data placement in Cloud federation by modeling it as a multi-objective constrained

optimization problem. The storage, migration and latency costs constitute the different objective functions which are
subject to different constraints. The heterogeneity of the local and the federated storage classes and services, the customers
workloads and the requested QoS have been taken into account.
The data placement problem in this work follows a MAPE-K (Monitor, Analyse, Plan, Execute, and Knowledge)

autonomic feedback loop model [36]. We focus especially on the Analyse and Plan steps of this model by formulating and
resolving the placement problem.
In multi-objective optimization (MOO), it is rarely the case that it exists a single solution that simultaneously optimizes

all the objective functions [22]. In fact, there is a set of solutions, called non-dominated solutions or Pareto set. These
solutions define the trade-offs between the different objectives. The notion of non-dominance is related to the fact that no
solution is better than the others for all objective functions. (see Section 4.1).
Our goal is to efficiently obtain a set of non-dominated solutions that simultaneously minimize the storage, the network

latency and the migration costs. The selection of a final placement solution from the Pareto set is out of the scope of
this paper. It is a subjective task and might be based on other factors and parameters not considered in the optimization
process [53].

Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 3

Due to its popularity and efficiency, we used NSGAII [26] meta-heuristic to solve this multi-objective problem. However,
being an evolutionary meta-heuristic, NSGAII suffers from solutions unfeasability caused by the presence of constraints,
especially when the problem size increases. Furthermore, NSGAII lacks good initial population [63] due to the random
initialization. To deal with such problems, we propose an upgrade of NSGAII into a matheuristic [73] by combining it
with an exact method. We called this matheuristic CDP-NSGAII𝐼𝑅 for Constraint Data Placement matheuristic based on
Injection and repair functions.
CDP-NSGAII𝐼𝑅 works as follows. First, it generates a small number of non-dominated solutions by using an exact

method. This exact method transforms the MOO problem into a single objective optimisation problem (SOO) by
aggregating and weighting the objective functions into one linear function. We used CPLEX [1] to solve the SOO problem.
Then, the obtained solutions are injected into the initial population of NSGAII in order to populate the initial generation
with some good intividuals. Furthermore, we repair all the individuals in each iteration so as to transform unfeasible
solutions into feasible ones. The injection function helps NSGAII to improve its solutions quality as NSGAII suffers from
a bad initial population which is randomly generated while the repair function helps NSGAII to perform swiftly because
with reparation we do not need to check the constraints for the individuals no more as they are already repaired.
In short, the main contributions of this paper are twofold.

‚ Formulating the data placement problem as a multi-objective integer linear program. The proposed model takes
into account the local and the external storage systems characteristics, the customers SLAs and their workloads.

‚ Upgrading NSGAII to a matheurstic (CDP-NSGAII𝐼𝑅) by merging it with an exact method. Different tools and
methods have been used to design and implement the placement problem. CDP-NSGAII𝐼𝑅 consists in the following
steps:
– A pre-processing step: Calculation of a set of solutions using CPLEX solver.
– An evolutionary step: First, the set of solutions previously obtained is injected to the initial population of NSGAII.
Then, the evolutionary process of NSGAII is executed with a reparing function for the individuals in each
iteration.

The evaluation results show that CDP-NSGAII𝐼𝑅 reaches quickly the optimal Pareto front for small problem instances
with only the repair function. For example, it took 0.3 second for a problem composed of 15 objects and 4 locations while
an exact method took about 48 minutes. For large instances, the injection function improves the Pareto front quality of
both NSGAII meta-heuristic and the exact method while the repair function enhances the execution time of NSGAII. In
fact, the injection function improves the HV of NSGAII and the exact method by up to 94% and 60% respectively and the
repair function reduces the execution time of NSGAII by 68%.
The rest of this paper is organized as follows. first, some preliminaries on cloud federation and MOO are given in

Section 2. Then, we define the system model and formulate the problem of data placement in Section 3. Section 4 describes
the contribution. Experimental results are described in Section 5. Related work are summarized in Section 6 and at last,
conclusions and perspectives are given in Section 7.

2 BACKGROUND

This section gives some preliminary background about the concepts used in this paper. First the cloud federation paradigm
is discussed, then, some background knowledge related to the multi-objective optimization field is given.

Manuscript submitted to ACM

4

2.1 Cloud federation

Cloud federation refers to a set of geographically distributed CSPs that interact with each other by sharing their resources
in a cooperative manner via centralized and decentralized marketplaces [12, 60, 70, 71]. This collaboration helps the
CSPs to increase their profit while providing a continuous provisioning of high-quality services by exploiting temporal
and spatial availability of resources and diversity of operational costs [44]. Cloud federation appeared to overcome some
limitations [13, 29, 70] such as resource contention, service interruption and Quality of Service (QoS) degradation.
These limitations appeared with the massive deployment of Cloud infrastructures and the technology maturity of cloud
computing [12] and the emergence of many related new paradigms such as mobile cloud computing, IoT, and big data
applications. To work properly and to maintain the integrity of the organization, the federated CSPs are governed by a
Federation Level Agreement (FLA) that specifies interconnection rules and describes each participant’s responsibilities
and permissible behaviors, along with the financial, administrative, or other penalties for violating its terms [39].
In this section, we first discuss the motivations behind the adoption of federated clouds. Then, a classification of the

different federation forms is presented to help positioning our work.

2.1.1 Motivations for the cloud federation. Cooperation between CSPs creates benefits. We cite, among others, the
following reasons that motivate the utilization of a cloud federation [12, 60]:
Elasticity and availability: Elasticity is one of the main cloud computing properties. It allows to dynamically adapt
resource provisioning by increasing or decreasing their amount according to customers workloads [86]. Cloud federation
enables providers to efficiently adjust their hosting capacity through cooperation with others instead of provisioning (new)
extra capacities which increases energy waste and costs. Furthermore, the geographic distribution of federated cloud
infrastructures makes it possible to migrate services from areas that may be affected by outages. It allows also for data to
be geographically replicated which maintains the availability of customer services.
Cost and performance efficiency: Cloud federation allows CSPs to expand their geographic coverage without the need
to build new data-centers [59]. This helps to save costs and at the same time improves the offered QoS. Also, the latency
can be minimized by satisfying requests from a closer provider and the response time can be reduced by executing the
request on a more powerful host from other providers. Furthermore, with cloud federation the load can be balanced
between the involved clouds according to some metrics such as energy consumption.
Economic Barriers: cloud infrastructures were not designed to inter-operate, therefore there is a lack of standardization
and compatibility between the underlying technologies. This generates the "vendor lock-in" phenomenon where customers
stay confined to certain CSPs. This vendor lock-in may lead to economic and functional losses for customers because
migrating their services to other clouds is expensive and requires a large deal of technical effort. In a cloud federation, the
FLA can be used to specify interfaces and data representation protocols supported on the environment, and then interested
parties can migrate among federation providers if needed [12].

2.1.2 Taxonomy of cloud federation. Two main classifications of cloud federation exist as is seen in Figure 1:
According to the interaction level: There are vertical, horizontal and hybrid federations [12, 69]. In a vertical federation, the
interconnection, occurs between clouds at different levels of services, while in a horizontal federation the interconnection
occurs between clouds at the same service level. Finally, hybrid federations perform horizontal and vertical expansion in
accordance with the interest of both customers and providers [13].
According to membership: There are three forms of federations [13, 13, 25, 70]:
(i) ad-hoc federation: A CSP or a broker may use resources of other public CSPs such as Amazon AWS and Google apps.
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 5

Cloud federation taxonomy

Membership

HomogeenuousHeterogeneous

StructuredAd-hoc

Interaction
level

HybridVerticalHorizontal

Fig. 1. Cloud federations taxonomy Fig. 2. Pareto front Fig. 3. Hypervolume indicator

In this type of federation, public clouds are not necessarily aware that they participate in a federation. Consequently, the
CSP who uses resources from these external CSPs has to establish a specific SLA (Service Level Agreement) with each
one of them.
(ii) Structured federation: this federation is represented by small and medium private CSPs (companies which handle their
own resources as a Cloud infrastructure) that collaborate with each other to maintain all properties of the cloud paradigm.
The CSPs are governed by a Federation Level Agreements (FLA) [1, 17, 25] which describes the relation between the
different CSPs through functional and nonfunctional properties. This can be interesting and useful in many critical
environments. In fact, FLA determines the behavior of heterogeneous and autonomous clouds [1]. Therfore, it alleviates
the complications between the federated clouds because resource sharing is well-behaved, obeying to this contract [12].
(iii) Internal federation: here the cloud federation is composed of different geographically distributed data-centres belonging
to the same institution. In this class there are no complex agreements to maintain between the clouds because they are
managed by the same entity.
In this work, we suppose that we have a structured and horizontal federation where an FLA governes the federation

CSPs and each one of them devotes a part of his resources to his partners (it can also be adapted to internal federations).
We are specifically interested in the object placement problem of a CSP member of a horizontal structured federation. We
assume that each CSP of the federation devotes a part of his resources to the federation. The concerned CSP can use
his own resources or that of the other federation members for the placement of his customers data objects. The main
objective of this work is to provide the decision-maker with the different placement trade-offs that satisfy the customers
requirements and minimize the placement costs.

2.2 Multi-objective optimization

Multiobjective optimization is a very important research topic as the nature of most problems is multi-objective in nature.
Unlike single-objective optimization (SOO), the purpose of MOO is to find a set of good solutions [55] representing
trade-offs between objectives since a single solution optimizing all of the objectives simultaneously rarely exists [42]. A
good solution is often defined by the dominance concept (see Section 2.2.2). A decision maker has to choose the final
solution among the good ones [54], by eventually considering factors not included in the optimization process because
they can be hardly modeled and are sometimes subjective.

2.2.1 Multi-Objective Optimization Problem. In MOO, an optimization problem over 𝑛 decision variables can be defined
by the optimization (minimization or maximization, minimization in the sequel) of a given objective function vector (of 𝑘
objectives) and satisfaction of a set of𝑚 constraints. The constraints define the space of feasible solutions [55].

Manuscript submitted to ACM

6

minimize
𝑥P𝑋

𝑓 p𝑥q “ r𝑓1p𝑥q,𝑓𝑘p𝑥qs

subject to ℎ 𝑗 p𝑥q ď 0, 𝑗 “ 1, ...,𝑚
𝑥 “ r𝑥1,𝑥𝑛s P 𝑋 𝑓 p𝑥q “ r𝑓1,𝑓𝑘 s P 𝑌

wherein 𝑥 is the decision (solution) vector, 𝑋 the decision space, 𝑓 the objective vector and 𝑌 the objective space.

2.2.2 Pareto-optimality. The Pareto optimality [23] concept is a way of defining good solutions when more than one
objective is considered. A Pareto optimal solution is one that is not dominated by another solution from the feasible space,
i.e. there exists no solution that is better for all considered goals.
More formally, the Pareto dominance relation is defined as follows:

Definition 1: [23] A vector 𝑣 “ p𝑣1, 𝑣2, ..., 𝑣𝑘q dominates another vector 𝑤 “ p𝑤1,𝑤2, ...,𝑤𝑘q if and only if @𝑖 P

t1, 2, ..., 𝑘u, 𝑣𝑖 ď 𝑤𝑖 and D 𝑗 P t1, 2, ..., 𝑘u, 𝑣 𝑗 ă 𝑤 𝑗 . This is denoted by 𝑣 ă 𝑤 .
Definition 2: the Pareto optimal set is defined by: 𝑃 “ t𝑥 P 𝑋, ∄𝑥 1 P 𝑋, 𝐹p𝑥 1q ă 𝐹 p𝑥qu

Definition 3: the Pareto front is defined by: 𝑃𝐹 “ t𝐹 p𝑥q, 𝑥 P 𝑃u

Definition 4: the Pareto set approximation is a set of approximate solutions where no element of this set is dominated by
any other.
Figure 2 illustrates a Pareto front of a MOO problem where two objective functions 𝑓1p𝑥q and 𝑓2p𝑥q are being minimized.

Objective values in red color correspond to non-dominated solutions while those in gray color are dominated ones.

2.2.3 Multiobjective evolutionary algorithms (MOEAs). Solving a MOO problem needs to go through two steps (i) finding
the Pareto set, (ii) selecting a solution among the Pareto set through decision making process. In this work, we are
interested in the first step.
MOEAs are well-known non-deterministic population-based algorithms proposed and used to solve MOO problems.

They are generally based on the Darwinian natural selection theory. MOEAs help the decision makers to find a Pareto set
within a reasonable time in case where the exact methods are not applicable. This is generally the case for large-scale
problems due to the prohibitive execution time that their solving requires.
Standard MOEAs perform sometimes poorly for difficult problems with complex feasible spaces or a high number

of constraints [64]. Repair heuristics, solution penalization methods and special representations and operators are the
classical techniques for constraint handling in evolutionary algorithms. Designing special representations and operators
can be helpful but is also time consuming and does not take benefit of previous work. Penalization methods are the oldest
approach used to handle constraints in optimization algorithms including MOEAs [21]. They consist to transform a
constrained-optimization problem into an unconstrained one by adding/subtracting a certain value to/from the objective
function based on the amount of constraint violation present in a certain solution [21]. However, they do not guarantee to
find feasible solutions. Repair operators consist to reduce the search space to feasible solutions by making some local
search in order to transform unfeasible solutions to feasible ones. The repair operators avoid repetitive and costly evaluation
of unfeasible solutions maintained by penalization methods and they handle directly the problem constraints[64]. Also, a
repair operator allows to use all the well-known and efficient standard operators.
Three goals must be considered when solving a MOO problem. These are [61, 87] (i) precision: this means that the

found non-dominated solutions should be as close as possible to the Pareto-optimal front, (iii) exhaustivity: the solutions
must be numerous and (iii) diversity: as the found solutions should be well spaced over the Pareto front.

Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 7

2.2.4 Performance indicators. In single-objective minimization, the quality of a given solution is trivial to quantify,
however, evaluating the quality of an approximation of a Pareto set is a non-trivial task [14].
To quantify and compare the quality of solution sets produced by different MOEAs, numerous performance indicators

have been proposed in the literature. These performance indicators consist in assigning scores to Pareto front approximations
[14, 15]. We quote, among others, Generational Distance, Inverted Generational Distance, Hypervolume, Maximum
Pareto Front Error and Spacing. These indicators allow to compare Pareto fronts, in term of precision, exhaustivity and
diversity or any combination. In our evaluations, we used the Hypervolume indicator.
Hypervolume (HV), also called hyperarea, is one of the most popular measures for the performance assessment of

multi-objective algorithms [77]. It encompasses the exhaustivity, the precision and the diversity metrics [14, 15]. It
computes the portion of the objective space dominated by all the solutions bounded by a reference point 𝑟 . The HV of an
approximate Pareto front 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥 is obtained by 𝜆𝑘p

Ť

𝑧P𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥

r𝑧; 𝑟 sq where 𝜆𝑘 is the k-dimensional Lebesgue measure

[14]. The greater the HV value, the better the approximation is. An illustration is given in Figure 3 for the bi-objective
case (𝑘 “ 2).

3 SYSTEM MODEL AND PROBLEM FORMULATION

The placement of customers data objects for a CSP member of a federation is a hard problem [48, 75]. In order to build a
smart placement solution, we first need to formulate it under the form of an optimization problem. The objective function
of this problem seeks the minimization of the placement cost. This work is based on the cost model proposed in [20] and
built for data object placement in a federated cloud. Furthermore, object placement must be realized while respecting a set
of constraints related to the system model.
Notation used in this paper is summerized in Table 1.
In this section, we start by briefly discussing the challenges and objectives of this study. Then, we describe the target

system. After that, the used cost model is shortly introduced. Finally, we end up by formulating the placement problem.

3.1 Challenges and objectives

The main objective in this work is to assist the cloud administrator of a CSP in order to find a good placement configuration
of the customers data objects. The local storage infrastructure and other storage services from other CSPs are used to
manage the customers data objects. The I/O storage performance and the network latency are the targeted QoS metrics for
the customers. The sought placement configuration should respect the customers QoS requirements and at the same time
minimize the CSP costs.
Minimizing the placement cost is contradictory with satisfying the customers requirements. On the other hand, the

satisfaction of both I/O storage performance and network latency may be contradictory in certain circumstances. For
example, placing a customer object in one location may respect the requested I/O storage performance but may generate a
high network latency. In addition, the placement configuration must adapt to the dynamic and heterogeneous environment.
In fact the used local and external resources have different characteristics in term of capacity, performance and prices.
Also, the CSPs of the federation may update their storage resource prices according to the availability of their resources.
Furthermore, the customers have different workloads which may change over time. Customers may be mobile or have
users geographically spread, which impacts the network latency to access their objects. Dealing with such a dynamic and
heterogeneous system makes data placement strategies very challenging and a thorough formulation of the placement

Manuscript submitted to ACM

8

Table 1. Notation Table

Symbol Meaning

𝑀 , 𝑍𝑚 The number of geographic zones, the zone𝑚
𝐷 the number of clouds in the federation
𝐶𝑆𝑃𝑑 , 𝑠𝑠𝑑 ,𝑐𝑠𝑠𝑑 , 𝑖𝑜𝑑 cloud provider 𝑑 , its storage service, the capacity (𝐺𝐵) of the storage service and its IOPS performance
𝐽 The number of local storage classes
𝑠𝑐 𝑗 , 𝑐𝑠𝑐 𝑗 , 𝑖𝑜 𝑗 p𝑜𝑝q The storage class 𝑗 , its capacity and its IOPS per operation type 𝑜𝑝
𝑜𝑝 (𝑜𝑝 P t𝑟𝑟, 𝑟𝑤, 𝑠𝑟, 𝑠𝑤u) where 𝑟𝑟 : random read, 𝑟𝑤:random write, 𝑠𝑟 :sequential read, 𝑠𝑤:sequential write
𝑅, 𝑟 The number of request types, the request type 𝑟 (e.g. get, put)
𝐾 The number of customers
𝑈 , 𝑢𝑘 ,𝑂𝑘 The set of customers, customer 𝑘 and the set of his objects
𝑖𝑜𝐻𝑎𝑟𝑑𝑘 ,𝑖𝑜𝑆𝑜 𝑓 𝑡𝑘 the hard iops SLA and the soft iops SLA of customer 𝑢𝑘
𝑖𝑜𝑂𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 The IOPS delivered to the customer 𝑢𝑘
𝑜𝑖,𝑘 ,𝑠𝑜𝑖,𝑘 , 𝑖𝑜𝑜𝑖,𝑘 p𝑜𝑝q the object 𝑖 of customer 𝑢𝑘 , its size and its issued I/O requests per operation type
𝑃 the number of possible storage locations, 𝑃 “ 𝐷 ` 𝐽 ´ 1
𝑜𝑐𝑐

𝑚,𝑟

𝑘
the number of requests of type 𝑟 issued by the customer 𝑢𝑘 from the zon 𝑍𝑚

𝑎𝑐𝑐
𝑟,𝑜𝑖,𝑘

𝑘
The fraction requests of type 𝑟 issued by the customer 𝑢𝑘 and accesses the object 𝑜𝑖,𝑘

𝑡𝑜𝑡
𝑚,𝑜𝑖,𝑘

𝑘
the total number of requests of customer 𝑢𝑘 issued from the zone of 𝑍𝑚 and that access to 𝑜𝑖,𝑘

𝑙𝑍𝑚 ,𝑍𝑚1 the network latency between the zone 𝑍 and the zone 𝑍 1.
𝑇 Period of time
𝑥 Decision variable representing a placement configuration
Objective functions
𝑠𝑡𝑜𝑟𝑒 The storage cost for a given 𝑥 placement configuration
𝑚𝑖𝑔𝑟𝑎𝑡𝑒 The migration cost for a given 𝑥 placement configuration
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 The latency cost for a given 𝑥 placement configuration
Costs
𝐶𝑜𝑠𝑡𝑝𝑙𝑐,𝑇 The placement cost of internal customers data objects
𝐶𝑜𝑠𝑡𝑙𝑐𝑙,𝑇 The local placement cost
𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇 The local storage cost
𝐶𝑜𝑠𝑡𝑙𝑚𝑔𝑟,𝑇 The local migration cost
𝐶𝑜𝑠𝑡𝑜𝑢𝑡𝑠𝑟𝑐,𝑇 The outsourcing cost
𝐶𝑜𝑠𝑡𝑒𝑠𝑡𝑟,𝑇 The external storage cost
𝐶𝑜𝑠𝑡𝑔𝑚𝑔𝑟,𝑇 The geo-migration cost
𝐶𝑜𝑠𝑡𝑏𝑚𝑔𝑟,𝑇 The back-migration cost
𝐶𝑜𝑠𝑡𝑝𝑛𝑡,𝑇 The penalty cost
𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑖𝑜 ,𝑇 The storage performance penalty cost
𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 The network latency penalty cost
𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑚𝑔𝑟 ,𝑇 The migration penalty cost

problem must take into account most of the system related factors in order to make adequate decisions for placing data
objects.

Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 9

3.2 System overview

𝑍0
𝐶𝑆𝑃0

𝑢0

𝑠𝑐0 (𝑝 “ 0) 𝑠𝑐1 (𝑝 “ 1)

Data Manager

𝑜1,0 𝑜2,1 𝑜2,0 𝑜1,1

𝑍1

𝐶𝑆𝑃1

𝑢1 𝑢0

(𝑝 “ 2)

𝑜3,0 𝑜0,1 𝑜3,1

𝐶𝑆𝑃2

(𝑝 “ 3)

𝑜0,0 𝑜4,0 𝑜4,1

Sensors

Monitor
Data

Data placement Optimizer

Analyse
-Analyse costs
-Formalize the problem

Plan
-Find condidate
configurations

Execute

Actuators
Actions

Knowledge

Fig. 4. System architecture

In this work, we focus on the data objects placement from the stand point of a single CSP. Indeed, in a Cloud federation,
each CSP is free to apply his own optimization techniques. We suppose that the CSPs use interfaces and tools like OCCI
standard interface [27] or apache LibCloud [6] in order to unify the interface and facilitate migrating services among
clouds.
Let 𝐶𝑆𝑃ℎ be the considered provider that wants to optimize the placement of data objects of his customers (𝐶𝑆𝑃0 in the

example of Figure 4).
The data placement optimization process is performed by the Data Manager component. It incorporates the different

steps of a MAPE-K model which is described below.
First, The Monitor step consists to perform a periodic monitoring of the federated environment by collecting and

aggregating the monitored parameters such as the available storage resources of the CSPs and their prices, the customers
locations and the latency of their requests, the objects current placement, etc. Monitoring tools, such as Amazon
CloudWatch [5] or OpenStack Watcher [7], may be used in this step. Also, each CSP may share part of his own monitoring
data to the federation.
Then, the monitoring data are passed to the Data Placement Optimizer module. This module is composed of the

Analyze and Plan steps of the MAPE-K process. The Analyze step consists of two phases. In the first one, the monitored
metrics are introduced in a cost model in order to calculate the costs related to the data placement. The second phase
uses the monitored metrics in addition to the results of the first phase in order to build and formalize an optimization
problem. The Plan step incorporates some methods that aim to find the data placement configurations that achieve a
trade-off between some given criteria. Finally, based on the results obtained by the Data Placement Optimizer and some
non-technical aspects such as the CSP reputation, in the Execute step, a placement scheme is selected and the customers
objects placement are autonomously re-configured.
In this work, we focused on the Data Placement Optimizer module.

Manuscript submitted to ACM

10

Table 2. Network latency price and penalty per request. (𝑏0 ą 𝑏𝑖 ą 𝑏𝑖`1 ą 0)

𝑙𝑡𝑐𝑜 𝑓 𝑓 𝑒𝑟𝑒𝑑 Price (%)
r0..𝐵1s 𝑏0

r𝐵𝑖 ..𝐵𝑖`1s 𝑏𝑖
ą 𝐵𝑛 0

(a)

𝑙𝑡𝑐𝑜 𝑓 𝑓 𝑒𝑟𝑒𝑑 Penalty (%)
r0..𝐵1s 0

r𝐵𝑖 ..𝐵𝑖`1s 𝑏0 ´ 𝑏𝑖
ą 𝐵𝑛 𝑏0

(b)

3.3 System model

To illustrate our problem, we describe, in this section, the targeted system and the hypotheses of our work.
We consider a cloud federation composed of 𝐷 CSPs, spread over𝑀 different geographical zones with (𝐷 ě 𝑀). There

may be one or more CSPs in each zone with different characteristics.
For instance, in Figure 4, we have 3 CSPs spread over 2 zones 𝑍0 and 𝑍1.
We suppose that 𝐶𝑆𝑃ℎ accommodates 𝐽 different storage classes. Each storage class 𝑠𝑐 𝑗 (e.g. 𝐽 “ 2 in Figure 4, HDD

for 𝑠𝑐0 and SSD for 𝑠𝑐1) is characterized by its capacity 𝑐𝑠𝑐 𝑗 , its iops according to the type of I/O operation issued 𝑖𝑜 𝑗 p𝑜𝑝q.
We considered the following I/O operations as they proved to perform differently according to state-of-the-art work:
sequential read p𝑠𝑟q, sequential write p𝑠𝑤q, random read p𝑟𝑟q and random write p𝑟𝑤q. Each storage class has also other
characteristics such as the price and the guarantee period.
We assume that 𝐶𝑆𝑃ℎ can use storage services offered by the other CSPs of the federation. A storage service 𝑠𝑠𝑑 of

a distant partner 𝐶𝑆𝑃𝑑 (for instance 𝐶𝑆𝑃1 and 𝐶𝑆𝑃2 in Figure 4) is defined by the storage capacity 𝑐𝑠𝑠𝑑 and the storage
performance 𝑖𝑜𝑑 . The storage services can be billed differently by partner CSPs.
The provider 𝐶𝑆𝑃ℎ handles a set 𝑈 of 𝐾 internal customers. Customers may be located in different geographical zones.

They may be mobile or have end-users geographically spread. For example, in Figure 4, there are two customers 𝑢0 and 𝑢1.
Customer 𝑢0 end users are spread on the two zones 𝑍0 and 𝑍1 while end users of customer 𝑢1 are located in zone 𝑍1. Each
customer 𝑢𝑘 has a data application composed of a set of objects 𝑂𝑘 . It generates a workload made up of several types of
requests such as get, put and update. The workload generates a set of different I/O operations (that can be captured with
tracing tools as in [56]). Each object 𝑖 of a customer 𝑘 , denoted 𝑜𝑖,𝑘 , has a size 𝑠𝑜𝑖,𝑘 and is accessed through different I/O
requests per operation type 𝑖𝑜𝑜𝑖,𝑘 p𝑜𝑝q.
The customer also requests a QoS (SLA) in terms of number of IOPS. The IOPS SLA is expressed by a hard SLA

𝑖𝑜𝐻𝑎𝑟𝑑𝑘 which must be respected and a soft SLA 𝑖𝑜𝑆𝑜 𝑓 𝑡𝑘 . This is a proportional penalty model related to the degree and
the delay of the SLA storage performance violation [16]. Note that 𝑖𝑜𝑆𝑜 𝑓 𝑡𝑘 represents the agreed upon I/O throughput of
customer 𝑢𝑘 while 𝑖𝑜𝐻𝑎𝑟𝑑𝑘 is the limit of I/O throughput degradation tolerated by 𝑢𝑘 . 𝑖𝑜𝑂 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 represents the IOPS
effectively delivered to the customer 𝑢𝑘 . If 𝑖𝑜𝑂 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 is lower than the soft SLA,𝐶𝑆𝑃ℎ undergoes a storage IOPS related
penalty.
We suppose, as in [68], that the network performance of the queries is billed according to the experienced latency as in

Table 2a. It defines intervals of network latency QoS values and the corresponding prices. [𝛽𝑖 ,𝛽𝑖`1] represents the interval
of the network latency and 𝑏𝑖 is the price to pay by the customer for the network latency corresponding to this interval. 𝑏0
indicates the (highest) price of the lowest latency interval. If the network latency exceeds a certain limit, its price becomes
zero (the higher the latency, the lower the price). So, If the offered latency is within the interval [𝛽𝑖 ,𝛽𝑖`1], 𝐶𝑆𝑃ℎ loses an
amount corresponding to 𝑏0 ´ 𝑏𝑖 as shown in Table 2b. We denote by 𝑝𝑒𝑛𝑎𝑙𝑡𝑦p𝑙𝑍𝑚,𝑍𝑚1 q the latency penalty between the
zones 𝑍𝑚 and 𝑍𝑚1 , 𝑙𝑍𝑚,𝑍𝑚1 being the latency between the two zones. For simplicity, 𝑙𝑍𝑚,𝑍𝑚 “ 0 as the network latency in
a given zone is small.
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 11

We suppose that the cloud administrator periodically makes decisions about objects placement. 𝑇 is the time period
during which monitoring is executed to extract objects I/O patterns for making such a placement decision. One example of
a framework that considers such periodic changes is the OpenStack Watcher project [7].
As already discussed, Cloud customers are mobile or have many users geographically spread. So, the locations from

which requests originate may change over time.
We want to model the overall workload applied by a customer 𝑢𝑘 (its users) issued from the different zones in order

to calculate the network latency penalty. For that, we use the matrix 𝑜𝑐𝑐𝑘 which elements 𝑜𝑐𝑐
𝑚,𝑟

𝑘
represent the number

of requests of type 𝑟 issued by the customer 𝑢𝑘 from the zone 𝑍𝑚 . As well, let the matrix 𝑎𝑐𝑐𝑘 represent the access of
the requests to the objects. Each element 𝑎𝑐𝑐𝑟,𝑜𝑖,𝑘

𝑘
of this matrix indicates the fraction of requests of type 𝑟 issued by the

customer 𝑢𝑘 and that access the object 𝑜𝑖,𝑘 . 𝑎𝑐𝑐
𝑟,𝑜𝑖,𝑘
𝑘

P r0..1s such as for each request type 𝑟 ,
ř

𝑜𝑖,𝑘P𝑜𝑘
𝑎𝑐𝑐

𝑟,𝑜𝑖,𝑘
𝑘

“ 1, see
example below.
We denote the overall workload by the matrix 𝑡𝑜𝑡𝑘 . It is the product of the matrix 𝑜𝑐𝑐𝑘 and the matrix 𝑎𝑐𝑐𝑘 , see Eq. (1)

𝑡𝑜𝑡𝑘 “ 𝑜𝑐𝑐𝑘 ˚ 𝑎𝑐𝑐𝑘 (1)

So, each element 𝑡𝑜𝑡𝑚,𝑜𝑖,𝑘
𝑘

represents the overall number of all requests types issued by the customer 𝑢𝑘 from the zone
𝑍𝑚 and that access the object 𝑜𝑖,𝑘 .

Example : Let us take the same federation configuration depicted in Figure 4. Let customer 𝑢0 issue 2 types of requests
(get, and update). Its end-users are spread over the 2 zones. Matrix 𝑜𝑐𝑐0 represents the number of requests issued by the
users of customer 𝑢0 from different zones.

𝑜𝑐𝑐0 “

𝑔𝑒𝑡 𝑢𝑝𝑑𝑎𝑡𝑒
˜ ¸

𝑍0 5500 1000
𝑍1 2000 100

Matrix 𝑎𝑐𝑐0 represents the access fraction of these requests per object.

𝑎𝑐𝑐0 “

𝑜0,0 𝑜1,0 𝑜2,0 𝑜3,0 𝑜4,0
˜ ¸

𝑔𝑒𝑡 0.6 0.1 0.2 0 0.1
𝑢𝑝𝑑𝑎𝑡𝑒 0.5 0 0.2 0.1 0.2

So, the resulting matrix 𝑡𝑜𝑡0 represents the total requests issued from the location of each zone and accessing to the
different objects and is given as follows:

𝑡𝑜𝑡0 “

𝑜0,0 𝑜1,0 𝑜2,0 𝑜3,0 𝑜4,0
˜ ¸

𝑍0 3800 550 1300 100 750
𝑍1 1250 200 420 10 220

The element 𝑡𝑜𝑡1,𝑜0,00 “ 1250 represents the total number of requests issued from the zone 𝑍1 by the end-users of the
customer 𝑢0 that access to the object 𝑜0,0.

Manuscript submitted to ACM

12

3.4 Cost model

A cost model was proposed in [20] for object data placement in a federated cloud. The overall placement cost for
data objects of internal customers in a time period 𝑇 consists of a local placement cost 𝐶𝑜𝑠𝑡𝑙𝑐𝑙,𝑇 , an outsourcing cost
𝐶𝑜𝑠𝑡𝑜𝑢𝑡𝑠𝑟𝑐,𝑇 , a back-migration cost 𝐶𝑜𝑠𝑡𝑏𝑐𝑘-𝑚𝑔𝑟,𝑇 and a penalty cost 𝐶𝑜𝑠𝑡𝑝𝑛𝑡,𝑇 as shown in Eq. (2). Note that is in this
paper, every time a cost is discussed, it is related to a monetary cost.

𝐶𝑜𝑠𝑡𝑝𝑙𝑐,𝑇 “ 𝐶𝑜𝑠𝑡𝑙𝑐𝑙,𝑇 `𝐶𝑜𝑠𝑡𝑜𝑢𝑡𝑠𝑟𝑐,𝑇`

𝐶𝑜𝑠𝑡𝑏𝑚𝑔𝑟,𝑇 `𝐶𝑜𝑠𝑡𝑝𝑛𝑡,𝑇
(2)

𝐶𝑜𝑠𝑡𝑙𝑐𝑙,𝑇 “ 𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇 `𝐶𝑜𝑠𝑡𝑙𝑚𝑔𝑟,𝑇 (3)

𝐶𝑜𝑠𝑡𝑜𝑢𝑡𝑠𝑟𝑐,𝑇 “ 𝐶𝑜𝑠𝑡𝑔𝑚𝑔𝑟,𝑇 `𝐶𝑜𝑠𝑡𝑒𝑠𝑡𝑟,𝑇 (4)

𝐶𝑜𝑠𝑡𝑝𝑛𝑡,𝑇 “ 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑖𝑜 ,𝑇 `𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 (5)

We briefly describe the different components here-under.
Local placement cost: The local placement cost 𝐶𝑜𝑠𝑡𝑙𝑐𝑙,𝑇 is the storage cost of internal customers objects in the local

infrastructure. It consists of a local storage cost 𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇 and a migration cost 𝐶𝑜𝑠𝑡𝑙𝑚𝑔𝑟,𝑇 as shown in Eq. (3). 𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇
is composed of the occupation cost in terms of purchase cost and guarantee, and the I/O workload execution cost in
terms of energy and wear-out. 𝐶𝑜𝑠𝑡𝑙𝑚𝑔𝑟,𝑇 is related to the cost of local migration between storage classes within the CSP
infrastructure (energy and wear-out).

Outsourcing cost: This cost (𝐶𝑜𝑠𝑡𝑜𝑢𝑡𝑠𝑟𝑐,𝑇) is related to the placement of internal customers objects in partner CSPs.
It is composed of geo-migration cost 𝐶𝑜𝑠𝑡𝑔𝑚𝑔𝑟,𝑇 of customers objects, and the storage cost fixed by the partner CSP
𝐶𝑜𝑠𝑡𝑒𝑠𝑡𝑟,𝑇 (see Eq. (4)).

Back-migration cost: It (𝐶𝑜𝑠𝑡𝑏𝑚𝑔𝑟,𝑇) represents the cost of bringing back the previously outsourced objects to the
home infrastructure.

Penalty cost: 𝐶𝑜𝑠𝑡𝑝𝑛𝑡,𝑇 is composed of the I/O storage performance penalty cost 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑖𝑜 ,𝑇 related to the violation
of I/O SLA term and the network latency penalty cost 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 related to the degradation of the delivered network
latency as noted in Eq. (5). As previously discussed, the CSP undergoes an I/O penalty when 𝑖𝑜𝑂 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 are less than
the 𝑖𝑜𝑆𝑜 𝑓 𝑡𝑘 for any customer 𝑢𝑘 . Concerning the network latency penalty, it is related to the number of issued requests
𝑡𝑜𝑡𝑘 (see Eq. (1)) by each customer 𝑢𝑘 and the latency level between their origin zones and that of the requested objects.

3.5 Problem formulation

Our objective is to find a good placement configuration for customers’ objects of a CSP using opportunistically both its
internal storage classes and the storage services of partner CSPs. The sought placement configuration should respect the
customers QoS requirements and at the same time minimize CSP costs.
When we analyze the placement cost (see Section 3.4), we find that it is composed of three main components which

are: (1) the storage cost related to the occupation and I/O workload costs, (2) the migration cost which is defined by the
different migrations in the system, and (3) the network latency cost that is the penalty generated by the deterioration of the
QoS caused by the network latency. These costs are in some cases contradictory. For instance, placing data locally may
be cheap in term of storage and migration costs but may generate a bad network latency for customers located in other
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 13

regions. Another example is that there exists a location that may minimize both storage and latency costs but migration to
this location generates a prohibitive cost. So, making a trade-off while placing data objects is inevitable.
In order to give more flexibility to the cloud administrator to update the placement configuration of customers objects,

we formulate the placement problem under the form of a multi-objective optimization problem taking into account the
three functions namely (1) storage cost, (2) migration cost, and (3) latency cost, and constraints related to the limited local
and external resources and customers SLAs.
In this section, we will, first, specify how a solution representing a placement configuration is encoded. Then, we will

define its cost functions and show how to evaluate them. Finally the constraints to meet will be described.

3.5.1 Individual representation. In our work, a solution for the placement of customers objects is represented by means
of a classical integer encoding schema. With such an encoding, each individual, named also a chromosome, is defined as
an integer array which represents a placement configuration of all the objects of all the customers in 𝑃 locations. So, a
chromosome is a set of genes. A gene number 𝑖 in a chromosome corresponds to the object number 𝑖. The value of a gene
𝑖 corresponds to the location of object 𝑖. As explained already, from a CSP perspective, the overall number of locations 𝑃
equals to the number of the local storage classes plus the number of partner CSPs (𝑃 “ 𝐷 ` 𝐽 ´ 1).
So a placement configuration is represented by the vector 𝑥 “ p𝑥𝑜0,0 , 𝑥𝑜1,0 , ¨ ¨ ¨ , 𝑥𝑜𝑖,𝑘 ¨ ¨ ¨ q where 𝑥𝑜𝑖,𝑘 is a potential

location for the object 𝑜𝑖,𝑘 .
For simplification, in our representation, a location 𝑝 P r0, 𝐽 r corresponds to local storage classes while 𝑝 P r𝐽 , 𝐷` 𝐽´1r

corresponds to a location in a partner cloud.
In the example depicted in Figure 4. 𝐶𝑆𝑃0 is the concerned one by the optimization placement. It accommodates 2

storage classes, then 𝑝 “ 0 and 𝑝 “ 1 correspond to the local placement. 𝑝 “ 2 corresponds to a placement in𝐶𝑆𝑃1 while
𝑝 “ 3 represents a placement in 𝐶𝑆𝑃2.
The particular assignment sketched in Figure 4 corresponds to the chromosome 𝑥 “ p𝑥0,0, ..., 𝑥4,0, 𝑥0,1, ..., 𝑥4,1q

represented by the vector 𝑥 “ p3, 0, 1, 2, 3, 2, 1, 0, 2, 3q . The chromosome length indicates the numbers of all customers’
objects. In this example we have 2 customers each one has 5 objects which means, the length of the chromosome is 10. The
gene 𝑥𝑜0,0 holds a value equals to 3 meaning that the object 𝑜0,0 is assigned to the location 𝑝 “ 3, it corresponds to 𝐶𝑆𝑃2.

3.5.2 Objective functions. The addressed problem consists in determining a placement of customers data objects on
local and/or external storage systems so as to provide a better data access performance while minimizing the placement
cost. The data access patterns are changing in time and the customers are mobile or their users can be geographically
spread. The customers QoS requirements are expressed in term of I/O storage performance and network latency. Placing a
customer object in one location may satisfy one QoS requirement but not the other. Besides, given the characteristics of
the system, to reach the main objective (minimizing the placement cost and satisfying the customers SLAs), the customers
data objects placement configuration may change over time. This means that some data objects need to be migrated.
Migrating data objects cost is variable according to the source and destination properties, which makes the migration cost
another dimension to be optimized. Hence, storage, latency and migration costs are considered as the dimensions of the
fitness function in the placement problem as shown in Eq. (6).

𝐹 p𝑥q “

»

—

–

𝑠𝑡𝑜𝑟𝑒p𝑥q

𝑚𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q

𝑙𝑎𝑡𝑒𝑛𝑐𝑦p𝑥q

fi

ffi

fl
(6)

Manuscript submitted to ACM

14

Where 𝑥 , 𝑠𝑡𝑜𝑟𝑒p𝑥q, 𝑚𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q and 𝑙𝑎𝑡𝑒𝑛𝑐𝑦p𝑥q respectively represent the decision variable, the storage, migration
and latency costs. Figure 5 shows an overview of the considered objective function costs. They encompass the overall
placement cost defined in Section 3.4 and will be described in the following sections.

Internal customers cost model

store(x) migrate(x)latency(x)

𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇 𝐶𝑜𝑠𝑡𝑒𝑠𝑡𝑔,𝑇 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑖𝑜 ,𝑇 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 𝐶𝑜𝑠𝑡𝑔𝑚𝑔𝑟,𝑇 𝐶𝑜𝑠𝑡𝑏𝑚𝑔𝑟,𝑇 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑚𝑔𝑟 ,𝑇

Fig. 5. Objective functions based cost model

Storage cost: The storage cost 𝑠𝑡𝑜𝑟𝑒p𝑥q is the cost of storing objects in a placement configuration 𝑥 . It is composed of
the local and the external storage costs (𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇 , 𝐶𝑜𝑠𝑡𝑒𝑠𝑡𝑟,𝑇 from Eq. (3) and Eq. (4)). It also includes the I/O storage
performance part penalty cost part 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑖𝑜 ,𝑇 from the penalty cost (see Eq. (5)). We recall that this penalty represents
the additional monetary cost caused by the I/O SLA violation (the network penalty is considered in the latency cost).
𝑠𝑡𝑜𝑟𝑒p𝑥q is defined as in Eq. (7):

𝑠𝑡𝑜𝑟𝑒p𝑥q “ 𝐶𝑜𝑠𝑡𝑙𝑠𝑡𝑔,𝑇 `𝐶𝑜𝑠𝑡𝑒𝑠𝑡𝑟,𝑇 `𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑖𝑜 ,𝑇 (7)

Migration cost: The migration cost𝑚𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q encompasses the local migration cost 𝐶𝑜𝑠𝑡𝑙𝑚𝑔𝑟,𝑇 from Eq. (3) when
the objects are moved between local storage classes, the external migration cost 𝐶𝑜𝑠𝑡𝑔𝑚𝑔𝑟,𝑇 from Eq. (4) when the objects
are sent to another CSP and the back migration cost 𝐶𝑜𝑠𝑡𝑏𝑚𝑔𝑟,𝑇 from Eq. (2) when the objects are returned back to the
local infrastructure. We have also considered a penalty cost related migration operation 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑚𝑔𝑟 ,𝑇 . It is induced by
the degradation of the QoS caused by the migration. We have calculated it in term of the total number of customers
𝐾 , the maximum migration time𝑚𝑟𝑔𝑡𝑖𝑚𝑒,𝑇 and some unitary costs 𝛼 as shown in Eq (8).We considered 𝛼 as a storage
performance and latency unitary cost assuming that during the migration time the QoS are not met. By doing so, this
migration penalty cost represents an upper bound as the QoS degradation is not necessarily experienced by all customers.
In our evaluation, we set 𝛼 as the sum of the cost corresponding to the average IOPS needed by customers and the latency
cost corresponding to the average requests sent by customers per second.

𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑚𝑔𝑟 ,𝑇 “ 𝛼 ˚ 𝐾 ˚𝑚𝑟𝑔𝑡𝑖𝑚𝑒,𝑇 (8)

𝑚𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q “ 𝐶𝑜𝑠𝑡𝑙𝑚𝑔𝑟,𝑇 `𝐶𝑜𝑠𝑡𝑔𝑚𝑔𝑟,𝑇

`𝐶𝑜𝑠𝑡𝑏𝑚𝑔𝑟,𝑇 `𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑚𝑔𝑟 ,𝑇

(9)

Latency cost: The network latency has been considered as a cost in many research studies as in [11, 49, 68]. In our
work, this cost (𝑙𝑎𝑡𝑒𝑛𝑐𝑦p𝑥q) reflects the network penalty cost. As we supposed in Section 3.3, the network latency is
billed for customers, and the deterioration of the delivered latency causes losses for the CSP according to the level of its
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 15

degradation. Concretely, it is the part of the penalty cost related to the network latency (𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 taken from Eq. (5)).
This cost is the sum of all customers latency penalties as shown in Eq. 10

𝑙𝑎𝑡𝑒𝑛𝑐𝑦p𝑥q “ 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 “
ÿ

𝑢𝑘P𝑈

𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 p𝑢𝑘q (10)

𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 p𝑢𝑘q represents the network latency penalty of customer 𝑢𝑘 . We calculated it by multiplying the number of
requests issued by the customer 𝑢𝑘 or its end-users from the different zones by the network latency penalty. This penalty is
related to the latency between the location of 𝑢𝑘 or its end-users and that of the requested objects. It is defined according
to Table 2b. So, 𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 p𝑢𝑘q is calculated as in Eq. (11):

𝐶𝑜𝑠𝑡𝑝𝑛𝑡𝑙𝑡𝑐 ,𝑇 p𝑢𝑘q “
ÿ

𝑍𝑚

ÿ

𝑜𝑖,𝑘P𝑂𝑘

𝑡𝑜𝑡
𝑚,𝑜𝑖,𝑘
𝑘

˚ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦p𝑙p𝑚, 𝑥𝑜𝑖,𝑘 qq (11)

3.5.3 Constraints. In this work, we have constraints related to the capacity and the performance throughput limitation of
the local and the external storage systems. In addition, there are also constraints related to the customers SLAs.
For each local storage 𝑠𝑐 𝑗 , the sum of the assigned objects sizes (𝑆𝑜𝑖,𝑘) should not exceed the capacity of that storage

class 𝑐𝑠𝑐 𝑗 . This is expressed in Eq. (12). Also, the allocated storage service capacity 𝑐𝑠𝑠𝑑 of each𝐶𝑆𝑃𝑑 of the federation is
limited. Therefore, the sum of objects sizes affected to each partner storage service 𝑠𝑠𝑑 should not exceed its capacity as
shown in Eq. (13)

ÿ

𝑢𝑘

ÿ

𝑜𝑖,𝑘P𝑠𝑐 𝑗

𝑆𝑜𝑖,𝑘 ď 𝑐𝑠𝑐 𝑗 @ 𝑗 ă 𝐽 (12)

ÿ

𝑢𝑘

ÿ

𝑜𝑖,𝑘P𝑠𝑠𝑑

𝑆𝑜𝑖,𝑘 ď 𝑐𝑠𝑠𝑑 @𝑑 ě 𝐽 (13)

The throughputs of the local and the external storage systems are limited. For the local storage classes, Eq. (14)
expresses that the sum of I/O workload composed of the different I/O operations (𝑜𝑝 P t𝑟𝑟, 𝑟𝑤, 𝑠𝑟, 𝑠𝑤u) of the objects
(𝑖𝑜𝑜𝑜𝑖,𝑘 p𝑜𝑝q) affected to each storage class 𝑠𝑐 𝑗 must be lower than the I/O throughput delivered by that storage class
𝑖𝑜 𝑗 p𝑜𝑝q. On the other hand, Eq. (15) indicates that the overall I/O workload issued by all the objects assigned to a given
storage service 𝑠𝑠𝑑 of a partner 𝐶𝑆𝑃𝑑 should not exceed the I/O performance of that storage service 𝑖𝑜𝑑 .

ÿ

𝑜𝑝P𝑂𝑃

ř

𝑢𝑘

ř

𝑜𝑖,𝑘P𝑠𝑐 𝑗
𝑖𝑜𝑜𝑜𝑖,𝑘

p𝑜𝑝q

𝑖𝑜 𝑗 p𝑜𝑝q
ď 1, @ 𝑗 ă 𝐽 (14)

ÿ

𝑜𝑝P𝑂𝑃

ř

𝑢𝑘

ř

𝑜𝑖,𝑘P𝑠𝑠𝑑
𝑖𝑜𝑜𝑜𝑖,𝑘

p𝑜𝑝q

𝑖𝑜𝑑
ď 1, @𝑑 ě 𝐽 (15)

Regarding the customers I/O SLA, when 𝑖𝑜𝑂 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 for a given customer 𝑢𝑘 is between 𝑖𝑜𝑆𝑜 𝑓 𝑡𝑘 and 𝑖𝑜𝐻𝑎𝑟𝑑𝑘 , the
CSP undergoes a storage I/O penalty. However, 𝑖𝑜𝐻𝑎𝑟𝑑𝑘 must be satisfied. This implies that the 𝑖𝑜𝑂 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 storage
performance of each customer must exceed his 𝑖𝑜𝐻𝑎𝑟𝑑𝑘 as shown in Eq. (16).

𝑖𝑜𝑂 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 ą“ 𝑖𝑜𝐻𝑎𝑟𝑑𝑘 @𝑢𝑘 P 𝑈 (16)

Manuscript submitted to ACM

16

Finally we assume that the objects are not replicated. This condition is guaranteed by the used encoding.

Local storage
system St

or
ag

e
se

rv
ic

es
of

th
e

fe
de

ra
te

d
C

SP
s

Virtualization

Customers workloads
and locations

Customers SLAs

Data objects and
the current placement

Storage system

characteristics

Cost Model

Storage
cost

Migration
cost

Latency
cost

Constraints

Resources
constraints

Customers
SLAs

CDP-NSGAII𝑅 Pareto
Front

Fig. 6. Federated cloud based hybrid storage system

3.5.4 Summary. Given the system inputs, the objective function and the constraints, we define the multi-objective
optimization placement problem as follows:
Let x be a decision variable representing a placement configuration.

min

»

—

–

𝑠𝑡𝑜𝑟𝑒p𝑥q

𝑚𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q

𝑙𝑎𝑡𝑒𝑐𝑦p𝑥q

fi

ffi

fl
(17a)

𝑆.𝑇 .
ÿ

𝑢𝑘

ÿ

𝑜𝑖,𝑘P𝑠𝑐 𝑗

𝑆𝑜𝑖,𝑘 ď 𝑐𝑠𝑐 𝑗 @ 𝑗 ă 𝐽 (17b)

ÿ

𝑢𝑘

ÿ

𝑜𝑖,𝑘P𝑠𝑠𝑑

𝑆𝑜𝑖,𝑘 ď 𝑐𝑠𝑠𝑑 @𝑑 ě 𝐽 (17c)

ÿ

𝑜𝑝P𝑂𝑃

ř

𝑢𝑘

ř

𝑜𝑖,𝑘P𝑠𝑐 𝑗
𝑖𝑜𝑜𝑜𝑖,𝑘

p𝑜𝑝q

𝑖𝑜 𝑗 p𝑜𝑝q
ď 1, @ 𝑗 ă 𝐽 (17d)

ÿ

𝑜𝑝P𝑂𝑃

ř

𝑢𝑘

ř

𝑜𝑖,𝑘P𝑠𝑠𝑑
𝑖𝑜𝑜𝑜𝑖,𝑘

p𝑜𝑝q

𝑖𝑜𝑑
ď 1, @𝑑 ě 𝐽 (17e)

𝑖𝑜-𝑜 𝑓 𝑓 𝑒𝑟𝑒𝑑𝑘 ą“ 𝑖𝑜𝐻𝑎𝑟𝑑𝑘 @𝑢𝑘 P 𝑈 (17f)

Eq. (17a) represents the fitness function, where 𝑠𝑡𝑜𝑟𝑒p𝑥q is the storage cost, 𝑚𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q the migration cost and
𝑙𝑎𝑡𝑒𝑛𝑐𝑦p𝑥q the network latency cost.
The first two constraints (17b) and (17c) express internal and external storage resources’ capacity limitation. Constraints

(17d) and (17e) indicate that these storage resources have a finite performance. Finally, constraint (17f) ensures that the
SLA (storage performance) should be bounded.
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 17

To solve the above problem, we need to use a multi-objective optimization algorithm tailored to our problem. As
shown in Figure 6, this algorithm will use different inputs related to the local storage classes and and foreign services
specifications and locations, the workload, SLAs and location of the customers, and finally, the objects specifications
and their current placement. For the calculation of objective functions, we used the previously proposed cost model. We
have chosen NSGAII to solve the placement problem. However, as evolutionary meta-heuristics do not perform well in
difficult problems with complex combinatorial spaces or a high number of constraints [64], we have tailored NSGAII to
our placement optimization. This is the subject of the next section.

4 CDP-NSGAII𝐼𝑅 : CONSTRAINT DATA PLACEMENT NSGAII WITH INJECTION AND REPAIR OPERATORS

Due to the dynamic nature of cloud federation environment and customers workloads, data objects placement strategies
need to be performed online.
The placement problem is known to be NP-hard [28, 48]. As a matter of fact, enumerating all possible placement

options and eventually choosing the best configuration leads to a combinatorial explosion.
Meta-heuristics constitute a good alternative to alleviate the execution time complexity. Given the popularity and

effectiveness of Non-dominated Sorting Genetic Algorithm (NSGAII), we will use it to solve our placement problem.
However, being an evolutionary algorithm, NSGAII suffers from issues related to solutions unfeasability when the size of
the problem increases. In fact, solutions unfeasability has a negative impact of the resulting Pareto front quality and the
execution time. Thus, our implementation of NSGAII needs some modifications to address those issues.
For that, we upgraded our first implementation of NSGAII to a matheuristic [73] by merging it with an exact method.

This latter calculates some solutions which are injected to the initial population of NSGAII. Furthermore, we propose a
repair function to improve the NSGAII execution time. It modifies the invalid placement configuration by moving some
objects to other locations in order to meet the placement constraints. We call the proposed heuristic CDP-NSGAII𝐼𝑅 for
Constrained Data Placement NSGAII with a Injection and Repair functions.
In this section we will, first, describe the issue of NSGAII evolutionary operators which pushes us to upgrade NSGAII

in order to enhance its results for our problem. Then, we will describe the proposed matheuristic.

4.1 NSGAII based approach

Among the strategies used to overcome the execution time complexity are heuristics and meta-heuristics. As we are facing
a multi-objective problem, multi-objective evolutionary algorithms (MOEAs) are effective techniques for finding multiple
efficient solutions in a reasonable time [40], see Section .
Evolutionary algorithms are iterative stochastic algorithms based on the Darwinian natural selection theory. Their

idea is to let a set of solutions (population) evolve according to a given problem over generations, in order to find the
best results. The evolution is performed via a set of operators. Generally, selection operators replace individuals for the
next generation. Mutation and crossover operators discover new solutions by, respectively, transforming existing ones or
mixing parts of different solutions.
Non-dominated Sorting Genetic Algorithm (NSGAII) is a well-known MOEA used in many optimization problems

such as [40, 66, 80]. As for other meta-heuristics, NSGAII has to be customized for the targeted problem. An encoding
and operators must be chosen on the shelf or specifically designed. In our case, we have adapted a standard codification to
represent placement configurations (see Section 3.5.1 for chromosome strings representation). Also, standard mutation
and crossover operators for strings of numbers are used. The standard search operators can produce any combination of
values, since they do not consider specific problem constraints.

Manuscript submitted to ACM

18

Start

Preprocessing step

𝑓1p𝑥q Ð 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒p𝑆𝑡𝑜𝑟𝑒p𝑥qq
𝑓2p𝑥qp𝑥q Ð 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒p𝑀𝑖𝑔𝑟𝑎𝑡𝑒p𝑥qq
𝑓3p𝑥q Ð 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒p𝐿𝑎𝑡𝑒𝑛𝑐𝑦p𝑥qq

𝑟𝑒𝑎𝑑p𝑛q
Sol_SetÐ H

𝑟𝑒𝑎𝑑p𝛼, 𝛽,𝛾q
𝑥 ÐCPLEX_SOLVE(𝛼 ˚ 𝑓1p𝑥q`

𝛽 ˚ 𝑓2p𝑥q ` 𝛾 ˚ 𝑓3p𝑥q)
Sol_SetÐ Sol_Set Y𝑥

𝑛 Ð 𝑛 ´ 1

𝑛 “ 0 ?

yes

no

CPLEX_Pareto_SetÐ Sol_Set

Evolutionary step: NSGAII-IR

injection(CPLEX_Pareto_Set initial_population)

repair population individuals

Evaluate fitness function

Stop criteria satisfied ?

yes

no

Pareto Set

Sorting based on crowded
comparison operator

Mutation Crossover Selection

Generate new population

Fig. 7. Matheuristic optimization approach

For example, for 𝑁 “ 5 objects and 𝑃 “ 2 locations, the r00011s and r11000s solutions can be valid (no resource
overflow), but they can be mixed, e.g., into r11011s by a crossover operator, leading to an unfeasible solution, because
constraint on location 1 may not be respected or this location may not satisfy the SLAs of all the customers whose objects
are placed in this location.
More generally, the search space size induced by the encoding is 𝑃𝑁 , while the feasible space can be much smaller, due

to resource and customers constraints. This could make the search inefficient, especially for large problems, when the
unfeasible region explored uselessly is huge. This results in a poor Pareto front.
There exists three possible ways to deal with the solutions unfeasbility caused by problem constraints (See Section 4.1).

The first one consists in modifying the exploration operators, the second one penalizes unfeasible solutions and the third
one relies on building a repair function in order to fix an unfeasible solution into a feasible one after applying standard
search operators. We used the repair solution for two main reasons: (i) it is simple to implement and allows to use all the
well-known and efficient standard operators; (ii) it does not slow down the application of those operators by checking the
placement constraints.
Furthermore, NSGAII initial population is enriched with some solutions calculated by an exact method making NSGAII

a matheuristic which is the subject of the following section.

4.2 CDP-NSGAII𝐼𝑅 matheuristic

The matheuristic optimization process is achieved in two steps : the Preprocessing step and the Evolutionary step as shown
in Figure 7. In the former, a set of placement solutions are calculated using CPLEX solver. This process is described later
in Section 4.2.1. The output of this step can be used as it is in the Execute phase of the MAPE-K loop. However, in our
solution, the set of solutions obtained from the first step is sent to the Evolutionary step to enhance the quality of the
final placement. It is injected into the initial population of NGSAII and a repair function (see Section 4.2.2) intervenes
before the evaluation of each population individual. Each iteration, the termination conditions are verified, if they are not
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 19

satisfied, the population are sorted according to crowded comparison operator and new population is generated based on
genetic algorithm operators namely selection, crossover and mutation.
In the following, we will explain how some initial solutions are calculated. Then the repair function is detailed.

4.2.1 Exact method based on MILP tool. The exact method in this work consists in transforming the MOO problem into
a single-objective problem and to solve it using a MILP tool. Algorithm 1 formulates the exact method process. First, the
min and max of each objective function are calculated (line 2 and line 3 of Algorithm 1). Then, the values are normalized
(line 5 to line 7 of Algorithm 1). These functions are weighted and combined into a single objective function. CPLEX [1],
is used to solve the obtained single-objective problem (line 9 and line 10 of Algorithm 1). This solving process is repeated
several times with different weights in order to generate a set of exact solutions.

Algorithm 1 Calculation of some exact solutions using a MILP solver
1: function Calculate_Exact_Solutions(n)
2: calculate𝑚𝑖𝑛𝑆𝑡𝑟 ,𝑚𝑖𝑛𝑀𝑔𝑟 ,𝑚𝑖𝑛𝐿𝑡𝑐

3: calculate𝑚𝑎𝑥𝑆𝑡𝑟 ,𝑚𝑎𝑥𝑀𝑔𝑟 ,𝑚𝑎𝑥𝐿𝑡𝑐

4: populationÐH

5: 𝑆𝑡𝑜𝑟𝑒𝑁 p𝑥q Ð
𝑆𝑡𝑜𝑟𝑒p𝑥q´minp𝑆𝑡𝑜𝑟𝑒p𝑥qq

maxp𝑆𝑡𝑜𝑟𝑒p𝑥qq´minp𝑆𝑡𝑜𝑟𝑒p𝑥qq

6: 𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑁 p𝑥q Ð
𝑀𝑖𝑔𝑟𝑎𝑡𝑒p𝑥q´minp𝑀𝑖𝑔𝑟𝑎𝑡𝑒p𝑥qq

maxp𝑀𝑖𝑔𝑟𝑎𝑡𝑒p𝑥qq´minp𝑀𝑖𝑔𝑟𝑎𝑡𝑒p𝑥qq

7: 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑁 p𝑥q Ð
𝐿𝑎𝑡𝑒𝑛𝑐𝑦p𝑥q´minp𝐿𝑎𝑡𝑒𝑛𝑐𝑦p𝑥qq

maxp𝐿𝑎𝑡𝑒𝑛𝑐𝑦p𝑥qq´minp𝐿𝑎𝑡𝑒𝑛𝑐𝑦p𝑥qq

8: for 𝑖Ð1 to 𝑛 do
9: read(𝛼 ,𝛽, 𝛾) // 𝛼`𝛽`𝛾“1

10: 𝑥 Ð 𝐶𝑃𝐿𝐸𝑋_𝑆𝑂𝐿𝑉𝐸p𝛼 ˚ 𝑆𝑡𝑜𝑟𝑒𝑁 p𝑥q ` 𝛽 ˚𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑁 p𝑥q `𝛾 ˚ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑁 p𝑥q Under
all constraints)

11: populationÐ population Y x
12: end for
13: return (population)

4.2.2 Repair Function. When a solution does not meet all placement constraints defined in Eq. (12), Eq. (13), Eq. (14),
Eq. (15) and Eq. (16), objects are moved leading to a feasible solution. Algorithm 2 shows how our repair function works.
The repair function works according to two steps. The first one consists in finding the objects that violate the placement

constraints while the second one tries to revise the placement of these objects by moving them to suitable locations
responding to both resources limitations and customers SLAs. These steps are explained as follows:

Step 1: To detect all the objects that break the constraints in a chromosome (a placement configuration), we span
the chromosome sequentially gene by gene, checking objects locations one by one. If placing a given object to the
corresponding gene value does not imply some constraints violation, the value of the gene is kept unchanged. In the other
case, it is added to an unfeasible list called 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 .
At the end, 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 contains all the objects that, with the current placement values, do not meet the capacity or

the performance of the storage resources constraints or whose locations do not satisfy customers SLAs.
This step corresponds to Algorithm 2, line 2 to line 9.
Let us take the Cloud federation depicted in Figure 4. For the sake of simplicity, we consider only the constraint related

to the capacities of local storage classes and external storage services. Suppose that the two local storage classes capacities
(𝑐𝑠𝑐0 and 𝑐𝑠𝑐1) are respectively 10 and 5 units. 𝐶𝑆𝑃1 storage service capacity 𝑐𝑠1 equals to 8 and 𝐶𝑆𝑃2 capacity 𝑐𝑠2 is 5
units. We assume also that the size of each object equals to 2 units. A placement configuration 𝑥 “ p1, 3, 1, 0, 1, 1, 0, 3, 3, 2q

depicted in Figure 8 is not feasible as the capacity of the resources corresponding to locations 𝑝 “ 1 (8 units used from 5
available) and 𝑝 “ 3 (6 units used from 5 available) is exceeded.

Manuscript submitted to ACM

20

𝑜0,0

1

𝑜1,0

3

𝑜2,0

1

𝑜3,0

0

𝑜4,0

1

𝑜0,1

1

𝑜1,1

0

𝑜2,1

3

𝑜3,1

3

𝑜4,1

2

Step 1: Selection of objects
that break the constraints

Result:
𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 “ t𝑜4,0,

𝑜0,1, 𝑜3,1u

𝑜0,0

1

𝑜1,0

3

𝑜2,0

1

𝑜3,0

0

𝑜4,0

?

𝑜0,1

?

𝑜1,1

0

𝑜2,1

3

𝑜3,1

?

𝑜4,1

2

Step 2: Re-affect the objects
to suitable places

Result: 𝑜4,0 𝑝 “ 0
𝑜0,1 𝑝 “ 0
𝑜3,1 𝑝 “ 2

𝑜0,0

1

𝑜1,0

3

𝑜2,0

1

𝑜3,0

0

𝑜4,0

0

𝑜0,1

0

𝑜1,1

0

𝑜2,1

3

𝑜3,1

2

𝑜4,1

2

Fig. 8. Repair function: example

The first step of the repair function looks for the objects that violate the capacity constraint. We check the chromosome
object by object. The locations of the first four objects 𝑜0,0, 𝑜1,0, 𝑜2,0, 𝑜3,0 are kept unchanged because they respect
the capacity constraints. At this stage, the remaining storage capacities 𝑐𝑠𝑐0, 𝑐𝑠𝑐1, 𝑐𝑠1, 𝑐𝑠2 are respectively (8,1,8,3).
Placing the object 𝑜4,0 in 𝑝 “ 1 corresponding to the local storage class 𝑠𝑐1 exceeds its remaining capacity. So, we
place 𝑜0,4 in 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 . By doing the same process on the remaining objects, the outcome of this 1𝑠𝑡 step is the
list 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 “ t𝑜4,0, 𝑜0,1, 𝑜3,1u as illustrated in Figure 8. The remaining storage capacities p𝑐𝑠𝑐0, 𝑐𝑠𝑐1, 𝑐𝑠1, 𝑐𝑠2q are
respectively (6,1,6,1).

Step 2: we browse 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 in a random order for assigning (repairing) the objects to new locations. We prefer
the random browsing in order not to favor one object over another. For each object, we build a list 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 containing
all the existing locations except the one the object is currently assigned to. Then, we randomly choose a new location
from 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 and check the assignment against resource and customers constraints. If it satisfies all the constraints, we
accept the assignment and set the gene value accordingly. If it is not the case, we choose randomly another location from
𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠, and so forth. We preferred to choose a new location randomly to repair a given solution in order to reduce the
computational effort. In effect, checking all the potential location for each object and then choosing a location among
those that best optimize the objective functions increases significantly the execution time.
Then, if, for a given object, we do not find any location that satisfies all the constraints, the repair process is interrupted

and the initial configuration of the chromosome will be kept still, as a potential candidate for future mutation. Algorithm 2
from line 10 to line 27 corresponds to this second step.
In the previous example, during this 2𝑛𝑑 step, we browse randomly 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 . Suppose that the first randomly

returned object is 𝑜0,1. The potential locations for this object are 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 “ t0, 2, 3u, that is all other locations regardless
of the capacity . We search randomly for a location from this list to fix 𝑜0,1. Let the returned location be 𝑝 “ 3. This
location corresponds to 𝑠𝑠2. It could not accommodate 𝑜0,1 because it does not have enough capacity. So, 𝑝 “ 3 will be
deleted from 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 which will contain now only t0, 2u. We repeat the process, randomly selecting a location from
𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠. Suppose that 𝑝 “ 0 is picked up next, it can accommodate 𝑜1,1 from a capacity perspective. So, this object is
repaired and will be placed in the location 𝑝 “ 0. At this stage, 𝑥 “ p1, 3, 1, 0, ?, 0, 0, 3, ?, 2q

Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 21

We delete 𝑜0,1 from 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 . We repeat the same process for the remaining objects in 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 . As shown in
Figure 8, the 𝑥 “ p1, 3, 1, 0, 0, 0, 0, 3, 2, 2q represents a possible complete repaired version.
The success rate of the repair function is the fraction of successfully repaired individuals with regard to the total number

of unfeasible individuals during the evaluation. It depends on the size of the local and external storage infrastructure, the
customers objects, workloads and SLAs. This success rate is related to the pressure that I/O workloads may put on the
storage system. The higher the pressure, the lower the success rate as it would be hard for the repair function to meet
storage constraints.
The complexity of the repair function equals to Op𝑁 ˚ 𝑃q where 𝑁 is the overall number of objects and 𝑃 is the number

of locations. In the worst case, the assignment of each object does not respect at least one of the constraints. Thus, the
1𝑠𝑡 step outcome 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 contains all the objects which means that its size is 𝑁 . In the second step, the worst case
happens when the object is affected to the last location found in the list or in case we do not find a location to fix it after
𝑃 ´ 1 attempts.

Algorithm 2 Repair function
1: function REPAIR(𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒)
2: 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 Ð H

3: foreach gene 𝑔 in the chromosome do
4: 𝑜𝑖,𝑘 Ð object corresponding to 𝑔
5: Check constraints for 𝑜𝑖,𝑘 using Eqs.{12,13,14,15,16}
6: if (𝑜𝑖,𝑘 does not respect all constraints) then
7: 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 Ð 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 Y 𝑜𝑖,𝑘

8: end if
9: end for
10: while (𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 ‰ H) do
11: 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 Ð H

12: 𝑜𝑏 𝑗𝑒𝑐𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 Ð Choose randomly an object from 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟
13: 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 .add(all the places except that affected to 𝑜𝑏 𝑗𝑒𝑐𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟)
14: while (𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 ‰ H) do
15: 𝑝 Ð choose randomly a place from 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠
16: if (𝑜𝑏 𝑗𝑒𝑐𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 respects all constraints in Eqs. (12,13,14,15,16) when affected to 𝑝) then
17: Affect 𝑜𝑏 𝑗𝑒𝑐𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 to 𝑝
18: 𝑙𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 - t𝑜𝑏 𝑗𝑒𝑐𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟u

19: Go to 11
20: end if
21: 𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 - t𝑝u

22: end while
23: if (𝑙𝑖𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑠 “ H and 𝑜𝑏 𝑗𝑒𝑐𝑡𝑇𝑜𝑅𝑒𝑝𝑎𝑖𝑟 is not fixed) then
24: return the initial chromosome
25: end if
26: end while
27: return the new chromosome

This repair function was integrated in the NSGAII algorithm right before the evaluation of the population individuals.

5 EVALUATION

In this section, we first describe the experiments setting in terms of CSPs and customers characteristics used to evaluate
the effectiveness of the proposed approach. Then, we validate the efficacy of the CDP-NSGAII𝐼𝑅 matheuristic in terms of
execution time and quality of Pareto front. Furthermore, we generalize the proposed approach (injection and replication)

Manuscript submitted to ACM

22

on another meta-heuristic. Finally, we show the flexibility of our approach which makes it possible to propose a set of
trade-offs between the execution time and the quality of the obtained solution.
One may note that our study does not focus on the objective function behavior according to input parameters. The

relevance of the cost models was already discussed in [20] which is not the objective of this paper. We focus rather on the
ability of CDP-NSGAII𝐼𝑅 to find a set of solutions close to the Pareto set for such objective functions. By providing an
exhaustive and diverse set of precise solutions, we make sure that the CSP has a large set of good solutions from which to
choose the most relevant one in his case. Choosing the most relevant solution consists in making a trade-off between the
objective functions already discussed, which are the storage, latency an migration costs.

5.1 Experimental setting

We used NSGAII meta-heuristic implementation provided by MOEA framework [2]. We extended it to a matheuristic
(CDP-NSGAII𝐼𝑅) by integrating an injection and a repair functions. In order to compare the quality of the sets of solutions
provided by different algorithms, we use the Hypervolume indicator (HV) to quantify the quality of a set of solutions. This
way, we can compare the algorithms, considering that an algorithm providing a higher HV is better.
The experiments were designed based on the following scenario. A cloud federation contains a set of CSPs, each one

composed of only one data-center (for simplicity). Each CSP is located in a different geographical zone. The network
latency between each pair of zones is randomly assigned in an interval]100ms, 700ms]. The considered CSP handles a set
of customers, each of which having one data object (yet again for simplicity). The CSP tries to optimize the placement of
its internal customers data objects in order to find a set of relevant solutions. It accommodates a hybrid storage system
composed of a set of 20 HDDs and 20 SSDs having respectively the characteristics of 1TB Hitachi Deskstar 7K1000.D
model HDS721010DLE630 7200 RPM HDD and 1TB Samsung 850 PRO SSD. We suppose that 30% of the customers
are mobile (located in a zone that is different from their CSP’s data center).
In our work, we consider that customers’ SLA is related to storage performance metrics. If performance are not met, a

penalty represented by a percentage of the total charge that is deducted from the customer bill (see Section 3.3). In our
evaluation this penalty was set to 10% of the total charge paid by the customer.
As in [11, 68], we suppose that the customers requests network latency is billed to the customers. The price of the

latency is given in Table 3 and its related penalty in Table 4.

Table 3. Latency price/req.

Latency (ms) Price by request ($)

ă 100 0.00001
ă 300 0.000008
ą 300 0

Table 4. Penalty/req.

Latency (ms) Penalty ($)

ă 200 0
ă 300 0.000002
ą 300 0.00001

Table 5. Storage prices and performance

Minimum value Maximum value

Occupancy cost 0.025 $ 0.225 $
IOPS cost 0.055 $ 0.075 $
Network cost 0.08 $ 0.1 $

We used the following configuration for data centers (DC) specifications, customers’ workloads, and testing parameters.
DCs specifications: The different CSPs of the federation offer heterogeneous storage services in terms of price and

performance. Also, only the outgoing network cost is considered by the CSPs when migrating data objects. We suppose,
as in Amazon storage service EBS io1, that the storage price is related to the capacity, performance and duration. In
fact, the price of EBS io1 is set to 0.125$/GB-Month for occupation and 0.065$/IOPS-month [4]. Also in Amazon, the
network price is 0.09$GB [3]. In order to attribute the CSPs of the federation different characteristics in term of storage
performance and services costs, we selected values from ranges specified in Table 5 following a uniform distribution as in
[10, 60, 83]. In our evaluation, the Amazon EBS costs and network were set as median values of the used interval. For the
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 23

Table 6. Exact method coeffecient values

𝛼 1 0 0 0.5 0.5 0 0.6 0.2 0.2 0.4
𝛽 0 1 0 0.5 0 0.5 0.2 0.6 0.2 0.3
𝛾 0 0 1 0 0.5 0.5 0.2 0.2 0.6 0.3

storage performance, the maximum IOPS value which can be provided by each CSP was set randomly in [250, 64 000].
This interval bounds reflect the minimum and maximum IOPS that can be supplied by Amazon’s EBS disks. By doing so,
the different CSPs will have different characteristics in terms of storage services costs and performance.
As in a federation, the service prices may change over time [70] to foster the federation, we suppose that the storage

occupancy prices changes according to the occupancy rate as in [60, 70]. In our work, we suppose that the occupancy rate
is correlated to the period of time during the day as the generated load has a daily cycle with peak hours [70]. We suppose
that it follows a normal distribution (Np12, 6q) with a mean equals to 12am and a deviation of 6 hours. Hence, each CSP
sets storage prices weighted according to this distribution as in [60].

Workloads: we experimented with the YCSB benchmark [24]. We used different configurations in terms of ratio of
read, update, scan and insert requests. We varied the number of request types per customer. We also varied the number of
submitted requests per hour.
Two workloads were evaluated in this study. Workload 1 with (100% read) and workload 2 which is 50% read and 50%

update.
Workloads generate different I/O operations patterns which we captured using Blktrace tool [8]. As for the occupancy

rate, the number of requests per client was weighted according to the aforementioned normal distribution. As in [11], the
workload was set according the number of online customers that changes according to a normal distribution.

Coefficients of the exact method: Coefficients in Table 6 were chosen to calculate solutions with the exact method. As
CPLEX cannot get optimal solutions in a reasonable time for some instances, we bounded its execution time to 60 seconds.

Testing parameters:We executed the experiments by varying the number of objects 𝑁 and the number of the locations
𝑃 that is the number of local storage classes plus the number of CSPs in the federation. These two parameters define the
search space size in our work. They allow to test the scalability of the designed heuristic. For the customers workloads, we
experimented using different configurations.
We evaluated CDP-NSGAII𝐼𝑅 for small and large problem instances in term of both HV and execution time. In our

evaluation, an instance is considered as small if it can be evaluated within an hour using the exact method. We compared
our contribution results with the standard version of NSGAII and a multi-objective version of Particle Swarm Optimization
used in [46] (designated as PSO in the sequel). Finally, we evaluated the success rate of the repair function. Note that the
standard NSGAII and PSO meta-heuristics are implemented with penalization technique.

5.2 Evaluation results

In this section, we will first evaluate the effectiveness of the repair function for small problem instances. Then, we will
evaluate the efficiency of the proposed matheuristic (injection+repair functions) in terms of HV and execution time
for large problem instances. After that, we show the results of the generalization of the proposed approach on other
meta-heuristics. Finally, we evaluate the flexibility of the proposed approach by giving different trade-offs between the
execution time and the HV in function of the number of solutions calculated by the exact method.

Manuscript submitted to ACM

24

5.2.1 Effectiveness of the repair function for small problem instances. The objective of this evaluation is to investigate the
effectiveness of the repair function for problems of small sizes in term of HV and execution time.
In this evaluation, we compared our approach integrating only the repair function (called CDP-NSGAII𝑅) with standard

NSGAII, PSO and an exhaustive enumeration method providing the exact Pareto front, in terms of both HV and execution
time.
For that, we have calculated the HV and the execution time for 3 small instances of the problem that can be handled by

the exact method within one hour. For these instances, we have considered only 3 CSPs in the federation, 2 local storage
classes which constitutes 4 different locations to store objects. The experiment was repeated with 10, 13 and 15 objects.
The results are presented in Table 7.

Table 7. HV and execution time for small instances

Objects 10 13 15

Algorithms HV Time (s) HV Time (s) HV Time (s)
Exact Method 0.269 2.4 0.311 154 0.131 2886
CDP-NSGAII𝑅 0.269 0.3 0.310 0.3 0.129 0.3
NSGAII 0.269 0.8 0.311 0.6 0.131 0.6
PSO 0.269 0.2 0.310 0.3 0.130 0.2

As one can see in Table 7, the execution time of the exact method suffers an exponential growth. It takes about 48
minutes for only 15 objects and 4 locations. So, by extrapolation, it would take about 8 years for evaluating a problem with
only 5 locations and 20 objects giving 520 possible solutions.
The exact method computes the exact Pareto front, and thus the exact hypervolume. All the other evaluated algorithms

obtain more or less the same HV in a small time (less than 1 second). Therefore, contrary to the evaluated evolutionary
algorithms, the exact method is unusable for large instances neither offline nor online, because of the combinatorial nature
of the placement problem.
For evolutionary algorithms, NSGAII gives the exact HV but doubles the time required by CDP-NSGAII𝑅 and PSO for

a non-significant HV enhancement. PSO has the smallest execution time with a HV error that does not exceed 0.7%.

5.2.2 Effectiveness of injection and repair operators. The purpose of this evaluation is to see the impact of injection and
repair operators in terms of HV and execution time. For that, we compare the different versions of our approach, PSO and
the set of solutions obtained by CPLEX. The different versions of our approach are:

‚ CDP-NSGAII (standard version of NSGAII tailored to our problem),
‚ CDP-NSGAII𝑅 (NSGAII with repair operator),
‚ CDP-NSGAII𝐼 (NSGAII with injection operator),
‚ CDP-NSGAII𝐼𝑅 (NSGAII with injection and repair operators)

Note that we considered that the local CSP has two different storage classes. Each experiment was carried out 10 times.
The solutions set of CPLEX is composed of 10 solutions obtained using coefficients in Table 6.
Figure 9 shows, for each algorithm, the hypervolume derivated from its resulting front according to the number of

objects, number of CSPs and the workload type. From this figure, we notice that CDP-NSGAII𝐼𝑅 and CDP-NSGAII𝐼
give always the best results in term of HV. CDP-NSGAII𝐼𝑅 improves the HV of CPLEX by 15% to 60% and NSGAII
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 25

Fig. 9. Hypervolume comparison

meta-heuristic by 4% to 94%. Whereas CDP-NSGAII𝐼 enhances the HV of CPLEX by 14% to 60% and NSGAII
meta-heuristic by 4% to 94%.
Regarding standard NSGAII, and PSO, they show small HV, especially PSO, and in most evaluated cases, they lead to

an almost empty front with a negligible HV. These results for PSO and NSGAII are explained by the limitations of standard
meta-heuristics when the search space increases and valid solutions become proportionally rare in this search space.
Moreover, we notice also that in the cases where NSGAII and PSO could find solutions, NSGAII meta-heuristic

improves that PSO by up to 79% in term of HV.
For CDP-NSGAII𝑅 , it has roughly the same HV as CDP-NSGAII; nevertheless, from Figure 10, we notice that

CDP-NSGAII𝑅 highly improves the execution time of NSGAII. This enhancement is between 40% and 86%. In fact,
NSGAII takes more time because it must classify the individuals according to the degree of constraints violation (to
penalize invalid individuals). As CDP-NSGAII𝑅 repairs all invalid solutions, it does not perform this additional processing.
PSO takes more time than CDP-NSGAII𝑅 as it needs twice more evaluations to obtain a comparable HV.
Moreover, from this figure, we see that the execution time of CDP-NSGAII𝑅 increases linearly with the growth of the

number of objects while the number of CSPs impacts slightly the execution time. This is due to the fact that we considered
a large number of objects compared to the number of CSPs which is consistent with the theoretical complexity.
From these remarks, we notice that the injection operator has a big impact on the resulting HV while the repair

operator has a great impact on the execution time. We can also observe that NSGAII meta-heuristic outperforms the PSO
meta-heuristic for the implemented problem.

5.2.3 Generalization of the proposed approach on PSO meta-heuristic . The matheuristic approach proposed in this work
can be generalized to other meta-heuristics. In this evaluation, we apply the repair and injection functions to NSGAII and

Manuscript submitted to ACM

26

Fig. 10. Time execution evolution

PSO meta-heuristics and evaluate them with and without these two operators. The cumulative HV values of the different
tested use cases have been considered.
In addition to the results of the proposed approach with NSGAII meta-heuristic, Figure 11 shows its generalization on

PSO meta-heuristic. The legend symbol (-) means the standard version of the algorithm, while (R, I, IR) symbols mean
that the algorithms are upgraded respectively by repair, injection and both injection and repair operators. The horizontal
blue line represents the cumulative HV of CPLEX. Note that for this experiment, the solution set of CPLEX is also
composed of ten solutions calculated using the coefficient combinations in Table 6.
From this figure we notice that the set of solutions calculated by CPLEX outperforms the HV of the standard versions

of NSGAII and PSO respectively by 46% and 57%. CPLEX outperforms also the two meta-heuristics augmented by
the repair function. It outperforms NSGAII𝑅 by 44% and PSO𝑅 by 51%. We observe also that both NSGAII and PSO
upgraded with injection and repair functions outperform CPLEX and all the other algorithms variants. In fact, NSGAII𝐼𝑅
improves the HV of the CPLEX by 35% while PSO𝐼𝑅 enhances CPLEX by 16%.

5.2.4 Flexibility of the proposed approach. In this evaluation, we show how the proposed approach allows to compromise
between the quality and the execution time of the algorithm. For that, we calculate the HV and the execution time of
CPLEX and CDP-NSGAII𝐼𝑅 by varying the number of solutions calculated by CPLEX and used in the injection step of
the matheuristic. We varied the coefficient parameters in the range [0..1] with a step equals to 0.05 for each objective
function which gives 231 different coefficient combination. We constitute 11 different solutions sets. The first one contains
21 solutions, the second one contains 42 solutions and so on until the 11th set which contains all (231) solutions. Each
time, we inject a set of solutions, we calculate the HV and execution time of CDP-NSGAII𝐼𝑅 and CPLEX.
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 27

Fig. 11. Matheuristic generalization Fig. 12. Matheuristic flexibilty

In this evaluation, we considered both the cumulative execution time and HV values. This is done for different problem
instances. The problem instances consist of 15 CSPs and we varied the number of objects between 100 and 1000 objects.
We considered both workload 1 and 2.
in Figure 12, red and green points correspond to the execution time and HV of CPLEX and CDP-NSGAII𝐼𝑅 respectively.

The point labels correspond to the number of solutions calculated by CPLEX. First, we observe that CDP-NSGAII𝐼𝑅 takes
some additional time to execute because it increases the initial CPLEX set by the evolutionary calculation needed by
NSGAII and the repair function. Nevertheless, this extra time of CDP-NSGAII𝐼𝑅 is mostly constant because it depends on
the number of evaluations of NSGAII meta-heuristic and has no relation with the number of injected solutions. This time
corresponds to the slight shifting to the right of the CDP-NSGAII𝐼𝑅 dots on the x-axis as compared to the CPLEX dots
(better observed on the 231 dot).
From this figure, we noticed that the (cumulative) HV of CDP-NSGAII𝐼𝑅 is always higher than that of CPLEX for a

given execution time. The matheuristic enhances CPLEX by up to 2.2 times (for 21 injected solutions in the figure). We
notice that the difference of HV is more significant for small CPLEX sets and when we increase the number of solutions
calculated by CPLEX the difference of HV decreases.
More importantly, one may observe in this Figure that by drawing a horizontal line for a given CDP-NSGAII𝐼𝑅 , let us

say 21 injected solutions, CPLEX needs more than 100 solutions. In addition, with such number of solutions CPLEX
execution time is around 10x more significant than CDP-NSGAII𝐼𝑅 .
So reducing the number of solutions provided by CPLEX is a way to improve the scalability of the matheuristic

approach because when the problem size increases, CPLEX takes much more time to find the required exact solutions
while the execution time of the heuristic part of CDP-NSGAII𝐼𝑅 stays unchanged. Of course, this is done at the expense of
the HV and a compromise is to be achieved.

6 RELATED WORK

Great efforts have been made on the data object placement problem in cloud environments based on hybrid storage system.
Mono and multi objective optimization techniques and methods have been used and proposed to handle this problem

Manuscript submitted to ACM

28

generally classified to be NP-Hard. This section discusses state-of-the-art studies related to our contribution. We can
classify them following six criteria related to our work which are: the storage cost, the storage performance, the SLA, the
network latency, the federation environment and finally the MOO as shown in Table 8

Categories References Storage cost Storage performance Storage SLA Latency Federation MOO

Centralized clouds

[38, 57, 81]
[17, 85]
[35, 78]
[37, 46, 47]

Distributed clouds

[50]
[76, 79, 83]
[9]
[34]
[33]
[74]

Table 8. Related work

In centralized clouds, state-of-the-art studies mixed various types of storage devices and structures in order to find a
trade-off between cost and performance within one storage infrastructure. These studies have considered the optimization
of one or more factors related to the storage system as the storage and workload cost [17, 38, 57, 81, 85] consumption and
the I/O response time. Some of them have also considered the storage SLA [17, 85]. Other studies have addressed the
multi-objective optimization in centralized clouds based hybrid storage system as [35, 62, 78].
Regarding distributed clouds, several studies have been proposed [30, 43, 46, 50, 58, 74, 75, 83, 84]. They considered

different applications such as bigdata analysis, workflow optimization and geo-replication, etc. The placement problem in
these studies have considered the diversity of storage and network services prices offered by the federated clouds. Some
of them have used multi-objective optimization [30, 43, 46, 58, 84].The placement problem in these works have been
modeled under different objective functions and constraints according to the faced issues. However, generally the storage
cost was only related to the capacity (Price/GB) and only [50] have considered the workload at a high level. Also, the
storage services characteristics have been rarely considered and to the best of our knowledge the storage services SLA
have not been taken into account in distributed clouds.
In one hand, the placement techniques in centralized clouds are generally based on the storage system characteristics

and architecture, the workloads I/O patterns and the storage SLA requirements. However, these strategies cannot be used
directly in distributed clouds due to the absence of the network factor and the difference in managing federated Clouds.
Concerning the placement techniques in distributed clouds, the storage cost was only related to the capacity (Price/GB)
and only [50] have considered the workload at a high level. Also, the storage services characteristics have been rarely
considered and to the best of our knowledge the storage services SLA have not been taken into account in distributed
clouds.
As one can see in Table 8, several costs related to storage systems were not considered in Distributed Cloud studies

while Federation properties, network and SLA were generally not considered in Centralized work. We try to fill this gap
through the study presented in this paper. Even if the storage issues are not the sole problems of a CSP, strategies such as
the one presented in this paper may be used as is or be inserted in an encompassing optimization systems that may take
more parameters into account These parameters could be technical (e.g. CPU occupation), or not (e.g. legal, trust issues)
Manuscript submitted to ACM

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 29

7 CONCLUTION

For a Cloud provider participating in a Federation, choosing a good storage location between local devices and external
services provided by other CSPs is a crucial concern especially for time-varying workloads. In this paper, we modeled
the problem of customers data objects placement in a cloud federation as a multi-objective optimization problem. The
data placement model takes into account the different characteristics of the local storage system and the external storage
services, the variable workload of customers and their SLAs.
To resolve the proposed multi-objective problem we designed CDP-NSGAII𝐼𝑅 matheuristic. CDP-NSGAII𝐼𝑅 extends

NSGAII by a preprocessing step consisting in calculation of a set of exact solutions that is injected in the initial population
of NSGAII. Furthermore a repair function is designed in order to fix a given placement if it is unfeasible in NSGAII
populations.
The performed evaluation proved the effectiveness of the proposed matheuristic. CDP-NSGAII𝐼𝑅 improves the NSGAII

and CPLEX hypervolume up to 94% and 60% respectively while the repair function enhances the execution time of
NSGAII by 68% on average.
For future work, we plan to integrate other objectives to the placement problem such as the availability and the

consistency in case of object replication. For that, we plan to propose a replication technique for the data placement in a
federated cloud taking into account the cost model considered in this study.

REFERENCES
[1] accessed December, 2018. CPLEX Optimizer. "https://www.ibm.com/fr-fr/analytics/cplex-optimizer".
[2] accessed January, 2020. MOEA Framework. "http://moeaframework.org/".
[3] accessed May, 2020. Amazon Data Transfer. "https://aws.amazon.com/s3/pricing/".
[4] accessed May, 2020. Amazon EBS features. "https://aws.amazon.com/ebs/features/".
[5] accessed November, 2020. Amazon CloudWatch. "https://aws.amazon.com/fr/cloudwatch/".
[6] accessed November, 2020. One Interface To Rule Them All. "http://libcloud.apache.org/".
[7] accessed November, 2020. OpenStack Watcher project. "https://wiki.openstack.org/wiki/Watcher".
[8] Brunelle Alan D. 2008. blktrace User Guide. (2008).
[9] Javier Alsina, Santiago Iturriaga, Sergio Nesmachnow, Andrei Tchernykh, and Bernabé Dorronsoro. 2016. Virtual machine planning for cloud
brokering considering geolocation and data transfer. In 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 352–359. http://dx.doi.org/10.1109/CloudCom.2016.0062.

[10] Jörn Altmann and Mohammad Mahdi Kashef. 2014. Cost model based service placement in federated hybrid clouds. Future Generation Computer
Systems 41 (2014), 79–90. https://doi.org/10.1016/j.future.2014.08.014.

[11] Masoud Saeida Ardekani and Douglas B Terry. 2014. A self-configurable geo-replicated cloud storage system. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). 367–381. https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-ardekani.pdf.

[12] Marcio RM Assis and Luiz Fernando Bittencourt. 2016. A survey on cloud federation architectures: identifying functional and non-functional
properties. Journal of Network and Computer Applications 72 (2016), 51–71. http://dx.doi.org/10.1016/j.jnca.2016.06.014.

[13] Marcio RM Assis, Luiz Fernando Bittencourt, Rafael Tolosana-Calasanz, and Craig A Lee. 2016. Cloud Federations: Requirements, Properties.
Developing Interoperable and Federated Cloud Architecture (2016), 1.

[14] Charles Audet, J Bigeon, D Cartier, Sébastien Le Digabel, and Ludovic Salomon. 2018. Performance indicators in multiobjective optimization.
Optimization Online (2018).

[15] Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, and Mohamed Jmaiel. 2018. Multi-objective design exploration approach for
ravenscar real-time systems. Real-Time Systems 54, 2 (2018), 424–483.

[16] Djillali Boukhelef, Jalil Boukhobza, and Kamel Boukhalfa. 2016. A cost model for dbaas storage. In International Conference on Database and Expert
Systems Applications. Springer, 223–239. https://doi.org/10.1007/978-3-319-44403-1_14.

[17] Djillali Boukhelef, Jalil Boukhobza, Kamel Boukhalfa, Hamza Ouarnoughi, and Laurent Lemarchand. 2019. Optimizing the cost of DBaaS object
placement in hybrid storage systems. Future Generation Computer Systems 93 (2019), 176–187. http://dx.doi.org/10.1016/j.future.2018.10.030.

[18] Jalil Boukhobza and Pierre Olivier. 2017. Flash Memory Integration: Performance and Energy Issues. Elsevier. https://www.sciencedirect.com/book/
9781785481246/flash-memory-integration.

[19] Antonio Celesti, Francesco Tusa, and Massimo Villari. 2012. Toward cloud federation: concepts and challenges. In Achieving Federated and
Self-Manageable Cloud Infrastructures: Theory and Practice. IGI Global, 1–17. http://dx.doi.org/10.4018/978-1-4666-1631-8.ch001.

Manuscript submitted to ACM

https://www.ibm.com/fr-fr/analytics/cplex-optimizer
http://moeaframework.org/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ebs/features/
https://aws.amazon.com/fr/cloudwatch/
http://libcloud.apache.org/
https://wiki.openstack.org/wiki/Watcher
http://dx.doi.org/10.1109/CloudCom.2016.0062
https://doi.org/10.1016/j.future.2014.08.014
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-ardekani.pdf
http://dx.doi.org/10.1016/j.jnca.2016.06.014
https://doi.org/10.1007/978-3-319-44403-1_14
http://dx.doi.org/10.1016/j.future.2018.10.030
https://www.sciencedirect.com/book/9781785481246/flash-memory-integration
https://www.sciencedirect.com/book/9781785481246/flash-memory-integration
http://dx.doi.org/10.4018/978-1-4666-1631-8.ch001

30

[20] Amina Chikhaoui, Kamel Boukhalfa, and Jalil Boukhobza. 2018. A Cost Model for Hybrid Storage Systems in a Cloud Federations. In 2018 Federated
Conference on Computer Science and Information Systems (FedCSIS). IEEE, 1025–1034. http://dx.doi.org/10.15439/2018F237.

[21] Carlos A Coello Coello. 2002. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the
art. Computer methods in applied mechanics and engineering 191, 11-12 (2002), 1245–1287.

[22] Carlos A. Coello Coello. 2018. Multi-objective Optimization. In Handbook of Heuristics, Rafael Martí, Panos M. Pardalos, and Mauricio G. C.
Resende (Eds.). Springer, 177–204. https://doi.org/10.1007/978-3-319-07124-4_17

[23] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. 2007. Evolutionary algorithms for solving multi-objective problems. Vol. 5.
Springer. https://link.springer.com/book/10.1007/978-0-387-36797-2.

[24] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM symposium on Cloud computing. ACM, 143–154. http://dx.doi.org/10.1145/1807128.1807152.

[25] George Darzanos, Iordanis Koutsopoulos, and George D Stamoulis. 2019. Cloud Federations: Economics, Games and Benefits. IEEE/ACM Transactions
on Networking 27, 5 (2019), 2111–2124.

[26] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
transactions on evolutionary computation 6, 2 (2002), 182–197. http://dx.doi.org/10.1109/4235.996017.

[27] Andy Edmonds, Thĳs Metsch, Alexander Papaspyrou, and Alexis Richardson. 2012. Toward an open cloud standard. IEEE Internet Computing 16, 4
(2012), 15–25.

[28] Kapali P. Eswaran. 1974. Placement of Records in a File and File Allocation in a Computer. In Information Processing, Proceedings of the 6th IFIP
Congress 1974, Stockholm, Sweden, August 5-10, 1974, Jack L. Rosenfeld (Ed.). North-Holland, 304–307.

[29] Yu Gu, Dongsheng Wang, and Chuanyi Liu. 2014. DR-Cloud: Multi-cloud based disaster recovery service. Tsinghua Science and Technology 19, 1
(2014), 13–23.

[30] Lizheng Guo, Zongyao He, Shuguang Zhao, Na Zhang, Junhao Wang, and Changyun Jiang. 2012. Multi-objective optimization for data placement
strategy in cloud computing. In International Conference on Information Computing and Applications. Springer, 119–126. https://doi.org/10.1007/
978-3-642-34041-3_18.

[31] Arunima Hota, Subasish Mohapatra, and Subhadarshini Mohanty. 2019. Survey of different load balancing approach-based algorithms in cloud
computing: a comprehensive review. In Computational Intelligence in Data Mining. Springer, 99–110. https://doi.org/10.1007/978-981-10-8055-5_10.

[32] Binbing Hou, Feng Chen, Zhonghong Ou, Ren Wang, and Michael Mesnier. 2017. Understanding I/O performance behaviors of cloud storage from a
client’s perspective. ACM Transactions on Storage (TOS) 13, 2 (2017), 1–36. https://doi.org/10.1145/3078838.

[33] Santiago Iturriaga, Sergio Nesmachnow, Andrei Tchernykh, and Bernabé Dorronsoro. 2016. Multiobjective workflow scheduling in a federation of
heterogeneous green-powered data centers. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE,
596–599. http://dx.doi.org/10.1109/CCGrid.2016.34.

[34] Lei Jiao, Jun Lit, Wei Du, and Xiaoming Fu. 2014. Multi-objective data placement for multi-cloud socially aware services. In IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 28–36. http://dx.doi.org/10.1109/INFOCOM.2014.6847921.

[35] Elena Kakoulli and Herodotos Herodotou. 2017. OctopusFS: A distributed file system with tiered storage management. In Proceedings of the 2017
ACM International Conference on Management of Data. ACM, 65–78. http://dx.doi.org/10.1145/3035918.3064023.

[36] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.
[37] Nagma Khattar, Jaiteg Singh, and Jagpreet Sidhu. 2019. Multi-criteria-Based Energy-Efficient Framework for VM Placement in Cloud Data Centers.

Arabian Journal for Science and Engineering (2019), 1–15. https://doi.org/10.1007/s13369-019-04048-6.
[38] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and Anand Sivasubramaniam. 2011. HybridStore: A cost-efficient, high-performance

storage system combining SSDs and HDDs. In 2011 IEEE 19th annual international symposium on modelling, analysis, and simulation of computer
and telecommunication systems. IEEE, 227–236. http://dx.doi.org/10.1109/MASCOTS.2011.64.

[39] Dimitrios G Kogias, Michael G Xevgenis, and Charalampos Z Patrikakis. 2016. Cloud federation and the evolution of cloud computing. Computer 49,
11 (2016), 96–99.

[40] Hemant Kumar and Shiv Prasad Yadav. 2019. Fuzzy rule-based reliability analysis using NSGA-II. International Journal of System Assurance
Engineering and Management 10, 5 (2019), 953–972. https://doi.org/10.1007/s13198-019-00826-5.

[41] Dongwoo Lee, Changwoo Min, and Young Ik Eom. 2015. Effective flash-based SSD caching for high performance home cloud server. IEEE
Transactions on Consumer Electronics 61, 2 (2015), 215–221. https://doi.org/10.1109/TCE.2015.7150596.

[42] Laurent Lemarchand, Damien Massé, Pascal Rebreyend, and Johan Håkansson. 2018. Multiobjective Optimization for Multimode Transportation
Problems. Advances in Operations Research 2018 (2018). http://dx.doi.org/10.1155/2018/8720643.

[43] Chunlin Li, YaPing Wang, Hengliang Tang, and Youlong Luo. 2019. Dynamic multi-objective optimized replica placement and migration strategies for
SaaS applications in edge cloud. Future Generation Computer Systems 100 (2019), 921–937. https://doi.org/10.1016/j.future.2019.05.003.

[44] Hongxing Li, Chuan Wu, Zongpeng Li, and Francis CM Lau. 2013. Profit-maximizing virtual machine trading in a federation of selfish clouds. In
INFOCOM, 2013 Proceedings IEEE. IEEE, 25–29. http://dx.doi.org/10.1109/infcom.2013.6566728.

[45] Zhichao Li, Ming Chen, Amanpreet Mukker, and Erez Zadok. 2015. On the trade-offs among performance, energy, and endurance in a versatile hybrid
drive. ACM Transactions on Storage (TOS) 11, 3 (2015), 1–27. https://doi.org/10.1145/2700312.

[46] Xiyang Liu, Lei Fan, Liming Wang, and Sha Meng. 2015. PSO based multiobjective reliable optimization model for cloud storage. In 2015 IEEE
International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure

Manuscript submitted to ACM

http://dx.doi.org/10.15439/2018F237
https://doi.org/10.1007/978-3-319-07124-4_17
https://link.springer.com/book/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1007/978-3-642-34041-3_18
https://doi.org/10.1007/978-3-642-34041-3_18
https://doi.org/10.1007/978-981-10-8055-5_10
https://doi.org/10.1145/3078838
http://dx.doi.org/10.1109/CCGrid.2016.34
http://dx.doi.org/10.1109/INFOCOM.2014.6847921
http://dx.doi.org/10.1145/3035918.3064023
https://doi.org/10.1007/s13369-019-04048-6
http://dx.doi.org/10.1109/MASCOTS.2011.64
https://doi.org/10.1007/s13198-019-00826-5
https://doi.org/10.1109/TCE.2015.7150596
http://dx.doi.org/10.1155/2018/8720643
https://doi.org/10.1016/j.future.2019.05.003
http://dx.doi.org/10.1109/infcom.2013.6566728
https://doi.org/10.1145/2700312

Multi-objective Optimization of Data Placement in a Storage-as-a-Service Federated Cloud 31

Computing; Pervasive Intelligence and Computing. IEEE, 2263–2269. http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.334.
[47] Xiyang Liu, Lei Fan, Liming Wang, and Sha Meng. 2016. Multiobjective reliable cloud storage with its particle swarm optimization algorithm.

Mathematical Problems in Engineering 2016 (2016).
[48] Mostafa Mahi, Omer Kaan Baykan, and Halife Kodaz. 2018. A new approach based on particle swarm optimization algorithm for solving data

allocation problem. Applied Soft Computing 62 (2018), 571–578. https://doi.org/10.1016/j.asoc.2017.11.019.
[49] Yaser Mansouri and Rajkumar Buyya. 2016. To move or not to move: Cost optimization in a dual cloud-based storage architecture. Journal of Network

and Computer Applications 75 (2016), 223–235. https://doi.org/10.1016/j.jnca.2016.08.029.
[50] Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2017. Cost optimization for dynamic replication and migration of data in cloud data

centers. IEEE Transactions on Cloud Computing (2017). http://dx.doi.org/10.1109/tcc.2017.2659728.
[51] Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2017. Data storage management in cloud environments: Taxonomy, survey, and future

directions. ACM Computing Surveys (CSUR) 50, 6 (2017), 1–51. http://dx.doi.org/10.1145/3136623.
[52] Rafael Moreno-Vozmediano, Eduardo Huedo, Ignacio M Llorente, Rubén S Montero, Philippe Massonet, Massimo Villari, Giovanni Merlino, Antonio

Celesti, Anna Levin, Liran Schour, et al. 2016. BEACON: a cloud network federation framework. In Communications in Computer and Information
Science. Springer, 325–337. http://dx.doi.org/10.1007/978-3-319-33313-7_25.

[53] AnirbanMukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Carlos Artemio Coello Coello. 2013. A survey of multiobjective evolutionary
algorithms for data mining: Part I. IEEE Transactions on Evolutionary Computation 18, 1 (2013), 4–19.

[54] AnirbanMukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Carlos Artemio Coello Coello. 2014. A survey of multiobjective evolutionary
algorithms for data mining: Part I. IEEE Transactions on Evolutionary Computation 18, 1 (2014), 4–19. http://dx.doi.org/10.1109/TEVC.2013.2290086.

[55] Nadia Nedjah and Luiza de Macedo Mourelle. 2015. Evolutionary multi–objective optimisation: a survey. International Journal of Bio-Inspired
Computation 7, 1 (2015), 1–25. http://dx.doi.org/10.1504/ĲBIC.2015.067991.

[56] Hamza Ouarnoughi, Jalil Boukhobza, Frank Singhoff, and Stéphane Rubini. 2014. A multi-level I/O tracer for timing and performance storage systems
in IaaS cloud.. In REACTION. https://doi.org/10.1145/3041710.3041715.

[57] Mehdi Pirahandeh and Deok-Hwan Kim. 2018. EGE: A New Energy-Aware GPU Based Erasure Coding Scheduler for Cloud Storage Systems. In 2018
Tenth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, 619–621. http://dx.doi.org/10.1109/ICUFN.2018.8436594.

[58] Fabio López Pires and Benjamín Barán. 2013. Multi-objective virtual machine placement with service level agreement: A memetic algorithm
approach. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing. IEEE Computer Society, 203–210.
https://doi.org/10.1109/UCC.2013.44.

[59] Benay Kumar Ray, Avirup Saha, Sunirmal Khatua, and Sarbani Roy. 2019. Toward maximization of profit and quality of cloud federation: solution to
cloud federation formation problem. The Journal of Supercomputing 75, 2 (2019), 885–929.

[60] Salma Rebai, Makhlouf Hadji, and Djamal Zeghlache. 2015. Improving profit through cloud federation. In Consumer Communications and Networking
Conference (CCNC), 2015 12th Annual IEEE. IEEE, 732–739. http://dx.doi.org/10.1109/ccnc.2015.7158069.

[61] Nery Riquelme, Christian Von Lücken, and Benjamin Baran. 2015. Performance metrics in multi-objective optimization. In 2015 Latin American
Computing Conference (CLEI). IEEE, 1–11.

[62] Amine Roukh, Ladjel Bellatreche, Selma Bouarar, and Ahcene Boukorca. 2017. Eco-physic: Eco-physical design initiative for very large databases.
Information Systems 68 (2017), 44–63. https://doi.org/10.1016/j.is.2017.01.003.

[63] Takfarinas Saber, Anthony Ventresque, Xavier Gandibleux, and Liam Murphy. 2014. Genepi: A multi-objective machine reassignment algorithm for
data centres. In International workshop on hybrid metaheuristics. Springer, 115–129. https://doi.org/10.1007/978-3-319-07644-7_9.

[64] Sancho Salcedo-Sanz. 2009. A survey of repair methods used as constraint handling techniques in evolutionary algorithms. Computer science review 3,
3 (2009), 175–192. http://dx.doi.org/10.1016/j.cosrev.2009.07.001.

[65] Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis, and Cristiana Amza. 2009. Optimizing i/o-intensive transactions in highly
interactive applications. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. ACM, 785–798. https:
//doi.org/10.1145/1559845.1559927.

[66] A Sathya Sofia and P GaneshKumar. 2018. Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using
NSGA-II. Journal of Network and Systems Management 26, 2 (2018), 463–485. https://doi.org/10.1007/s10922-017-9425-0.

[67] Amir Taherkordi, Feroz Zahid, Yiannis Verginadis, and Geir Horn. 2018. Future cloud systems design: challenges and research directions. IEEE
Access 6 (2018), 74120–74150. http://dx.doi.org/10.1109/ACCESS.2018.2883149.

[68] Douglas B Terry, Vĳayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K Aguilera, and Hussam Abu-Libdeh. 2013. Consistency-
based service level agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
309–324. https://doi.org/10.1145/2517349.2522731.

[69] Adel Nadjaran Toosi, Rodrigo N Calheiros, and Rajkumar Buyya. 2014. Interconnected cloud computing environments: Challenges, taxonomy, and
survey. ACM Computing Surveys (CSUR) 47, 1 (2014), 7. http://dx.doi.org/10.1145/2593512.

[70] Adel Nadjaran Toosi, Rodrigo N Calheiros, Ruppa K Thulasiram, and Rajkumar Buyya. 2011. Resource provisioning policies to increase iaas provider’s
profit in a federated cloud environment. In High Performance Computing and Communications (HPCC), 2011 IEEE 13th International Conference on.
IEEE, 279–287. http://dx.doi.org/10.1109/hpcc.2011.44.

[71] Adel Nadjaran Toosi, Ruppa K Thulasiram, and Rajkumar Buyya. 2012. Financial option market model for federated cloud environments. In 2012
IEEE Fifth International Conference on Utility and Cloud Computing. IEEE, 3–12.

Manuscript submitted to ACM

http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.334
https://doi.org/10.1016/j.asoc.2017.11.019
https://doi.org/10.1016/j.jnca.2016.08.029
http://dx.doi.org/10.1109/tcc.2017.2659728
http://dx.doi.org/10.1145/3136623
http://dx.doi.org/10.1007/978-3-319-33313-7_25
http://dx.doi.org/10.1109/TEVC.2013.2290086
http://dx.doi.org/10.1504/IJBIC.2015.067991
https://doi.org/10.1145/3041710.3041715
http://dx.doi.org/10.1109/ICUFN.2018.8436594
https://doi.org/10.1109/UCC.2013.44
http://dx.doi.org/10.1109/ccnc.2015.7158069
https://doi.org/10.1016/j.is.2017.01.003
https://doi.org/10.1007/978-3-319-07644-7_9
http://dx.doi.org/10.1016/j.cosrev.2009.07.001
https://doi.org/10.1145/1559845.1559927
https://doi.org/10.1145/1559845.1559927
https://doi.org/10.1007/s10922-017-9425-0
http://dx.doi.org/10.1109/ACCESS.2018.2883149
https://doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2593512
http://dx.doi.org/10.1109/hpcc.2011.44

32

[72] Paolo Viotti, Dan Dobre, and Marko Vukolić. 2017. Hybris: Robust hybrid cloud storage. ACM Transactions on Storage (TOS) 13, 3 (2017), 1–32.
https://doi.org/10.1145/3119896.

[73] Stefan Voss, VManiezzo, and T Stützle. 2009. MATHEURISTICS: Hybridizing Metaheuristics andMathematical Programming (Annals of Information
Systems). (2009).

[74] Pengwei Wang, Caihui Zhao, Wenqiang Liu, Zhen Chen, and Zhaohui Zhang. 2020. Optimizing data placement for cost effective and high available
multi-cloud storage. Computing and Informatics 39, 1-2 (2020), 51–82.

[75] Zhenyu Wen, Jacek Cała, Paul Watson, and Alexander Romanovsky. 2016. Cost effective, reliable and secure workflow deployment over federated
clouds. IEEE Transactions on Services Computing 10, 6 (2016), 929–941. http://dx.doi.org/10.1109/TSC.2016.2543719.

[76] Zhenyu Wen, Jacek Cała, Paul Watson, and Alexander Romanovsky. 2017. Cost effective, reliable and secure workflow deployment over federated
clouds. IEEE Transactions on Services Computing 10, 6 (2017), 929–941. https://doi.org/10.1109/CLOUD.2015.86.

[77] Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. 2006. A faster algorithm for calculating hypervolume. IEEE transactions on
evolutionary computation 10, 1 (2006), 29–38.

[78] Yizi Wu and Youtao Zhang. 2015. GA Based Placement Optimization for Hybrid Distributed Storage. In 2015 IEEE 17th International Conference on
High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. IEEE, 198–203. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.89.

[79] Wenhua Xiao, Weidong Bao, Xiaomin Zhu, and Ling Liu. 2017. Cost-aware big data processing across geo-distributed datacenters. IEEE Transactions
on Parallel and Distributed Systems 28, 11 (2017), 3114–3127. https://doi.org/10.1109/TPDS.2017.2708120.

[80] Xiaolong Xu, Shucun Fu, Yuan Yuan, Yun Luo, Lianyong Qi,Wenmin Lin, andWanchun Dou. 2019. Multiobjective computation offloading for workflow
management in cloudlet-based mobile cloud using NSGA-II. Computational Intelligence 35, 3 (2019), 476–495. https://doi.org/10.1111/coin.12197.

[81] Shu Yin, Bing Jiao, Xiaomin Zhu, Xiaojun Ruan, Si Chen, and Zhuo Tang. 2018. DuoFS: A Hybrid Storage System Balancing Energy-Efficiency,
Reliability, and Performance. In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). IEEE,
478–485. http://dx.doi.org/10.1109/PDP2018.2018.00082.

[82] Boyang Yu and Jianping Pan. 2015. Location-aware associated data placement for geo-distributed data-intensive applications. In 2015 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 603–611. http://dx.doi.org/10.1109/INFOCOM.2015.7218428.

[83] Linquan Zhang, Chuan Wu, Zongpeng Li, Chuanxiong Guo, Minghua Chen, and Francis CM Lau. 2013. Moving big data to the cloud: An online
cost-minimizing approach. IEEE Journal on Selected Areas in Communications 31, 12 (2013), 2710–2721. http://dx.doi.org/10.1109/JSAC.2013.131211.

[84] Miao Zhang, Huiqi Li, Li Liu, and Rajkumar Buyya. 2018. An adaptive multi-objective evolutionary algorithm for constrained workflow scheduling in
Clouds. Distributed and Parallel Databases 36, 2 (2018), 339–368. http://dx.doi.org/10.1007/s10619-017-7215-z.

[85] Ning Zhang, Junichi Tatemura, Jignesh M Patel, and Hakan Hacigümüş. 2011. Towards cost-effective storage provisioning for DBMSs. Proceedings of
the VLDB Endowment 5, 4 (2011), 274–285. http://dx.doi.org/10.14778/2095686.2095687.

[86] Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: state-of-the-art and research challenges. Journal of internet services and applications
1, 1 (2010), 7–18.

[87] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Viviane Grunert Da Fonseca. 2003. Performance assessment of multiobjective
optimizers: An analysis and review. IEEE Transactions on evolutionary computation 7, 2 (2003), 117–132.

Manuscript submitted to ACM

https://doi.org/10.1145/3119896
http://dx.doi.org/10.1109/TSC.2016.2543719
https://doi.org/10.1109/CLOUD.2015.86
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.89
https://doi.org/10.1109/TPDS.2017.2708120
https://doi.org/10.1111/coin.12197
http://dx.doi.org/10.1109/PDP2018.2018.00082
http://dx.doi.org/10.1109/INFOCOM.2015.7218428
http://dx.doi.org/10.1109/JSAC.2013.131211
http://dx.doi.org/10.1007/s10619-017-7215-z
http://dx.doi.org/10.14778/2095686.2095687

	Abstract
	1 Introduction
	2 Background
	2.1 Cloud federation
	2.2 Multi-objective optimization

	3 System model and problem formulation
	3.1 Challenges and objectives
	3.2 System overview
	3.3 System model
	3.4 Cost model
	3.5 Problem formulation

	4 CDP-NSGAIIIR: Constraint Data Placement NSGAII with Injection and Repair operators
	4.1 NSGAII based approach
	4.2 CDP-NSGAIIIR matheuristic

	5 Evaluation
	5.1 Experimental setting
	5.2 Evaluation results

	6 Related work
	7 Conclution
	References

