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ABSTRACT
The scheduling of reliable real-time systems require a precise and

sound analysis of the execution times of their tasks. Part of these

execution times is spent fetching data from the main memory to

the cache memories. These fetch events occur on cache misses, but

cache misses are hard to predict when the program accesses an

array. An imprecise cache miss analysis can lead to an imprecise

but still soundWorst-Case Execution Time (WCET) analysis. In this

article we present a framework for deriving an upper bound to the

number of times a data-accessing instruction triggers a cache miss.

Backed by this framework, we present an analysis that produces

numeric or symbolic bounds, by reasoning on a short history of

accesses and by counting the number of integer points in a volume

with an existing tool (Barvinok). Using such bounds will improve

the precision of the estimations delivered by the WCET analyses.

KEYWORDS
static analysis, data cache analysis, formal methods, worst-case

execution time analysis, precondition calculus

ACM Reference Format:
Pascal Sotin, Quentin Vermande, and Hugues Cassé. 2021. Data Cache

Analysis by Counting Integer Points. In 29th International Conference on Real-
Time Networks and Systems(RTNS’2021), April 7–9, 2021, NANTES, France.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3453417.3453424

1 INTRODUCTION
A cache memory is a hardware placed between the processor and the
main memory. It manages copies of blocks of the main memory in

order to speed up the execution of programs by giving fast answers

to the processor memory accesses. The memory can be read or

written and can contain instructions or data. An access treated by

the cache without fetching data from the main memory is called a

hit, and a miss otherwise.
Cache memories are primordial for the timing performances of

the processors. Disabling them would slow down the execution of

programs by one or two order of magnitudes. The reason why cache

memories perform so well is that they are much faster than main

memory and that they benefit from two patterns omnipresent in

programs: temporal and spatial locality of thememory accesses. This

means that programs tend to access repeatedly the same addresses

or close addresses, possibly interleaved with other accesses.
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Cache Analysis. The dynamic behaviour of cachesmakes that pre-

dicting the outcome of an access is non-trivial. However, a precise

characterization of the hits and misses is required for computing a

precise Worst-Case Execution Time (WCET) estimation. Therefore,

cache analyses were developed to derive that information.

Instruction cache analysis is a well-studied issue. The standard

approach is to categorize the accesses to the memory as always hit,
always miss, persistent1 or not classified [6–8].

For data cache analysis no fully satisfying solution was found

(see related work in Section 10). The classification performed for

the instruction cache do no apply straightforward due to fact that

the data accessed by an instruction depend on a computed address.

1 in t sum = 0 ;

2 for ( in t i = 0 ; i < N ; i ++) {

3 sum += t [ i ] ; / / can r ead ( t [ i ] ) be a mi s s ?
4 }

Program 1: Summation of an array t of integers.

Consider the Program 1 and consider the read access to t[i]
nested within the loop (line 3). Can this access be a miss?

• The answer is no if the whole array t is already in the cache.

This property is not trivial to establish but it brings down

the miss bound from N to 0.

• The answer is also no as long as we stay in a memory block

in cache. This property would reduce the miss bound from N
to a fraction of N. Finding such property is a counting problem
rather than a classification problem.

Counting Integer Points. In [17], Verdoolaege et al. present a tool,

called Barvinok, that can count the integer points contained in

certain volumes, called parametric polytopes. Roughly speaking, it

performs the transformation:

♯
{
®n ∈ Zk

��� ϕ(®n, ®x)} ⇝ N(®x) (1)

where ♯S denotes the cardinality of the set S , ϕ is a (restricted)

logical formula, k is the dimension of the polytope, ®x denotes the

polytope parameters, and N is a count function that evaluates to

a natural number in constant time. This work might seem unre-

lated to our problem, but the authors of [17] motivate their work

with several counting questions occurring in program analyses and

optimizations, notably this one:

How many cache misses does a loop generate?

As we will see, the Barvinok tool can be used to solve data cache

analysis problems, but its application is not straightforward.

1
Persistent means hit or miss at the first iteration of the enclosing loop, then only

hits [5, 16].
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Proposal. In this article we present a static analysis that computes

a symbolic upper-bound for the number of data cache misses trig-

gered by one given memory access located inside a loop. Roughly

speaking, we allow the following transformation:

(C, P, acc) ⇝ ♯
{
n ∈ N

��� Init ;Body ⟨n ⟩ ;^Miss
}
⇝ U (2)

where:

• C is a cache model, P is a program with no nested loops and

acc designates one memory access within a loop body;

• (Init ;Body ⟨n ⟩ ;^Miss) is a predicate denoting the exis-

tence of an execution of program P on an architecture equiped
with a cache of model C that successively: reaches the loop

head, performs n complete iterations of the loop, and even-

tually may2 trigger a cache miss at access acc;
• U is an upper-bound on the number of misses represented

by a count function parametrised by the initial program state

(e.g. initial value of a variable, address of an array).

Note that we do not consider the computation of Init and Body ⟨n ⟩

in this article.

Contributions. We claim that:

• The upper bounds computed by our analysis reflects well

the cache hits due to the spatial and temporal locality of the

accesses inside the loop. We illustrate our analysis and its

results on Program 1 (Section 3).

• The soundness of our analysis is ensured by its formal deriva-

tion from a concrete semantics that exposes the event to

count (Sections 2 and 4).

• The predicate ^Miss can be computed using a Weakest Pre-

condition Calculus according to the nature of the cache and

the instructions preceding the memory access (Section 5).

• The predicate characterising a possible miss at iteration n is

not shaped like a polytope but it can be turned into a suitable

input for Barvinok, soundly and mechanically (Section 6).

• Our analysis can be adapted to handle several sources of

cache misses (Section 7.1) and nested loops (Section 7.2).

Our analysis is not fully automated but the calculus of Section 5

and the tranformation of Section 6 have been developed.We present

these implementations and some performance indications in Sec-

tion 8. We discuss scalability in Section 9 and present our position-

ing with respect to existing proposals for data cache analysis in

Section 10. We conclude in Section 11.

2 TERMINOLOGY AND MATHEMATICAL
NOTATION

In this section, we introduce the concepts, terms and notations used

throughout the article.

Programs and Events. A program is a text in a given programming

language. A semantics characterises formally the executions of a

program. An event designates a relevant instant in the execution

of a program, or a family thereof (e.g. a cache miss). We rely on a

program semantics related to a given event, represented by a set

of traces (detailed in Section 4). A trace is a non-empty sequence

of program states. A program state reflects the logical state of the

2
The ^ symbol is borrowed from modal/temporal logic. Read it: “possible that. . . ”.

machine that executes the program (e.g. values of the variables,

content of the cache). Let Σ be the set of all program states.

Sets and Relations. Wewrite ℘ (S) for the set of subsets of S (pow-

erset) ; A × B for the cartesian product of A and B ; {x ∈ S | ϕ(x)}
for the subset of elements of S satisfying the formula ϕ ; and ♯A for

the number of elements of A (cardinality).

We represent sets of states, in ℘ (Σ), using logical formulas. For

example i = 0 denotes the set of states

{
σ ∈ Σ

�� JiKσ = 0
}
where

JiKσ is the evaluation of the program variable i within program

state σ . Throughout the article, we use typewriter font as a hint

indicating program expressions.

We use relations on states, in ℘ (Σ × Σ), to denote the effect of pro-
gram statements. We also represent relations using logical formulas.

For example i′ = i + 1 denotes the relation:{
⟨σ ,σ ′⟩ ∈ Σ × Σ

�� JiKσ ′ = JiKσ + 1
}

The relation links the value of the program variables before (un-

primed) and after (primed). Relations R1 and R2 can be composed

in a relation R1 ;R2 defined by:

⟨σ ,σ ′′⟩ ∈ (R1 ;R2) ⇐⇒ ∃σ ′, ⟨σ ,σ ′⟩ ∈ R1 ∧ ⟨σ
′,σ ′′⟩ ∈ R2

A relation R and a state S can be composed in a state R ; S defined

by:

σ ∈ (R ; S) ⇐⇒ ∃σ ′, ⟨σ ,σ ′⟩ ∈ R ∧ σ ′ ∈ S

We call sound approximation of a setA any set B such thatA ⊆ B.
This also applies if A and B are relations. These approximations of

sets and relations coincide with the ordering of powersets used in

Abstract Interpretation [2].

Counting. The property we look for is defined by counting the

number of elements of a given set. We have the properties:

A ∩ B = ∅ ⇒ ♯ (A ∪ B) = ♯A + ♯B (3)

A ⊆ B ⇒ ♯A ≤ ♯B (4)

Necessary and Sufficient Conditions. In the formula ϕA ⇒ ϕB ,
the formula ϕA is called a sufficient condition and ϕB a necessary

condition. This formula is equivalent to ¬ϕB ⇒ ¬ϕA.
Throughout the article, in order to be sound, we often look for

formulas entailed by the program behaviour (necessary conditions,

over-approximation) or, playing with negations, formulas entailing

the absence of some program behaviours (sufficient conditions,

under-approximation).

3 ANALYSIS PRINCIPLE
In this section, we illustrate the principle of our analysis by applying

it to Program 1. We wish to bound the number of cache misses

triggered by the read accesses to the cells of the array t.
We assume that the compiler decides to put the variables sum

and i in registers and to align t on an integer boundary. We assume

that an integer occupies 4 bytes. We assume that the cache:

• contains blocks of 32 bytes, hence 8 integers,

• ensures that the latest block fetched remains in the cache

(very weak assumption).

In Section 5, we will show how our analysis takes into account

more complex assumptions on the cache.

2
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3

sum = 0;
i
=
0;

sum += t[ i ];

¬( i < N)

i

<

N

i++;

Figure 1: Control flow graph of the loop of Program 1.

3.1 Analysis stages
We perform the analysis on a Control Flow Graph (CFG) of Pro-

gram 1, shown on Figure 1. Contrarily to CFG used in compilers

and disassemblers, the instructions are carried by the edges, not

by the nodes. The symbol marks the loop head. The instructions

followed by a semi-column are assignments; the others are guards.

The test of the for loop gives birth to two guards.

Loop Analysis. The relation B denotes the effect of a loop iter-

ation, from the loop head, back to the loop head
3
. The relation

B ⟨n ⟩ denotes an over-approximation of Bn , the effect of n ∈ N loop

iterations. In this article, we do not consider how such a relation

can be derived. For the loop of Program 1, we have:

B ⟨n ⟩ ⇐⇒ i′ = i + n ∧ N′ = N ∧ &t′ = &t (5)

Equation (5) state that the execution of n loop iterations increases

the initial value of variable i by n but does not alter the value of N
nor the address of the array t (written &t). It says nothing about
sum, the content of t or the cache state. As mentioned in Section 2,

Equation (5) is a lightweight notation for:

∀σ ,σ ′ ∈ Σ, ⟨σ ,σ ′⟩ ∈ B ⟨n ⟩ ⇐⇒
©­«

JiKσ ′ = JiKσ + n
∧ JNKσ ′ = JNKσ
∧ J&tKσ ′ = J&tKσ

ª®¬ (6)

Miss Condition Analysis. Based on the hypotheses on the cache,

we construct a formula denoting a necessary condition for triggering
the cache miss in the current iteration. In our example:

^Miss ⇒ ^
(
loc = 2 ∧ âge(bk(t, i)) , 0

)
(7)

where:

• the symbol ^ denotes the possibility of what follows;

• loc is the current control point (a node of Figure 1);
• bk(t, i) is thememory block identifier containing the integer

t [ i ], defined as

⌊
&t+4i

32

⌋
;

• and âge is a function representing the current cache, binding

a maximal age to every memory block. By convention, the

most recently accessed block has age 0.

We perform a backward computation to transform the condition

into a predicate suitable and useful for composition after B ⟨n ⟩ . This
computation creates a family M̄ of conditions sufficient for avoiding
the considered cache miss. The conditions computed for Program 1

are shown in Table 1. The functionwp (stmt,Q) returns a sufficient

condition for establishing Q after stmt.

3
Hence ⟨σ , σ ′⟩ ∈ B means that if the current program state is σ , then entering the

loop and returning to the head through a back-edge can end up in program state σ ′.

Condition Definition Value

M̄2,0 ¬(âge(bk(t, i)) , 0) âge(bk(t, i)) = 0

M̄1,0
wp

(
i < N, M̄2,0

)
∧ wp (¬(i < N), true)

âge(bk(t, i)) = 0
∨ i ≥ N

M̄3,+1 wp
(
i++, M̄1,0

) âge(bk(t, i + 1)) = 0
∨ i + 1 ≥ N

M̄2,+1 wp
(
access t[i], M̄3,+1

) bk(t, i + 1) = bk(t, i)
∨ i + 1 ≥ N

M̄1,+1
wp

(
i < N, M̄2,+1

)
∧ wp (¬(i < N), true)

bk(t, i + 1) = bk(t, i)
∨ i + 1 ≥ N

Table 1: Sufficient conditions for avoiding the miss.

The formula M̄1,+1 states that when the execution is at the loop

head (i.e. 1) we can ensure that no miss will occur in the iteration

after this one (i.e. +1) when either:

• the current iteration will access the same memory block than

the following one i.e. bk(t, i + 1) = bk(t, i),
• we exit the loop beforehand i.e. i + 1 ≥ N.

Note that the formula M̄1,0 is meaningful but its dependence on

âge would give a disappointing composition with B ⟨n ⟩ given that

B ⟨n ⟩ carries no information on the cache.

Miss Count. The number of cache misses is upper bounded by

the expression:

Umiss = 1 + ♯
{
n ∈ N

��� n ≥ 1 ∧
(
Init ;B ⟨n−1⟩ ;¬M̄1,+1

)}
(8)

This expression is a sum because we separated the first access
4

from the subsequent ones. After expansion, Expression (8) gives:

Umiss = 1

+ ♯

n ∈ N
��������
n ≥ 1 ∧ ∃i, i′, N′, t′

&tmod4 = 0 ∧ i = 0
∧ i + n − 1 = i′ ∧ N = N′ ∧&t = &t′

∧ i′ + 1 < N′ ∧ bk(t′, i′ + 1) , bk(t′, i′)


(9)

After elimination of the existential quantifiers we get:

Umiss = 1 + ♯

n ∈ N
������ 1 ≤ n < N ∧ &tmod4 = 0

∧

⌊
&t + 4n

32

⌋
,

⌊
&t + 4(n − 1)

32

⌋ (10)

Using a process described in Section 6, we turn Expression (10)

into the following expression, that is (almost) suitable for processing

by the Barvinok tool:

Umiss = 1 + ♯


n ∈ Z

������������

∃qa,qb ,qc ∈ Z
1 ≤ n < N
&t = 4qa
0 ≤ &t + 4n − 32qb < 32
0 ≤ &t + 4n − 4 − 32qc < 32
qb , qc


(11)

4
In order to keep the presentation simple, we treat the first access as a possible miss,

regardless of the history, but the framework allows a more precise treatment using

♯
{
n ∈ N

��� n = 0 ∧
(
Init ; B ⟨0⟩ ;¬M̄1,0

)}
as first term of the sum.

3
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Our transformation added three existentially quantified integer

variables representing the quotient of some divisions. The variable

qa is used to encode the modulo expressing the alignment con-

straint for the array t. The variables qb and qc were introduced to

cope with the floored divisions. Note that all the transformations

presented on that example are exact.

Fed with Equation (11), Barvinok gives us in return the bound:

Umiss =


⌊
7

8
+
&t
32
+
N
8

⌋
−

⌊
&t
32

⌋
if N ≥ 2

1 otherwise

(12)

3.2 Analysis Results
Comments on Equation (12). The bound computed by Barvinok

is parametric both in the size of the array, N, and the address of

the array, &t. Table 2 shows the evaluation of Umiss for some

variations on &t and N.

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3

1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3

1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3

1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

4

8

12

16

20

24

28

32

N

&t

Table 2: Some evaluations ofUmiss

Unsurprisingly, the number of cache misses grows slowly as N
grows, i.e. as the number of accesses grows, due to spatial locality.

The ratio is approximately one miss for eight accesses. The address

of the array t has a marginal influence on the number of misses.

The best case occur when the array is aligned on a cache block

boundary. Note that when N = 9, the alignment has no influence.

Note that as soon as N ≥ 1, our bound is the most precise bound
one can have under the expressed hypotheses. Note also that it is

still an over-approximation because the number of misses could be

zero if the array is entirely in cache when the loop begins.

Variations. If we give additional invariants to Barvinok, we can

get simpler formula, or even just numbers. Table 3 shows the for-

mula we get using a variety of additional constraints.

4 SEMANTIC DERIVATION
In this section, we present a framework for counting occurrences of

an event during the execution of a program. This framework makes

explicit the hypotheses under which expressions like Expression (8)

truly reflect what needs to be counted. This section can be skipped

at first read.

4.1 Trace Semantics
Let T (Σ, L) be the set of traces of states in Σ labelled by labels in L.
A labelled trace u ∈ T (Σ, L) is of the form:

σ0
l0
−−→ σ1

l1
−−→ σ2 · · · σn

where the σi are in Σ and the li are in L. We write:

• ui for the state at index i (hence σi );
• ui� for the label following the state at index i (hence li ).

Let P denote a program and e denote a kind of event. The trace

semantics of P with respect to e is written T JP, eK and is a subset

of T (Σ,N) where Σ denotes the possible states of Program P. This
setting is very general and we immediately restrain it with the two

following hypotheses.

Hypothesis 1 (One Occurrence Per Transition). We make
the hypothesis that T JP, eK is such that each program transition
triggers at most one occurrence of the event. Formally, we have:

T JP, eK ⊆ T (Σ, {0, 1}) (13)

In the following we interpret 0 and 1 respectively as false (i.e.

the event did not occur) and true (i.e. the event occurred). We write

B instead of {0, 1}.

Hypothesis 2 (Marking Function). We make the hypothe-
sis that we have a marking function that can instrument traces in
T JP, eK with markers such that in each trace the markers identify
the events. Formally, we have:

instr : T JP, eK→ T (M × Σ,N)
st : M × Σ→ Σ
mark : M × Σ→ M

such that v = instr (u) implies:
∀i, st(vi ) = ui
∀i, vi� = ui�
∀i, j, i , j ∧mark(vi ) = mark(vj ) ⇒ vi� = 0 ∨ vj� = 0

This hypothesis will allow us to reason on the set of marks for

which the event occur. In Section 5.1, wewill use an instrumentation

based on a loop counter.

Additional constraints Miss bound

N ≥ 1 ∧&t ≡ 0 (mod32)

⌊
7

8
+
N
8

⌋
N ≥ 1 ∧&t ≡ 4 (mod32) 1 +

⌊
N
8

⌋
N ≥ 1 ∧&t ≡ 28 (mod32) 1 +

⌊
3

4
+
N
8

⌋
N = 32 4 +

⌊
7

8
+
&t
32

⌋
−

⌊
&t
32

⌋
N = 33 5

N = 100 ∧&t = 512 13

Table 3: Variations on the miss bound
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4.2 Maximal Number of Event Occurrence
Property of Interest. The property that we look for is themaximal

number of occurrences of the event e during any execution of the

program P, given by bound(T JP, eK), with:

bound(T ) = sup
u ∈T

(∑
i
ui�

)
(14)

where sup is the supremum operator, delivering the maximal value

if it exits or +∞ otherwise. We consider an analysis to be sound if

it delivers an over-approximation of this number.

Property Transformation. Under Hypothesis 1 we have:

bound(T JP, eK) = sup
u ∈TJP,eK

♯ {i | ui�} (15)

Equation (15) states that under Hypothesis 1, counting in each trace

the states triggering the event is equivalent to counting the events

themselves.

Under Hypotheses 1 and 2 we have:

bound(T JP, eK)

= sup
v ∈ Ûinstr (TJP,eK)

♯ {m | ∃i,mark(vi ) =m ∧ vi�} (16)

where Ûinstr is the instrumentation function lifted to sets of traces.

Equation (16) states that under Hypotheses 1 and 2, counting in

each instrumented trace the marks of the states triggering the event

is equivalent to counting the events themselves.

Mark Set Approximation. We use the properties of sup and ♯ to

turn Equation (16) into the following inequation:

bound(T JP, eK) ≤ ♯
{
m

���� ∃v ∈ Ûinstr (T JP, eK),
∃i,mark(vi ) =m ∧ vi�

}
(17)

Note that the tranformation giving Equation (17) can induce an

over-approximation since it does not compute the supremum of

the number of marks triggering the event in each trace but count
the number of marks triggering the event in some trace.

4.3 Relational Semantics
We define an approximation of the instrumented trace semantics

using the following Galois connection:

T (Σ,B) −−−−−→←−−−−−
αrel

γrel
I :℘ (Σ) ×R:℘ (Σ × Σ) × E :℘ (Σ)

αrel(T ) = ⟨ I :{u0 | u ∈ T },
R:{⟨ui ,ui+1⟩ | u ∈ T },
E :{ui | u ∈ T ∧ ui�} ⟩

(18)

For clarity, we tagged our sets with I for initial, R for relation and

E for event. As usual, the lattices are ordred by inclusion.

Using this abstraction, we can define a new approximation for

our property:

bound(T JP, eK) ≤ ♯

m
��������
∃v ∈ T (M × Σ) ,

v0 ∈ I
∀i, ⟨vi , vi+1⟩ ∈ R
∃i, vi ∈ E ∧mark(vi ) =m

 (19)

with ⟨I ,R, E⟩ = αrel(T JP, eK). Note that the marks on the traces are

no longer considered since E carries that information. It is likely

that we can derive precise values for I , R and E from the considered

program P and event e.

Precondition Calculus. We can show that performing backward

computation using a precondition calculus is sound.

Lemma 4.1. For all predicates P and Q such that:

∀⟨σ ,σ ′⟩ ∈ R, P(σ ) ⇒ Q(σ ′) (20)

we have:©­­­«
∀v ∈ T (M × Σ) ,

v0 ∈ I
∀i, ⟨vi , vi+1⟩ ∈ R
⇒ Q(v0) ∧ ∀i, P(vi )

ª®®®¬⇒
©­­­«
∀v ∈ T (M × Σ) ,

v0 ∈ I
∀i, ⟨vi , vi+1⟩ ∈ R
⇒ ∀i,Q(vi )

ª®®®¬ (21)

Note that the formulas used on each side of Equation 21 are the

negated form of the condition found in Equation (19).

Lemma 4.1 allows us to compute sound approximations of our

bound by:

• Starting the analysis with a formula denoting:

mark(vi ) =m ⇒ vi < E

• Computing new formula that is a sufficient precondition for

the current formula by the relation R,
• Keeping the formula as it is for the states in I ,
• Using the negation of the result formula as ^Miss .

5 HANDLING COMPETITION FOR THE
CACHE

In this section, we present how the non-miss condition is built,

according to the nature of the cache and to the history of memory

accesses.

5.1 Loop and Instrumentation
The program we consider in this section is restrained to a loop and

the event we track is the triggering of a cache miss related to a

specific memory access that:

• can occur at a given control point acc within the loop body;

• is not nested within an inner loop.

The array accesses in Programs 1 and 2 satisfy these conditions. It

is also the case in Programs 3 and 4 (page 8) but not in Program 5

because of the nested loops.

We instrument the loop with a counter n that is:

• initialized to zero;

• incremented when a back-edge of the loop is taken.

This instrumentation and the fact that the considered access occurs

at most once per loop iteration enforces Hypothesis 2: in an exe-

cution, every occurrence of the considered miss is identified by a

distinct value of n.

5.2 Cache Modeling
We model the cache with a function âge : N→ N that maps each

block identifier to an upper bound of the age of that block. This

information coincides with themust analysis of Ferdinand et al. [7].
A block having a maximal age greater than the cache associativity

might be absent from the cache.
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Trivial Cache. The formula M̄1,+1 derived in Section 3 holds for

any type of cache, since the only hypothesis we made was that the

last memory location accessed remained in the cache. The functions

determining respectively if an access to a block may be a miss and

how evolve the maximal ages
5
after an access were:

may_miss(âge, bacc) ⇐⇒ âge(bacc) , 0

update(âge, bacc) = λbup.

{
0 if bup = bacc
∞ otherwise

This approximation was sufficient to prove that the read access in

the summation loop only triggers a cache miss every 8 iterations.

However, in the presence of other accesses, like in the loop of

Program 2, that will not be sufficient to prove that the write access

does not evict the cache block loaded by the read access.

1 for ( in t i = 0 ; i < N ; i ++) {

2 t [ i ] = u [ i ] ; / / r e a d s u [ i ] t h en w r i t e s t [ i ]
3 }

Program 2: Copy loop.

LRU Cache. We now consider a Least Recently Used (LRU) cache

made of blocks of B bytes spread among S cache sets, each having

an associativity of A. The cache size is thus B × S ×A bytes. Using

an over-approximation of the age, the most precise miss and update

functions are:

may_miss(âge, bacc) ⇐⇒ âge(bacc) ≥ A

update(âge, bacc) = λbup.
0 if bup = bacc
âge(bup) if bup , bacc ∧(

bup . bacc (modS)
∨ âge(bacc) = 0

)
âge(bup) + 1 otherwise

where b1 . b2 (mod S) means that the blocks b1 and b2 belong to

distinct cache sets.

5.3 Sufficient Precondition Analysis
Condition of Interest. We use the may_miss function to express

a necessary condition ^Missn for a miss at iteration n:

^Missn (σ ) ⇒(
mark(σ ) = n ∧ loc(σ ) = acc ∧may_miss(âge, bacc)

) (22)

Note that ^Missn is not a sufficient condition due to the fact that

the function âge reflect a maximal age: an access can still be a hit

even ifmay_miss is true. The negation of ^Missn condition is a

sufficient condition for the absence of miss at iteration n:(
mark(σ ) = n ∧ loc(σ ) = acc ⇒ ¬may_miss(âge, bacc)

)
⇒ ¬^Missn (σ )

(23)

We compute sufficient preconditions of the form:

mark(σ ) = n + k ∧ loc(σ ) = l ⇒ M̄l ,+k (σ ) (24)

5
The result of the update function is a function binding block identifiers to ages. We

describe it using a lambda expression (λx .f (x )).

We seek for a sufficient precondition such that both:

• The control point is the loop head;

• The mark is n and the condition no longer depend on the

âge function, or the mark is n − 1.

These halting conditions make that we need to move backward for

one partial iteration, and potentially one more complete iteration.

Computation. The computation is done following the principles

of Dijkstra’s Weakest Precondition Calculus [4]. We expect that if

P = wp (stmt,Q) then {P}stmt{Q} is a Hoare triple. Guards and
assignments are treated as expected in such calculus:

wp (C is true,ϕ) = C⇒ ϕ

wp (x := E,ϕ) = ϕ[x/E]

However, the treatment of memory accesses is not straightforward

because it involves updating a function. This can be done using

parallel assignments:

wp (access x,ϕ)

= wp (âge := update(âge, bk(x)),ϕ) (25)

= wp (∥b âge(b) := update(âge, bk(x))(b),ϕ) (26)

Equation (26) might look like an intractable computation.

• On the one hand, this impression is false given that the only

assignments having an effect on the result are the ones where

âge(b) appears in ϕ.
• On the other hand, this computation potentially leads to a

disjunction with (D + 1).UD
cases where D is the number

of blocks to update and U the number of cases generated by

each update. However, the good news are:

– Some cases boil down to false . In the tool presented in

Section 8.1, we rely on SMT-solving for disproving these

spurious cases.

– These cases give birth to formulas of the form¬A∧¬B∧. . .
where A and B are conjunctions. Since we look for a suffi-

cient condition, we can replace ¬A ∧ ¬B by ¬C provided

that A ∨ B ⇒ C . Conjunctions are well represented in

usual static analysis abstract domains and the computa-

tion of C is provided by the join operation of the domain.

We did not explore this possibility so far, but the presence

of disequation in our conjunctions could be an issue.

– In each case of the form ¬(A1 ∧A2 ∧ . . .) we can soundly

drop any conjunct Ai . We did not explore the potential of

this possibility.

The treatment of the âge function update leads us to a ad-hoc the-

oretical development that we present in the following subsection.

5.4 Sufficient Precondition Calculus on
Functions

Our representation of the âge function as a logical formula is in-

spired by the shape analyses based on separation logic, in particular

by the work of Rival et al. [11]. Shape analyses target the represen-

tation of the memory i.e. a mapping from addresses to values. We

adapt their approach to our âge function i.e. a mapping from block

identifiers to ages. Note that the shape analysis problem is more

complex due to the fact that values may be themselves addresses.

6
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Function Representation. We represent the constraints on a func-

tion f by a pair ⟨®E,ϕ⟩ interpreted as:

∃®x, alias(®x, ®E) ∧ ϕ(f , ®x) (27)

where the formula ϕ constrains the ®xi and the f (®xi ) and where

alias is defined by:

alias(®x, ®E) ⇐⇒ ∀i, j, i , j ⇒ ®xi , ®x j

∧ ∀i,
∧
e∈®Ei

®xi = JeK (28)

The first conjunct of Equation (28) state that all ®xi are distinct

values. The dictionary ®E stores for each ®xi a set of alias expressions.

Operations. We list here a set of operations sufficient to perform

the precondition calculus of Section 5.3. We do not provide here

their algorithms but an implementation has been developed (see

Section 8.1). The operations are:

• Yielding a pair ⟨®E,ϕ⟩ equivalent to true .
• Exposing an element a of the function domain. This opera-

tion can produce from 1 to length(®x) + 1 cases depending

on whether a can be aliased/unaliased with an existing di-

mension of ®x .
• Simplifying the formula by eliminating the quantified x such

that f (x) is not in ϕ.
• Adding a conjunct to ϕ (for treating guards).

• Performing a substitution (for treating scalar assignment).

• Compution a sufficient precondition for a backward update

of the function. This operation explores the combination of

possible updates for each of the quantified variables.

5.5 Results for the Analysis of Program 2
We look for bounds for the number of miss triggered by the read

accesses to the array u in Program 2. A similar analysis, with similar

results, could be performed for the write accesses to t.

LRU Cache. We assume a LRU cache of associativity A, contain-
ing S sets, with 32 bytes in each block. We use an update function

pessimistic with respect to sets. The backward analysis gives us the

following necessary condition for a miss at iteration n:

^Missn ⇒
©­­­«
n = mark + 1 ∧ loc = h ∧ n < N
∧ bk(u,n) , bk(t,n − 1)

∧

(
(bk(u,n) = bk(u,n − 1) ∧A ≤ 1)
∨ bk(u,n) , bk(u,n − 1)

) ª®®®¬ (29)

The novelties with respect to Program 1 are the fact that the cache

associative enough will surely avoid the miss and that the miss can

also be avoided if the access to t loads the next block.

In order to show a readable formula we add the constraint N =
100 and A ≥ 2, then Barvinok finds the following bound:

Umiss =


1 if 0 ≤ &u −&t ≤ 36

13 +

⌊
3

8
+
&u
32

⌋
−

⌊
&u
32

⌋
(30)

Direct Mapped Cache. We assume a cache with no associativity

(A = 1) but 16 sets and still 32 bytes by cache block. The backward

analysis gives us a necessary condition for a miss at iteration n:

^Missn ⇒

©­­­­­«
n = mark + 1 ∧ loc = h ∧ n < N
∧ bk(u,n) , bk(t,n − 1)

∧
©­«
(
bk(u,n) = bk(u,n − 1)
∧bk(u,n) . bk(t,n − 1) (mod16)

)
∨ bk(u,n) ≡ bk(t,n − 1) (mod16)

ª®¬
ª®®®®®¬

(31)

The novelty here is the congruence inspection that could allow a

hit if the arrays t and u are aligned correctly.

Without placing t and u, the tool Barvinok produces a huge

formula (∼90 kB). By placing t and u, it gives numbers. Some

configurations are shown below:

13 13 25
..

74 85 100 100 88
..

76 26 13 13

480 484 488 504 508 512 516 520 524 540 544 548

1024

&t
&u

6 COUNTING USING BARVINOK
DECOMPOSITION

In this section, we present the transformation of our formulas

encoding the loop summary composed with miss conditions into

problems that can be processed by the tool Barvinok.

Back-End Capacities. The tool Barvinok [17] can turn, in poly-

nomial time, expressions of the form:

λ®x ∈ Zp . ♯
{
®n ∈ Zk

��� ∃®e ∈ Zq ,ϕ(®x, ®n, ®e)} (32)

where ϕ is a conjunction of linear inequalities into expressions of

the form:

λ®x ∈ Zp .
∑
c
Idc ( ®x ) × fc (®x) (33)

where each term of the sum denotes a chamber, each dc is a predi-
cate denoting a domain of validity and each fc is a count function
represented by a Ehrart polynomial. We refer to ®x as the parameters,

to ®n as the variables and to ®e as the quantified variables.

6.1 Transformations
We present a serie of formula transformation that can be used to

reduce the formula characterising a possible miss into a formula

supported by Barvinok. These transformations are expressed as

term substitutions, with ϕ[s/t] being the formula ϕ where all occur-

rences of the term s have been replaced by the term t . In this article,

we do not present how this transformations are chained but wemen-

tion that we developed a tool that does the whole transformation

(see Section 8.2).

6.1.1 Modulo Elimination. The modulo operation appears when

the address of some program data is not fixed but its alignment

is constrained. E.g. the array t is aligned on an integer boundary,

the array u is aligned on a cache boundary. Congruence operations

are also produced by the backward analysis when it considers the

cache sets.

Lemma 6.1. For all formula ϕ, for all terms s and t and for all fresh
quantified variable q we have:

ϕ ⇐⇒ ∃q ∈ Z,
∧������ ϕ[smod t/(s − q ∗ t)]∨ ���� 0 ≤ (s − q ∗ t) < t

t < (s − q ∗ t) ≤ 0
(34)
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The elimination of a modulo introduces a new quantified variable

in the formula and would also create a disjunction if the sign of

the divisor t is not known. The latter will not occur in the usages

mentioned above. Note that the result of the operator is always of

the sign of the divisor
6
. This ensures a continuity in the treatment

of the memory even if addresses can go below zero.

6.1.2 Floored Division Elimination. The floored division operation

appears in each block identifier computation. This operation is

linked with the modulo used above in the sense that:

y

⌊
x

y

⌋
+ (x mody) = x (35)

Lemma 6.2. For all formula ϕ, for all terms s and t and for all fresh
quantified variable q we have:

ϕ ⇐⇒ ∃q ∈ Z,
∧�������

ϕ[
⌊ s
t

⌋
/q]∨ ���� 0 ≤ (s − q ∗ t) < t

t < (s − q ∗ t) ≤ 0

(36)

Here also, the transformation introduce a quantified variable and

could create a disjunction if the sign of the divisor is not known.

6.1.3 Non-Linear Term Extraction.

Non-Linear Terms on Parameters. Due to some loop entering

condition of the program, the formula might contain conditions

like:n ≤ M×N. This inequality contain the non-linear terms M×N but
since it contains only parameters, its value does not depend on the

number n of iterations. This product, or any non-linear expression

can be seen as a parameter.

Lemma 6.3. For all formula ϕ, for all term t containing only pa-
rameters, for all term s , for all relation ≾ ∈ {=, <, ≤} and for all fresh
parameter p we have:

ϕ ⇐⇒ ϕ[s ≾ t/s ≾ p] ∧ p = ⌊t⌋ (37)

This transformation introduces new parameters and set aside

their definitions. Once Barvinok returns a count function, these

artificial parameters are replaced by their original definition.

Non-Linear Terms Containing a Variable. In the case of loop up-

date based on integer shifts, the formula might contain relations

like: 2n ≤ N. The transformation presented above cannot be ap-

plied because n is not a parameter. However, we can see 2n as a

function f (n) and since this function is invertible we can rewrite

the equation into n ≤ log2(N). Eventually, log2(N) can be extracted

as seen previously.

Lemma 6.4. For all formula ϕ, for all functions f and f 91 such
that f 91 ◦ f is the identity function, for all variable x and term t , we
have:

ϕ ⇐⇒ ϕ[f (x) = t/x = f 91(t)] (38)

Moreover, if ϕ ⇒ t ∈ dom f 91 and f 91 is monotone, resp. antitone,
then for all ≾ ∈ {<, ≤} Equation (39), resp. Equation (40), holds:

ϕ ⇒ ϕ[f (x) ≾ t/x ≾ f 91(t)] (39)

ϕ ⇒ ϕ[f (x) ≾ t/x ≿ f 91(t)] (40)

Note that this transformation is useless if the term t contains a
variable, since it would only transfer the non-linearity.

6
Like in Python, but unlike Java.

6.1.4 Disjunction Management. We eventually put the formula in

Disjunctive Normal Form. Each of the disjunct forms a sub-problem

that is submitted to Barvinok. The tool answers are then summed

to give the final formula.

It is important that the disjuncts are exclusive from one to the

other, otherwise, the sum of their results could be greater than the

potential number of misses.

7 ANALYSIS EXTENSIONS
As stated in Section 1, the analysis presented in this article targets

one memory access that should appear in the body of non-nested
loop. In this section, we discuss informally how to go beyond this

two limitations, using examples.

7.1 Handling Multiple Accesses
Simplest Approach. The naive approach to count the misses gen-

erated by several accesses is to perform the analysis several time.

For example, in Program 3 that reverses order of the elements of

an array t, we have potentially four sources of cache misses.

1 in t low = 0 , h igh = N − 1 ;

2 while ( low < high ) {

3 in t tmp = t [ low ] ;

4 t [ low ] = t [ h igh ] ;

5 t [ h igh ] = tmp ;

6 low ++; high −−;

7 }

Program 3: Array reversal

Applying the cache analysis several times will give good results.

For a 2-way associative cache, 32 bytes per cache block, t aligned

on a cache boundary and N = 100 we have:

Line Access Miss bound

3 read t[low] 7

4 read t[high] 7

4 write t[low] 0

5 write t[high] 0

Table 4: Miss bounds for the accesses of Program 3

This gives only 14 cache misses to be compared to the 200 poten-

tial cache misses. This is an important achievement for the WCET

computation.

However, because the four analyses are independent, they might

count a missmultiple times. It probably happens here because when
low reaches high the accesses to t[low] and t[high] fall in the

same cache block.

Program 4 shows a situation where summing two analyses will

give disappointing results. We assume that condition ( i ) returns a

boolean value that we cannot predict and that its execution has a

bounded impact on the cache.

8
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1 for ( in t i = 0 ; i < N ; i ++) {

2 i f ( c o n d i t i o n ( i ) ) {

3 t [ i ] = u [ i ] ;

4 } e l se {

5 t [ i ] = v [ i ] ;

6 }

7 }

Program 4: Merging arrays

Incorporating Maximums. Given that the accesses occur on dif-

ferent paths within the loop body, it is sound to take the maximum
of the misses triggered at line 3 and 5. Soundness is ensured by

the fact that the backward analysis finds sufficient conditions for

avoiding the miss. Thus the miss needs to be avoided whatever

decision we make at line 2. For the accesses to t, things are alright
because both paths ensures that its blocks will be found quite often

in the cache. However, for u and v, things are disappointing: both
can occur up to N times, while it is clear for the reader that some

hits must happen.

Playing with Marks. We have a solution for the specific problem

mentionned above. We did not explored how such solution can be

generalized but we mention it anyhow. Since the accesses to u and

v belong to distinct path of the body, we can consider them as a

single event without breaking Hypothesis 2. We get the necessary

condition below for a miss reading u or v at iteration n. We sim-

plified this condition using the hypothesis that the arrays do not

overlap.

^Missn ⇒
©­«
n = mark + 1 ∧ loc = h ∧ n < N

∧

(
(bk(u,n) = bk(u,n − 1))
∨ (bk(v,n) = bk(v,n − 1))

) ª®¬ (41)

If we add the constraint N = 100 and place u and v in memory, then

Barvinok finds a bound of 25 misses which is the best we could

hope.

7.2 Handling Nested Accesses
Let consider now the case of nested loops. Program 5 shows a two

nested loops operating on a matrix m. The issue is how to enforce

Hypothesis 2: since the inner loop is executed several times by the

outer loop, its iteration numbers cannot be considered as unique

miss identifiers.

1 in t m[N] [N ] ;

2 . . .

3 double sum = 0 ;

4 for ( in t row = 0 ; row < N ; row++) {

5 for ( in t c o l = row ; c o l < N ; c o l ++) {

6 sum += m[ row ] [ c o l ] ;

7 }

8 }

Program 5: Upper triangle sum

Our framework offers two solutions for this problem.

Inner Loop Scaling. The first solution is to perform the analysis

on the inner loop in order to get a general bound. The bound we

find depends on the parameters row and N. The presence of N is fine
since it is constant for the whole program but the presence of row
is an issue because it varies from one iteration of the outer loop to

another.

• We can get rid of the parameter row by putting it in the

existentially quantified variables of the problem together

with the constraint that row ≥ 0 and run again Barvinok.

It will deliver a miss bound depending only on N that we

can multiply by the outer loop bound to get a general miss

bound. This is sound but imprecise, since Program 5 does

not sum the whole matrix.

• Or we can sum the miss bound parametrized by row for

the successive values of row. This would be more precise

but why not delegate this task to Barvinok and stay in the

framework?

Nested Identifiers. The second solution is to adapt our instrumen-

tation to the loop structure and identify a miss by a pair ⟨nout,nin⟩
and consider a problem of the following shape.

♯
{
⟨nout,nin⟩ ∈ N

2
��� Iout ;B ⟨nout ⟩

out
; Iin ;B

⟨nin ⟩

in
;^Miss

}
(42)

The tool Barvinok is tailored for this kind of problems and solves

them easily when we can turn the condition into a suitable input.

However:

• We do not know how to perform this transformation when

N is not a constant. This is due to the presence of some non-

linearity that does not fall in the transformations presented

in Section 6.

• The presence of the inner loop would also cause troubles to

the backward analysis of Section 5 if the access was outside

of the inner loop (which is not the case of Program 5). We

would need to compute the precondition before the inner

loop, which is non-trivial. This limitation make sense in

a framework that pretends to exploit temporal and spatial

locality.

Deriving by hand the miss formula and submitting it to Barvinok

with &m = 512 and N = 100 we get a bound of 700 which is only

7% of the accesses.

8 IMPLEMENTATION
In this section, we present a partial implementation of our approach.

All themiss conditions^Miss andmiss boundsUmiss in this article

have been computed using the two implementations presented here.

8.1 Backward Analysis
We developed the primitives of the Weakest Precondition Calculus

presented in Section 5, in Python. This primitives are then used to

write programs that compute preconditions for different control

points of the program and distance to the miss, e.g. the formulas of

Table 1. We do not parse from C nor from binary so far.

Module Lines of code

Basic logic formulas ∼500

Cache formulas & WPC ∼500

Cache models ∼100

9
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Our code makes an intensive use of the SAT Modulo Theory solver

Z3 [3] to simplify our formulas and to cut the exploration of con-

figurations that cannot occur during the processing of memory

accesses. Note that we only exploit the cases where Z3 ensures

that a formula is unsatisfiable and do not use the model when the

formula is satisfiable. The intuition behind this usage is that the

existence of a model is necessary for the existence of a point in the

polytope submitted to Barvinok.

8.2 Barvinok Custom Front-End
We developed the primitive for deriving an upper bound on the

number of misses from the possible miss formula, using Barvinok

and including the tranformations presented in Section 6 (among

others). Our tool was developed in OCaml.

Module Lines of code

Interface with Barvinok ∼ 250

Formula representation ∼ 450

Transformations ∼ 350

User interface ∼ 400

8.3 Preliminary Timing Performances
Even if our two implementations are far from being optimized, we

give in Table 5 the measurements for the conditions and bounds

shown or mentioned in this article.

Program Cache Condition (Sec. 8.1) Bound (Sec. 8.2)

ϕ Time (s) U Time (s)

Prog. 1 trivial Table 1 0.28 Eq. (11) 0.03

Table 3

each line 0.01

Prog. 2 LRU Eq. (29) 0.40 Eq. (30) 0.03

Direct Eq. (31) 0.41 huge, p. 7 0.76

Prog. 3 LRU
7 read t[low] 0.33

read t[high] 0.34 Table 4

write t[low] 0.26 each line 0.01

write t[high] 0.28

Prog. 4 LRU Eq. (41) 0.85 =25, p. 9 0.02

Prog. 5 LRU read m[r][c] by hand =700, p. 9 0.01

Table 5: Preliminary performances evaluation

The measurements were conducted on computer equiped with

an Intel Core i7-7600U CPU at 2.80GHz × 2, four cores and 32 GB

of RAM, running a Debian 10 operating system. The time measure-

ments are expressed in seconds. The times of the column Condition
are gathered using the cPython profiler. The conditions marked

read or write are not shown in the article.

9 ADDRESSING SCALABILITY
The timing measurements shown in Section 8.3 prove that the

approach is feasible for small programs but let open the question of

its scalability to larger programs. In this short section, we emphasize

several elements concerning scalability.

7
In the preliminary experiments, the analysis was performed with a symbolic number

of bytes per blocks (instead of using the 32 bytes hypothesis) that lead Z3 into long

computations (up to 4 minutes for read t[high]). From these counter-performances,

we should retain that: (a) the cost of genericity can be high and (b) the unpredictability

of the SMT solvers behaviour can be a limitation for our approach.

Local Application. First of all, there is little need to target much

larger programs because most of the gain we can get comes from

the spatial behaviour of the innermost loops. Our typical local gain

is decreasing themiss bound fromN to
N
k . This kind of gain persists

even if the loop is activated several times.

Genericity Tradeoff. Our approach allows a high level of gener-

icity in its results. A miss bound can depend on unknown charac-

teristics of the cache (e.g. associativity) and on the value of some

program variables. Providing detailled information on the cache or

on the program values, especially on possible aliases, will specialise

the bound and thus limit the possibilities explored by the backward

analysis, as mentioned in Section 5.3.

10 RELATEDWORK
There is a vast litterature about data cache analysis but no generic

solutions has arised for now. Our proposal is quite different from

what have been proposed so far:

(1) We have a formal foundation up to the trace semantics; some

of the related work uses the framework of Abstract Interpre-

tation but only at the state level.

(2) Our analysis goes backward; their analyses go forward.

(3) Our analysis can exploit the dynamic of the loop; the abstrac-

tion performed in the related work tends to reduce sequences

of accesses to sets of accesses.

(4) Our analysis can find information for arbitrary size arrays;

the analyses below will face either complexity issue or pre-

cision issue in such case.

Li et al. [13] propose a two-step strategy: first they determine

the set of accessed addresses for each memory instruction (the way

it is obtained is not clearly described), then they use Cache Conflict

Graphs [12] to cope with memory blocks competing for the same

line in the cache. Unfortunately, the complexity of the approach

is exponential in the number of accessed memory blocks and in

the cache associativity degree. In addition, considering the set of

accessed blocks instead of their sequence creates artificial pressure

on the cache lines and, as a consequence, overestimates the number

of misses.

Ferdinand et al. [8] extend their (Abstract-Interpretation-based)

analysis designed for instruction caches to data caches. For that

purpose, they identify the set of memory blocks that can possibly

be addressed by a memory instruction (a single block for scalar vari-

ables or a set of blocks for arrays) and consider that any execution

of the memory instruction can target any of these blocks. The paper

does not report any experimental results but we implemented it

ourselves within our WCET toolset (OTAWA) and found out that it

was very pessimistic and imprecise for programs that process large

arrays.

White et al. [19] introduce a new category, Calculated (n), to
express the behaviour of accesses to arrays, where n stands for the

number of expected cache misses. The algorithm to compute n is

not clearly described but is based on information provided by the

compiler in which their tool is embedded. This approach is limited

to direct-mapped caches and to a particular compiler.

Rathijit and Srikant [14] use Circular Linear Progression analysis

(CLP) [1, 15]. Accesses to the data cache are abstracted as sets which

10
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fails to fully capture the dynamic behaviour of accesses to arrays.

To get valuable results, the authors need to unroll each loop several

times which drastically increases the computation time for both

the cache analysis and the WCET computation.

Huynh et al. [10] propose a completely different approach, the

Scope-Aware Persistent analysis. Their analysis is split into three

steps: (a) the address analysis, (b) the cache abstract state analysis

and (c) the computation of the number cache misses. The address

analysis is an adaptation of [20] to obtain memory addresses as

symbolic expressions. These addresses are used to get the set of the

accessed memory blocks and to refine the persistence analysis by

considering temporal scopes (loop iterations). The main challenge

here was to determine precisely which memory blocks compete

for the same cache set at the same execution time. Experimental

results are promising but this approach faces several issues: (1) the

complexity depends on the size of the arrays and on the structure

of the program (building temporal scopes requires enumerating all

accesses); (2) the approach only supports only linear and regular

accesses to arrays.

In [9], Hahn et al. use a congruence relation to identify the ref-

erences that map to the same cache set or memory block. Their

analysis, may be applied to symbolic addresses (providing more

flexibility) and also to set of addresses (intervals, octagons, etc.),

which cannot cope well with the dynamic behaviour of array ac-

cesses. In addition, the experimental needs to be extended to ensure

the method applies to real applications.

Wegener [18] also uses a congruence relation to detect whether

two references point to the same memory block and to infer a hit in

the data cache. This approach is successful on scalar variables but

requires loop unrolling to precisely support accesses to arrays, that,

in turn, increases the computation time of the upcoming analyses.

11 CONCLUSION
In the article, we presented a framework for inferring an upper

bound on the number of cache misses triggered by a given memory

access during the execution of a loop. The frameworkwas illustrated

in Section 3 and a formal foundation can be found in Section 4. The

framework uses the tool Barvinok as a backend for computing the

bound, which can be numeric or symbolic.

The framework relies on finding a predicate that is a necessary

condition for the considered miss or, conversely, finding a predi-

cate that is a sufficient condition to avoid the considered miss. In

Section 5 we show how such predicate can be computed using a

precondition calculus, a model of the cache and formulas contain-

ing an function symbol denoting the maximal age of a block. This

analysis produces formulas that characterise how the accesses obey

to the temporal and spatial locality in the recent history (i.e. the

current iteration or the previous one).

In Section 6, we present several transformations that help us to

turn the formula resulting from this analysis into a suitable input

for Barvinok. The latter produces upper bounds that range from

the absence of miss to as many misses as loop iterations, passing

by expressing a fraction of the number of loop iterations.

The key parts of the framework have been implemented into

tools presented in Section 8 and all the formulas and bounds shown

in this article have been computed using these tools.

We left several points as future work, including:

• a static analysis engine that mechanize the inference of

bounds for the memory accesses of a given program,

• the treatment of the possible correlations between several

cache miss bounds (sketched in Section 7.1),

• the treatment of the loop nesting (sketched in Section 7.2),

• the use of abstract domains to represent may-miss conditions

(mentioned in Section 5.3).
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