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Abstract

Traditional offline optimization frameworks rely on represen-
tative hardware, software, and inputs to compare different
optimization decisions on. With application-specific opti-
mization for mobile systems though, the idea of a represen-
tative testbench is unrealistic while creating offline inputs
is non-trivial. Online approaches partially overcome these
problems but they might expose users to suboptimal or even
erroneously optimized code. As a result, our mobile code
is poorly optimized and this results in wasted performance,
wasted energy, and user frustration.

In this paper, we introduce a novel compiler optimization
approach designed for mobile applications. It requires no
developer effort, it tunes applications for the user’s device
and usage patterns, and has no negative impact on the user
experience. It is based on a lightweight capture and replay
mechanism. In its online stage, it captures the state accessed
by any targeted code region. By repurposing existing OS
capabilities, it keeps the overhead low. In its offline stage, it
replays the code region but under different optimization deci-
sions to enable sound comparisons of different optimizations
under realistic conditions. Coupled with a search heuristic
for the compiler optimization space, it allows us to discover
optimization decisions that improve performance without
testing these decisions directly on the user.

We implemented a prototype system in Android based on
LLVM combined with a genetic search engine. We evaluated
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it on both benchmarks and real Android applications. Online
captures are infrequent and each one introduces an overhead
of less than 15ms on average. For this negligible effect on
user experience, we achieve speedups of 44% on average over
the Android compiler and 35% over LLVM -O3.
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1 Introduction

More and more of our computing needs rely on smart mobile
devices. With active users now more than 5.2 billions [8],
smartphones are the defining computing medium of our era.
Nevertheless, mobile devices are severely limited, both in
terms of processing power and battery life. Aggressive per-
formance and energy optimizations are necessary for main-
taining the user’s Quality of Experience, supporting novel
capabilities, and providing reasonable levels of autonomy.
What we get instead is poorly optimized software. Even the
preeminent mobile platform, Android, relies on a compiler
with just 18 distinct optimizations, an order of magnitude
less than what traditional optimizing compilers offer [24].
As a result, immense amounts of performance and energy
are wasted, impacting the smartphone user’s experience.

A major hurdle with extracting performance from mobile
systems is evaluating optimization decisions. Whether it is
about comparing competing implementations, tuning com-
piler heuristics, or applying iterative compilation [30], we
need to determine whether each choice will be beneficial or
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not. We could evaluate all choices on the same representa-
tive mobile system with the same representative program
input and then assume that choices that work well on that
setup will be always beneficial. With a multitude of proces-
sor designs, system capabilities, software stacks, operating
environments, and usage patterns [45], this is a hard as-
sumption to make. In any case, creating any kind of program
input that induces the same application behavior every time
while causing no side-effects is a non-trivial endeavor for
interactive applications. For example, the Telemetry frame-
work [43] which enables deterministic performance testing
for the Chromium browser is larger than many applications,
containing 92k lines of Python code. This does not include
the code required to actually define each input.

Evaluating optimization decisions online, on the target
system while the user is interacting with the application,
could be a solution if it did not introduce a whole new set
of problems. Making confident decisions is hard when the
execution context is constantly changing. The operating
environment, the application state, and the input will be
different each time the application is executed. Their effect
on latency can easily be more important than the effect of
any optimization decision. A very large number of evalu-
ations for each decision might be required before we are
confident about its merit [19]. Many of these decisions can
easily be suboptimal, severely affecting the user experience.
Statistical approaches can keep the negative impact from
growing out of control at the cost of an even slower opti-
mization process [12] but in a low-latency environment even
infrequent slowdowns that are noticeable by the users are
unacceptable [45]. In any case, when tested optimizations
lead to erroneous results, something relatively common with
optimizing compilers [16], no online approach is acceptable.

To make it easy to choose the right mobile optimizations,
we need a way to evaluate them that combines the benefits
of offline and online approaches: adapted to each device and
each application, driven by actual user input but at the same
time fast, unrestricted, and invisible to the user.

In this paper we propose a novel way for achieving this by
driving offline optimization with real input collected online.
We build our approach around a lightweight capture and
replay mechanism. While the user is interacting with the
device, we identify important code regions and capture the
state accessed by them. Later, we are able to restore the saved
state and re-execute the code region in the exact same way it
was originally executed. By replaying this execution under
different optimization decisions but the same environment,
we can directly compare optimizations using the time it took
to execute the region.

Traditional capture mechanisms [10, 40, 48, 50] are not
well suited to this task, especially in terms of introduced
latency. Capture happens online and may affect the user,
so it is critical to keep its overhead low. With this aim, we
developed a new capture approach that leverages the kernel
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Virtual Memory subsystem to automate and accelerate the
capture. We use memory protection to monitor, with little
overhead, which pages are accessed during the execution of
the targeted region. Future replays will only need to access
these pages, a small fraction of the application memory space.
For all accessed pages, we need their original state before
they are modified by the application. Instead of copying them
preemptively in user space [10], we use the Copy-on-Write
mechanism to do it on-demand in kernel space. When the
region’s execution ends, we only have to store the original
version of each accessed page in the phone’s storage.

On top of the capture and replay mechanism, we build
our novel iterative compilation system that optimizes mobile
applications for the actual environment and context they
are being used in. We use a genetic search engine to explore
the space of compiler optimizations. We evaluate each opti-
mization decision by applying it on the targeted code and
replaying the captured execution with the new binary. We
rank and select optimizations based on the time each replay
took, apply genetic operations, and continue the process
with another generation. We select the best performing opti-
mization over the whole search and we apply it on the online
version of the application, the one the user interacts with.

All replays happen offline, when the phone is idle and
charged. That gives us tighter control of the execution envi-
ronment, reducing the measurement noise. Since all replays
process the same state under the same environment, we are
highly confident in the ranking of the evaluated optimiza-
tions. Since this is the same device the user interacts with
and these inputs were produced during the normal operation
of the application, we are highly confident that optimizations
performing well during replay will perform well online too.

This framework is compiler-agnostic: any compiler that
can process Dalvik code and generate code for Android de-
vices can be plugged in with minimal effort. Currently there
is only one such toolchain, the default Android one, and it
has a very limited optimization space with 18 distinct opti-
mizations. We overcame this limitation by creating a new
Android backend based on LLVM which offers a far more
expansive and interesting optimization space. We contribute
to the research community by making it publicly available'.

We have evaluated our approach on a set of Android appli-
cations, both benchmarks and interactive ones. Our online
capture mechanism runs a handful of times per day and is
imperceptible to the user, introducing an overhead of less
than 15ms on average. Powered by the capture and replay
mechanism, our iterative compilation approach searches for
good optimizations without exposing the user to suboptimal
and erroneous binary versions. The final selected optimiza-
tions achieve on average a 44% whole program speedup over
the Android compiler and 35% over LLVM -03, significantly
improving the user experience and device autonomy.

! Android LLVM backend sources: github.com/paschalis/android-llvm
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The main contributions of this paper are:

e alightweight code region capture mechanism for An-
droid with little runtime and storage overheads,

e areplay-based evaluation mechanism of different code
transformations driven by actual usage patterns,

e a novel prototype iterative compilation system which
optimizes programs for specific devices, without any
developer effort or impact on the user experience.

This paper is organized as follows. Section 2 describes
the motivation behind our proposed approach. It is followed
by Section 3 that describes our user-transparent iterative
compilation framework. In Section 4 we describe the experi-
mental setup, followed by Section 5 that presents our results.
In Section 6 we discuss related work and in Section 7 we
offer some concluding remarks.

2 Motivation

Iterative compilation [30] is a compiler optimization tech-
nique that can outperform a compiler’s optimization presets.
It searches for different combinations of code transforma-
tions and transformation parameters, evaluates their effect
on performance, and at the end keeps the best performing
binary. Multiple approaches exist to select optimization se-
quences: random, through genetic search, statistical mod-
els [41], or machine learned models [33]. Despite the signif-
icant performance benefits of iterative compilation, it has
not been applied in a general way on mobile systems. This
section explores why.

Offline Compiler Optimization. Regardless of how we
optimize an application offline, we rely on some kind of a
representative evaluation system (hardware and software)
and a deterministic and representative input. By repeatedly
executing the application with a deterministic input under
different compiler decisions, we can directly compare deci-
sions and choose the best one. With a representative system
and inputs, we can be confident that our choice will work
well online too.

This simple methodology has proved hard to adapt to
mobile systems. There is no such thing as a representative
system where we can optimize the application once for every
other system. We need to optimize for each system individ-
ually. Even then, it is hard to create inputs without explicit
support from the application. Mobile applications tend to
have complex inputs, including user events, sensors, con-
figuration files, system state, and network data. Packaging
all these for offline usage in a neat deterministic input that
introduces no undesirable side-effects is a non-trivial prob-
lem. Making sure that they are representative is even harder.
Expecting most mobile developers to put the effort required
to support offline performance evaluation is unrealistic.

Online Optimization is Risky. An alternative approach
is to evaluate optimization decisions online on the program
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Figure 1. Compilation outcome with LLVM using 100 ran-
domly generated optimization sequences for the FFT kernel
from Scimark. 25% of the sequences result in a binary that
does not behave as expected at runtime. In an online opti-
mization system, this would directly affect the user experi-
ence and might lead to data corruption.

version the user interacts with. This removes the problem of
identifying representative systems and inputs: they are rep-
resentative by definition. While a workable solution in some
cases, online optimization creates a new set of problems.
The first is that there is no hard guarantee that compiler
optimizations will not introduce errors. Figure 1 shows what
happens when we randomly choose LLVM optimization
passes to apply on a benchmark, FFT from Scimark [42].
Only 60% of the optimization sequences lead to a binary that
behaves correctly. 15% cause the compiler to crash or timeout
but this is a manageable problem. What is not manageable
is the other 25% that leads to compilation errors which only
become apparent at runtime, either with a program crash, a
program timeout, or a wrong output. In offline optimization
such optimizations are just rejected with no other side-effect.
But in an online setup, broken optimizations are visible to the
user and affect the user experience. Even worse, silent errors
that change the program behavior can result in corrupted
application data, either local or remote, with long-term con-
sequences for the user. This is an unacceptable risk.

Online Optimization Affects the User Experience. Bro-
ken optimizations are just one part of the wider problem of
our search being visible to the user. Even for compiler opti-
mizations that lead to valid binaries, there is a good chance
that the binary will be noticeably slower than normal. Fig-
ure 2 shows the performance of 50 correct FFT binaries
generated by applying random sequences of LLVM optimiza-
tions. Performance is relative to that achieved by the Android
compiler. All binary versions are slower than it, from 15% to
as much as 8x slower. Even if this is an initial exploration
of the optimization space and later choices improve per-
formance, the user will still have experienced unacceptable
levels of slowdown. As we will show in Section 5, suboptimal
binaries are common even in later stages of an otherwise
profitable optimization process. Such behavior might lead to
the user removing the application or disabling the optimizer.
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Figure 2. Speedup over the Android compiler for 50 ran-
domly generated LLVM optimization sequences applied on
the FFT kernel. Sequences that break the compiler or the
application are discarded. All of them slow down the appli-
cation relative to both the Android compiler and LLVM -03,
up to 8x slower. Evaluating these optimization sequences on-
line would have an unacceptable impact on user experience.
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Figure 3. Estimation of the speedup of LLVM -0O1 over
-00 for the FFT benchmark as the number of evaluations
increases. Online search performs each evaluation with a
different randomly selected input between FFT_SIZE and
FFT_SIZE_LARGE. Offline search always uses the largest
input. Lines represent speedup estimation for a single se-
quence of evaluations. Areas represent 75% and 95% boot-
strapped confidence intervals. Online approaches require a
much larger number of evaluations to estimate speedup.

Online Optimization is Slow. Even if we managed to
work around these limitations, a fundamental problem re-
mains: we have no control over the context in which opti-
mizations are being evaluated, especially input. We have to
use whatever input happens to be fed to the program. This
is not always a problem. But in the general case, we cannot
directly compare optimizations that have been evaluated
on different inputs that take different amounts of time to
process. The only safe way to do it is to evaluate each op-
timization a large number of times. If all optimizations are
evaluated on a similar sample of inputs, direct comparisons
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of average execution times will be statistically meaningful.
The problem is this can be a very lengthy process.

Figure 3 shows such an approach where we try to estimate
the speedup of LLVM -01 over 00 for FF'T with an increas-
ing number of evaluations each with an input drawn from
a uniform distribution. The evolution of a single speedup
estimation is presented as a line. Areas are ranges of likely
outcomes. While —01 is almost 2x better than —00, our on-
line estimation varies wildly, from almost 2x slowdown to 8x
speedup. It is not until the 22nd evaluation when we decide
that —O1 is better than —00. It takes another 20 evaluations
for the estimation to start stabilizing. This behavior is not an
outlier. The 75% probability area shows a similar evolution:
25 evaluations to decide that —01 is better and more than
1000 evaluations to have less than 10% uncertainty in the
speedup estimation. In contrast, there is very little variation
with offline evaluation. Even a single measurement might be
enough (though not statistically safe).

This scenario points towards a 100-1000x increase in eval-
uation time compared to an offline approach in order to get
a comparable level of confidence in our optimization deci-
sions. This is very likely an underestimation. Other sources
of experimental noise that we cannot control online, such
as frequency scaling, thermal throttling, and resource con-
tention affect our confidence. Skewed distributions of input
processing times may reduce our confidence even further.
Seen in the context of an iterative compilation system like
the one in Section 5, this would translate into millions of eval-
uations for each optimized program. For FFT, this means
tens of hours of repeated experiments. This is unfeasible.
Mobile applications are typically active for only a few tens of
minutes every day and are updated every few weeks. There
is just not enough evaluation time for an online approach.

Beyond Online and Offline Optimization. What we
ideally need is something that combines the best of both
worlds. Both a system that can repeatedly use the same inputs
to quickly search the optimization space without affecting
the user experience and a system where developers do not
need to manually build and maintain sets of representative
inputs.

3 Replay-based Offline Optimization

In this section we describe how we aggressively optimize
Android applications, with an offline optimization search
driven by user-transparent input captures, taken online, re-
quiring no developer effort. Section 3.1 describes how we
detect hot regions of Android applications that are worth
optimizing. Section 3.2 introduces our lightweight online
captures, followed by Section 3.3 which describes our replay
mechanism. Section 3.4 explains how we extract information
from captures for optimization and automatic code correct-
ness verification. In Section 3.5, we detail our LLVM backend
implementation for Android that enables us to use LLVM to
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optimize Android code. It is followed by our genetic search
engine which explores the space of compiler optimization
decisions in Section 3.6. Finally, we show how we integrate
all these components to build an iterative compilation sys-
tem that is transparent to the user and the developer but still
manages to produce highly optimized program binaries.

3.1 Hot Regions

Interactive applications are composed of multiple asynchro-
nous tasks, some of them multi-threaded, interacting with
each other and I/O. Out of this, we need to detect code re-
gions that are both accurately replayable and worth opti-
mizing. The former translates into their behavior being fully
determined by their memory state and having no observable
effects outside their memory space. The latter means that
they take most of the execution time and are compilable by
our LLVM backend.

input:methods from a sample-based profile
output:method with biggest compilable region

def estimateRegionRuntime (method):
if not replayable(method) then
‘ return —oo
end
sum «— 0
compilable <~ compilableRegion (method)
foreach ¢ € compilable do
| sum+=runtimeExclusive(c)
end
return sum
def compilableRegion (method):
def inner (m, [):
if m¢ land IsCompilable(m)then
add(l, m)
foreach ¢ € callees(m)do
‘ inner (¢ I)
end
end
list — @
inner (method, list)
return list

sort(methods, est imateRegionRuntime)
return methods.first

Algorithm 1: Detecting an application’s hot region.

Through static bytecode analysis, we first identify meth-
ods that might interfere with replaying: methods with I/O
and methods with sources of non-determinism. Replaying
I/O without special infrastructure is either impossible or
leads to inconsistent replays. Writing information out is
even worse since it can corrupt the application’s permanent
state. Emulating such I/O is doable but we judged that the
overhead of doing so is prohibitive for latency sensitive inter-
active applications. The sources of non-determinism that we
excluded were calls to clocks and pseudo-random number
generators. Additionally, we aggressively blocklist almost
all Java Native Interface (JNI) calls, regardless of whether
they can be accurately replayed or not. Determining that
their low level code does not do I/O and it is deterministic
requires a significant amount of engineering work that we
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leave as future work. The only JNI calls we do not blocklist
are the ones we will replace with intrinsics, as described in
Section 3.5. Finally, we blocklist exceptions. They are the
only kind of code that is allowed to access previous stack
frames in Java. Optimizations that alter the stack layout can
interfere with code that accesses previous stack frames, since
that code might assume a different layout than the one in
the stack.

Then, we detect regions worth optimizing, which we call
hot regions, as outlined by Algorithm 1. We use Android’s
sample-based profiler to find the most frequently executed
methods, with a sampling period of 1ms. The profiler is light-
weight and, being executed infrequently, it has little effect
on performance. We ignore any methods that the Android
compiler cannot process or we cannot replay, as discussed
above. Finally, we estimate the cumulative time spent in
each method and its compilable callees. The most significant
becomes our hot region that our capture mechanism targets.

3.2 Online Captures

We design our approach upon the idea of capturing the ap-
plication’s behavior while it is being used and accurately
replicating that behavior later offline under different opti-
mization decisions. Given that we exclude methods with I/O
and non-deterministic behavior, capturing the application’s
behavior is the same as capturing its memory state just be-
fore the hot region. This could be as simple as saving all
processor registers and copying every page in the memory
space of the app. Our approach aims to be more efficient
than that. It uses the kernel’s memory protection subsys-
tem to capture only what is needed with the least amount
of overhead. With a fork right before the start of the hot
region, we create a full copy of the virtual memory space
of the app. The Copy-on-Write mechanism will duplicate
modified pages leaving our copy of the memory space in its
original state. By read-protecting the app’s memory pages,
we offload identifying accessed pages to the kernel. When
the hot region’s execution is complete, we only need to store
the original state of any pages marked read. This process
is transparent both to the user and developer, without any
kernel modifications. In more detail, our capture mechanism,
shown in Figure 4, is composed of the following steps:

1) Capture initiated. We add code to the entry point of a
hot region to check whether a capture should occur. We only
require a single capture to drive optimizations and there are
plenty of opportunities to get one, so we generally set the
frequency of capturing to a low value. This is adjustable both
per region and per application run. If a Garbage Collector
(GC) run is imminent, we postpone any scheduled capture
as the GC will touch memory not normally used by the hot
region, which might increase snapshot sizes.

2) Forking the child. To keep a pristine copy of the par-
ent’s memory we fork a child process. Initially both pro-
cesses point to the same set of physical pages. When the
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Figure 4. Our capture mechanism stores pages accessed by
the hot region to enable replaying at any future point in
time. With fork and Copy-on-Write we keep a copy of the
original state in a child process. With read protection and
fault-handling we identify the set of read pages.

parent modifies a page, the kernel’s efficient Copy-on-Write
automatically creates a copy of the page’s original state for
the child. This is faster than taking a full snapshot of the
memory state before the hot region runs [48] or manually
copying each page just before it is first used [10]. We then
minimize the child’s priority and send it to sleep.

3) Memory pages protection. Saving all pages of the
process to disk is inefficient. With the help of the kernel, we
identify and store only the pages the hot region uses instead.
We get the full list of pages for the parent by parsing the
/proc/self/maps file. We read-protect most of them to
cause deliberate page faults on read attempts. We also install
a page fault handler that performs two actions. First it stores
the offending page address in a memory buffer shared with
the child. Then it restores access permissions for that page
so that any future reads will not cause a fault.

4) Hot region execution. The parent now executes the
hot region as normal. Other than fault handling when pages
are first read and Copy-on-Write when they are first written,
there is no further overhead. Since most applications display
high levels of locality [17], we expect the number of these
events to be low.

5) Ending the hot region. When the parent has finished
executing the hot region, it wakes up the child, restores ac-
cess permission to any remaining read-protected pages, and
uninstalls the fault handler. After this the parent continues
executing as usual.

6) Saving the memory state. The child begins spooling
out pages marked as read to disk. Since the child has the low-
est priority possible, this will happen only when the system
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has unused processing and I/O capacity, causing no inconve-
nience to the user.

There is some additional state that we capture, mainly
the architectural state of the processor. Also, for some pages
we cannot use the read-protection mechanism to find out
whether they are accessed. Read-protecting memory belong-
ing to the Android runtime, its library dependencies, or GC
auxiliary structures could crash the process. We choose to
always store these pages to disk.

A significant chunk of the used memory pages is not pro-
cess specific. It contains immutable objects of the Android
runtime that only change across device boots, which we
capture only once per boot. It also contains several memory-
mapped system files that only change when the system is
updated, like any executable code pages. Those are never
captured. Instead, we log the relevant file paths and offsets,
and we memory-map them directly during replays.

3.3 Replaying Android Code Regions

0{ Cloader}
load capture state main memory
for each page:
collision S page
— > page2
\
?ﬂuplicate break-free j Cloader
break-free | TEEEEEE
« delete C loader
- relocate pages L4 | |Eoooeeee- R
{ Android } « restore rejlsters page 3
4
execute hot region with: page 4
Android
compiled Interpreter LLVM page 5

Figure 5. Our replay starts with a C loader program that
transforms itself into a partial Android process whose state
is the previously captured one. The loader can swap different
code versions for executing the hot region. It works alongside
ASLR, a memory-shuffling security mechanism.

With all the state used by the hot region captured, the next
step is to use that state to recreate offline the behavior the
application exhibited online. At its most basic, replaying a
previously captured execution is just a matter of reloading
the saved state of the application and jumping into the hot
region’s entry point [48]. With the architectural registers
and all used memory having the same values as when the
hot region was originally executed, the execution should
flow the exact same way and the globally visible results of
the execution should be the same.
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In practice, reloading the captured state is a bit more com-
plicated than that. The whole operation, called a replay, is
shown in Figure 5 and is composed of the following steps:

1) Load captured state. With a loader program, written
in C, we load the captured pages into memory. We place most
of them directly in the virtual addresses they originally had.
Some may map to locations already occupied by the loader’s
pages. These are collisions and we handle them by placing
colliding pages in temporary locations. We choose these
locations so that we do not introduce more collisions. This
means consulting the captured memory layout and choosing
locations not used by it. This approach does not make any
assumptions about the address layout of the loader, so it
can work in the presence of ASLR, a security mechanism
that randomly shuffles processes’ memory. We also read the
captured architectural state into a temporary location.

2) Duplicating the break—-free method. To resolve
collisions caused by the loader, we must first discard all
of its state before we can relocate captured pages. Simply
put, the loader must both delete itself and keep setting up
the replay. This cannot be done directly, so we duplicate
the binary code of a special position-independent method,
named break—-free, to a non-colliding area.

3) Becoming an Android process. We then jump to
break-free which becomes self-contained by switching
to its own stack and data segments. We can now complete
the transition to a partial Android process by first releasing
the original loader pages and then moving colliding pages
to their final locations. Finally, we complete the transition
by restoring the architectural state of the processor.

4) Choose and execute code. The final step is to choose
the version of the hot region that we will execute. We support
three different code types. The first is replaying the original
Android code for our evaluation baseline. The second is
calling the Android interpreter. We use the interpreter to
extract capture information for correctness verification and
optimization, as we describe in Section 3.4. The final one is
calling a new optimized binary in which case the binary is
also loaded into memory before we jump into its entry point.

3.4 Interpreted Replay to Verify and Optimize

An added benefit of being able to replay a captured execution
offline is that we can collect information about the execution
that would be too costly to collect online. In our prototype,
we use this capability to record the externally visible behav-
ior of the hot region and the runtime types of virtual calls.
In this section we describe how we use an interpreted replay
to extract this information. While this is slow, it happens
offline without affecting in any way the user experience.
As discussed in Section 2, there is no guarantee that an
optimization sequence will not cause the program to crash,
freeze, or do something different than what it was supposed
to do. Identifying the last case is critical because it might lead
to silent data corruption. To that end, we use an interpreted
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replay of the hot region to build a verification map. The map
stores key-value pairs of memory locations and values for
the externally visible object fields or array elements that
were modified, as well as the region return value. Together,
these data represent the externally observable behavior of
the region. After each iterative compilation replay, we verify
correctness by comparing the memory of the process against
the verification map. This does not require any manual effort
or online instrumentation.

To improve the quality of our optimized code, we col-
lect some profiling data through our interpreted replays. In
particular, we record at each virtual or interface call-site
the frequency histogram of actual dispatch types. With this
information, we are able to reduce call overheads and ag-
gressively inline them using speculative devirtualization. We
implemented our own pass to that aim but it is not particu-
larly novel, devirtualization is a well-known optimization.
What is novel is the information that drives the pass. Fi-
nally, we also tune branch prediction on each speculated
type according to the frequency histogram.

3.5 LLVM Backend

The only complete compiler toolchain for Dalvik code is the
Android compiler one. It is designed to be safe rather than
highly optimizing. It only applies a handful of safe optimiza-
tions [25] which are guaranteed to have only positive or no
impact at all. It lacks more aggressive code transformations
found in established compilers like LLVM [32]. The potential
for better compiler optimization strategies is limited.

To overcome this limitation, we have developed a new
Android compiler backend based on LLVM. The core of our
implementation focuses on transforming HGraph [6] nodes,
the Android compiler internal Intermediate Representation
(IR), into LLVM bitcode. This new transformation pass is to
our knowledge the only way to pass code from the Android
compiler to LLVM. It represents a significant engineering
effort with more than 25k lines of code.

We still rely on the Android compiler to apply some target-
specific optimizations and generate the HGraph. After we
transform it into LLVM bitcode, we use existing LLVM fa-
cilities to optimize and compile the code. Additionally, we
implemented two Android-specific optimizations of our own.

The first is a GC optimization which runs after loop-
restructuring passes. We do not always know at compile
time when a loop might exit, so HGraph inserts a check call
in each loop body to transfer control to the Android runtime
and allow it to perform GC if needed. A single check per
loop is enough but passes like loop unrolling do not have this
knowledge so they unroll the whole loop body including the
check. Our optimization pass removes these duplicate checks
from the loop body. The second optimization replaces JNI
calls that implement particular math library methods with
LLVM IR implementations, either LLVM intrinsics or ones
we implemented. This not only avoids the overhead of JNI
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calls but it also increases the amount of code we can opti-
mize and compile, making the rest of our optimization passes
more effective.

This backend is a work in progress. Despite that it can al-
ready produce better code than the default Android backend,
as we will see in Section 5. With more engineering work to
improve the backend, our optimization strategy will only
become more successful. To give more researchers the option
of producing highly optimized code for Android applications,
we are releasing our backend as open source software.

3.6 Searching Compilers’ Space with a GA

LLVM has a very large optimization space with almost 200
passes that can be applied multiple times with a different ef-
fect each time that depends on previously and subsequently
applied passes [13]. On top of that, it has more than 1300 op-
timization parameters and flags. Applying a pass or changing
a flag might improve performance, but it may also degrade
it, produce a faulty binary, or have no effect at all. We need a
way to quickly explore the rewarding areas of this complex
optimization space.

Our approach can work with different search strategies but
the one we implemented was a Genetic Algorithm (GA). It is
a well established strategy that has worked really well in the
past for similar problems [14, 20, 31, 34]. Genomes encode
the sequence of passes, the parameters, and the flags. They
may vary in length to account for different numbers of opti-
mization passes. We employ three different mate selection
pipelines: elites only, fittest only, and tournament selection.
Once mates are selected, we cross them over with a single
random point, ensuring that the resulting genome length is
higher than a predefined minimum. We have several muta-
tion operators for different types of genes: enable/disable
a pass, modify a parameter, or introduce new passes. The
GA begins with a fixed population size and progresses until
either a threshold number of generations is reached or a num-
ber of generations has elapsed without any improvement
over the best performing genome. At the end, we perform a
hill-climbing step to reach the local maximum.

Our fitness function is primarily performance, measured
by replaying the hot region (see Section 3.3), but if the perfor-
mance of two binaries is sufficiently close, then we prefer the
smaller binary. We provide the GA parameters in Section 4.

3.7 Iterative Compilation through Replaying

Our goal is to optimize applications by comparing the ef-
fect of different optimization decisions on performance. For
sound comparisons, the application needs to perform the
same work each time we evaluate an optimization and that
work should be representative of actual usage. Since perfor-
mance evaluations can affect user experience, they should be
performed only offline and when the device is idle. Addition-
ally, we should cope with environmental noise and optimize
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Figure 6. The Replay-based Iterative Compilation main loop
(highlighted). The GA (lower right) selects interesting opti-
mization decisions from the LLVM transformation space. It
passes them to the LLVM backend which applies them on
the hot region. We replay the captured execution using the
newly optimized binary multiple times and we report the
timings back to the GA. Any binary producing wrong results
is discarded. This loop continues until the GA converges.

per application and device. In this section we outline our so-
lution that brings together the individual components from
previous sections.

In Figure 6 we show a high level overview of our approach.
Once we have identified hot regions and transparently cap-
tured real user inputs to them, we can apply offline iterative
compilation. With a GA we quickly search the compiler’s
space by constructing optimization sequences. We pass them
to the LLVM opt and 11c tools to first transform and then
compile the region’s IR. Then we replay the captured exe-
cution with the generated binaries to evaluate their perfor-
mance. Finally, we construct the next generation and con-
tinue the process. Each replay has the same input since we
restore the same captured state. We ensure soundness in our
comparisons by performing multiple replays per binary and
using statistical methodologies, as described in Section 4.
We also fix the processor frequency in the otherwise idle de-
vice environment to reduce random performance variation.
Using a previously generated verification map, we automat-
ically discard any transformations that lead to externally
observable wrong behavior.

4 Experimental Setup

We have implemented a prototype system and evaluated
our approach with a set of experiments on a recent Google
Pixel 4 running Android 10. Its processor unit is a Qualcomm
SDM855 Snapdragon 855. It consists of eight Kryo 485 cores
each configured with a different maximum clock frequency,
from 1.78 GHz up to 2.84 GHz. To reduce measurement noise
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Table 1. Android applications used in our experiments.
Type Name Description
Scimark [42] | FFT Fast Fourrier Transform
SOR Jacobi Successive Over-relaxation

MonteCarlo

Estimates 7 value

Sparse matmult

Indirection and addressing

LU

Linear algebra kernels

Art

Sieve [39]

Lists prime numbers

BubbleSort [3]

Simple sorting algorithm

SelectionSort [3]

Simple sorting algorithm

Linpack [18]

Numerical linear algebra

Fibonacci.iter [27]

Fibonacci sequence iterative

Fibonacci.recv [27]

Fibonacci sequence recursive

Dhrystone [49]

Representative general CPU performance

Interactive

MaterialLife [46]

Game of life

4inaRow [7]

Puzzle Game

DroidFish [51]

Chess Game

ColorOverflow [36]

Strategic Game

Brainstonz [35]

Board Game

Blokish [44]

Board Game

Svarka Calculator [38]

Generates odds for a card game

Reversi Android [21]

Board Game

Poker Odds (Vitosha) [37]

Statistical analysis for poker cards

during replays we keep all cores online and fix their fre-
quency to the maximum. We only replay while the phone is
fully charged, so the increased power consumption does not
affect device autonomy. At any other time, the OS has full
control of the cores’ operating states and frequencies.

Our compiler toolchain uses the Android 10 compiler to
generate HGraph nodes, the LLVM backend from Section 3.5
to transform it into LLVM IR, and LLVM 10 opt and 11c
to optimize and compile the code respectively. For opt, we
consider a total of 197 passes and 710 parameters and flags.
For 11c, we control 90 CPU-specific and 569 general options.

The GA searches through this enormous space over 11 gen-
erations, the first randomly generated, the other 10 driven by
genetic search. Each generation has 50 genomes. In the first
one, we may try up to three times to replace each genome
that leads to worse performance than both LLVM -03 and
Android. This biases the algorithm towards the more prof-
itable areas of the transformation space. In the first genera-
tion, we also remove redundant passes to keep the genomes
short. The probability that we mutate a genome and the
mutation probability per gene are both 5%. The maximum
number of identical binaries before halting the algorithm
is 100. Each tournament selection round considers seven
candidates with a 90% probability.

For our experiments we use Android applications that
fall into three types, as listed in Table 1. The first is the
Scimark benchmark suite. The second, named Art, contains
benchmarks that have been used in the past by Google or 3rd
parties for the evaluation of the Android compiler. The third,
named Interactive, contains 9 regular Android applications.

We collect execution times for the final reported speedups
outside the replay environment to guarantee that our results
are not an artifact of the replay environment. We use the best
performing binary discovered by the GA earlier using replay
but we otherwise execute the application interactively. We
disable any random initialization so that applications start
in approximately the same state throughout the experiments
and perform similar work. This makes it easier to estimate
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the speedup with any kind of certainty. For benchmark ap-
plications, this is straightforward as the inputs are fixed. For
interactive ones, we try to follow the logic of each applica-
tion to bring its state to a similar point each time, including
manually interacting with the application.

For the execution time measurements of interactive appli-
cations deciding the start and the end point of the measure-
ment is a balancing act. We want a fair and representative
measurement which includes the code surrounding the hot
region, i.e. code we have not optimized. At the same time
we want all time measurements to capture similar behaviors.
A longer execution is more likely to be affected by random
high impact events, like GC, or by deviating system and user
behavior. As a compromise, we measure a certain number
of iterations of the conceptual main loop of the application.
This number is different for each application and was se-
lected empirically. For games this conceptual loop was one
player round and it generally ranged from 0.7s to 3s.

Even for a small number of applications, this was a very
tedious process. It only reinforced our conviction that deter-
ministic and repeatable evaluations without replaying are
non-trivial and require significant effort.

To ensure the statistical soundness of our results we use
rigorous methodologies. During search, each transformation
is evaluated 10 times through replay. We perform outlier re-
moval on the collected runtime measurements using median
absolute deviation. Then, we determine the relative merit
of two sets of transformations with a two-side student’s t-
test. Reported speedups are also based on 10 evaluations
per transformation but without outlier removal. Finally, our
plots include 95% confidence intervals where applicable.

5 Results and Analysis

To evaluate our approach we performed four sets of experi-
ments. The first shows our performance gains on the apps
of Table 1 and demonstrates the potential of our approach.
The second shows why we need an intelligent search of the
optimization space and why we should not do it online. The
third establishes that the online overhead of captures is low,
making them transparent to the user. The final set shows that
storage overheads are similarly low and that our approach
should be applicable even on low-end devices.

5.1 Speeding-up Android Applications

Our approach readily outperforms the Android compiler
with aggressive optimization through offline, replay-based it-
erative compilation. In this section we show our performance
gains and the runtime code breakdown for 21 applications.

Figure 7 shows the speedups we observe outside the re-
play environment for the binaries selected by the GA. We
effectively use two baselines. The default Android compiler,
against which all other speedups are measured, represents
the performance the user gets out of the box. The other one,
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Figure 7. Speedup relative to the Android compiler for
12 benchmark (left) and 9 interactive applications. LLVM
—03 performance ranges from a 0.89x to a 1.66x. LLVM GA,
which uses a replay-based iterative compilation, produces
from 1.10x to 2.56x speedups and an average of 44%.
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LLVM -03, is an aggressive optimization setting for LLVM.
It represents the best LLVM can do without any application-
specific information.

Our optimization framework, shown as LLVM GA, clearly
outperforms both Android and LLVM —03 by a significant
margin. The GA performs a relatively quick search: 11 gen-
erations at most, each one with 50 genomes. Despite visiting
a tiny fraction of the optimization space, we improve perfor-
mance over both baselines for all programs, achieving an im-
pressive speedup average of 44% over the Android compiler
and 35% over LLVM -03. When considering benchmarks
exclusively, speedup ranges from 1.14x for Fibonacci.recv to
2.56x for Bubblesort, which was the highest overall.

For interactive applications, we had similar results when
considering the speedup of hot regions in isolation (see Fig-
ure 9). When we evaluate our approach on the wider regions
that surround the code we optimized, speedups range from
10% to 54%. This is impressive given that only part of the
code benefits from iterative compilation. Figure 8 shows
how much of the program’s execution we can compile and
optimize. These breakdowns are collected during normal
operation, outside the replay or the evaluation environment,
while the user interacts with the application. On average
only 57% is Compiled and it ranges from 14% to 81% depend-
ing on the application. The rest is Cold which is not executed
enough times to be worth compiling, JNI which falls outside
the scope of our toolchain, Unreplayable which is code we
have deliberately chosen not to support in our captures (see
Section 3.1) and it includes all code that performs I/O, or
Uncompilable which the Android compiler, and therefore
our backend, cannot process [5]. Most of the code we do not
compile is JNI code, representing on average 29% of the inter-
active applications execution and as much as 62%. While the
interactive applications naturally perform I/O, the amount
of code that actually performs the calls is not as much as one
would expect. Unreplayable, which includes other sources
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Figure 8. Runtime code breakdown, measured online with
a sample-based profiler, for 12 benchmark (left) and 9 in-
teractive applications (right). Compiled is code that we can
optimize. Cold falls outside the hot region. JNI is C/C++ code.
Unreplayable cannot be replayed. Uncompilable cannot be
processed by the Android backend.

of non-determinism too, takes only a 4% on average. This is
quite small when compared to Compiled, which is essentially
the code that processes that I/O.

While LLVM -03 improves performance as much as 66%
and 7% on average, this is roughly only a sixth of the perfor-
mance our GA unlocks. Even worse, there are cases where
—03 hurts performance versus the more conservative An-
droid compiler. The most notable example is FFT where an
increased amount of heap-related operations, e.g. checks for
GC, slows down the program by 10%. The GA learns to solve
this problem with loop unrolling combined with our post-
loop optimization, while the —~03 heuristics decide not to
unroll these loops. This shows clearly that using a powerful
optimizing compiler is not enough on its own. We also need a
sophisticated way to guide compiler optimization decisions.

The reported speedups in Figure 7 underestimate the po-
tential of our approach, as we are held back by the limitations
of our LLVM backend, which is a work in progress. The trans-
formation from HGraph to LLVM bitcode is not as efficient
as it can be, while many JNI math library calls could be
easily replaced with LLVM intrinsics. Despite that we still
manage to improve performance significantly, including for
programs like DroidFish where we affect only a small part of
the execution. With a more mature compiler toolchain, we
would expect these gains to grow even further. In Section 7,
we discuss how we will work towards that direction.

5.2 Using a GA for Offline Optimization Search

With a GA search over the vast space of LLVM optimization
decisions, we are able to discover code transformations that
significantly outperform the Android compiler. In this sec-
tion, we illustrate this by visualizing how the best genomes
evolve over time. We also show that GA, like any other
self-adapting algorithm, will inevitably attempt to evaluate
sub-optimal configurations during search. Any optimization
approach that tests optimization online is simply not feasible.
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Figure 9 shows the evolution of our offline GA search in
terms of best and worst genomes over time. In all cases the
best binary outperforms the Android baseline. For almost
all applications the genetic search improves performance
over time, except for Blokish where the initial random search
discovers the best performing binary. More than two thirds
of our applications require multiple generations to discover
their best binary, while a few might have benefited by an
even longer search, e.g. Sparse Matmult. Overall, the ability
to search the optimization space and evaluate optimization
decisions in a robust way provides clear benefits.

On the other end, several genomes have an extremely
detrimental effect on performance with as much as 10x slow-
down. If they were evaluated online, they would have a
dramatic effect on the user experience. For the whole first
random generation of FFT and a significant portion of it for
Fibonacci.recv, even the best genomes are worse than the
baseline. This is not limited to the early stages of the search.
Nine applications were still picking sub-optimal transforma-
tions even after three generations, while a few kept testing
sub-optimal genomes to the very end. This does not take into
consideration the even slower genomes that we evaluated
but discarded in the first generation, as explained in Section 4.
In any case, only a handful of sub-optimal evaluations would
have been enough to degrade the user experience, rendering
online approaches impractical.

The best genomes for all applications, except the obvious
case of Fibonacci.recv, include loop optimizations. Around
half of the applications have used pealing or unrolling, while
others include sinking, rotation, extraction, unroll-and-jam,
unswitching, and guard-widening. Most applications have
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Figure 9. Range of speedups over the Android compiler for the LLVM transformation sequences selected by the GA. Speedups
are estimated through replay for the hot regions only. The two lines represent the evolution of the best and worst genomes over
time. Vertical grid lines indicate the change from one generation to the next. All programs benefit from the search. Program
versions worse than the baseline are common across all programs, in some cases even after multiple generations.
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used CPU-specific optimizations like address, literal, arith-
metic, or logical fusing, while more than half of the appli-
cations have used full or partial inlining, with or without
custom thresholds. Other common optimizations include
global value numbering, sub-expression elimination, and
instruction/function/return merging.

5.3 Transparent Capturing

Any optimization approach that might temporarily deterio-
rate the user experience is hard to justify. The only stage of
our approach that happens online and could affect the user
is capture. We have to establish that its runtime overhead is
low enough to have no negative effect on the user.

Figure 10 shows a detailed breakdown of the overheads
introduced by capturing a hot region. There are three sources
of overhead. Fork is the time it takes to call fork and return.
It ranges roughly from 1ms to 6ms depending on the appli-
cation and the state that needs to be replicated for the child.
Preparation includes everything else that happens before we
start executing the hot region. Most of this time is spent pars-
ing page mappings from the /proc pseudo-filesystem and
read-protecting pages. It can take anything between 4ms and
11ms, depending on the number of page map entries that are
processed. The rest of the overhead is incurred during the
execution of the hot region due to the additional page faults
and Copy-on-Writes. It is usually a very small fraction of
the overhead, except for a few cases, like BubbleSort (16ms)
and FFT (10ms). These benchmarks have a large number of
modified pages leading to a high Copy-on-Write overhead.

The lowest overall overhead was 5.7ms while the aver-
age was 14.5ms. Much of this can be attributed to the cost
of communicating with the kernel: parsing page mappings
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Figure 10. Breakdown of online overheads caused by our
user-space capture mechanism. Preparation costs and much
of the page-faults can be avoided with an in-kernel imple-
mentation. Regardless, with a maximum of ~30ms overhead
and an average of 14.5ms, our infrequent captures remain
unnoticeable by the users.

through the slow /proc, read-protecting pages one-by-one,
jumping between user and kernel space to handle page faults.
In-kernel solutions could eliminate most of it but they are
beyond the scope of our work. User-space solutions could
tackle some of the page fault overhead by exploiting spatial
locality, e.g. using a coarser granularity to determine read
pages. In any case, even the highest overhead of around 30ms
is low enough to not have a significant effect on the user.

5.4 Capture Storage Overheads

It is important that our capture mechanism does not hog the
phone’s limited storage capacity. While a single capture is
not a problem on its own, a realistic system would have to
work on optimizing multiple applications in parallel with,
perhaps, multiple captures for each application. Making sure
that the captured page set is small enough to allow tens of
distinct captures is absolutely necessary.

Figure 11 shows the storage overheads for all applications.
The average size of the pages captured for each application
is less than 18MB. More than two thirds of that though is
not process-specific. It represents Android runtime instances
of immutable objects that are identical across all processes
created during the same device boot. A single capture of
these pages is enough for all applications. The remaining
5.06MB on average are the pages we actually need to save for
each hot region capture. The smallest size of these program-
specific pages is 356KB for Poker Odds, while the largest was
41MB for 4inaRow. In the majority of cases, it is between
1MB and 5MB. For most programs, the captured information
is in the same order of magnitude as the data the applica-
tion actively uses in the hot region. When considering the
heap allocated data alone (which represent the majority of
the application’s dynamic state), our approach captures on
average only 6% of the heap data. Depending on the case,
that percentage can be as low as 0.3%, for example capturing
only 0.3MB out of the 88.4MB of Poker Odds’s heap space.
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Figure 11. Storage overhead for capturing all pages used by
the hot region vs capturing only the process-specific pages.
While the overhead of capturing all pages is not unreason-
able, we can reduce it even further by storing pages that are
common across all applications only once. This brings the
storage overhead down to 5.06MB on average.

With our capture mechanism, we only need to store a small
fraction of the data a brute force approach would store. That
level of storage is manageable even for low-end devices, es-
pecially given that this overhead is transient. Once we have
optimized the application, we can discard the captured data
and release space back to the user.

6 Related Work

Iterative compilation is a well established technique, studied
for more than two decades [30], with its early applications
focused mainly on embedded systems [1, 9]. Early work in
this area relied on exhaustive search of a simple optimization
space. Later approaches aim at avoiding the cost of an exhaus-
tive search through random search [15], genetic search [14],
and other self-adapting techniques [2, 4, 11, 20, 23, 33]. While
all of them improve the quality of the search, either through
better optimizations or faster search, they assume offline
evaluation of optimizations with a fixed input in a controlled
environment.

Fursin et al. [22] has developed an online approach that
evaluates transformation online by exploiting performance
stability. This approach, however, will adversely impact users
as it is susceptible to significantly slower evaluations, run-
time crashes, or erroneous outputs. On top of that, the vari-
able input and the noisy online environment would require
significantly more evaluations per transformation to confi-
dently rank them, to the point that it is no longer practica-
ble. Our approach allows bulk-evaluation of transformations
without affecting the user, while inherently tackling execu-
tion noise, by operating at idle times and imposing a specific
execution environment for each replay.

Capture and replay frameworks are also well studied.
Many approaches have relied on instrumentation [28, 29,
40, 50] in order to reduce the amount of the captured data.
By capturing fine-grained events like variable reads or writes,
they can minimize the needed state to a minimum. However,
this results in very high overheads since each event has to be
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instrumented. Other approaches [26, 47] avoid this low level
instrumentation, however they either modify the Java API
or require the application to be instrumented with external
tools in order to use their custom-developed APIs. CRIU [48]
is a checkpoint and restore system based on Linux that is
language-agnostic avoiding the overheads and limitations of
previous approaches. Its main drawback is that it captures
the whole application state. This fits CRIU’s intended usage
well, migrating processes in data centers, but it is a poor
match for replaying hot regions.

The closest existing approach is CERE [10]. It identifies
codelets, distinct computationally important areas of code,
and it uses a page-based mechanism to capture each codelet’s
working set so that it can replay it in isolation. It differs from
our approach in that it aims to accelerate benchmarking large
scientific applications by breaking them down into a set of
very short regions. As such, increased latency during capture
is not a significant problem for CERE. Runtime overheads
are typically over 20% and as high as 250%. Part of this is
due to CERE not using Copy-on-Write. When a page is first
accessed and a page fault is triggered, execution stops until
CERE copies the page to a temporary buffer, regardless of
whether the page will be modified or not. Copy-on-Write
keeps this process in kernel space and only copies pages that
are modified, allowing us to capture interactive applications
online without affecting the user experience.

7 Conclusion and Future Work

In this paper we introduced an optimization approach for
mobile devices, transparent to developers and users. An of-
fline approach would rely on representative inputs, which
are hard to reconstruct, especially for interactive applica-
tions. An online approach, while it could use real user inputs,
will expose the user to suboptimal or even erroneous exe-
cutions. On top of that, input variability makes the robust
comparison of optimizations an extremely lengthy process.

Our approach is able to tune interactive applications using
real inputs but without disrupting user experience. With
sporadic online captures, we store the input for targeted
code regions with negligible overheads. Later, we can re-
execute each region on-demand with the exact same context
but different optimization strategies to compare them and
discover the best ones. We do this while the device is idle
and charged to avoid affecting the user in any way.

We have implemented a prototype replay-based iterative
compilation system on Android, including a novel LLVM
backend for the Android compiler that significantly increases
the optimization space. We capture inputs once per opti-
mization run, with less than 15ms overhead on average per
capture. For this almost imperceptible effect on user experi-
ence, we achieve average speedups of 44% over the Android
compiler and 35% over the LLVM —-03 optimization level.

280

PLDI ’21, June 20-25, 2021, Virtual, Canada

This work has produced some exciting results but there are
more untapped opportunities for optimization. The code pro-
duced by the LLVM backend is not as efficient as it could be.
Also, there are still unimplemented intrinsics which would
allow us to replace JNI methods with LLVM IR. This can
increase the amount of code we compile and therefore opti-
mize. Our post-loop optimization could be expanded to other
slow check operations, e.g. cases where not all array bounds
checking is necessary. Finally, we aim to extend LLVM to
support reserving and re-purposing registers, similar to what
the Android compiler does for accessing runtime structures.
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