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Abstract
We study termination of higher-order probabilistic func-
tional programs with recursion, stochastic conditioning and
sampling from continuous distributions.

Reasoning about the termination probability of programs
with continuous distributions is hard, because the enumer-
ation of terminating executions cannot provide any non-
trivial bounds.We present a new operational semantics based
on traces of intervals, which is sound and complete with re-
spect to the standard sampling-based semantics, in which
(countable) enumeration can provide arbitrarily tight lower
bounds. Consequently we obtain the first proof that deciding
almost-sure termination (AST) for programs with contin-
uous distributions is Π0

2-complete. We also provide a com-
positional representation of our semantics in terms of an
intersection type system.

In the second part, we present amethod of proving AST for
non-affine programs, i.e., recursive programs that can, during
the evaluation of the recursive body, makemultiple recursive
calls (of a first-order function) from distinct call sites. Unlike
in a deterministic language, the number of recursion call sites
has direct consequences on the termination probability. Our
framework supports a proof system that can verify AST for
programs that are well beyond the scope of existing methods.
We have constructed prototype implementations of our

method of computing lower bounds of termination probabil-
ity, and AST verification.

1 Introduction
Probabilistic (or randomised) programs are programs that
employ a degree of randomness in their control flow. Thanks
to Michael Rabin’s insight [52], it has been widely recog-
nised that introducing randomisation in algorithm design
can yield substantial improvements in time and space com-
plexity. Many dozens of randomised algorithms can now
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solve a wide range of problems accurately, and much more
efficiently than their deterministic counterparts [45, 47].

Recently, in probabilistic programming [28, 53, 59], prob-
abilistic programs, augmented with stochastic conditioning
constructs, have been used as a means of expressing genera-
tive models whose posterior probability can be computed by
general-purpose inference engines. Though sampling from
discrete distributions (such as binary probabilistic branching)
can be considered algorithmically adequate1 for probabilis-
tic computation, the generation of real-world data—a basic
capability expected of generative models—requires expres-
sivity of the whole gamut of continuous distributions. For
this reason, sampling from continuous distributions is an es-
sential feature of probabilistic programming languages. (See
e.g. Church [27], Stan [13], Anglican [57], Gen [19], Pyro [5],
Edward [58] and Turing [26].)
In this work we study a central property of probabilistic

programs: termination. In non-probabilistic (possibly non-
deterministic) computation, termination is a purely quali-
tative, boolean property. However, with randomness in the
control flow, termination is characterised by a scalar quan-
tity: the probability of termination. We say that a program
is almost-surely terminating (AST) if a run of it terminates
with probability 1.

When a probabilistic program implements a solution to an
algorithmic problem, one naturally requires the computation
to terminate with a high (lower bounded) probability, usually
1. In probabilistic programming, lower bounds and guaran-
tees of AST are equally important. Indeed, it is standard for
designers and implementors of probabilistic programming
systems to regard non-AST programs as defining invalid
models, and hence inadmissible (see e.g. [54, §4.3.2] and [27]).
Moreover [40] have recently shown that AST programs have
density (a.k.a. weight) functions that are differentiable almost
everywhere. This is significant, because the latter property
is a precondition for the correctness of some of the most scal-
able inference algorithms, such as Hamiltonian Monte Carlo
[48, 60] and reparameterised gradient variational inference
[38].
In this paper we tackle two key questions: computation

of lower bounds on the probability of termination, and AST
verification. While there has been much progress in the ter-
mination analysis of probabilistic programs with discrete
distributions [8, 31, 34], programs with continuous distri-
butions have received comparatively little attention. Many

1in the sense that they are enough to make any Turing complete program-
ming language universal for probabilistic Turing machine [36, 56]
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methods and proofs hinge on the countable nature inher-
ent to discrete distributions [9, 20, 32, 34, 42, 43, 50]. It is
not at all obvious if they can be extended to systems with
continuous distributions.
Using an idealised functional language with continuous

samples and stochastic conditioning, we provide partial an-
swers to these questions. On the one hand, we give a de-
finitive answer to the lower bound problem, and precisely
determine the complexity of various termination problems
in the arithmetic hierarchy. On the other hand, we provide a
sound (but incomplete) proof method for AST which can be
seen as orthogonal to [20].

1.1 High Level Overview
Lower Bound Computation. In languages with discrete

distributions, evaluation can be seen as a step-indexed proba-
bility mass on terms [20, 23, 34]. By enumerating terminating
executions, we can iteratively compute arbitrarily tight lower
bounds on the probability of termination. As a direct con-
sequence, AST is a decision problem in Π0

2 [31], the second
level of the arithmetic hierarchy [33]. In languages that admit
continuous distributions, we cannot assign probability mass
to terms directly. Rather, by viewing a probabilistic program
as a deterministic program parameterised by an execution
trace (or simply, trace) (i.e. the sequence of random draws
made during the execution), we can organise such traces
into a measure space [6, 35]. The probability of termination
can then be defined as the measure of all traces on which the
program terminates [40]. However, in general, a single ter-
minating execution (or even a countable set thereof) cannot
be assigned any positive probability measure. This leaves
open problems such as sound computation of lower bounds,
and the exact complexity of deciding AST.
We approach these problems by introducing a novel op-

erational semantics based on interval traces, which are a
summarisation of the relevant traces. We show soundness
and completeness w.r.t. the sampling-style semantics [6]. In-
stead of analysing a program using uncountably many traces,
we work with interval traces, where only countably many
such traces suffice. This yields an effective procedure to com-
pute lower bounds on termination probability, enabling the
first proof that deciding AST in the presence of continuous
distributions is Π0

2-complete (under mild assumptions on the
primitive functions). Further, we show that positive almost
sure termination (PAST) (i.e., finite expected time to termi-
nation) is Σ0

2-complete, assuming the program is AST. For
general PAST, we can only infer a (possibly non-tight) upper
bound of Δ0

3. This does not match the Σ0
2 bounds known for

discrete distributions as a proof of this bound hinges on a
countable set of executions [31]. See Sec. 3.
In addition we give an alternative presentation of our se-

mantics as an intersection type system in Sec. 4. Our system
extends [9] and [23] to languages with continuous distri-
butions; moreover, both the probability of termination and

the expected time to termination can be obtained as the
least upper bound of all derivations. This gives a type-based,
compositional method for lower bound computation.

ASTVerification. While our computation of lower bounds
gives a Π0

2 decision procedure for AST, it is not really effec-
tive for AST verification. Many of the recent advances in the
development of AST verification methods [1, 14, 15, 17, 18,
25, 29, 30, 43, 50] are concerned with loop-based programs.
We can view such loops as tail-recursive programs that, in
particular, are affine recursive, i.e., in each evaluation (or run)
of the body of the recursion, recursive calls are made from at
most one call site [20, §4.1]. By contrast, many probabilistic
programming languages allow for richer recursive structures
[27, 41, 57]. We propose a new verification method for prob-
abilistic programs that are defined by non-affine recursion,
i.e., in the evaluation of the body of the recursion, multiple
recursive calls can be made from distinct call sites. (Note that
whether a program is affine recursive cannot be checked by
just counting textual occurrences of variables.)
Example 1.1 (Running Example). Consider an unreliable
3d printing company. Unfortunately, for every printing, the
outcome is acceptable with only probability 𝑝; if it is unac-
ceptable, reprinting must take place on the following day,
and thus, the process is repeated. We can model this scenario,
starting with a single job, as the following program(

`
𝜑
𝑥 .if sample ≤ 𝑝 then𝑥 else𝜑 (𝑥 + 1)

)
1 (1)

where `𝜑𝑥 .(·) is a fixpoint constructor (that binds the variable
𝜑 to the fixpoint), and sample evaluates to a random draw
from the uniform distribution on [0, 1]. The value returned
by the program is the number of days needed to complete
the job. Luckily, as the program is AST for all success proba-
bilities 𝑝 ∈ (0, 1], the company can assure its customers that
it will finish the job eventually. However, in a bid to drum
up business, a new quality policy is introduced. The man-
ager advises their customers: “Each day our print attempt
fails, we will print an additional copy for you.” We model the
situation as follows:(

`
𝜑
𝑥 .if sample ≤ 𝑝 then𝑥 else𝜑

(
𝜑 (𝑥 + 1)

) )
1 (2)

Soon after implementing the new policy, it was noticed that
some of the print jobs could never be completed. Phrased
differently: Program (2) is no longer AST for every 𝑝 ∈ (0, 1].
This example illustrates that non-affine recursion, as ex-

hibited in program (2), can complicate the analysis of termi-
nation. While the affine program (1) is clearly AST for every
𝑝 > 0, program (2) is not. It turns out that (2) is AST if and
only if 𝑝 ≥ 1

2 ; and in case 𝑝 = 1
2 , while the process is AST,

the expected time to termination is infinite. It is unsurprising
that termination depends on the number of recursive calls,
as termination itself is a quantitative property.

Termination analysis of non-affine recursive probabilistic
programs does not seem to have received much attention.
Methods such as those presented in [20] explicitly restrict
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to affine programs and are unsound otherwise. Our method
for the analysis of non-affine recursive programs can be
viewed as orthogonal to [20]: while they restrict to affine
programs and investigate the recursive function argument
for size information, we accept the function argument with-
out examination, and admit non-affine programs. We call our
methods counting-based, as we over-approximate the recur-
sive behaviour by counting recursive calls from distinct call
sites, thus reducing AST analysis to the analysis of a random
walk for which we show linear decidability. See Sec. 5. Our
method is the basis of an AST proof system that can verify
programs (including the simple example above) well beyond
the reach of existing methods (Sec. 6). As a simple corollary,
we obtain a functional generalisation of the zero-one law for
termination of while-programs [42, §2.6]2

Contributions. Our main contributions are as follows:
• We propose a new sound and complete interval-based
semantics that enables lower bound computation. We
obtain a first proof that the AST (resp. PAST) deci-
sion problem is, under mild assumptions on primitive
functions, Π0

2-complete (resp. Σ0
2-complete) even in

the presence of continuous distributions.
• We give a local representation of our semantics as an
intersection type system where both the probability
of termination and expected time to termination are
characterised as the least upper bound over all deriva-
tions.

• We provide a new proof method for AST verification
of non-affine recursive programs. We show how our
proof system can be automated.

Our theoretical results give rise to practical algorithms.
We provide prototype implementations for both lower bound
computation and AST verification based on our novel seman-
tics and proof system respectively (Sec. 7). Missing proofs
and further discussions can be found in [2].

2 Statistical PCF (SPCF)
We begin by introducing some basics of probability theory
and presenting our language of study.

2.1 Basic Probability Theory
A 𝜎-algebra on a set Ω, typically written ΣΩ , is a collection of
subsets of Ω such that Ω ∈ ΣΩ , and ΣΩ is closed under com-
plementation and countable unions (and hence countable
intersections). A measurable space is a pair (Ω, ΣΩ) where
Ω is a set (of outcomes) and ΣΩ is a 𝜎-algebra on Ω. A func-
tion 𝑓 : Ω1 → Ω2 between measurable spaces, (Ω1, ΣΩ1

)
and (Ω2, ΣΩ2

), is called measurable if for every 𝐴 ∈ ΣΩ2
,

𝑓 −1 (𝐴) ∈ ΣΩ1
. Ameasure on (Ω, ΣΩ) is a function ` : ΣΩ →

R+ that satisfies ` (∅) = 0 and is 𝜎-additive: if {𝐴𝑖 }𝑖∈N is

2The zero-one law states that a while-loop is almost-surely terminating if
there is a positive lower bound on the probability of exiting it.

Γ ⊢ sample : R
Γ ⊢ 𝑀 : R

Γ ⊢ score(𝑀) : R
Γ, 𝜑 : 𝛼 → 𝛽, 𝑥 : 𝛼 ⊢ 𝑀 : 𝛽

Γ ⊢ `
𝜑
𝑥 .𝑀 : 𝛼 → 𝛽

{Γ ⊢ 𝑀𝑖 : R} |𝑓 |𝑖=1

Γ ⊢ 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) : R

Figure 1. Selection of SPCF typing Rules

a countable family of pairwise disjoint sets from ΣΩ then
` (∪𝑖𝐴𝑖 ) =

∑
𝑖 ` (𝐴𝑖 ). If ` (Ω) ≤ 1 we call ` a subprobability

measure and if ` (Ω) = 1 we call it a probability measure (or
distribution). For the 𝑛-dimensional Euclidean space R𝑛 we
write ΣR𝑛 for the Borel 𝜎-algebra over R𝑛 , which is the small-
est 𝜎-algebra that contains all open and closed𝑛-dimensional
boxes. In the special case of 𝑛 = 1, this is the set generated by
all open (and closed) intervals. The 𝑛-dimensional Lebesgue
measure, denoted _𝑛 , is the unique measure on (R𝑛, ΣR𝑛 )
that satisfies _𝑛 ([𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛]) =

∏𝑛
𝑖=1 (𝑏𝑖 − 𝑎𝑖 ).

Discrete Sample Space. In case Ω is countable, we often
work with the powerset 2Ω as the trivial 𝜎-algebra. Every
probability measure is then uniquely determined by a prob-
ability mass function (pmf), a function 𝑝 : Ω → R[0,1] with∑

𝑥 ∈Ω 𝑝 (𝑥) = 1. Every pmf 𝑝 gives rise to a probability mea-
sure by defining ` (𝐴) B ∑

𝑥 ∈𝐴 𝑝 (𝑥); conversely, for every
probability measure ` on the powerset we can recover a gen-
erating pmf by defining 𝑝 (𝑥) B ` ({𝑥}). A subprobability
mass function is defined analogously.

2.2 SPCF
Statistical PCF (SPCF) is an extension of PCF [51] with sup-
port to sample3 from the uniform distribution on [0, 1] and
condition executions (see [28]). Terms in SPCF are implicitly
parametrised over a set F of measurable functions 𝑓 : R𝑛 →
R that model primitive operations. Each function 𝑓 ∈ F has
an arity |𝑓 | ≥ 0. The sets of terms and values are defined by
the following grammar where 𝑥 and 𝜑 are distinct variables
(from a fixed denumerable set of symbols), 𝑟 ∈ R and 𝑓 ∈ F:

𝑉 B 𝑥 | 𝑟 | _𝑥.𝑀 | `𝜑𝑥 .𝑀
𝑀, 𝑁, 𝑃 B 𝑉 | 𝑀𝑁 | if(𝑀, 𝑁, 𝑃) | 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |)

| sample | score(𝑀)
As usual, we identify terms modulo 𝛼-conversion. The fix-
point constructor, `𝜑𝑥 .(·), binds the recursively defined func-
tion𝜑 and its argument𝑥 .We abbreviate4𝑀⊕𝑃𝑁 B if (sample−
𝑃,𝑀, 𝑁 ) in the style of [42] and write𝑀 ⊕𝑁 for𝑀 ⊕.5𝑁 . We
type terms using a standard simple type system with types
defined by 𝛼, 𝛽 B R | 𝛼 → 𝛽 . A selection of typing rules is
given in Fig. 1 and [2]. We denote the set of typable SPCF
terms by Λ and its subset of closed terms by Λ0.
3Sampling from other real-valued distributions can be obtained from sample
by applying the inverse of the distribution’s cumulative distribution func-
tion; see e.g. [55, §2.3.1].
4Our conditional statement, if(𝑃,𝑀, 𝑁 ) , branches on whether 𝑃 ≤ 0.
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In this paper we consider both call-by-name (CbN) and
call-by-value (CbV) evaluation strategies. We use CbN for
the first part of this paper, as the results (especially those
about intersection types) are cleaner this way [9, 23, 34].
(Our CbN SPCF can express CbV computation at base types,
giving it a suitable algorithmic expressiveness; c.f. [22].) We
switch to CbV SPCF when presenting our AST proof sys-
tem, thereby enabling a more straightforward comparison
to related approaches such as [20].

2.3 Operational Semantics
We give a sampling-style operational semantics for SPCF.
The idea (going back to Kozen [35]) is to evaluate a term𝑀

together with a sequence of (fixed) probabilistic outcomes
for each sample statement [6, 40]. We then generate a prob-
abilistic interpretation of programs by endowing the set of
traces with a measure.

CbN SPCF. We define the set of traces S as all finite se-
quences of real numbers from R[0,1] := {𝑟 ∈ R | 0 ≤ 𝑟 ≤ 1}),
i.e., S B R∗[0,1] =

⋃
𝑛∈N R

𝑛
[0,1] . We let 𝒔 range over elements

in S, denote the empty trace with 𝜖 ; for 𝑟 ∈ R[0,1] write 𝑟 for
the one element trace; and 𝒔1, 𝒔2 for concatenation. The set
of CbN redexes and evaluation contexts is defined by:

𝑅 B (_𝑥 .𝑀)𝑁 | (`𝜑𝑥 .𝑀)𝑁 | if(𝑟, 𝑁 , 𝑃)
| 𝑓 (𝑟1, · · · , 𝑟 |𝑓 |) | sample | score(𝑟 )

𝐸 B [·] | 𝐸𝑀 | if(𝐸, 𝑁, 𝑃) | score(𝐸)
| 𝑓 (𝑟1, · · · , 𝑟𝑘−1, 𝐸, 𝑀𝑘+1, · · · , 𝑀 |𝑓 |)

Given a context 𝐸 and a term 𝑀 the (capture-permitting)
substitution 𝐸 [𝑀] is defined in the obvious way. An easy
induction establishes that every𝑀 ∈ Λ0 is either a value or
there are unique 𝐸 and 𝑅, s.t., 𝑀 = 𝐸 [𝑅] (see e.g. [6]). The
small-step reduction relation has the from ⟨𝑀, 𝒔⟩ → ⟨𝑀 ′, 𝒔 ′⟩
where𝑀,𝑀 ′ are terms and 𝒔, 𝒔 ′ are traces. It is defined induc-
tively by the rules given in Fig. 2 where𝑀 [𝑁𝑖/𝑥𝑖 ]𝑖 denotes
standard capture-avoiding substitution [4]. Note that our
reduction does not enjoy progress, as e.g. redex score(𝑟 )
cannot reduce if 𝑟 < 0. As this work is a study of termi-
nation properties, we elide the weight parameter used for
stochastic conditioning5 (see e.g. [6, 28, 40]).

AMeasure onTraces. To interpret probabilistic programs
using traces, we first need to endow the set of traces with
a measure. We cannot assign probability mass to individual
traces directly, as there are uncountably many traces. Instead
we define a suitable measurable space of program traces
following [6]. Let ΣR𝑛[0,1] be the Borel 𝜎-algebra on R𝑛[0,1]
(We set ΣR0[0,1] B

{
∅, {𝜖}

}
). We can then define a 𝜎-algebra

5The score-construct which is responsible for stochastic conditioning has,
nevertheless, a subtle effect on termination as we require the conditioned
value to be positive.

on traces (ΣS) and a measure (`S) by:
ΣS B {⊎𝑛∈N 𝐵𝑛 | 𝐵𝑛 ∈ ΣR𝑛[0,1] }

`S
( ⊎

𝑛∈N 𝐵𝑛
)
B

∑
𝑛∈N _𝑛 (𝐵𝑛)

As shown in [6, Lem. 7 & 8], (S, ΣS) is a measurable space
and `S a (𝜎-finite) measure on (S, ΣS).

2.4 Probabilistic Termination
With →𝑛 we denote the 𝑛-fold self-composition, and with
→∗ the reflexive-transitive closure, of →. We define

T𝑀,term B
{
𝒔 ∈ S | ∃𝑉 : ⟨𝑀, 𝒔⟩ →∗ ⟨𝑉 , 𝜖⟩

}
as the set of traces on which a term𝑀 terminates, which is
measurable (similar to [6, Lem. 9]). As shown in [40, Lem. 7],
`S

(
T𝑀,term

)
≤ 1; we are therefore justified in calling the

interpretation `S
(
T𝑀,term

)
a “probability”.

Definition 2.1. The probability of termination of 𝑀 ∈ Λ0

is defined by Pterm (𝑀) B `S (T𝑀,term). 𝑀 is called almost-
surely terminating (AST) if Pterm (𝑀) = 1.

Positive Almost-Sure Termination. An even stronger
property than AST is finiteness of the expected time to ter-
mination. For any trace 𝒔 ∈ T𝑀,term we define #𝒔

↓(𝑀) ∈ N
as the unique number 𝑛 such that ⟨𝑀, 𝒔⟩ →𝑛 ⟨𝑉 , 𝜖⟩ for some
value 𝑉 . For any 𝑛 ∈ N we define

T≤𝑛
𝑀,term B

{
𝒔 ∈ T𝑀,term | #𝒔

↓(𝑀) ≤ 𝑛
}

as the set of traces on which termination occurs within 𝑛

steps, which is measurable. We define T𝑛
𝑀,term analogously.

Definition 2.2. For𝑀 ∈ Λ0 we define the expected time to
termination, Eterm (𝑀) ∈ R+, by

Eterm (𝑀) B ∑∞
𝑛=0

(
1 − `S

(
T≤𝑛
𝑀,term

) )
𝑀 is positive almost-surely terminating if Eterm (𝑀) < ∞.

It is easy to see that any program that is PAST is also AST.
Following [31], Eterm (𝑀) can be phrased as

∑∞
𝑛=0 P

(
“𝑀 runs

for more than 𝑛 steps”
)
=
∑∞

𝑛=0

(
1−P(“𝑀 terminates within

𝑛 steps”)
)
, with the latter expressed in Def. 2.2. We can show

that, provided 𝑀 is AST, the expected time to termination
is the expected value of the random variable that gives the
number of reduction steps:

Lemma 2.3. If𝑀 is AST, Eterm (𝑀) =
∞∑
𝑛=0

`S

(
T𝑛
𝑀,term

)
· 𝑛

CbV SPCF. Our CbV SPCF is essentially the system of [40],
except that we use a simpler CbV fixpoint reduction rule.

3 Interval-based Semantics
It is impractical to use the standard trace-based (or sampling-
style) semantics to reason about termination properties of
SPCF programs, because the trace measure `S is continu-
ous. Suppose we are interested in the decidability of the
lower bound question: does a term terminate with probability
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⟨(_𝑥.𝑀)𝑁, 𝒔⟩ → ⟨𝑀 [𝑁 /𝑥], 𝒔⟩ ⟨(`𝜑𝑥 .𝑀)𝑁, 𝒔⟩ → ⟨𝑀 [𝑁 /𝑥, (`𝜑𝑥 .𝑀)/𝜑], 𝒔⟩ ⟨sample, 𝑟 𝒔⟩ → ⟨𝑟, 𝒔⟩
𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ → ⟨𝑁, 𝒔⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ → ⟨𝑃, 𝒔⟩
𝑟 ≥ 0

⟨score(𝑟 ), 𝒔⟩ → ⟨𝑟, 𝒔⟩

⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩ → ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩
⟨𝑅, 𝒔⟩ → ⟨𝑀, 𝒔 ′⟩

⟨𝐸 [𝑅], 𝒔⟩ → ⟨𝐸 [𝑀], 𝒔 ′⟩

Figure 2. Call by Name small-step reduction for SPCF.

strictly greater than 𝑝? For discrete distributions, this prob-
lem is r.e. (in Σ0

1) as we can enumerate terminating paths
until the sum of the weight of those paths exceeds 𝑝 [31, 34].
In the presence of continuous distributions, this is no longer
possible. A well-known property of the Lebesgue measure
on R𝑛[0,1] (inherited by the trace measure `S) is that every
countable set of elements is a null set. So even if we can iden-
tify a countably infinite set of traces 𝐴 ⊆ T𝑀,term, we cannot
obtain any non-trivial lower bound on Pterm (𝑀). Thus the
semantics itself cannot be used to settle such complexity
questions as whether the lower bound problem for SPCF is
in Σ0

1, or whether the AST problem is in Π0
2, or whether the

PAST problem in Σ0
2. In this section, we introduce a novel

operational semantics for SPCF by executing terms param-
eterised by a trace of intervals. We demonstrate that this
semantics, which is complete w.r.t. the trace-based seman-
tics, is well-suited to the derivation of lower bounds. The
completeness hinges on the observation that, under mild
restrictions on primitive functions, interval-based reasoning
can effectively abstract actual traces. This is the basis of our
positive answer to the questions above.

Syntax of Interval Terms. We adjust the syntax of terms
slightly and treat intervals as constant symbols of typeR. We
define interval values and interval terms as follows where
𝑎 ≤ 𝑏 ∈ R.

V B 𝑥 | [𝑎, 𝑏] | _𝑥 .M | `𝜑𝑥 .M
M,N ,P B V | MN | if(M,N ,P) | 𝑓 (M1, · · · ,M |𝑓 |)

| sample | score(M)

Our simple type system extends naturally. We denote the
set of (closed, bounded) intervals by ℑ, and write ℑ0,1 B
{[𝑎, 𝑏] | 𝑎, 𝑏 ∈ R, 0 ≤ 𝑎 ≤ 𝑏 ≤ 1} as the set of intervals with
endpoints between 0 and 1. With ℑQ and ℑQ0,1 we denote the
sets ℑ and ℑ0,1 respectively, restricted to rational endpoints.

Definition 3.1. We call 𝑓 : R𝑛 → R interval preserving
(resp. Q-interval preserving) if there is a function 𝑓 : R2𝑛 →
ℑ (resp. 𝑓 : Q2𝑛 → ℑQ) such that for every sequence of
intervals [𝑎1, 𝑏1], · · · , [𝑎𝑛, 𝑏𝑛] ∈ ℑ (resp. ∈ ℑQ) we have
𝑓
(
[𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛]

)
= 𝑓 (𝑎1, 𝑏1, · · · , 𝑎𝑛, 𝑏𝑛), i.e., the

image of every 𝑛-dimensional box (resp. with rational end-
points) is an interval (resp. with rational endpoints).

𝑏 ≤ 0

⟨if([𝑎,𝑏],N, P),℘⟩ { ⟨N,℘⟩
𝑎 > 0

⟨if([𝑎,𝑏],N, P),℘⟩ { ⟨P,℘⟩

⟨sample, [𝑎,𝑏] :: ℘⟩ { ⟨[𝑎,𝑏],℘⟩
0 ≤ 𝑎

⟨score([𝑎,𝑏]),℘⟩ { ⟨[𝑎,𝑏],℘⟩

⟨𝑓
(
[𝑎1, 𝑏1], · · · , [𝑎 |𝑓 |, 𝑏 |𝑓 |]

)
,℘⟩ { ⟨𝑓 (𝑎1, 𝑏1, · · · , 𝑎 |𝑓 |, 𝑏 |𝑓 |),℘⟩

Figure 3. Selection of interval-based reduction rules

We restrict the primitive functions to those that are inter-
val preserving to ensure that interval-based reasoning is com-
patible with primitive operations. As the following shows,
most interesting functions (including e.g. +, ·,−, exp, | · |, · · · )
are interval preserving.

Lemma 3.2. If 𝑓 : R𝑛 → R is continuous then 𝑓 is interval
preserving.

3.1 Interval-based Syntax and Semantics
We define the set of interval traces by Sℑ B

⋃
𝑛∈N ℑ

𝑛
0,1, i.e.,

finite sequences of intervals with endpoints between 0 and
1 (inclusive). We let ℘ range over elements in Sℑ. To avoid
confusion, we shall refer to elements of Sℑ as interval traces,
and elements of S as standard traces.
Redexes and evaluation contexts of interval terms are

defined as expected. As we only replace real-valued numer-
als with interval-valued, our standard small-step semantics
(Fig. 2) mostly extends to interval terms. The specific reduc-
tion rules concerning the control flow and primitive func-
tions are given in Fig. 9. As a useful intuition, it is helpful to
view an interval numeral [𝑎, 𝑏] as an unknown value within
that interval. As in the standard semantics, we are interested
in the interval traces that lead to a normal form.

TℑM,term B {℘ ∈ Sℑ | ∃V : ⟨M, ℘⟩ {∗ ⟨V, 𝜖⟩}

For any ℘ ∈ TℑM,term, we define #
℘

↓ (M) as the number of
reduction steps to termination.

Embedding Into Intervals. While we want to analyse
the termination probability of standard terms, our interval-
based semantics builds on interval terms. We define a natural
embedding (·)2ℑ that maps every standard term 𝑀 to the
interval term𝑀2ℑ obtained by replacing every numeral 𝑟 by
the interval numeral [𝑟, 𝑟 ]. Our soundness and completeness
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results are now based on the operational behavior of 𝑀2ℑ

(in the interval semantics), and they allow us to draw conclu-
sions about the behavior of𝑀 (in the standard semantics).

3.2 Soundness
We now show that the interval-based semantics gives lower
bounds on the probability of termination in the standard se-
mantics. We define the weight of an interval trace ℘, denoted
by 𝜔 (℘), in the obvious way:

𝜔 ([𝑎1, 𝑏1], · · · , [𝑎𝑛, 𝑏𝑛]) B
∏𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖 )
To combine the weight of multiple terminating interval

traces we need to ensure that the interval traces are disjoint,
i.e., we do not account twice for the same standard trace.
Definition 3.3. Two interval traces ℘ = [𝑎1, 𝑏1], · · · , [𝑎𝑛, 𝑏𝑛]
and ℘′ = [𝑎′1, 𝑏

′
1], · · · , [𝑎′𝑚, 𝑏 ′𝑚] are compatible if 𝑛 ≠ 𝑚 or

there exists 𝑖 such that 𝑏𝑖 ≤ 𝑎′𝑖 or 𝑏 ′𝑖 ≤ 𝑎𝑖 .
For example, the four interval traces, [0, 1][0, 13 ], [0, 1][

1
3 ,

1
2 ],

[0, 1][ 34 , 1] and [0, 1], are pairwise compatible. For a count-
able set of interval traces𝐴we define𝜔 (𝐴) B ∑

℘∈𝐴 𝜔 (℘); if
𝐴 ⊆ TℑM,term we also define the expected value of𝐴, denoted
E(M, 𝐴), by

E(M, 𝐴) B ∑
℘∈𝐴 𝜔 (℘) ·#℘

↓ (M)
We can now state soundness as follows:
Theorem3.4. For every countable set of pairwise compatible
traces 𝐴 ⊆ Tℑ

𝑀2ℑ,term
the following holds:

𝜔 (𝐴) ≤ Pterm (𝑀)• E(𝑀2ℑ, 𝐴) ≤ Eterm (𝑀)•
This (perhaps unsurprising) soundness result is the basis

of an effective tool to verify lower bounds on Pterm (𝑀) and
Eterm (𝑀). The real force of the interval-based semantics lies
in its completeness.

3.3 Completeness
We show that, under mild assumptions on the primitive
functions, a countable number of traces for𝑀2ℑ already gives
the exact probability of termination Pterm (𝑀). Consequently,
by an incremental search of terminating interval-traces, we
can compute arbitrarily tight lower bounds on Pterm (𝑀).
Example 3.5. Consider the term

𝑀 =
(
`
𝜑
𝑥 .if sample + sample − 1 else𝑥 else𝜑 𝑥

)
0.

For the moment we focus on the set of traces on which
this term terminates without making a single recursive call
which is 𝑇 = {𝑟1 𝑟2 ∈ R2[0,1] | 𝑟1 + 𝑟2 ≤ 1}. This set cannot
be described by a countable union of interval traces, i.e.,
there are no interval traces {℘𝑖 }𝑖∈N such that 𝒔 ∈ 𝑇 ⇔ ∃𝑖 ∈
N : 𝒔 ⊳ ℘𝑖 , where 𝒔 ⊳ ℘𝑖 means that 𝒔 refines ℘𝑖 (see [2]).
Nevertheless, as 𝑀 is AST, our completeness result states
that we can find a countable family of (pairwise compatible)
interval traces, 𝐴 ⊆ Tℑ

𝑀2ℑ,term, whose cumulative weight
(i.e. 𝜔 (A)) equals Pterm (𝑀) = 1.

To achieve completeness we need the concept of interval
separable primitive functions. For measurable 𝐴, 𝐵 ⊆ R𝑛 we
write 𝐴 ⋐ 𝐵 if 𝐴 ⊆ 𝐵 and _𝑛 (𝐵 \𝐴) = 0, i.e., 𝐴 is contained
in, and, up to a null set, equal to, 𝐵. Interval separability now
states that the preimage of every interval can be written, up
to a null set, as a countable union of boxes. Precisely:

Definition 3.6. A function 𝑓 : R𝑛 → R is called interval
separable if for every interval [𝑎, 𝑏] ∈ ℑ, there exists a family
of boxes {𝐵𝑖 }𝑖∈N with 𝐵𝑖 ⊆ R𝑛 such that ∪𝑖𝐵𝑖 ⋐ 𝑓 −1 ( [𝑎, 𝑏]).

Most interesting functions such as +, ·, exp, etc. are inter-
val separable.

Lemma 3.7. If 𝑓 : R𝑛 → R is continuous, and for all 𝑦 ∈ R,
𝑓 −1 ({𝑦}) is a Lebesgue null set, then 𝑓 is interval separable.

Theorem 3.8. If every 𝑓 ∈ F is interval separable, then for ev-
ery𝑀 ∈ Λ0 there exists a countable set of pairwise-compatible
interval traces𝐴 ⊆ Tℑ

𝑀2ℑ,term
such that 𝜔 (𝐴) = Pterm (𝑀); and

if𝑀 is AST then E(𝑀2ℑ, 𝐴) = Eterm (𝑀).

Proof Sketch. Wefirst partitionT𝑀,term according to the branch-
ing behaviour, i.e., sequences in {0, 1}∗ indicating if the left
or the right branch of conditionals was taken. We then fix a
branching behaviour (notice that {0, 1}∗ is countable) and
employ stochastic symbolic execution (in the sense of [40])
by executing a term on a trace of variables, while collecting
symbolic constraints along the way. As primitive functions
are interval separable, we show that the corresponding con-
straints can be exhausted via interval traces. □

Incompleteness. While the collection of primitive func-
tions with respect to which our semantics is complete is very
broad (c.f. Lem. 3.7), interval-based reasoning is incomplete
in the presence of arbitrary continuous functions.

Example 3.9. Let 𝐶 ⊆ R be any Smith-Volterra-Cantor set,
i.e., 𝐶 has positive Lebesgue measure but is nowhere dense,
i.e., there are no 𝑎 < 𝑏 with [𝑎, 𝑏] ∈ 𝐶 . Now construct func-
tion 𝑓𝐶 : R→ R by 𝑓𝐶 (𝑥) := 𝑑 (𝑥,𝐶), the distance of 𝑥 to 𝐶 .
As 𝐶 is a closed set, the function is well-defined and obvi-
ously continuous; and the roots of 𝑓𝐶 coincide with 𝐶 . Then
𝑀 B if 𝑓𝑐 (sample) then 0 else 1 is clearly AST. However,
in the interval-based semantics, we can never derive a ter-
mination probability of more than 1 − _1 (𝐶) < 1 as there is
no non-trivial interval trace taking the left branch.

3.4 AST and PAST in the Arithmetic Hierarchy
If we only consider functions that are Q-interval preserving
we can restrict the previous reasoning to intervals and boxes
with rational endpoints. This has direct recursion-theoretic
consequences.

Theorem 3.10. Assume that every 𝑓 ∈ F is Q-interval pre-
serving and interval separable, and 𝑓 is computable. For any
term𝑀 (containing only rational numerals), deciding AST is
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in Π0
2. If𝑀 is AST, deciding PAST is in Σ0

2. In general, deciding
PAST is in Δ0

3.

Proof. Thanks to Thm. 3.4 and Thm. 3.8 we can express “𝑀
is AST” by the following ∀∃-formula:

∀𝜖 > 0 ∈ Q. ∃𝐴. 𝐴 ⊆ Tℑ
𝑀2ℑ,term ∧ 𝜔 (𝐴) ≥ 1 − 𝜖

where 𝐴 ranges over (encodings of) finite, pairwise compati-
ble sets of interval traces with rational endpoints. If𝑀 is AST
we can express PAST (i.e. Eterm (𝑀) < ∞) as this ∃∀-formula:

∃𝑐 ∈ Q. ∀𝐴. 𝐴 ⊆ Tℑ
𝑀2ℑ,term ⇒ E(𝑀2ℑ, 𝐴) ≤ 𝑐

In general,𝑀-is-PAST⇔𝑀-is-AST ∧ Eterm (𝑀) < ∞, so the
general PAST decision problem is in Δ0

3. □

If addition is definable, then—thanks to the hardness re-
sults in [31]—deciding AST in the presence of continuous dis-
tributions (and suitable primitive functions) is Π0

2-complete;
and deciding PAST (assuming AST) is Σ0

2-complete. We re-
mark that the Δ0

3 upper bound for the general PAST problem
does not match the corresponding bound for discrete distri-
butions [31]. The approach in [31] uses the fact that there are
finitelymany traces of a given length; this property obviously
does not hold in the presence of continuous distributions.

4 Intersection Type System
Intersection types have long been studied in termination
analysis as they can give a complete characterisation of ter-
mination: A _-term is typable in a (suitable) intersection
type system iff it is strongly normalising. A first study of
the quantitative notion of AST, and whether the intrigu-
ing completeness of intersection types can be extended to
a probabilistic language, was conducted in [9]. Owing to
the intrinsic Π0

2-hardness of AST [31], we cannot hope for a
semi-decidable type system in which a term is typable iff it
is AST. Instead [9] presented two approaches to termination
analysis, where the probability of termination is either a sum
over all (countably many) typing derivation (called the ora-
cle system) or the least upper bound (lub) thereof. We show
that completeness of intersection types w.r.t. termination can
also be established for a language with continuous samples
(where a program admits uncountably many distinct runs),
thereby giving a local representation of our interval-based
semantics. In our system the lub over countably many deriva-
tions gives the probability of termination and the expected
number of computation steps. Thus we obtain a complete,
compositional and recursion-theoretically optimal method
for computing lower bounds on both the probability of ter-
mination and the expected time to termination.

4.1 Intersection Type System For SPCF
Our system conceptually lies between the two approaches
of [9] (alluded to above): we reason about the lub, and at the
same type explicitly enumerate terminating (interval) traces
as in the oracle system of [9]. The system in [9] relies on

the countable nature of the execution tree and can exhibit
subject reduction by taking the weighted (finite) sum over
the reduction relation. This approach does not work for
SPCF because of the uncountable nature of the latter. Instead,
our proofs hinge on the soundness and completeness of the
interval-based semantics (Sec. 3).

Set Types. We define set types by the following grammar:
𝛼 B[𝑎, 𝑏] | 𝜎 → A 𝜎 B

{
A1, · · · ,A𝑛

}
A B

{
(𝛼1, ℘1, 𝜏1), · · · , (𝛼𝑚, ℘𝑚, 𝜏𝑚)

}
where each ℘𝑖 is an interval trace, and 𝜏𝑖 a natural number.
We refer to elements 𝜎 as intersections and A as set types.
To effectively type conditionals we need to integrate first-
order data, in our case intervals, in the types themselves.
This is similar to the type system in [23]. For a set type A ={
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 )

}
𝑖
we writeA (↑℘,𝜏) for the set type

{
(𝛼𝑖 , ℘℘𝑖 , 𝜏𝑖 +

𝜏)
}
𝑖
, i.e., the set obtained by prepending ℘ to every trace and

adding 𝜏 to every count.

Type System. Typing judgments are of the form Γ ⊢ M :
A. Valid judgments are defined by induction over the rules
in Fig. 4. Intuitively, if ⊢ M :

{
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 )

}
𝑖
then ℘𝑖 are all

terminating traces for𝑀 on which exactly 𝜏𝑖 steps are made
until a value is reached. We advise the reader to compare
this system with the monadic system given in [9, §6.1]. Note,
in particular, that the type of an application is determined
by the left argument, matching the CbN 𝛽-reduction where
arguments are passed unevaluated. While the (if) -rule looks
complicated at first sight, the subscript ([𝑎, 𝑏], ℘, 𝜏) for each
set type is merely used as an index, i.e., if Γ ⊢ M : A we
can combine a different type derivation for every element
in A. Although we restrict primitive functions to have arity
2, the rules can easily be extended to handle higher arities.
We omitted the general rule as it gets chaotic. For set type
A =

{
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 ) | 𝑖 ∈ [𝑛]

}
we define 𝜔 (A) := ∑

𝑖∈[𝑛] 𝜔 (℘𝑖 )
and E(A) := ∑

𝑖∈[𝑛] 𝜔 (℘𝑖 ) ·𝜏𝑖 . We can then show correctness.

Theorem 4.1. For every term𝑀 ∈ Λ0,
1.

∨
⊢𝑀2ℑ:A

𝜔 (A) = Pterm (𝑀), and

2. If𝑀 is AST,
∨

⊢𝑀2ℑ:A
E(A) = Eterm (𝑀)

This gives a recursion-theoretically optimal characterisa-
tion of AST that is purely based on the type system (c.f. [9,
§5.3]). Thus we can computationally analyse termination,
not just by evaluation (c.f. Sec. 3), but also via a local typing
system. By incrementally searching for typing derivations,
we can compute arbitrarily tight bounds. Compared to [9], a
novel feature of our work lies in the fact that we can explic-
itly reason about execution time, thus enabling a type-based
characterisation of PAST (for terms that are AST). While
our system as a whole may look a little intimidating, each
rule is actually simple by itself, requiring no complex opera-
tions. The idea of annotating types by a step count is also
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A ∈ 𝜎 (var)
Γ, 𝑥 : 𝜎 ⊢ 𝑥 : A

(num)
Γ ⊢ [𝑎, 𝑏] :

{
([𝑎, 𝑏], 𝜖, 0)

} {[𝑎𝑖 , 𝑏𝑖 ]}𝑖∈[𝑛] are almost disjoint
(sample)

Γ ⊢ sample :
{
([𝑎𝑖 , 𝑏𝑖 ], [𝑎𝑖 , 𝑏𝑖 ], 1) | 𝑖 ∈ [𝑛]

}
Γ, 𝑥 : 𝜎, 𝜑 : 𝛾 ⊢ M : A

{
Γ ⊢ `

𝜑
𝑥 .M : B | ∀B ∈ 𝛾

}
(fix)

Γ ⊢ `
𝜑
𝑥 .M :

{
(𝜎 → A, 𝜖, 0)

} Γ ⊢ M : A {Γ ⊢ N : C | (𝜎 → B, ℘, 𝜏) ∈ A, C ∈ 𝜎}
(app)

Γ ⊢ MN :
⋃

(𝜎→B,℘,𝜏) ∈A
B (↑℘,𝜏+1)

(⦃⦄)
Γ ⊢ M :

{} Γ, 𝑥 : 𝜎 ⊢ M : A
(abs)

Γ ⊢ _𝑥.M :
{
(𝜎 → A, 𝜖, 0)

} Γ ⊢ M : A (score)
Γ ⊢ score(M) :

{
([𝑎, 𝑏], ℘, 𝜏 + 1) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A, 𝑎 ≥ 0

}
Γ ⊢ M : A {Γ ⊢ N : B([𝑎,𝑏],℘,𝜏) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A, 𝑏 ≤ 0} {Γ ⊢ P : C([𝑎,𝑏],℘,𝜏) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A, 𝑎 > 0}

(if)
Γ ⊢ if(M,N ,P) : ⋃

([𝑎,𝑏],℘,𝜏) ∈A |𝑏≤0
B (↑℘,𝜏+1)
([𝑎,𝑏],℘,𝜏) ∪

⋃
([𝑎,𝑏],℘,𝜏) ∈A |𝑎>0

C (↑℘,𝜏+1)
([𝑎,𝑏],℘,𝜏)

Γ ⊢ M : A {Γ ⊢ N : B([𝑎,𝑏],℘,𝜏) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A}
(𝑓2)

Γ ⊢ 𝑓 (M,N) : ⋃
([𝑎,𝑏],℘,𝜏) ∈A

⋃
([𝑐,𝑑],℘′,𝜏′) ∈B([𝑎,𝑏],℘,𝜏 )

{
(𝑓 (𝑎, 𝑏, 𝑐, 𝑑), ℘℘′, 𝜏 + 𝜏 ′ + 1)

}
Figure 4. Intersection Type System for SPCF.

applicable to the setting of [9], giving a strict generalisation
of their system. Our system can also be easily generalised
to the untyped _-calculus considered in [6]. Lastly, while
our correctness proof hinges on the completeness of the
interval-based semantics, we can present the system with-
out referring to interval traces directly, and instead consider
probability mass functions on types (as done in e.g. [9]).

5 Counting-based Recursion Analysis
We now turn our attention to devising a method that, unlike
the preceding approach, can prove AST efficiently. We focus
on programs that can make multiple recursive calls from
distinct call sites (during evaluation of the recursive body);
we call such recursion non-affine. As evident from Ex. 1.1,
non-affine recursion complicates AST analysis considerably.
Intuitive results such as the zero-one law of termination2 [42]
are only valid for affine recursion.
Our framework builds on the idea of counting. We show

that analysis of the resulting distributions on natural num-
bers suffices for proving AST of the program. As a corollary
we obtain a functional generalisation of the zero-one law,
which specialises to the original law in case the recursion
is affine. Our approach to proving non-affine recursion can
be viewed as orthogonal to [20] (which is restricted to affine
recursion): rather than using the size-related information
of the recursive function argument, we count the number
of recursive calls from distinct call sites in the evaluation
of the body of the recursion. Moreover, compared to [20],
our approach supports continuous distributions, and it is not
restricted to binary probabilistic choice. Compared to tech-
niques based on ranking functions – a dominant approach
to AST verification [1, 14, 17, 18, 25, 42, 43], our method is
fully automatic and easy to implement, as we show in Sec. 6.

Example 5.1. Let’s revisit the 3d printing company (Ex. 1.1).
The new situation is that the staff gets tired over time and
prints an incorrect number of copies. In case the print is
faulty, there is a probability sig (𝑥) of the operator becoming
tired and making mistakes, where sig is the sigmoid function.
(Thus with increasing time (𝑥), the probability of making
mistakes approaches 1.) The operator’s mistake takes the
form of printing 3 instead of the intended 2 copies with
probability .5. We model this scenario by the following term:

`
𝜑
𝑥 .𝑥 ⊕𝑝

( (
𝜑3 (𝑥 + 1) ⊕ 𝜑2 (𝑥 + 1)

)
⊕sig (𝑥) 𝜑

2 (𝑥 + 1)
)
.

The question now becomes: for which 𝑝 is this term AST?

We keep track of the number of calls by extracting a count-
ing distribution, a (sub) pmf onN, that models the distribution
on new calls made. To account for the fact that a recursive
function that is called 𝑛 times (inclusive of the original call)
contributes 𝑛 − 1 to the total number of pending calls6, we
shift the counting pattern by −1, obtaining a (sub) pmf on
Z. The counting distribution is analysed via a random walk
whose current value can be seen as the number of pending
calls. In this section, we first introduce the necessary tools to
analyse a random walk (Sec. 5.1), then present the extraction
of the counting distribution from programs (Sec. 5.2), and the
soundness theorem that relates termination behavior of the
shifted random walk with that of the non-affine recursive
program in question (Sec. 5.3).

5.1 RandomWalk on N
Assume a countable state space 𝑋 . A stochastic matrix on 𝑋
is a function𝔓 : 𝑋 ×𝑋 → R[0,1] such that

∑
𝑦∈𝑋 𝔓(𝑥,𝑦) = 1

for every 𝑥 ∈ 𝑋 (see e.g. [3, §10.1] or [44]). 𝔓(𝑥,𝑦) gives
6equivalently, the maximum number of stack frames on the function’s call
stack
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the probability of transitioning from 𝑥 to 𝑦. Given stochastic
matrices𝔓 and𝔓′, we write𝔓𝔓′ for their product, which
is a stochastic matrix; and𝔓𝑛 for the 𝑛-fold product of𝔓.
We consider Markov chains whose step behaviour is de-

finable in terms of relative change, independently of the
current state. The relative change in each step is given by a
step distribution which is a (sub)probability mass function
𝑠 : Z → R[0,1] . We call 𝑠 finite if it has finite support. We
interpret the “missing probability”, 1 −∑

𝑖∈Z 𝑠 (𝑖), as failure.
Definition 5.2. Given a step distribution 𝑠 : Z→ R[0,1] we
define a stochastic matrix𝔓𝑠 on N⊥ B N ∪ {⊥} by:

⊥ 0 𝑚 > 0
⊥ 1 0 0
0 0 1 0

𝑛 > 0 1 −∑
𝑖∈Z 𝑠 (𝑖)

∑
𝑖≤−𝑛 𝑠 (𝑖) 𝑠 (𝑚 − 𝑛)

Note that 𝑠 gives the relative change in each step, the walk
is truncated (trapped) at 0, and the probability mass deficit
in 𝑠 (if any) is balanced by the probability of transitioning
(from a good state) to the failure state ⊥. We call 𝑠 AST if the
associated walk reaches state 0 a.s.
Definition 5.3. A step distribution 𝑠 is called AST if for
every𝑚 ∈ N, lim

𝑛→∞
𝔓𝑛
𝑠 (𝑚, 0) = 1.

Note that the limit in the definition above always exists
(and lies between 0 and 1) as the sequence (𝔓𝑛

𝑠 (𝑚, 0))𝑛 is
monotone increasing and bounded. A step distribution can be
shown AST by reduction to a one-counter Markov decision
process (MDP) (following [20]), for which a.s. termination
can be decided in polynomial time [7]. We present a new
proof that avoids the detour to MDPs, giving a tighter (in
fact optimal) complexity upper bound than that in [20]. The
crux lies in a simple, and decidable—if 𝑠 is finite and rational
valued—characterisation of AST which directly gives linear-
time decidability.
Theorem 5.4. A finite step distribution 𝑠 is AST if and only
if all of the following hold∑

𝑖∈Z
𝑠 (𝑖) = 1a) 𝑠 ≠ 𝛿0b)

∑
𝑖∈Z

𝑖 · 𝑠 (𝑖) ≤ 0c)

Uniform AST. We also model the case where in each time
step, a different distribution can be chosen from an available
set of step distributions, similar to a MDP [3].
Definition 5.5. A family of step distributions {𝑠𝑖 }𝑖∈I is
uniform AST if for every𝑚 ∈ N

lim
𝑛→∞

(
inf

𝑖1, · · · ,𝑖𝑛
𝔓𝑠𝑖1

· · ·𝔓𝑠𝑖𝑛
(𝑚, 0)

)
= 1

Informally it reads that as step count 𝑛 tends to ∞, no
matter which step distribution from {𝑠𝑖 }𝑖∈I is chosen at each
step, the walk eventually reaches 0 almost surely. Obviously,
uniform AST implies AST for each of the 𝑠𝑖 but, in general,
not conversely. However we can show:
Lemma 5.6. If {𝑠𝑖 }𝑖∈I is a finite family of step distributions
and each 𝑠𝑖 is AST then {𝑠𝑖 }𝑖∈I is uniform AST.

5.2 Counting-based Extraction of RandomWalks
Let’s fix a 1st-order program `

𝜑
𝑥 .𝑀 with no nested recursion.

To extract the counting pattern of `𝜑𝑥 .𝑀 , we instrument a
counting-based reduction relation ★→, and use it to analyse
a related term body`𝜑𝑥 .𝑀 (𝑟 ) B 𝑀 [𝑟/𝑥, ` /𝜑], i.e., the body
of the program `

𝜑
𝑥 .𝑀 , with 𝑥 instantiated to a fixed actual

argument 𝑟 , and a special symbol ` in place of all recursive
calls. The counting-based reduction relation ★→ is presented
in Fig. 5 and acts on configuration of the form ⟨𝑁, 𝒔, 𝑛⟩ where
𝑛 ∈ N counts recursive calls. The main idea is to replace
outcomes of recursive calls by a distinguished value ★ of
type R which stands for an unknown numeral. Note that the
unknown numeral★ can end up in the guard of a conditional
if recursive outcomes affect the control flow of the program.
This is, however, unavoidable if we want to count recursive
calls (without reference to the program denotation) as the
number of function call sites can depend on the (probabilistic)
outcome of a prior call. We define

T★𝑁 ;𝑛 B {𝒔 ∈ S | ∃𝑉 : ⟨𝑁, 𝒔, 0⟩ ★→∗ ⟨𝑉 , 𝜖, 𝑛⟩}

the set of traces on which recursive calls from exactly 𝑛

distinct call sites are made. As the reduction relation is deter-
ministic we get that {T★

𝑁 ;𝑛}𝑛∈N are pairwise disjoint. Using
similar arguments in [6], it is easy to see that T★

𝑁 ;𝑛 is a mea-
surable set of traces.

Definition 5.7. Given a term `
𝜑
𝑥 .𝑀 we define the 𝑟 -indexed

family {8`𝜑𝑥 .𝑀 | 𝑟8 : N → R[0,1]}𝑟 ∈R, called the counting
pattern of `𝜑𝑥 .𝑀 , whereby

8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) B `S
(
T★body

`
𝜑
𝑥 .𝑀

(𝑟 );𝑛
)

In words, 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) gives the probability of a run of
`
𝜑
𝑥 .𝑀 , on the actual argument 𝑟 , making recursive calls from

𝑛 distinct call sites. It is straightforward to see that for every
𝑟 we have

∑
𝑛 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) ≤ 1, by the same argument as

in [40, Lem. 7].

Example 5.8. Consider the term `
𝜑
𝑥 .𝑀 from Ex. 5.1. We get

8`𝜑𝑥 .𝑀 | 𝑟 8 (0) = 𝑝 , 8`𝜑𝑥 .𝑀 | 𝑟 8 (1) = 0, 8`𝜑𝑥 .𝑀 | 𝑟 8 (2) =
(1−𝑝) · 12 · (2− sig (𝑟 )), 8`𝜑𝑥 .𝑀 | 𝑟 8 (3) = (1−𝑝) · 12 · sig (𝑟 )
and 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 0 for all other 𝑛.

5.3 Termination via Counting Patterns
Ourmain result of this section is that we can use the counting
pattern of a program to soundly reason about its termination
property. For any counting distribution, i.e., (sub) pmf 𝑠 : N→
R[0,1] , we define the shifted step distribution 𝑠 : Z→ R[0,1]
by 𝑠 (𝑧) = 𝑠 (𝑧 + 1) for 𝑧 ≥ −1 and 𝑠 (𝑧) = 0 otherwise.

Theorem 5.9. If {8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R (qua family of step distri-
butions) is uniform AST then `

𝜑
𝑥 .𝑀 is AST on every actual

argument.
9
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⟨(_𝑥 .𝑀)𝑉 , 𝒔, 𝑛⟩ ★→ ⟨𝑀 [𝑉 /𝑥], 𝒔, 𝑛⟩ ⟨ ` 𝑉 , 𝒔, 𝑛⟩ ★→ ⟨★, 𝒔, 𝑛 + 1⟩ ⟨sample, 𝑟 :: 𝒔, 𝑛⟩ ★→ ⟨𝑟, 𝒔, 𝑛⟩
𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔, 𝑛⟩ ★→ ⟨𝑁, 𝒔, 𝑛⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔, 𝑛⟩ ★→ ⟨𝑃, 𝒔, 𝑛⟩ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔, 𝑛⟩
★→ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔, 𝑛⟩

⟨𝑓 (𝑉1, · · · ,★, · · · ,𝑉|𝑓 |), 𝒔, 𝑛⟩
★→ ⟨★, 𝒔, 𝑛⟩

𝑟 ≥ 0

⟨score(𝑟 ), 𝒔, 𝑛⟩ ★→ ⟨𝑟, 𝒔, 𝑛⟩
⟨𝑅, 𝒔, 𝑛⟩ ★→ ⟨𝑀, 𝒔 ′, 𝑛′⟩

⟨𝐸 [𝑅], 𝒔, 𝑛⟩ ★→ ⟨𝐸 [𝑀], 𝒔 ′, 𝑛′⟩

Figure 5. Small-step reduction rules for ★→.

Proof Sketch. We decompose the set of terminating traces on
a fixed argument according to the arguments of recursive
calls arranged in a tree. We can lower bound the probability
of each partition in terms of {8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R and show that
uniform AST implies that the cumulative weight over every
decomposed part equals 1, i.e., the program is AST. □

A Partial Order For Counting Distributions. We can
equip the set of counting distributions (i.e. (sub)pmfs 𝑠, 𝑡 :
N→ R[0,1] ) with a partial order that is compatible with the
termination behavior. We define

𝑠 ⊑ 𝑡 ⇔ ∀𝑛 ∈ N. ∑𝑚≤𝑛 𝑠 (𝑚) ≤ ∑
𝑚≤𝑛 𝑡 (𝑚)

i.e., 𝑠 ⊑ 𝑡 if the cumulative weight of 𝑠 is no greater than that
of 𝑡 at any point. It is easy to see that ⊑ is a partial order.
Furthermore, we can show compatibility w.r.t. AST (using
Thm. 5.4):

Lemma 5.10. If 𝑠 , {𝑡𝑖 }𝑖∈I are counting distributions and for
all 𝑖 ∈ I, 𝑠 ⊑ 𝑡𝑖 and 𝑠 is AST then {𝑡𝑖 }𝑖∈I is uniform AST.

Example 5.11. The counting pattern presented in Ex. 5.8 for
the term from Ex. 5.1 satisfies the preconditions of Lem. 5.10
for 𝑠 B 𝑝𝛿0 + (1 − 𝑝) 12𝛿2 + (1 − 𝑝) 12𝛿3 (where 𝛿𝑖 denotes
the Dirac-distribution). For 𝑝 ≥ 3

5 , we can deduce that the
counting pattern is uniform AST (via Lem. 5.10 and Thm. 5.4)
and thus the example is AST on every input (via Thm. 5.9).

5.4 𝜖-Recursion Avoiding Fixpoint Terms
An interesting quantity that arises from analysing Thm. 5.9
is 8`𝜑𝑥 .𝑀 | 𝑟 8 (0), i.e., the probability of a run of `𝜑𝑥 .𝑀 (on
argument 𝑟 ) making no further recursive calls. Let’s consider
programs where this probability has a positive lower bound.

Definition 5.12. A recursive program `
𝜑
𝑥 .𝑀 is 𝜖-recursion

avoiding (𝜖-RA) if for all 𝑟 ∈ R, 8`𝜑𝑥 .𝑀 | 𝑟 8 (0) ≥ 𝜖 .

Lets assume
∑

𝑛 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 1, i.e., the ★→-reduction
is never stuck. In [2] we show how this can be statically
ensured via a type system. Note that a program may be 𝜖-RA
for a positive 𝜖 , and yet not AST (as evident from Ex. 1.1). To
ensure AST, the positive probability 𝜖 must be “large enough”,
in relation to the number of recursive calls. We define the
recursive rank of `𝜑𝑥 .𝑀 to be the minimal 𝑚 such that for

all 𝑛 > 𝑚, and 𝑟 , 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 0 (or, equivalently, the
maximal number of call sites from which recursive calls are
made in a run of (`𝜑𝑥 .𝑀) 𝑟 , for any 𝑟 ). (In [2], we show that
the recursive rank can be upper bounded via a decidable non-
idempotent intersection type system.) Now, using Thm. 5.4
combined with Thm. 5.9, we can get an easy corollary:

Corollary 5.13. If `𝜑𝑥 .𝑀 has recursive rank𝑚 and is 𝜖-RA
for some 𝜖 > 0 that satisfies𝑚(1 − 𝜖) ≤ 1 then `

𝜑
𝑥 .𝑀 is AST

on every argument.

Example 5.14. The program (2) in Ex. 1.1 has recursive
rank 2, and is 𝑝-RA. So Cor. 5.13 is applicable whenever
2(1 − 𝑝) ≤ 1 ⇔ 𝑝 ≥ 1

2 . Note that Cor. 5.13 is weaker than
Thm. 5.9; for example, Cor. 5.13 on Ex. 5.1 is only applicable
for 𝑝 ≥ 2

3 whereas Thm. 5.9 is applicable for 𝑝 ≥ 3
5 (Ex. 5.11).

Example 5.15. As a further example, consider yet another
variation to our 3d-printing program from Ex. 5.1:

`
𝜑
𝑥 .let 𝑒 = sample in if 𝑒 ≤ 𝑝 then𝑥 else( (

𝜑3 (𝑥 + 1) ⊕𝑒 𝜑
2 (𝑥 + 1)

)
⊕sig (𝑥) 𝜑

2 (𝑥 + 1)
)

We sample the error value 𝑒 (the higher 𝑒 is, the more dam-
aged the print) and accept the print whenever 𝑒 ≤ 𝑝 . If
the print is unacceptable, we replace the binary choice in
Ex. 5.1 with one that depends on the sampled value of 𝑒 .
In the extended version [2] we show how Thm. 5.9 and
Lem. 5.10 can be used to prove this program AST when-
ever 𝑝 ≥

√
7 − 2 ≈ 0.646. As this example illustrates well,

termination analysis of terms that use continuous random
samples as first-class values can become very intricate. Such
examples are not expressible in PHORS [34] or with binary
probabilistic choice [20, 32, 50]. Our framework can analyse
such examples efficiently, even automatically.

Special Case: Affine Recursion. Every affine-recursive
program [20, §4.1] has recursive rank atmost 1, so by Cor. 5.13,
𝜖-RA for any 𝜖 > 0 implies AST. This can be seen as the
functional equivalent of the zero-one-law for termination
(c.f. [42, Sec. 2.6]). However, the real novelty of our result
lies in the fact that sophisticated methods are necessary to
deal with the case of non-affine recursion. Our proof rules
(Thm. 5.9 and Cor. 5.13) give a powerful tool to verify AST

10
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for non-affine programs where the standard zero-one law
fails. Similarly to the language studied e.g. in [39], we can
use this to design languages that are AST-by-construction.
In particular, in any probabilistic programming system we
can (safely) add a special fixpoint operator that comes with
the guarantee of 𝜖-RA for a sufficiently large 𝜖 , whose size
can be determined statically via the recursive rank. This cor-
responds to a generalization of the stochastic while-loop in
[39]. As demonstrated in [39], probabilistic programming
languages with this seemingly severe restriction can still
describe complex models with arbitrary precision and con-
vergence guarantee, supporting correct inference of (AST)
programs.

6 A Proof System For Non-affine Recursion
The framework of Sec. 5 (Thm. 5.9) relies on the counting pat-
tern, {8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R, of the program `

𝜑
𝑥 .𝑀 . This family can

contain uncountably many different counting distributions,
making it impractical for analysis. As we saw in Ex. 5.8, for
the counting pattern {8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R of Ex. 5.1, we have
8`𝜑𝑥 .𝑀 | 𝑟8 ≠ 8`𝜑𝑥 .𝑀 | 𝑟 ′8 for every 𝑟 ≠ 𝑟 ′. So how can we
automate analysis so that Thm. 5.9 can be applied without
explicitly computing the counting pattern? In this section
we use a simple game-playing perspective to solve the prob-
lem. We show that we can replace probabilistic branching
that depends on the actual argument, by nondeterministic
branching and thus obtain a sound method to apply Thm. 5.9.
As a rule of thumb, our system can verify all programs that
exhibit an AST counting pattern which is independent of
the (exact values of the) actual arguments (of the recursive
function in question). In this section we give an overview
of our approach, and direct readers to [2] for a full account,
including more complex examples.

6.1 Stochastic symbolic Execution
The first idea we use for our system is stochastic symbolic
execution. Instead of executing a program on a fixed trace
(as done in ★→, Fig. 5) we evaluate on a trace of sample vari-
ables (𝛼0, 𝛼1, · · · ) whose values can be instantiated later. We
organise execution in the form a binary tree where each
branching represents a conditional which is annotated with
the value on which control flow branches. We also record
score-statements as well as recursive calls. We now replace
the actual argument with an unknown value ⊛ (correspond-
ing to the analysis of body`𝜑𝑥 .𝑀 (⊛) in Sec. 5.2). In Fig. 6a
the execution tree that corresponds to the running example,
Ex. 5.1, is depicted, we have coloured each branching that
relies on the concrete argument ⊛ in red.

6.2 Strategies on Trees
As some of the branching (coloured red) depends on the
actual argument, we cannot analyse it probabilistically. This
can be overcome by an intuitive 2-player game reading of the
execution tree: for every such node the Environment (player)

𝛼1 − 𝑝

`

`

𝛼3 − 1
2

`

`

`

`

`

(a)

𝛼1 − 𝑝

𝛼3 − 1
2

`

`

`

`

`

𝛼1 − 𝑝

`

`

(b)

Figure 6. Symbolic execution trees for the running example
and all possible strategies (b).

can resolve its branching by an explicit strategy that indicates
a left/right choice for each coloured node. For example, all
possible strategies for the tree in Fig. 6a are depicted in
Fig. 6b. As a strategy no longer relies on branching at nodes
that contain ⊛, we can recover a probabilistic interpretation
of paths, which is just the Lebesgue-measure of the possible
assignment to the sample variables 𝛼0, 𝛼1, · · · , such that a
path is indeed followed. Given a strategy𝔖, we denote with
P(𝔖, 𝑛) the probability of taking a path such that at most 𝑛
recursive calls are made (i.e., a fixpoint node is traversed at
most 𝑛 times). Depending on the set of primitive functions,
this value can be computed effectively. We now define the
counting distribution Papprox by
Papprox (0) B min

𝔖∈Strat (𝔗)
P(𝔖, 0)

Papprox (𝑛 > 0) B
(

min
𝔖∈Strat (𝔗)

P(𝔖, 𝑛)
)
−
(

min
𝔖∈Strat (𝔗)

P(𝔖, 𝑛 − 1)
)

We can understand Papprox (𝑛) as the least probability that 𝑛
calls are made even if the Environment chooses in the worst
(meaning maximal no. of recursive calls) possible way.

Example 6.1. Consider all strategies for the running ex-
ample listed in Fig. 6b. We can compute Papprox (0) = 𝑝;
Papprox (2) = Papprox (3) = (1 − 𝑝) · 1

2 ; and Papprox (𝑛) = 0
for all other 𝑛.

We can show that replacing probabilistic branching with
nondeterministic one gives a lower bound (w.r.t. to the order
⊑) on the counting pattern.

Theorem 6.2. For every 𝑟 ∈ R, Papprox ⊑ 8`𝜑𝑥 .𝑀 | 𝑟8

Thus, if Papprox is AST (which is checkable via Thm. 5.4)
we get that {8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R is uniformAST; and via Thm. 5.9
`
𝜑
𝑥 .𝑀 is AST on every actual argument. Thm. 6.2 and the

values computed in Ex. 6.1 allow us to deduce (automatically)
that Ex. 5.1 is AST on every argument if 𝑝 ≥ 3

5 . Similarly,
our tool can verify AST of Ex. 5.15 if 𝑝 ≥

√
7−2. For a formal

description of our algorithm, correctness proof and further
examples see [2].
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7 Implementation
We provide prototype implementations for computing lower
bound of the termination probability, and of AST verification,
building on Sec. 3 and Sec. 6 respectively. See [2] for a fuller
account.

7.1 Lower Bounds of Termination Probability
We have implemented a prototype lower bound computation
tool that exploits the completeness of the interval-traces
semantics by iterative search for terminating interval traces.
Even in its current, unoptimized, form our tool is able to
compute meaningful lower bounds in a reasonable time. A
full evaluation can be found in [2].

7.2 AST Verification
The challenge in implementing the ideas from Sec. 6 lies
in the computation of branching probabilities. We adopt
a geometric interpretation of probability and make use of
various results and implementation techniques for volume
computation. For simplicity we restrict primitive operations
to addition, and multiplication by a constant (and thus sub-
traction), as the probability of branching can be seen as the
volume of a convex polytope [21] (a subset of R𝑑 of the from
{®𝑥 | 𝐴®𝑥 ≤ 𝑏}). We make use of the analytic formula for
this volume in [37] and its subsequent implementation in
[11], and appeal to Thm. 5.4. Our prototype implementation
can verify many examples, including those from Sec. 1.1,
Sec. 5, and Sec. 6, thereby illustrating that our approach is
well-suited to implementation.

8 Related Work and Conclusion
Our interval-traces approach can be seen as a probabilistic
interpretation of interval analysis, a standard approach to
infer bounds on program variables [12, 46]. The attractive
feature of intervals in our work is its completeness w.r.t. the
Lebesgue measure for a broad range of primitive operations.
The only comparable lower bound computation we are

aware of is presented in [34]. Kobayashi et al. show that the
termination probability of CbN order-𝑛 probabilistic recur-
sion schemes (𝑛-PHORS) can be obtained as the least fixpoint
of suitable order-(𝑛 − 1) fixpoint equations, which can be
solved using standard Kleene fixpoint iteration. By contrast,
our approach works on programs directly, and can handle
continuous distributions. It is worth noting that (order-𝑛)
PHORS is readily encodable as (order-𝑛) CbN SPCF, but the
former is strictly less expressive (because the underlying
recursion schemes are not Turing complete). Some inter-
esting SPCF terms such as Ex. 5.15 cannot be expressed as
PHORS. Since recursive Markov chains [24] (equivalently,
probabilistic pushdown automata [8]) are essentially equiv-
alent to 1-PHORS [34], it follows that order-1 SPCF (which
contains the term in Ex. 5.15) is strictly more expressive than
recursive Markov chains.

Our intersection type system is inspired by, and builds
upon, the ideas of [9, 23]. However, unlike [9], we cannot
prove correctness directly (because of continuous samples),
rather we need to appeal to the completeness of our interval-
based semantics. The step annotation of types enables us
to reason about expected termination time. We conjecture
these ideas to also be applicable to the system of [9].
Our AST verification method is closely related to [50],

in that they also study recursive programs and allow for
non-affine behaviour. Our work differs nonetheless in sev-
eral key aspects: While they study an imperative language
with discrete distributions, we work with a purely functional
language with continuous distributions. Though their pro-
posed rules can produce lower bounds on the probability
of termination, they seem cumbersome to use. Their rule
informally reads: if, for all 𝑛, we assume that each recursive
call terminates with probability 𝑙𝑛 after 𝑛 fixpoint unfoldings,
and we can prove that it terminates with probability at least
𝑙𝑛+1 after 𝑛 +1 unfoldings, then the program terminates with
probability at least sup𝑛 𝑙𝑛 (c.f. [50, Thm. 4.2]). In order to
apply this rule, the user must manually find an explicit (and
often non-trivial) sequence (𝑙𝑛)𝑛∈N. By contrast, our system
provides a sound reduction to a random walk which can be
analysed efficiently in linear time.

As already mentioned, our method can be seen as orthog-
onal to that in [20]. It is not at all obvious if their techniques
can be extended to our setting with sampling from the uni-
form distribution. An interesting future direction is to de-
velop a unified framework that analyses both the size-related
information of the recursive function argument and the num-
ber of recursion call sites.

Conclusion
Recent advances in probabilistic programming systems and
allied areas (such as [40]) provide strong impetus for the
study of AST of programs with continuous distribution. We
have presented a first comprehensive study of the lower
bound problem, and ascertained the recursion-theoretic com-
plexity of several termination problems. We have introduced
a novel proof system for AST verification of non-affine pro-
grams which is easily implementable. While some of the ex-
isting AST proof methods support continuous distributions
[16, 18, 25] the majority do not. It would be interesting to
investigate if they [20, 31, 32, 34, 42, 50] can be so extended.
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A Additional Material - Section 2
A.1 Typing Rules for SPCF
The full typing system of SPCF is given in Fig. 7.

A.2 Additional Proofs
Restatement of Lem. 2.3. If𝑀 is AST then

Eterm (𝑀) =
∞∑︁
𝑛=0

`S

(
T𝑛𝑀,term

)
· 𝑛

Proof. We have
⊎

𝑛 T
𝑛
𝑀,term = T𝑀,term. Now define

T>𝑛𝑀,term ≜
⊎
𝑖>𝑛

T𝑖𝑀,term

It is easy to see that `S
(
T>𝑛
𝑀,term

)
+ `S

(
T≤𝑛
𝑀,term

)
= 1 as by

assumption `S
(
T𝑀,term

)
= 1. Now

Eterm (𝑀) =
∞∑︁
𝑛=0

(
1 − `S

(
T≤𝑛
𝑀,term

) )
(1)
=

∞∑︁
𝑛=0

`S
(
T>𝑛𝑀,term

)
(2)
=

∞∑︁
𝑛=0

∑︁
𝑗>𝑛

`S
(
T𝑖𝑀,term

)
(3)
=

∞∑︁
𝑛=0

`S
(
T𝑛𝑀,term

)
· 𝑛

where (1) holds as `S
(
T>𝑛
𝑀,term

)
+ `S

(
T≤𝑛
𝑀,term

)
= 1, (2) follows

as the union in the definition of T>𝑛
𝑀,term is disjoint and (3) is

an easy combinatorial argument. □

Lemma A.1 (PAST implies AST). If 𝑀 is PAST then 𝑀 is
AST

Proof. Assume𝑀 is PAST so by definition

∞∑︁
𝑛=0

(
1 − `S

(
T≤𝑛
𝑀,term

) )
is a finite sum. As this sum converges to a finite value the se-
quence

(
`S

(
T≤𝑛
𝑀,term

) )
𝑛∈Nmust converge to 1. And asT≤𝑛

𝑀,term ⊆
T𝑀,term for every 𝑛 and `S is a measure (in particular mono-
tone w.r.t. to ⊆ and ≤) we get `S (T𝑀,term) = 1, so 𝑀 is
AST. □

A.3 Call by Value
We now introduce a Call by Value evaluation strategy for
SPCF. We define call by value redexes and evaluation con-
texts by:

𝑅 B (_𝑥 .𝑀)𝑉 | (`𝜑𝑥 .𝑀)𝑉 | if(𝑟, 𝑁 , 𝑃)
| 𝑓 (𝑟1, · · · , 𝑟 |𝑓 |) | sample | score(𝑟 )

𝐸 B [·] | 𝐸𝑀 | (_𝑦.𝑀)𝐸 | (`𝜑𝑥 .𝑀)𝐸 | if(𝐸, 𝑁, 𝑃)
| 𝑓 (𝑟1, · · · , 𝑟𝑘−1, 𝐸, 𝑀𝑘+1, · · · , 𝑀 |𝑓 |) | score(𝐸)

Note that for a 𝛽-redex to reduce, the argument must be a
value and we conversely reduce the left hand side of applica-
tions. We define the CbV reduction relation by the rules in
Fig. 8. The definitions in Sec. 2.4 regarding AST and PAST
extend naturally to CbV7. Throughout this paper we always
make clear what evaluation strategy we are using, so the
notation never clashes.

B Additional Material - Section 3
B.1 Interval-Based Semantics
Restatement of Lem. 3.2. If 𝑓 : R𝑛 → R is continuous then
𝑓 is interval preserving

Proof. Let 𝐴 ≜ [𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛] as in the definition of
interval perseverance.We need a higher-dimensional version
of the intermediate value theorem (IVT): if x, y ∈ 𝐴 and 𝑐 ∈ R
be such that 𝑓 (x) ≤ 𝑐 ≤ 𝑓 (y) then there is a z ∈ 𝐴 such that
𝑓 (z) = 𝑐 (1). The IVT implies that 𝑓 (𝐴) is a connected set. A
standard property of continuous functions is that the images
of compact sets are compact sets. Due to the Heine–Borel
theorem, compact euclidean sets are exactly those that are
bounded and closed. As 𝐴 is obviously compact, we get that
𝑓 (𝐴) is compact and thus bounded and closed. As 𝑓 (𝐴) is
also connected (by the IVT), it is a closed (bounded) interval
as required.
It remains to show (1): Let 𝛾 : [0, 1] → 𝐴 be defined

by 𝛾 (𝑡) ≜ 𝑡x + (1 − 𝑡)y which is obviously continuous. In
particular, note that since𝐴 is a box (and thus convex) 𝛾 (𝑡) ∈
𝐴 for every 𝑡 ∈ [0, 1]. Now define 𝜙 : [0, 1] → R by 𝜙 ≜ 𝑓 ◦𝛾
which is the composition of continuous functions and thus
also continuous. Now 𝜙 (0) = 𝑓 (x) ≤ 𝑐 ≤ 𝑓 (y) = 𝜙 (1) so by
the intermediate value theorem in the 1d case there exists
a 𝑡 ∈ [0, 1] with 𝜙 (𝑡) = 𝑐 . We can define z ≜ 𝛾 (𝑡) which
satisfies the requirement by definition of 𝜙 . □

B.2 Interval-Based Reduction
The full (CbN) reduction system for interval terms is given
in Fig. 9.

B.3 Soundness
This subsection is devoted to give a full proof of Thm. 3.4.

Assume (Ω, ΣΩ) is a measurable space and ` is a measure
on (Ω, ΣΩ).𝐴, 𝐵 ∈ ΣΩ are called almost-disjoint if ` (𝐴∩𝐵) =
7While the concepts extend naturally, they obviously are not identical. E.g.,
the probability of a termination in CbV may very well differ from the one
in CbN.
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𝑥 : 𝛼 ∈ Γ
Γ ⊢ 𝑥 : 𝛼

Γ, 𝑥 : 𝛼 ⊢ 𝑀 : 𝛽

Γ ⊢ _𝑥 .𝑀 : 𝛼 → 𝛽

Γ, 𝜑 : 𝛼 → 𝛽, 𝑥 : 𝛼 ⊢ 𝑀 : 𝛽

Γ ⊢ `
𝜑
𝑥 .𝑀 : 𝛼 → 𝛽 Γ ⊢ 𝑟 : R

Γ ⊢ 𝑀 : 𝛽 → 𝛼 Γ ⊢ 𝑁 : 𝛽

Γ ⊢ 𝑀𝑁 : 𝛼
Γ ⊢ 𝑀 : R Γ ⊢ 𝑁 : 𝛼 Γ ⊢ 𝑃 : 𝛼

Γ ⊢ if(𝑀, 𝑁, 𝑃) : 𝛼

Γ ⊢ sample : R
Γ ⊢ 𝑀1 : R · · · Γ ⊢ 𝑀 |𝑓 | : R

Γ ⊢ 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) : R
Γ ⊢ 𝑀 : R

Γ ⊢ score(𝑀) : R

Figure 7. Full SPCF Typing rules

⟨(_𝑥 .𝑀)𝑉 , 𝒔⟩ 𝔙−→ ⟨𝑀 [𝑉 /𝑥], 𝒔⟩ ⟨(`𝜑𝑥 .𝑀)𝑉 , 𝒔⟩ 𝔙−→ ⟨𝑀 [𝑉 /𝑥, (`𝜑𝑥 .𝑀)/𝜑], 𝒔⟩
𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ 𝔙−→ ⟨𝑁, 𝒔⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ 𝔙−→ ⟨𝑃, 𝒔⟩ ⟨sample, 𝑟 :: 𝒔⟩ 𝔙−→ ⟨𝑟, 𝒔⟩

⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩
𝔙−→ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩

𝑟 ≥ 0

⟨score(𝑟 ), 𝒔⟩ 𝔙−→ ⟨𝑟, 𝒔⟩
⟨𝑅, 𝒔⟩ 𝔙−→ ⟨𝑀, 𝒔 ′⟩

⟨𝐸 [𝑅], 𝒔⟩ 𝔙−→ ⟨𝐸 [𝑀], 𝒔 ′⟩

Figure 8. Call by Value small-step reduction 𝔙−→ for SPCF. If it is clear from the context that we work in a CbV strategy we
drop the annotation and simply write →.

⟨(_𝑥.M)N , ℘⟩ { ⟨M[N/𝑥], ℘⟩ ⟨(`𝜑𝑥 .M)N , ℘⟩ { ⟨M[N/𝑥, (`𝜑𝑥 .M)/𝜑], ℘⟩
𝑏 ≤ 0

⟨if([𝑎, 𝑏],N ,P), ℘⟩ { ⟨N , ℘⟩
𝑎 > 0

⟨if([𝑎, 𝑏],N ,P), ℘⟩ { ⟨P, ℘⟩

⟨sample, [𝑎, 𝑏] :: ℘⟩ { ⟨[𝑎, 𝑏], ℘⟩
0 ≤ 𝑎

⟨score([𝑎, 𝑏]), ℘⟩ { ⟨[𝑎, 𝑏], ℘⟩

⟨𝑓
(
[𝑎1, 𝑏1], · · · , [𝑎 |𝑓 |, 𝑏 |𝑓 |]

)
, ℘⟩ { ⟨𝑓 (𝑎1, 𝑏1, · · · , 𝑎 |𝑓 |, 𝑏 |𝑓 |), ℘⟩

⟨R, ℘⟩ { ⟨M, ℘′⟩
⟨E[R], ℘⟩ { ⟨E[M], ℘′⟩

Figure 9. Internal-based (CbN) small-step reduction.

0. In the case of Ω = R we get that intervals [𝑎, 𝑏] and [𝑐, 𝑑]

are almost disjoint iff 𝑏 ≤ 𝑐 or 𝑑 ≤ 𝑎.

Embedding and Refinement. To state soundness it is
fruitful to investigate the embedding of standard terms in
interval terms (·2ℑ). We define a relation 𝑀 ⊳M in Fig. 10
which models the intuitive idea of viewing every interval
numeral [𝑎, 𝑏] as any value within [𝑎, 𝑏]. Then 𝑀 ⊳ M is
derivable if and only if𝑀 andM agree structurally and every
standard numeral in𝑀 is contained in the repressive interval
numeral in M. We can see that the canonical embedding

is compatible with this refinement, i.e., for every standard
term𝑀 ,𝑀 ⊳𝑀2ℑ. We can also define a refinement between
standard traces and interval by

𝑟0 · · · 𝑟𝑛−1 ⊳ [𝑎0, 𝑏0] · · · [𝑎𝑛−1, 𝑏𝑛−1] ⇔ ∀𝑖 : 𝑟𝑖 ∈ [𝑎𝑖 , 𝑏𝑖]

For an interval trace ℘ we define L ℘ M B {𝒔 | 𝒔 ⊳ ℘}, i.e., the
set of all traces refining ℘.

LemmaB.1. If ⟨M, ℘⟩ {𝑛 ⟨N , ℘′⟩ and𝑀 ⊳M and 𝒔⊳℘ then
there exists a 𝑁 ⊳N and 𝒔 ′ ⊳ ℘′ such that ⟨𝑀, 𝒔⟩ →𝑛 ⟨𝑁, 𝒔 ′⟩.
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𝑥 ⊳ 𝑥 sample ⊳ sample

𝑟 ∈ [𝑎, 𝑏]

𝑟 ⊳ [𝑎, 𝑏]
𝑀 ⊳M

_𝑥 .𝑀 ⊳ _𝑥 .M
𝑀 ⊳M 𝑁 ⊳N

𝑀𝑁 ⊳MN
𝑀 ⊳M

`
𝜑
𝑥 .𝑀 ⊳ `

𝜑
𝑥 .M

𝑀 ⊳M
score(𝑀) ⊳ score(M)

𝑀 ⊳M 𝑁 ⊳N 𝑃 ⊳ P
if(𝑀, 𝑁, 𝑃) ⊳ if(M,N ,P)

𝑀1 ⊳M1 · · · 𝑀 |𝑓 | ⊳M |𝑓 |

𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) ⊳ 𝑓 (M1, · · · ,M |𝑓 |)

Figure 10. Inductive definition of the refinement relation ⊳ between the set of well-typed terms Λ and the set of well-typed
interval terms Λℑ.

Proof. We first observe the following obvious result: If𝑀 ⊳M
and 𝑁𝑖 ⊳N𝑖 for 𝑖 ∈ [𝑛] then𝑀 [𝑁𝑖/𝑥𝑖 ]𝑖∈[𝑛] ⊳M[N𝑖/𝑥𝑖 ]𝑖∈[𝑛]
which can be proved by induction on 𝑀 (or M). Call this
observation (1). We now show the statement for 𝑛 = 1. The
case for 𝑛 = 0 is trivial and for 𝑛 > 1 follows by a simple
induction. We do structural induction on M.

• If M = (_𝑥 .P)Q: then N = P[Q/𝑥] and as 𝑀 ⊳ M,
𝑀 = (_𝑥 .𝑃)𝑉 for some 𝑃 ⊳P, 𝑄 ⊳Q and ℘′ = ℘. Define
𝒔 ′ ≜ 𝒔 and 𝑁 ≜ 𝑃 [𝑄/𝑥]. Clearly ⟨𝑀, 𝒔⟩ → ⟨𝑁, 𝒔 ′⟩.
Now 𝒔 ′ ⊳ ℘′ is obvious and from (1) we also get 𝑁 ⊳N .

• If M = (`𝜑𝑥 .P)Q: similar to the previous case.
• M = 𝑓

(
[𝑎1, 𝑏1], · · · , [𝑎 |𝑓 |, 𝑏 |𝑓 |]

)
. Then

N = 𝑓 (𝑎1, 𝑏1, · · · , 𝑎 |𝑓 |, 𝑏 |𝑓 |)

As𝑀 ⊳M we get𝑀 = 𝑓 (𝑟1, · · · , 𝑟 |𝑓 |) and 𝑟𝑖 ∈ [𝑎𝑖 , 𝑏𝑖].
Define 𝒔 ′ ≜ 𝒔 and𝑁 ≜ 𝑓 (𝑟1, · · · , 𝑟𝑛). Clearly ⟨𝑀, 𝒔⟩ →
⟨𝑁, 𝒔 ′⟩. As 𝑓 is interval preserving we also get that
𝑓 (𝑟1, · · · , 𝑟 |𝑓 |) ∈ 𝑓 (𝑎1, 𝑏1, · · · , 𝑎 |𝑓 |, 𝑏 |𝑓 |) so 𝑁 ⊳N .

• M = if
(
[𝑎, 𝑏],P,Q

)
. Assume 𝑏 ≤ 0, the case where

𝑎 > 0 is analogous. So N = P. As 𝑀 ⊳ M, 𝑀 =

if
(
𝑟, 𝑃,𝑄

)
for some 𝑟 ∈ [𝑎, 𝑏] and 𝑃 ⊳ P. So we can

choose 𝑁 = 𝑃 .
• M = sample so ℘ = [𝑎, 𝑏] :: ℘′ and N = [𝑎, 𝑏]. Now
𝑀 = sample and as 𝒔 ⊳ ℘, 𝒔 = 𝑟 :: 𝒔 ′ for 𝑟 ∈ [𝑎, 𝑏]. Now
define 𝑁 = 𝑟 .

• M = score([𝑎, 𝑏]): So 𝑀 = score(𝑟 ) and 𝑟 ∈ [𝑎, 𝑏].
So 𝑁 = 𝑟 .

• M = E[R] for E ≠ [·]: Then ⟨R, ℘⟩ → ⟨M, ℘′⟩.
As 𝑀 ⊳ M we have 𝑀 = 𝐸 [𝑅] for 𝑅 ⊳ R. Now by
induction on R we get a 𝑀 with 𝑀 ⊳ M and 𝒔 ′ ⊳ ℘′

such that ⟨𝑅, 𝒔⟩ → ⟨𝑀, 𝒔 ′⟩. Now 𝐸 [𝑀] ⊳ E[M] as ⊳
is obviously closed under evaluation contexts. And
⟨𝐸 [𝑅], 𝒔⟩ → ⟨𝐸 [𝑀], 𝒔 ′⟩ as required.

□

Lemma B.2. If ℘ ∈ TℑM,term and𝑀 ⊳M then L ℘ M ⊆ T𝑀,term

and for each 𝒔 ∈ L ℘ M,#℘

↓ (M) = #𝒔
↓(𝑀)

Proof. Follow directly from Lem. B.1. □

Proposition B.3. For every countable set of pairwise com-
patible traces 𝐴 ⊆ TℑM,term and every 𝑀 ⊳ M we have the
following:

𝜔 (𝐴) ≤ Pterm (𝑀)• EM (𝐴) ≤ Eterm (𝑀)•

Proof. We first note that for every interval trace ℘, L ℘ M is a
measurable set of traces and furthermore `S (L ℘ M) = 𝜔 (℘)
by definition of the Lebesgue measure.

Now as𝐴 is by assumption pairwise compatible the family
(L ℘ M)℘∈𝐴 is pairwise almost disjoint. Thus

𝜔 (𝐴) =
∑︁
℘∈𝐴

𝜔 (℘) (1)
=
∑︁
℘∈𝐴

`S
(
L ℘ M

)
(2)
= `S

( ⋃
℘∈𝐴

L ℘ M
) (3)
≤ `S

(
T𝑀,term

)
= Pterm (𝑀)

where (1) follows from the definition of the Lebesgue mea-
sure on boxes, (2) from the fact that family is pairwise almost
disjoint and thus differs by a countable union of null sets. (3)
follows from Lem. B.2.
For the second part we can observe that if ℘ ∈ TℑM,term,

𝑀 ⊳M and 𝒔 ⊳ ℘, then#𝒔
↓(𝑀) = #℘

↓ (M). Now

EM (𝐴) =
∑︁
℘∈𝐴

𝜔 (℘) ·#℘

↓ (M)

(1)
=

∞∑︁
𝑛=0

𝜔 ({℘ ∈ 𝐴 | #℘

↓ (M) = 𝑛}) · 𝑛

(2)
≤

∞∑︁
𝑛=0

`S

(
T𝑛𝑀,term

)
· 𝑛

(3)
≤ Eterm (𝑀)

where (1) follows from simple reordering, (2) from the fact
that every interval trace in {℘ ∈ 𝐴 | #℘

↓ (M) = 𝑛} we
get L ℘ M ⊆ T𝑛

𝑀,term and the same reasoning as above. (3) is
standard and can e.g. be inferred from the proof of Lem. 2.3.

□

Restatement of Thm. 3.4. For every countable set of pair-
wise compatible traces 𝐴 ⊆ Tℑ

𝑀2ℑ,term
the following holds:

𝜔 (𝐴) ≤ Pterm (𝑀)• E(𝑀2ℑ, 𝐴) ≤ Eterm (𝑀)•
17
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Proof. Follows directly from Prop. B.3 as𝑀 ⊳𝑀2ℑ. □

B.4 Completeness
Restatement of Lem. 3.7. If 𝑓 : R𝑛 → R is continuous
and for every 𝑦 ∈ R, 𝑓 −1 ({𝑦}) is a Lebesgue Null-set then 𝑓 is
Q-interval separable.

Proof. Let 𝐼 = [𝑎, 𝑏] be an interval as in the definition of inter-
val separable.We have 𝑓 −1 ([𝑎, 𝑏]) = 𝑓 −1 ((𝑎, 𝑏))∪𝑓 −1 ({𝑎})∪
𝑓 −1 ({𝑏}). By assumption 𝑓 −1 ({𝑎}) and 𝑓 −1 ({𝑏}) are null
sets. As 𝑓 is continuous and (𝑎, 𝑏) is an open set we get
that 𝑓 −1 (𝑎, 𝑏) is an open set. A well know result in R𝑛 is
that every open-set can be covered exactly by a countable
number of boxes that have rational endpoints. So there are
boxes 𝐵1, 𝐵2, · · · (with rational endpoints) such that ∪𝑖𝐵𝑖 =

𝑓 −1 (𝑎, 𝑏). □

The remaining pats of this section are devoted to give
a proof of Thm. 3.8. We assume that all primitive function
𝑓 ∈ F are interval separable. As a simple example while this
is not easy consider the following:

ExampleB.4. Consider the term𝑀 ≜ if(sample−0.5, 0, 1)
which is clearly AST. In fact, we have T𝑀,term = {𝑠1 | 𝑠1 ∈
R[0,1]}, so the set of terminating traces is itself an interval.
However, the interval trace ℘ = [0, 1] is not terminating for
𝑀2ℑ (formally [0, 1] ∉ Tℑ

𝑀2ℑ,term).

The key step to constructing a countable set of interval
traces is to focus on branching. We, therefore, annotate the
reduction relation with explicit information which branch
of a conditional was taken. We define the set of directions
by 𝐷 = {𝑳, 𝑹}. A conditional oracle is then a sequence ^ ∈
𝐷∗. To define the meaning of a conditional oracle we use
a modified reduction relation 𝑐𝑜−→ ⊆ (Λ × S × 𝐷∗)2 via the
rules in Fig. 11. We can easily see:

Lemma B.5. If 𝒔 ∈ T𝑀,term then there exists a unique ^ ∈ 𝐷∗

and value 𝑉 with ⟨𝑀, 𝒔, ^⟩ 𝑐𝑜−→
∗
⟨𝑉 , 𝜖, 𝜖⟩.

We now partition the set of terminating traces according
to their branching behaviour. For ^ ∈ 𝐷∗ we define

T
(^)
𝑀,term ≜ {𝒔 ∈ S | ∃𝑉 : ⟨𝑀, 𝒔, ^⟩ 𝑐𝑜−→

∗
⟨𝑉 , 𝜖, 𝜖⟩}

I.e., all traces that branch according to ^. By Lem. B.5 it
is easy to see that that the family

{
T
(^)
𝑀,term

}
^∈𝐷∗ forms a

partition of the set of terminating traces. Note that by fixing
the branching, we also fix the number of reduction steps
and the number of samples: if 𝒔1, 𝒔2 ∈ T(^)

𝑀,term, #
𝒔1
↓ (𝑀) =

#𝒔2
↓ (𝑀) and |𝒔1 | = |𝒔2 |.
In Ex. B.4, we have seen that there exist interval traces

℘ ∈ Sℑ with L ℘ M ⊆ T𝑀,term that are not terminating for the
canonical embedding𝑀2ℑ (i.e., ℘ ∉ Tℑ

𝑀2ℑ,term). We can, how-
ever, show that if all traces in L ℘ M follow the same branching
℘ ∈ Tℑ

𝑀2ℑ,term does hold. We first need the following:

Lemma B.6. Let M be any term not already a value, ^, ^ ′ ∈
𝐷∗ and ℘ ∈ Sℑ and 𝑛 ∈ N. If for every pair (𝑀, 𝒔) with𝑀 ⊳M
and 𝒔 ⊳ ℘

⟨𝑀, 𝒔, ^⟩ 𝑐𝑜−→
𝑛
⟨𝑀(𝑀,𝒔) , 𝒔 (𝑀,𝒔) , ^

′⟩

(Note that𝑀(𝑀,𝒔) and 𝒔 (𝑀,𝒔) are uniquely determined). Then
⟨M, ℘⟩ {𝑛 ⟨M ′, ℘′⟩ for someM ′ and ℘′ such that for every
pair (𝑀, 𝒔),𝑀(𝑀,𝒔) ⊳M ′ and 𝒔 (𝑀,𝒔) ⊳ ℘

′.

Proof. We show the result for 𝑛 = 1. The case for 𝑛 = 0 is
trivial and for 𝑛 > 1 follows by easy induction using the
case for 𝑛 = 1. The proof goes by induction onM. We only
consider the case wereM is itself a redex. The case where
M = E[R] follow by induction on R. The only interesting
case is where M is a conditional redex: So lets focus on the
case where M = if([𝑎, 𝑏],N ,P): Now any 𝑀 ⊳ M must
have the from 𝑀 = if(𝑟𝑀 , 𝑁𝑀 , 𝑃𝑀 ) and there exist at least
on such (as we work with closed, non, empty intervals). As
any such 𝑀 can reduce via 𝑐𝑜−→ by assumption we get that
^ = 𝑳 :: ^ ′ or ^ = 𝑹 :: ^ ′ as otherwise no reduction can take
place. W.l.o.g. assume ^ = 𝑳^ ′. We now claim that 𝑏 ≤ 0.
Assume for contradiction that 𝑏 > 0. Then choose the term
¤𝑀 ⊳ if(𝑏, 𝑁 , 𝑃) where 𝑁 ⊳N and 𝑃 ⊳ P are arbitrary (they
always exist). Now ⟨ ¤𝑀, 𝒔, 𝑳 :: ^ ′⟩ cannot make a reduction
step via 𝑐𝑜−→ which contradicts the assumption. So 𝑏 ≤ 0.
This means that M = if([𝑎, 𝑏],N ,P) { N . Now any

𝑀 ⊳ M of the form 𝑀 = if(𝑟𝑀 , 𝑁𝑀 , 𝑃𝑀 ) and reduces to
𝑁𝑀 . So 𝑀(𝑀,𝒔) = 𝑁𝑀 ⊳ N = M ′ as required and obviously
𝒔 (𝑀,𝒔) = 𝒔 ⊳ ℘ = ℘′. □

Lemma B.7. If ℘ ∈ Sℑ, ^ ∈ 𝐷∗ and L ℘ M ⊆ T(^)
𝑀,term then

℘ ∈ Tℑ
𝑀2ℑ,term

.

Proof. We show the following stronger lemma which imme-
diately implies the result as the only term refining𝑀2ℑ is𝑀
itself: IfM is any interval term, ℘ ∈ Sℑ and ^ ∈ 𝐷∗ and for
all𝑀 ⊳M, L ℘ M ⊆ T(^)

𝑀,term then ℘ ∈ TℑM,term.
We can proof this as follows: As for any 𝑀 ⊳M, L ℘ M ⊆

T
(^)
𝑀,term we get that every 𝑀 ⊳ M and 𝒔 ⊳ ℘, ⟨𝑀, 𝒔, ^⟩ 𝑐𝑜−→

𝑛

⟨𝑉(𝑀,𝒔) , 𝜖, 𝜖⟩ for a fixed𝑛 (As soon as^ is fixed each reduction
takes the same number of steps). We can thus apply Lem. B.6
and get that ⟨M, ℘⟩ {𝑛 ⟨V, 𝜖⟩, so ℘ ∈ TℑM,term as required.

□

B.5 Symbolic Terms and Symbolic Execution
The second key ingredient is symbolic execution as this gives
us a better understanding of the sets T(^)

𝑀,term. The idea of sym-
bolic terms is to not evaluate a term on a fixed trace of real
numbers but instead on a generic trace consisting of vari-
ables. Whenever we resolve a sample-statement we do not
substitute in a real number but a variable. This does prohibit
us from evaluating primitive functions or resolve condition-
als. To circumvent the former we use symbolic values, which
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⟨(_𝑥 .𝑀)𝑁, 𝒔, ^⟩ 𝑐𝑜−→ ⟨𝑀 [𝑁 /𝑥], 𝒔, ^⟩

𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔, 𝑳 :: ^⟩ 𝑐𝑜−→ ⟨𝑁, 𝒔, ^⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔, 𝑹 :: ^⟩ 𝑐𝑜−→ ⟨𝑃, 𝒔, ^⟩

⟨sample, 𝑟 :: 𝒔, ^⟩ 𝑐𝑜−→ ⟨𝑟, 𝒔, ^⟩
⟨(`𝜑𝑥 .𝑀)𝑁, 𝒔, ^⟩ 𝑐𝑜−→ ⟨𝑀 [𝑁 /𝑥, (`𝜑𝑥 .𝑀)/𝜑], 𝒔, ^⟩

𝑟 ≥ 0

⟨score(𝑟 ), 𝒔, ^⟩ 𝑐𝑜−→ ⟨𝑟, 𝒔, ^⟩

⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔, ^⟩
𝑐𝑜−→ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔, ^⟩

⟨𝑅, 𝒔, ^⟩ 𝑐𝑜−→ ⟨𝑀, 𝒔 ′, ^ ′⟩
⟨𝐸 [𝑅], 𝒔, ^⟩ 𝑐𝑜−→ ⟨𝐸 [𝑀], 𝒔 ′, ^ ′⟩

Figure 11. Small-step reduction relation with conditional oracles.

can be seen as partially evaluate primitive functions. To re-
solve the latter we make use of the conditional oracles. For
an overview of a similar system of symbolic execution we
refer the reader to [40].
Let 𝛼0, 𝛼1, · · · be a denumerable set of sample-variables

indexed by natural numbers. We use them to postpone every
sample statement by instead substitution a fresh variable.
Symbolic values and terms are defined by:

𝔙 ≜ 𝑥 | 𝑟 | 𝛼 𝑗 | _𝑥.𝔐 | `𝜑𝑥 .𝔐 | 𝑓 (𝔙1, · · · ,𝔙|𝑓 |)
𝔐,𝔑,𝔓 ≜ 𝔙 | 𝔐𝔑 | if(𝔐,𝔑,𝔓)

| 𝑓 (𝔐1, · · · ,𝔐 |𝑓 |) | sample | score(𝔐)
Note that the only new syntactic additions, compared with
standard SPCF, are the sample variables 𝛼 𝑗 and the symbolic
primitive functions 𝑓 (𝔐1, · · · ,𝔐 |𝑓 |). We again focus on
typable terms. The simple type system for standard SPCF
(given in Fig. 1) naturally extends to symbolic terms when
we add the following two rules:

Γ ⊩ 𝛼 𝑗 : R

Γ ⊩ 𝔐1 : R · · · Γ ⊩ 𝔐 |𝑓 | : R

Γ ⊩ 𝑓 (𝔐1, · · · ,𝔐 |𝑓 |) : R
Let Λsym be the set of all typable symbolic terms. Note

that any𝑀 ∈ Λ directly corresponds to a symbolic term in
the canonical way.

B.5.1 Symbolic Execution. We now give an operational
small-step semantics to symbolic terms. This symbolic execu-
tion closely corresponds to reduction in the standard (CbN)
semantics with the exception that every sample-statement
is resolved by a sample variable. Symbolic redexes and eval-
uation contexts are defined as expected:

ℜ ≜ (_𝑥.𝔐)𝔑 | (`𝜑𝑥 .𝔐)𝔑 | if(𝔙,𝔑,𝔓)
| 𝑓 (𝔙1, · · · ,𝔙|𝑓 |) | sample | score(𝔙)

𝔈 ≜ [·] | 𝔈𝔐 | if(𝔈,𝔑,𝔓) | score(𝔈)
| 𝑓 (𝔙1, · · · ,𝔙𝑘−1,𝔈,𝔐𝑘+1, · · · ,𝔐 |𝑓 |)

Symbolic Values. As sample variables are taken in for
real-valued numerals, whenever we resolve a sample state-
ment, we can no longer evaluate primitive functions as some
of the arguments may be variables. A function symbol 𝑓
applied to arguments, therefore, does not evaluate to the
function value but instead we postpone the evaluation and
use the symbolic construct 𝑓 . In particular, a (closed) sym-
bolic value of type R is no longer always a numeral. We can
view 𝑓 as a function evaluation that is postponed. If we fix
the value of the sample variables, a symbolic value, there-
fore, does again denotes a real number: Let𝔙 be a symbolic
value of type R (no _ or `-abstraction) with sample-variables
within {𝛼0, · · · , 𝛼𝑚−1}. We can view a vector 𝜎 ∈ R𝑚[0,1] as
a substitution and define𝔙[𝜎] ∈ R in the obvious way by
substituting in values and evaluating primitive functions.
Given 𝐴 ⊆ R we define𝔙−1 (𝐴) ≜ {𝜎 ∈ R𝑚[0,1] | 𝔙[𝜎] ∈ 𝐴}.

Symbolic Inequality. We define a symbolic inequality
as pairs of the from (𝔙 ⊲⊳ 𝑟 ) where 𝔙 is a symbolic value,
⊲⊳ ∈ {≤, <, ≥, >} and 𝑟 ∈ R. A symbolic constraint Δ is a set
of symbolic inequalities. Given a symbolic constraint Δ =

{(𝔙𝑖 ⊲⊳𝑖 𝑟𝑖 )}𝑖∈[𝑛] with sample variables contained within
𝛼0, · · · , 𝛼𝑚−1 we can define

Sat𝑚 (Δ) ≜ {𝜎 ∈ R𝑚[0,1] | ∀𝑖 ∈ [𝑛] : 𝔙𝑖 [𝜎] ⊲⊳𝑖 𝑟𝑖 }

We can see every 𝜎 ∈ Sat𝑚 (Δ) also as an element in S𝑚 , i.e.,
a standard trace of length𝑚.

Symbolic Configuration and Symbolic Execution. A
symbolic configuration has the from

[
𝔐, ^, 𝑛

Δ

]
where 𝔐 is

a symbolic term, ^ ∈ 𝐷∗ a sequence of directions 𝑛 ∈ N a
natural number and Δ a symbolic constraint. The conditional
oracle ^ is used to resolve branching. During execution the
constraints that a trace needs to satisfy to actually follow ^

are recorded in the constraint Δ. The natural number in each
configuration references the number of sample variables
that have already been substituted. We define the symbolic
small-step reduction relation

sym−−→ via the rules in Fig. 12.
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[
(_𝑥 .𝔐)𝔑, ^, 𝑛

Δ

]
sym−−→

[
𝔐[𝔑/𝑥], ^, 𝑛

Δ

] [
score(𝔙), ^, 𝑛

Δ

]
sym−−→

[
𝔙, ^, 𝑛

Δ ∪ {𝔙 ≥ 0}

]
[
(`𝜑𝑥 .𝔐)𝔑, ^, 𝑛

Δ

]
sym−−→

[
𝔐[𝔑/𝑥, (`𝜑𝑥 .𝔐)/𝜑], ^, 𝑛

Δ

] [
sample, ^, 𝑛

Δ

]
sym−−→

[
𝛼𝑛, ^, 𝑛 + 1

Δ

]
[
if(𝔙,𝔑,𝔓), 𝑳 :: ^, 𝑛

Δ

]
sym−−→

[
𝔑, ^, 𝑛

Δ ∪ {𝔙 ≤ 0}

] [
if(𝔙,𝔑,𝔓), 𝑹 :: ^, 𝑛

Δ

]
sym−−→

[
𝔓, ^, 𝑛

Δ ∪ {𝔙 > 0}

]

[
𝑓 (𝔙1, · · · ,𝔙|𝑓 |), ^, 𝑛

Δ

]
sym−−→

[
𝑓 (𝔙1, · · · ,𝔙|𝑓 |), ^, 𝑛

Δ

]
[
ℜ, ^, 𝑛

Δ

]
sym−−→

[
𝔐, ^ ′, 𝑛′

Δ′

]
[
𝔈[ℜ], ^, 𝑛

Δ

]
sym−−→

[
𝔈[𝔐], ^ ′, 𝑛′

Δ′

]

Figure 12. Small-step reduction for symbolic terms (symbolic execution).

The symbolic execution we present here differs (especially
on first glance) from the one used in [40]. In their semantics,
a symbolic configuration at all times contains a set of traces
that can take this path. In contrast, we annotate a symbolic
configuration with an explicit set of symbolic inequalities.
As we fixed the outcomes of conditionals beforehand our
reductions is deterministic.

Correspondence. We can show the following correspon-
dence theorem:
Proposition B.8. For any term𝑀 . If ^ ∈ 𝐷∗ and there exist
𝔙, 𝑛,Δ (If they exists, they are unique) such that[

𝑀,^, 0
∅

]
sym
−−−→

∗
[
𝔙, 𝜖, 𝑛

Δ

]
then Sat𝑛 (Δ) = T(^)𝑀,term otherwise T(^)

𝑀,term = ∅.

Proof. The proof is analogous to the proof in [40, Thm. 13].
Every symbolic configuration

[
𝔐, ^, 𝑛

Δ

]
can be seen as the pair

⎷𝔐, _, Sat𝑛 (Δ)⌄ in the setting of [40] when we omit the
weight parameter (denoted by _). □

Example B.9. Consider the term

𝔐 ≜ if sample + sample − 1 then𝑥 else(
if 0 then 3 else 4

)
For the conditional oracle 𝑹𝑳 we get[

𝔐, 𝑹𝑳, 0
∅

]
sym−−→

∗
[

3, 𝜖, 2
{𝛼0 +𝛼1−1 > 0, 0 ≤ 0}

]
And the solution Sat2 of the symbolic constraint

Δ ≜ {𝛼0 +𝛼1−1 > 0, 0 ≤ 0}

is the set {𝑠0𝑠1 ∈ S2 | 𝑠0 + 𝑠1 > 1} which is exactly the set
T
(𝑹𝑳)
𝑀,term as stated in Prop. B.8.

B.5.2 Completeness Proof.

Lemma B.10. If𝔙 is a symbolic value of type R with sample
variables among {𝛼0, · · · , 𝛼𝑚−1} where each variable occurs
at most once and [𝑎, 𝑏] ∈ ℑ an interval then there exists a
countable family of boxes {𝐵𝑖 }𝑖∈I (𝐵𝑖 ⊆ R𝑚[0,1]) such that⋃

𝑖 𝐵𝑖 ⋐ 𝔙−1 ([𝑎, 𝑏]).
Proof. We do induction on the structure of 𝔙. The case of
𝔙 = 𝑟 and𝔙 = 𝛼 𝑗 is trivial. So let𝔙 = 𝑓 (𝔙1, · · · ,𝔙|𝑓 |).

As 𝑓 is by assumption interval-separable there exist count-
able boxes (𝐵𝑖 )𝑖∈I s.t., ∪𝑖𝐵𝑖 ⋐ 𝑓 −1 ([𝑎, 𝑏]) for some count-
able set I. Each 𝐵𝑖 is a box and can thus be written as 𝐵𝑖 =
[𝑎1𝑖 , 𝑏

1
𝑖 ]×· · ·×[𝑎

|𝑓 |
𝑖
, 𝑏

|𝑓 |
𝑖

]. Now define𝐶𝑖 ≜
⋂

1≤ 𝑗≤ |𝑓 | 𝔙
−1
𝑗 ([𝑎 𝑗

𝑖
, 𝑏

𝑗

𝑖
]) ⊆

R𝑚[0,1] . These are all assignments such that each𝔙𝑗 takes on
a value in [𝑎

𝑗

𝑖
, 𝑏

𝑗

𝑖
]. As the countable union of Lebesgue null

sets is a null we get
⋃

𝑖∈I 𝐶𝑖 ⋐ 𝔙−1 ([𝑎, 𝑏]). Call this fact (1).
Now by induction for each 1 ≤ 𝑗 ≤ |𝑓 | there exists a fam-

ily of boxes (𝐵𝑖, 𝑗
𝑘
)
𝑘∈I 𝑗

𝑖
for some countable index set I 𝑗

𝑖
, such

that
⋃

𝑘∈I 𝑗

𝑖
𝐵
𝑖, 𝑗

𝑘
⋐ 𝔙−1

𝑗 ([𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
]). Now⋂

1≤ 𝑗≤ |𝑓 |
⋃

𝑘∈I 𝑗

𝑖
𝐵
𝑖, 𝑗

𝑘
=⋃

(𝑘1, · · · ,𝑘 |𝑓 |) ∈I1
𝑖
×···×I |𝑓 |

𝑖

𝐵
𝑖,1
𝑘1

∩ · · ·𝐵𝑖, |𝑓 |
𝑘 |𝑓 |

by distributing the in-
tersection over the union. We can put this together and get
the following by again using the fact that the countable union
of null sets is a null set:⋃

(𝑘1, · · · ,𝑘 |𝑓 |) ∈I1
𝑖
×···×I |𝑓 |

𝑖

𝐵
𝑖,1
𝑘1

∩ · · ·𝐵𝑖, |𝑓 |
𝑘 |𝑓 |

=
⋂

1≤ 𝑗≤ |𝑓 |

⋃
𝑘∈I 𝑗

𝑖

𝐵
𝑖, 𝑗

𝑘
⋐

⋂
1≤ 𝑗≤ |𝑓 |

𝔙−1
𝑗 ([𝑎 𝑗

𝑖
, 𝑏

𝑗

𝑖
]) = 𝐶𝑖

Note that the index setI1
𝑖 ×· · ·×I |𝑓 |

𝑖
is countable. Combined

with (1) we get⋃
𝑖∈I

⋃
(𝑘1, · · · ,𝑘 |𝑓 |) ∈I1

𝑖
×···×I |𝑓 |

𝑖

𝐵
𝑖,1
𝑘1

∩ · · ·𝐵𝑖, |𝑓 |
𝑘 |𝑓 |

⋐ 𝔙−1 ([𝑎, 𝑏])
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Note that the set {(𝑖, 𝑘1, · · · , 𝑘 |𝑓 |) | 𝑖 ∈ I, (𝑘1, · · · , 𝑘 |𝑓 |) ∈
I1
𝑖 × · · · ×I |𝑓 |

𝑖
} is also countable as the countable product of

countable sets. Also note that the finite intersection of boxes
in the equation above is again a box. We are thus done. □

Lemma B.11. If 𝐴, 𝐵 are two boxes in R𝑚 then there exist
finite boxes {𝐶𝑖 }𝑖∈[𝑛] that are pairwise almost disjoint and
satisfy 𝐴 ∪ 𝐵 =

⋃
𝑖 𝐶𝑖 .

Restatement of Thm. 3.8. If every 𝑓 ∈ F is interval sep-
arable, then for every 𝑀 ∈ Λ0 there exists a countable set
of pairwise-compatible interval traces 𝐴 ⊆ Tℑ

𝑀2ℑ,term
such

that 𝜔 (𝐴) = Pterm (𝑀); and if 𝑀 is AST then E(𝑀2ℑ, 𝐴) =

Eterm (𝑀).

Proof. We can naturally identify traces in S𝑚 with elements
in R𝑚[0,1] . The definition of almost-surely fully contained,
⋐, naturally extends to traces. Fix any ^ ∈ 𝐷∗. In the first
step, we show that there exists a countable family of boxes
{𝐵𝑙 }𝑙 ∈I (𝐵𝑙 ⊆ R𝑚[0,1] ) such that

⋃
𝑙 ∈I 𝐵𝑙 ⋐ T

(^)
𝑀,term.

First: There either exists a value𝔙 a natural number𝑚
and constraint Δ (all of them unique) such that

[
𝔐, ^, 0

∅

]
sym
−−−→

∗[
𝔙, 𝜖,𝑚

Δ

]
or there exists none. In either case, we apply Prop. B.8.

In the latter case, we are done as T(^)
𝑀,term = ∅. In the former

case, we get Sat𝑚 (Δ) = T
(^)
𝑀,term. Note that T(^)

𝑀,term ⊆ S𝑚 .
Let Δ = {(𝔙𝑖 ⊲⊳𝑖 𝑟𝑖 )}𝑖∈[𝑛] . Now by definition of Sat𝑚 ,
Sat𝑚 (Δ) = {𝜎 ∈ R𝑚[0,1] | ∀𝑖 ∈ [𝑛] : 𝔙𝑖 [𝜎] ⊲⊳𝑖 𝑟𝑖 }. We
can write this as

⋂
𝑖∈[𝑛] 𝔙

−1
𝑖 (𝐼𝑖 ) where 𝐼𝑖 is one of (𝑟𝑖 ,∞),

[𝑟𝑖 ,∞), (−∞, 𝑟𝑖 ) or (−∞, 𝑟𝑖 ] depending on ⊲⊳𝑖 . Due to the
CbN evaluation, each symbolic value contains each sample
variable at at most one position. As all of these sets can
be given as a countable union of closed bounded intervals,
we can apply Lem. B.10 and get a family (𝐵𝑖

𝑘
)𝑘∈I𝑖 such that⋃

𝑘∈I𝑖 𝐵
𝑖
𝑘
⋐ 𝔙−1

𝑖 (𝐼𝑖 ). Now the finite intersection of countable
unions of boxes is itself a countable union of boxes (refer to
the proof of Lem. B.10). There thus exists a family (𝐵𝑙 )𝑙 ∈I
with

⋃
𝑙 ∈I 𝐵𝑙 ⋐ ∩𝑖∈[𝑛]𝔙

−1
𝑖 (𝐼𝑖 ) = T(^)𝑀,term.

Second: So
⋃

𝑙 ∈I 𝐵𝑙 ⋐ T
(^)
𝑀,term. By Lem. B.11 we can as-

sume that this family is pairwise almost disjoint. Now each
box 𝐵𝑙 ⊆ R𝑚[0,1] can naturally be seen as an interval trace
within S𝑚

ℑ
. Let 𝐴 (^) be this set of interval traces. As the

boxes are pairwise almost disjoint the traces are pairwise
compatible. For each ℘ ∈ 𝐴 (^) we have L ℘ M ∈ T(^)

𝑀,term so by
Lem. B.7 we get that ℘ ∈ Tℑ

𝑀2ℑ,term. So 𝐴
(^) ⊆ Tℑ

𝑀2ℑ,term. As
the set of conditional oracles 𝐷∗ is countable we can take
the union of all interval traces 𝐴 (^) for all ^ ∈ 𝐷∗. There
thus exists a countable set of interval traces 𝐴 ⊆ Tℑ

𝑀2ℑ,term
such that

⋃
℘∈𝐴L ℘ M ⋐ T𝑀,term. This already implies that

𝜔 (𝐴) = `S
(
T𝑀,term

)
. For the expected time to termination

recall that for all 𝒔 ∈ L ℘ M,#℘

↓ (𝑀
2ℑ) = #𝒔

↓(𝑀). □

C Additional Material - Section 4
To state properties of the type system it is actually easiest to
decompose this reduction relation. A relation→det, handling
deterministic steps, and a relation →[𝑎,𝑏] for [𝑎, 𝑏] ∈ ℑ0,1

performing probabilistic steps. Those relations are defined
in Fig. 13.
While our type system is designed such that the least

upper bound over all derivation equals the probability of ter-
mination and thus looks very similar to the monadic system
in Breuvart and Dal Lago [9], we have to approach on an
entirely different way. The system by Breuvart and Dal Lago
relies on the countable nature of the execution tree and can
state subject reduction by taking the weighted (finite) sum
over the reduction relation. Due to the uncountable nature
of SPCF, we cannot follow this approach. Instead, in our
system we allow for enumeration of terminating interval
traces and make use of the soundness and completeness of
the interval-based semantics shown in Sec. 3. We write [𝑛]
for the set {0, · · · , 𝑛 − 1}, i.e., the first 𝑛 integers.

Lemma C.1. If ⊢ M : A and B ⊆ A then ⊢ M : B

Proof. Easy induction on ⊢ M : A. □

C.1 Subject Reduction and Soundness
C.1.1 Subject Reduction. We begin by showing that our
system does enjoy subject reduction. In our setting, the 𝜏
component gives the number of steps to termination. Match-
ing this intuition, the 𝜏 decrease by 1 in each step. Further-
more as each ℘ is a terminating trace, each probabilistic
reduction consumes the first element (c.f. [9]).

Lemma C.2 (Substitution). If Γ; {𝑥𝑖 : 𝜎𝑖 }𝑖∈[𝑛] ⊢ M : A for
distinct 𝑥𝑖 and for all 𝑖 ∈ [𝑛] and B ∈ 𝜎𝑖 , Γ ⊢ N𝑖 : B then
Γ ⊢ M[N𝑖/𝑥𝑖 ]𝑖∈[𝑛] : A

Proof. An easy induction onM. □

Lemma C.3 (Deterministic Subject Reduction). If ⊢ M : A,
A ≠

{}
and M has a deterministic redex and then M →det

M ′ and ⊢ M ′ : A (↑𝜖,−1) .

Proof. Induction on M →det M ′. Case analysis on M.
• M = (_𝑥 .N)P →det N[P/𝑥]: Then the last step must
have been:

{𝑥 : 𝜎} ⊢ N : B
(abs)

⊢ _𝑥 .N :
{
(𝜎 → B, 𝜖, 0)

}
{⊢ P : C | ∀C ∈ 𝜎}

(app)
⊢ (_𝑥.N)P : B (↑𝜖,1) = A

By substitution (Lem. C.2) we can type ⊢ N [P/𝑥] : B =

A (↑𝜖,−1) as required.
• M = (`𝜑𝑥 .N)P →det N[P/𝑥, (`𝜑𝑥 .N)/𝜑]: Then the last
step must have been via (app) and (fix) , similar to above.
We conclude via (Lem. C.2).

• M = if([𝑎, 𝑏],N ,P) →det N and 𝑏 ≤ 0: Then the last
step must have been:
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(_𝑥 .M)N →det M[N/𝑥] (`𝜑𝑥 .M)N →det M[N/𝑥, (`𝜑𝑥 .M)/𝜑] 𝑓
(
[𝑎1, 𝑏1], · · · , [𝑎 |𝑓 |, 𝑏 |𝑓 |]

)
→det 𝑓 (𝑎1, 𝑏1, · · · , 𝑎 |𝑓 |, 𝑏 |𝑓 |)

𝑎 ≥ 0
score([𝑎, 𝑏]) →det [𝑎, 𝑏]

𝑏 ≤ 0
if([𝑎, 𝑏],N ,P) →det N

𝑎 > 0
if([𝑎, 𝑏],N ,P) →det P

R →det M
E[R] →det E[M]

sample →[𝑎,𝑏] [𝑎, 𝑏]

R →[𝑎,𝑏] M
E[R] →[𝑎,𝑏] E[M]

Figure 13. Decomposed reduction into deterministic steps →det and probabilistic steps→[𝑎,𝑏]

⊢ [𝑎, 𝑏] :
{
([𝑎, 𝑏], 𝜖, 0)

}
⊢ N : B([𝑎,𝑏],𝜖,0)

(if)
⊢ if([𝑎, 𝑏],N ,P) : B (↑𝜖,1)

([𝑎,𝑏],𝜖,0)

So ⊢ N : B([𝑎,𝑏],𝜖,0) = A (↑𝜖,−1) .
• M = if([𝑎, 𝑏],N ,P) →det P and 𝑎 > 0. Similar to the
previous case.

• M = if([𝑎, 𝑏],N ,P) and 𝑎 < 0 and 𝑏 ≥ 0. Note possible
as by assumption A ≠

{}
.

• M = 𝑓 ([𝑎, 𝑏], [𝑐, 𝑑]) →det 𝑓 (𝑎, 𝑏, 𝑐, 𝑑). Then the last step
must have been via (𝑓 ) and (num) andA =

{
(𝑓 (𝑎, 𝑏, 𝑐, 𝑑), 𝜖, 1)

}
we can type

⊢ 𝑓 (𝑎, 𝑏, 𝑐, 𝑑) :
{
(𝑓 (𝑎, 𝑏, 𝑐, 𝑑), 𝜖, 0)

}
via (num) .

• M = score([𝑎, 𝑏]) →det [𝑎, 𝑏] and 𝑎 ≥ 0. Then the
last step must have been via (score) and (num) to A ={
([𝑎, 𝑏], 𝜖, 1)

}
and we can type ⊢ [𝑎, 𝑏] :

{
([𝑎, 𝑏], 𝜖, 0)

}
via

(num) as required.
• M = score([𝑎, 𝑏]) and 𝑎 < 0. Not possible as by assump-
tion A ≠

{}
.

• M = NP →det N ′P and N →det N ′. Then the last step
must have been:

⊢ N : B {⊢ P : D | ∀(𝜎 → C, ℘, 𝜏) ∈ B,D ∈ 𝜎}
(app)

⊢ NP :
⋃

(𝜎→C,℘,𝜏) ∈B
C (↑℘,𝜏+1)

By induction we get ⊢ N ′ : B (↑𝜖,−1) . We can conclude
using (app) , by choosing the same type derivations for
each element in B (↑𝜖,−1) as in the original derivation..

• M = if(N ,P,Q) →det if(N ′,P,Q) and N →det N ′:
Then the last step must have been via (if) . We can use
the IH on 𝑁 and conclude via (if) by choosing the same
derivations.

• M = score(N),M = 𝑓 (N ,P),M = 𝑓 ([𝑎, 𝑏],N) are
trivial.

□

Lemma C.4 (Probabilistic Subject Reduction). If ⊢ M :{
(𝛼, ℘, 𝜏)

}
and M has a probabilistic redex then ℘ = [𝑎, 𝑏]℘′

and we have M →[𝑎,𝑏] M ′ and ⊢ M ′ :
{
(𝛼, ℘′, 𝜏 − 1)

}

Proof. Case analysis onM.
• M = sample. Then the last step is:

(sample)
⊢ sample :

{
([𝑎, 𝑏], [𝑎, 𝑏], 1)

}
for some 𝑎, 𝑏. We get sample →[𝑎,𝑏] M ′ ≜ [𝑎, 𝑏] and can
obviously type: ⊢ M ′ :

{
([𝑎, 𝑏], 𝜖, 0)

}
using (num) .

• M = NP and N has a probabilistic redex. The last step
must have been:

⊢ N :
{
(𝜎 →

{
(𝛼,℘3, 𝜏3)

}
,℘1, 𝜏1)

}
{⊢ P : C | ∀C ∈ 𝜎 }

(app)
⊢ NP :

{
(𝛼,℘1℘3, 𝜏1 + 𝜏3 + 1)

}
By induction we get that ℘1 = [𝑎, 𝑏]℘2, N →[𝑎,𝑏] N ′

and ⊢ N :
{
(𝜎 →

{
(𝛼, ℘3, 𝜏3)

}
, ℘2, 𝜏1 − 1)

}
. So ℘1℘3 =

[𝑎, 𝑏]℘2℘3. Now NP →[𝑎,𝑏] N ′P and we can conclude
⊢ N ′P :

{
(𝛼, ℘2℘3, 𝜏1 + 𝜏3)

}
via (app) .

• All the other closre cases, i.e., M = if(N ,P,Q), M =

𝑓 (N ,P), M = 𝑓 ([𝑎, 𝑏],N) and M = score(N) where
N has a probabilistic redex follow in the same fashion as
above.

□

Lemma C.5 (Subject Reduction). If ⊢ M :
{
(𝛼, ℘, 𝜏)

}
and

M is not a value, then either
• M has a deterministic redex and M →det M ′ and
⊢ M ′ :

{
(𝛼, ℘, 𝜏 − 1)

}
, or

• M has a probabilistic redex then ℘ = [𝑎, 𝑏]℘′ and we
haveM →[𝑎,𝑏] M ′ and ⊢ M ′ :

{
(𝛼, ℘′, 𝜏 − 1)

}
Proof. Follows from Lem. C.4 and Lem. C.3. □

Lemma C.6. If ⊢ M :
{
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 ) | 𝑖 ∈ [𝑛]

}
then ℘𝑖 ∈

TℑM,term and #℘𝑖

↓ (M) = 𝜏𝑖 for all 𝑖 ∈ [𝑛]

Proof. We show the easier observation that if ⊢ M :
{
𝛼, ℘, 𝜏

}
,

then ℘ ∈ Tℑ℘,term and #℘

↓ (M) = 𝜏 . The result then follows
by Lem. C.1 as we get ⊢ M :

{
𝛼𝑖 , ℘𝑖 , 𝜏𝑖

}
for every 𝑖 ∈ [𝑛].

As an easy corollary from Subject reduction (Lem. C.5)
combined with the obvious properties of the decomposed
semantics, we get that if ⊢ M :

{
(𝛼, ℘, 𝜏)

}
and ⟨M, ℘⟩ {
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⟨M ′, ℘′⟩ we have ⊢ M ′ :
{
(𝛼, ℘′, 𝜏 − 1)

}
. Call this observa-

tion (1).
We first show ℘ ∈ TℑM,term. Let ⟨𝑀, ℘⟩ ≜ ⟨M0, ℘0⟩ {

⟨M1, ℘1⟩ { ⟨M2, ℘2⟩ { · · · be the possibly infinite re-
duction sequence. From (1) we get ⊢ M𝑖 :

{
(𝛼, ℘𝑖 , 𝜏 − 𝑖)

}
.

The sequence can thus make at most 𝜏-steps and is hence
finite. Let ⟨M, ℘⟩ = ⟨M0, ℘0⟩ { ⟨M1, ℘1⟩ { ⟨M2, ℘2⟩ {
· · · { ⟨M𝑛, ℘𝑛⟩ be this finite, maximal sequence. We as-
sume for contraction that M𝑛 is not a value. As ⊢ M𝑛 :{
(𝛼, ℘𝑛, 𝜏 − 𝑛)

}
we can use subject reduction (Lem. C.5) and

get that ⟨M𝑛, ℘𝑛⟩ can make a further step which contra-
dicts the maximality. Now as𝑀𝑛 is a value, we can inspect
the typing rules and get that ℘𝑛 = 𝜖 as values can only be
typed with an empty interval trace. This already shows that
℘ ∈ TℑM,term.
Now by definition of the number of steps #℘

↓ (M) = 𝑛.
As M𝑛 is a value and ⊢ M𝑛 :

{
(𝛼, ℘𝑛, 𝜏 − 𝑛)

}
we get by

inspection that 𝜏 − 𝑛 = 0, so 𝜏 = 𝑛 = #℘

↓ (M). □

C.1.2 Pairwise Compatibility. We can easily see:

LemmaC.7 (Pairwise Compatibility). If ⊢ M :
{
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 ) |

𝑖 ∈ [𝑛]
}
then {℘𝑖 }𝑖 are pairwise compatible.

C.1.3 Soundness.

Proposition C.8 (Soundness). For every interval term M
and𝑀 ⊳M∨

⊢M:A
𝜔 (A) ≤ Pterm (𝑀)• ∨

⊢M:A
E(A) ≤ Eterm (𝑀)•

Proof. Assume ⊢ M : A and A =
{
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 ) | 𝑖 ∈ [𝑛]

}
. By

Lem. C.6 each ℘𝑖 ∈ TℑM,term. Furthermore, by Lem. C.7 the
interval traces are pairwise compatible. By the Soundness
of the interval-based semantics (Thm. 3.4) we, therefore,
conclude that

𝜔 (A) ≤ Pterm (𝑀)
For the second claim we can again use Thm. 3.4 and the fact
that 𝜏𝑖 = #℘𝑖

↓ (M) (shown in Lem. C.6) and get

E(A) ≤ Eterm (𝑀)
As this holds for all ⊢ M : A it also holds for the least upper
bound. □

C.2 Subject Expansion and Completeness
C.2.1 Subject Expansion.

Lemma C.9 (Reverse Substitution). If ⊢ M[N𝑖/𝑥𝑖 ]𝑖∈[𝑛] : A
for distinct 𝑥𝑖 then there exist a {𝑎𝑖 }𝑖∈[𝑛] , s.t., {𝑥𝑖 : 𝑎𝑖 }𝑖∈[𝑛] ⊢
M : A and for all 𝑖 ∈ [𝑛] and B ∈ 𝑎𝑖 , ⊢ N𝑖 : B
Proof. Standard. By induction on M. □

Lemma C.10 (Deterministic Subject Expansion). If ⊢ M :
A and M ′ →det M then ⊢ M ′ : A (↑𝜖,1)

Proof. We assumew.l.o.g. thatA ≠ ∅. Induction on ⊢ M : A.
Case analysis on M ′.

• M ′ = (_𝑥.N)P →det N[P/𝑥]: So ⊢ N [P/𝑥] : A. By
Lem. C.9 we get an 𝜎 , s.t., {𝑥 : 𝜎} ⊢ N : A and for all B ∈
𝜎 , ⊢ P : B. We can conclude ⊢ _𝑥 .N :

{
(𝜎 → A, 𝜖, 1)

}
using (abs) and can the derive ⊢ (_𝑥 .N)P : A (↑𝜖,1) via (app)

.
• M ′ = (`𝜑𝑥 .N)P →det N[P/𝑥, (`𝜑𝑥 .N)/𝜑].
So ⊢ N [P/𝑥, (`𝜑𝑥 .N)/𝜑] : A. By Lem. C.9 we get 𝑎𝑥 , 𝑎𝜑
such that {𝑥 : 𝑎𝑥 , 𝜑 : 𝑎𝜑 } ⊢ N : A and for all B ∈ 𝑎𝑥 ,
⊢ P : B and all B ∈ 𝑎𝜑 , ⊢ `

𝜑
𝑥 .N : B. We can thus type

⊢ `
𝜑
𝑥 .N :

{
(𝑎𝑥 → A, 𝜖, 0)

}
using (fix) and conclude ⊢

(`𝜑𝑥 .N)P : A (↑𝜖,1) via (app) .
• M ′ = if([𝑎, 𝑏],N ,P) →det N and 𝑏 ≤ 0 and ⊢ N : A.
We can type ⊢ [𝑎, 𝑏] :

{
([𝑎, 𝑏], 𝜖, 0)

}
via (num) and as 𝑏 ≤ 0

we can derive ⊢ if([𝑎, 𝑏],N ,P) : A (↑𝜖,1) using (if) .
• M ′ = if(𝑎, 𝑏,N ,P) →det P and 𝑎 > 0. Similar as the
case above.

• M ′ = 𝑓 ([𝑎, 𝑏], [𝑐, 𝑑]) →det 𝑓 (𝑎, 𝑏, 𝑐, 𝑑): So ⊢ 𝑓 (𝑎, 𝑏, 𝑐, 𝑑) :
A, so we get that A =

{
(𝑓 (𝑎, 𝑏, 𝑐, 𝑑), 𝜖, 0)

}
as only (num)

is applicable. We can type ⊢ [𝑎, 𝑏] :
{
([𝑎, 𝑏], 𝜖, 0)

}
via (num)

and similar for [𝑐, 𝑑] and can conclude using (𝑓2) .
• M ′ = N ′P →det NP and N ′ →det N . As ⊢ NP : A we
get that the last step must have been:

⊢ N : B {⊢ P : D | ∀(𝜎 → C, ℘, 𝜏) ∈ B,D ∈ 𝜎}
(app)

⊢ NP :
⋃

(𝜎→C,℘,𝜏) ∈B
C (↑℘,𝜏+1) = A

By IH we get ⊢ N ′ : B (↑𝜖,1) and conclude using (app) by
choosing the same derivations as in the original derivation.

• M ′ = if(N ′,P,Q) →det if(N ,P,Q) and N ′ →det N .
As ⊢ if(N ,P,Q) we get that the last step must have been
via (if) . As in the previous case we can apply induction
choose the same derivations for P and Q and conclude
back via (if) .

• M ′ = score(N ′),M ′ = 𝑓 (N ′,P),M ′ = 𝑓 ([𝑎, 𝑏],N ′).
Trivial.

□

Lemma C.11 (Probabilistic Subject Expansion). If ⊢ M𝑖 :
A𝑖 and M →[𝑎𝑖 ,𝑏𝑖 ] M𝑖 where {[𝑎𝑖 , 𝑏𝑖]}𝑖 are almost disjoint
then

⊢ M :
⋃
𝑖

A (↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

Proof. We can assume that A𝑖 ≠
{}

as this case is trivial. By
induction on M.
• M = sample: ThenM𝑖 = [𝑎𝑖 , 𝑏𝑖] and as ⊢ M𝑖 : A𝑖 we get
thatA𝑖 =

{
([𝑎𝑖 , 𝑏𝑖], 𝜖, 0)

}
as the last step must be via (num)

. As [𝑎𝑖 , 𝑏𝑖] are almost disjoint we can use the (sample) -rule
to type sampleas required.

• M = NP andN does a reduction step, i.e.,N →[𝑎𝑖 ,𝑏𝑖 ] N𝑖

and M𝑖 = N𝑖P. As ⊢ N𝑖P : A𝑖 we get that the last step
must have been:
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⊢ N𝑖 : B𝑖 {⊢ P : D | ∀(𝜎 → C, ℘, 𝜏) ∈ B𝑖 ,D ∈ 𝜎}
(app)

⊢ N𝑖P :
⋃

(𝜎→C,℘,𝜏) ∈B𝑖

C (↑℘,𝜏+1) = A𝑖

By induction we get ⊢ N :
⋃

𝑖 B
(↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

. Define B ≜⋃
𝑖 (B𝑖 ) (↑[𝑎𝑖 ,𝑏𝑖 ],1) . We get {⊢ P : D | ∀(𝜎 → C, ℘, 𝜏) ∈

B,D ∈ 𝑐} as B is just the concatenation of all B𝑖 , i.e.,
every type in B is in at least on B𝑖 . By using (app) we can
thus type ⊢ NP :

⋃
(𝜎→C,℘,𝜏) ∈B C (↑℘,𝜏+1) .⋃

(𝜎→C,℘,𝜏) ∈B
C (↑℘,𝜏+1) =

⋃
𝑖

⋃
(𝜎→C,℘,𝜏) ∈B𝑖

C↑([𝑎𝑖 ,𝑏𝑖 ]℘,𝜏+1+1)

=
⋃
𝑖

A (↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

as required.
• M = if(N ,P,Q) andN does a reduction step, i.e.,N →[𝑎𝑖 ,𝑏𝑖 ]

N𝑖 and M𝑖 = if(N𝑖 ,P,Q). The last step in each deriva-
tion must have been via (if) so ⊢ N𝑖 : B𝑖 ,

{⊢ P : C([𝑎,𝑏],℘,𝜏),𝑖 | ([𝑎, 𝑏], ℘, 𝜏) ∈ B𝑖 , 𝑏 ≤ 0}

and

{⊢ Q : D([𝑎,𝑏],℘,𝜏),𝑖 | ([𝑎, 𝑏], ℘, 𝜏) ∈ B𝑖 , 𝑎 > 0}
and

A𝑖 =
⋃

([𝑎,𝑏],℘,𝜏 )∈B𝑖 |𝑏≤0
C (↑℘,𝜏 )
([𝑎,𝑏],℘,𝜏 ),𝑖 ∪

⋃
([𝑎,𝑏],℘,𝜏 )∈B𝑖 |𝑎>0

D (↑℘,𝜏 ),𝑖
([𝑎,𝑏],℘,𝜏 )

By induction we get ⊢ N :
⋃

𝑖 B
(↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

≜ B. Now each
element ([𝑎, 𝑏], ℘, 𝜏) ∈ B stems from exactly one category
𝑖 (from one B𝑖 ). So elements in B can be seen as having
the from ([𝑎, 𝑏], ℘, 𝜏), 𝑖 ∈ B. (This is just needed to take
care of the indices). Using (if) we can type
⊢if(N, P, Q) : ⋃

([𝑎,𝑏],℘,𝜏 ),𝑖∈B|𝑏≤0
C (↑℘,𝜏 )
([𝑎,𝑏],℘,𝜏 ),𝑖 ∪

⋃
([𝑎,𝑏],℘,𝜏 ),𝑖∈B|𝑎>0

D (↑℘,𝜏 )
([𝑎,𝑏],℘,𝜏 ),𝑖

=
⋃
𝑖

( ⋃
([𝑎,𝑏],℘,𝜏 )∈B𝑖 |𝑏≥0

C (↑℘,𝜏 )
([𝑎,𝑏],℘,𝜏 ),𝑖 ∪

⋃
([𝑎,𝑏],℘,𝜏 )∈B𝑖 |𝑎<0

D (↑℘,𝜏 )
([𝑎,𝑏],℘,𝜏 ),𝑖

)
=
⋃
𝑖

A (↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

as required.
• M = 𝑓 (N ,P) andN does a reduction step, i.e.,N →[𝑎𝑖 ,𝑏𝑖 ]

N𝑖 and M𝑖 = 𝑓 (N𝑖 ,P). As ⊢ 𝑓 (N𝑖 ,P) : A𝑖 we get that
the last step must have been via (𝑓2) , i.e., ⊢ N𝑖 : B𝑖 , {⊢ P :
C([𝑎,𝑏],℘,𝜏),𝑖 | ([𝑎, 𝑏], ℘, 𝜏) ∈ B𝑖 } and
A𝑖 =

⋃
([𝑎,𝑏],℘,𝜏 )∈B𝑖

⋃
([𝑐,𝑑],℘′,𝜏′)∈C([𝑎,𝑏],℘,𝜏 ),𝑖

{
(𝑓 (𝑎,𝑏, 𝑐,𝑑),℘℘′, 𝜏 + 𝜏′ + 1)

}
By induction we get ⊢ N :

⋃
𝑖 B

(↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

≜ B. We can
now conclude using (𝑓2) as in the previous cases.

• M = 𝑓 ([𝑎, 𝑏],N) andN does a reduction step, i.e.,N →[𝑎𝑖 ,𝑏𝑖 ]

N𝑖 andM𝑖 = 𝑓 ([𝑎, 𝑏],N𝑖 ). The last steps must thus have
been:

(num)
⊢ [𝑎, 𝑏] :

{
([𝑎, 𝑏], 𝜖, 0)

}
⊢ N𝑖 : B([𝑎,𝑏],𝜖,0),𝑖

(𝑓2)
⊢ 𝑓 ([𝑎, 𝑏],N𝑖 ) :

⋃
([𝑐,𝑑],℘,𝜏) ∈B([𝑎,𝑏],𝜖,0),𝑖

{
(𝑓 (𝑎, 𝑏, 𝑐, 𝑑), ℘, 𝜏 + 1)

}

By induction we get ⊢ N :
⋃

𝑖 B
(↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

≜ B. We can
trivially conclude via (𝑓2) and (num) .

• M = score(N) andN does a reduction step, i.e.,N →[𝑎𝑖 ,𝑏𝑖 ]

N𝑖 and M𝑖 = score(N𝑖 ). The last step must have been
via (score) . We can apply induction and trivially conclude
via (score) .

□

Lemma C.12 (Subject Expansion). It holds that:
• If ⊢ M : A and N →det M then ⊢ N : A (↑𝜖,1)

• If ⊢ M𝑖 : A𝑖 and N →[𝑎𝑖 ,𝑏𝑖 ] M𝑖 where {[𝑎𝑖 , 𝑏𝑖]}𝑖 are
almost disjoint then

⊢ N :
⋃

𝑖 A
(↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

Proof. Follows from Lem. C.10 and Lem. C.11. □

C.2.2 Completeness.

Naïve Attempt on Completeness: We have seen in the
soundness proof that if ⊢ M :

{
(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 ) | 𝑖 ∈ [𝑛]

}
each ℘𝑖

is a terminating trace. For completeness we would like to
reverse that process and show that any pairwise compatible
set of traces can be achieved via a type derivations: That is,
if {℘𝑖 | 𝑖 ∈ [𝑛]} ⊆ TℑM,term are pairwise compatible then

⊢ M :
{
(𝛼𝑖 , ℘𝑖 ,#℘𝑖

↓ (M)) | 𝑖 ∈ [𝑛]
}

for some types {𝛼𝑖 }𝑖∈[𝑛] . This would immediately give us
a completeness theorem as the interval-based semantics is
itself complete. However, the above does not hold.

Example C.13. As an example consider the following sim-
ple term: M ≜ if

(
sample − 1

2 , sample, 0
)2ℑ Then the two

interval traces ℘1 ≜ [0, 12 ][0,
1
2 ], ℘2 ≜ [0, 13 ][

1
2 , 1] are clearly

compatible but cannot be typed with the above system. The
interested reader is advised to try find a typing derivation.

Strong Pairwise Compatibility. To show completeness,
we need to introduce the new concept of strong compatibility.
We call ℘1, ℘2 strongly compatible if ℘1 ] ℘2 is derivable
by the following rules

𝜖 ] [𝑎, 𝑏]℘
[𝑎, 𝑏], [𝑐, 𝑑] are almost disjoint

[𝑎, 𝑏]℘1 ] [𝑐, 𝑑]℘2

[𝑎, 𝑏]℘ ] 𝜖
℘1 ] ℘2

[𝑎, 𝑏]℘1 ] [𝑎, 𝑏]℘2
Strongly compatible traces are either pairwise almost dis-

joint in the first position or agree on the first position and
the remainder is also strongly compatible. If two traces are
strongly compatible they can thus share a common, identical
prefix but must be pairwise almost disjoint at the first po-
sition where they differ. Clearly every strongly compatible
pair of interval traces is also compatible but not the other
way around. As an example the two traces in Ex. C.13 are
compatible but not strongly compatible. We can show the
following:
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if
(
sample − 1

2
, sample, 0

){
[0, 1

3
][0, 1

2
], [ 1

3
, 1
2
], [0, 1

3
][ 1

2
, 1]

}

if
(
[0, 1

3
] − 1

2
, sample, 0

){
[0, 1

2
], [ 1

2
, 1]

} if
(
[ 1
3
, 1
2
] − 1

2
, sample, 0

){
[0, 1

2
]

}

if
(
[ − 1

3
,− 1

6
], sample, 0

){
[0, 1

2
], [ 1

2
, 1]

} if
(
[ − 1

6
, 0], sample, 0

){
[0, 1

2
]

}

sample,
{
[0, 1

2
], [ 1

2
, 1]

}
sample,

{
[0, 1

2
]

}

[0, 1
2
], {𝜖 } [ 1

2
, 1], {𝜖 } [0, 1

2
], {𝜖 }

[0, 1
3
] [ 1

3
, 1
2
]

det det

det det

[0, 1
2
] [ 1

2
, 1] [0, 1

2
]

Figure 14. Example reduction for the term from Ex. C.13
on a set of pairwise strongly compatible traces. Probabilistic
and deterministic reduction steps are arranged as a tree.

Lemma C.14. If {℘𝑖 | 𝑖 ∈ [𝑛]} ⊆ Sℑ then there exists
interval traces {℘′

𝑗 | 𝑗 ∈ [𝑚]} ⊆ Sℑ that are pairwise strongly
compatible with

⋃
𝑖∈[𝑛]L ℘𝑖 M =

⋃
𝑗 ∈[𝑚]L ℘′

𝑗 M and for each
𝑗 ∈ [𝑚], L ℘′

𝑗 M ⊆ L ℘𝑖 M for some 𝑖 ∈ [𝑛].

Proof. We can give a constructive proof: We first analyse
{℘𝑖 (0)}𝑖∈[𝑛] , i.e., the interval at the first position. Clearly
there exists intervals {[𝑎𝑘 , 𝑏𝑘 ]}𝑘∈K for a finite K that are all
pairwise almost disjoint such that for each 𝑖 there is a set
K𝑖 ⊆ K with ℘𝑖 (0) =

⋃
𝑘∈K𝑖

[𝑎𝑘 , 𝑏𝑘 ]. This holds as we can
always partition at overlapping position.We can thus replace
every ℘𝑖 with |K𝑖 | many interval traces by replacing the
first interval with the intervals in [𝑎𝑘 , 𝑏𝑘 ] from 𝑘 ∈ K𝑖 . The
resulting set of standard traces agrees with the onewe started
from. The first position of those traces are either pairwise
identical or almost disjoint as required by the definition of
strong compatibility. For all traces that are identical on the
first position we can proceed inductively. □

The two traces in Ex. C.13 are not strongly compatible but
can be replaced by the 3 traces ℘′

1 ≜ [0, 13 ][0,
1
2 ], ℘

′
2 ≜

[ 13 ,
1
2 ][0,

1
2 ] and ℘

′
3 ≜ [0, 13 ][

1
2 , 1] that denote the same set of

standard traces but are pairwise strongly compatible.

Subject Expansion For Strongly Compatible Traces.
The crucial observation is that in the the statement of sub-
ject expansion (Lem. C.12), the intervals in a probabilistic
step should be pairwise almost disjoint. As we have seen in

the example above pairwise compatible traces must not nec-
essarily be almost disjoint in the first position. But pairwise
strongly compatible traces are: the first position is either
almost disjoint or identical. To make use of this idea we rep-
resent the reduction of a term given a set of interval traces
as a tree. Nodes in the tree are of the from (M, 𝐴) we M is
an interval term and ∅ ≠ 𝐴 ⊆ TℑM,term a set of strongly com-
patible interval traces. The successors of a node are given
by a relation{ where each transition is either labelled by
det, to represents a deterministic reduction or by an interval
[𝑎, 𝑏] ∈ ℑ0,1:

M →det N
(M, 𝐴) {det (N , 𝐴)

M →[𝑎,𝑏] N 𝐵 = {℘ | [𝑎, 𝑏]℘ ∈ 𝐴} ≠ ∅
(M, 𝐴) {[𝑎,𝑏] (N , 𝐵)

If we again consider the example term fro Ex. C.13 and the
pairwise strongly compatible traces ℘′

1, ℘
′
2, ℘

′
3 from before

we get the tree depicted in Fig. 14. Every det step corresponds
to a deterministic reduction. For every probabilistic reduction
the set of interval traces is stripped by its first position. As
the set of traces is strongly compatible, the outgoing edges
of every node are labelled by almost disjoint intervals.

Proposition C.15 (Completeness). If {℘𝑖 | 𝑖 ∈ [𝑛]} ⊆
TℑM,term are pairwise strongly compatible then

⊢ M :
{
(𝛼𝑖 , ℘𝑖 ,#℘𝑖

↓ (M)) | 𝑖 ∈ [𝑛]
}

for some types {𝛼𝑖 }𝑖∈[𝑛]
Proof. We first make the following easy observation that
follows immediately by the definition of strong compati-
bility: If 𝐴 ⊆ TℑM,term is pairwise strongly compatible and
(M, 𝐴) {∗ (N , 𝐵) and (N , 𝐵) {[𝑎𝑖 ,𝑏𝑖 ] (N𝑖 , 𝐵𝑖 ) for 𝑖 ∈ [𝑛]
then [𝑎𝑖 , 𝑏𝑖] are almost disjoint. Call this observation (1).
For our proof we consider the tree that is generated by
(M, {℘𝑖 | 𝑖 ∈ [𝑛]}). Note that this tree is finite. We claim
that for every node (N , 𝐴) where 𝐴 = { ¤℘𝑖 | 𝑖 ∈ [𝑘]} in
this tree we can type ⊢ N :

{
(𝛼𝑖 , ¤℘𝑖 ,# ¤℘𝑖

↓ (N)) | 𝑖 ∈ [𝑘]
}
. We

show this inductively by traversing the tree from the leafs up.
Formally, we do induction on the shortest path to a leaf. In
the base case, the node in question is a leaf: as by assumption
each ℘𝑖 ∈ TℑM,term we get that each leaf of this tree has the
from (V, {𝜖}) for some closed value V . It is easy to check
that for every value we can type ⊢ V :

{
(𝛼, 𝜖, 0)

}
for some

𝛼 , by either using (num) (in case of a numeral) or (abs) or (fix)

followed by (
{}

) (in case of _-or `-abstraction). Now consider
the case where (N , 𝐴) is a inner node. There are again two
cases:
• (N , 𝐴) {det (P, 𝐴), so N →det P. Write 𝐴 = { ¤℘𝑖 | 𝑖 ∈
[𝑘]}. By induction we can type ⊢ P :

{
(𝛼𝑖 , ¤℘𝑖 ,# ¤℘𝑖

↓ (P)) |
𝑖 ∈ [𝑘]

}
. Now by Subject Expansion (Lem. C.12) we can

type ⊢ N :
{
(𝛼𝑖 , ¤℘𝑖 ,# ¤℘𝑖

↓ (P) + 1) | 𝑖 ∈ [𝑘]
}
as required,
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• In the other case, (N , 𝐴) {[𝑎𝑖 ,𝑏𝑖 ] (P𝑖 , 𝐵𝑖 ) for 𝑖 ∈ [𝑚]. Lets
write𝐵𝑖 = { ¤℘𝑗

𝑖
| 𝑗 ∈ [𝑘𝑖 ]}.We have𝐴 =

⋃
𝑖∈[𝑚]{[𝑎𝑖 , 𝑏𝑖] ¤℘

𝑗

𝑖
|

𝑗 ∈ [𝑘𝑖 ]}. By induction we ⊢ P𝑖 :
{
(𝛼𝑖𝑗 , ¤℘𝑖𝑗 ,#

¤℘𝑖
𝑗

↓ (P)) | 𝑗 ∈
[𝑘𝑖 ]

}
≜ A𝑖 . By (1) we get that the [𝑎𝑖 , 𝑏𝑖] are pairwise

almost disjoint. By Lem. C.12 we can thus type ⊢ N :⋃
𝑖 A

(↑[𝑎𝑖 ,𝑏𝑖 ],1)
𝑖

as required.
□

C.3 Soundness and Completeness
We can finally combine everything for a proof of Thm. 4.1.

Restatement of Thm. 4.1. For every term𝑀 ∈ Λ0,

1.
∨

⊢𝑀2ℑ:A
𝜔 (A) = Pterm (𝑀), and

2. If𝑀 is AST,
∨

⊢𝑀2ℑ:A
E(A) = Eterm (𝑀)

Proof. We first show the first part:
We already showed

∨
⊢𝑀2ℑ:A 𝜔 (A) ≤ Pterm (𝑀) in Prop. C.8

as𝑀 ⊳𝑀2ℑ. It remains to show that they are actually equal.
Let 𝜖 > 0. We show that there exist a ⊢ 𝑀2ℑ : A such that
𝜔 (A) ≥ Pterm (𝑀)−𝜖 . Using the completeness of the interval-
based semantics (Thm. 3.8), we get a finite set of pairwise
compatible interval traces {℘′

𝑗 | 𝑗 ∈ [𝑛]} ⊆ Tℑ
𝑀2ℑ,term such

that
∑

𝑗 ∈[𝑛] 𝜔 (℘′
𝑗 ) ≥ Pterm (𝑀)−𝜖 . Now from Lem. C.14 there

exists a finite set of interval traces with the same weight that
is furthermore pairwise strongly compatible. Let {℘𝑖 | 𝑖 ∈
[𝑚]} be this set. Note that {℘𝑖 | 𝑖 ∈ [𝑚]} ⊆ Tℑ

𝑀2ℑ,term as
byLem. C.14 for every 𝑖 ∈ [𝑚], L ℘𝑖 M ⊆ L ℘′

𝑗 M for some 𝑗 ∈
[𝑛]. By Prop. C.15 we get that ⊢ 𝑀2ℑ :

{
(𝛼𝑖 , ℘𝑖 ,#℘𝑖

↓ (𝑀)) |
𝑖 ∈ [𝑚]

}
≜ A for some types 𝛼𝑖 . Now obviously 𝜔 (A) =∑

𝑖 𝜔 (℘′
𝑖 ) ≥ Pterm (𝑀) − 𝜖 , so we are done as we can let 𝜖

tend to 0.
For the second part we can proceed as before by using the

second part of Thm. 3.8. □

D Additional Material - Section 5
Restatement of Thm. 5.4. A finite step distribution 𝑠 is AST
if and only if all of the following hold∑

𝑖∈Z
𝑠 (𝑖) = 1a) 𝑠 ≠ 𝛿0b)

∑
𝑖∈Z

𝑖 · 𝑠 (𝑖) ≤ 0c)

Proof. ⇐ : We begin with the (arguably more interesting
direction) that the three conditions together imply AST. We
first note that due to condition a) the error state, ⊥, is never
reachable. We can thus concentrate on paths consisting of
natural numbers and can neglect the possibly of moving
to the error state. Instead of considering the random walk
on the half line we, we consider the more general wok on
the integers, i.e., we remove the truncation at 0. That is the
Markov chain𝔐 = (Z,𝔓) where the transition matrix𝔓 is
defined by𝔓(𝑥,𝑦) = 𝑠 (𝑦 − 𝑥). It is easy to see that 𝑠 is AST

if and only if𝔐 eventually visits the non-positive numbers
a.s.
We then begin by checking the third condition (c)) for

equality of strict inequality:
• In the case of strict inequality, we have

∑
𝑖∈Z 𝑖 · 𝑠 (𝑖) < 0:

Fix any starting state𝑚 as in the definition of AST. We
define integer valued random variables 𝑋0, 𝑋1, · · · by 𝑋𝑖 =

𝑚 +∑𝑖
𝑘=1 𝑌𝑖 where 𝑌𝑖 are independent random variables

that are distributed according to 𝑠 . It is easy to see that by
the construction of theMarkov chain𝔐wehave𝔓𝑛 (𝑥,𝑦) =
P(𝑋𝑛 = 𝑦), i.e., for the random variable 𝑋𝑖 the probabil-
ity of 𝑋𝑖 = 𝑦 is the probability of being in state 𝑦 after 𝑛
steps. Here P is the probability distribution on the under-
lying (not specified) measurable space on which the 𝑋𝑖s
are defined.
With E(𝑋𝑖 ) we denote the expectation of 𝑋𝑖 and with
Var (𝑋𝑖 ) the variance defined in the standard way. With
E(𝑠) we denote the expectation of 𝑠 . We obviously have
E(𝑋𝑖 ) =𝑚 + 𝑖 · E(𝑠) and as each of the 𝑌𝑖 are independent
also Var (𝑋𝑖 ) = 𝑖 · Var (𝑠). By assumption E(𝑠) = ∑

𝑖∈Z 𝑖 ·
𝑠 (𝑖) < 0. Let 𝜖 = −∑

𝑖∈Z 𝑖 · 𝑠 (𝑖) > 0. So E(𝑋𝑖 ) =𝑚 − 𝑖 · 𝜖 .
All that remains now is to apply an appropriate concentra-
tion bound. Let 𝑁 be such that for every 𝑖 > 𝑁 we have
E(𝑋𝑖 ) < 0, which exists as E(𝑋𝑖 ) =𝑚+𝑖 ·𝜖 . For each 𝑖 > 𝑁

we have:

P(𝑋𝑖 > 0) ≤ P
(
|𝑋𝑖 − E(𝑋𝑖 ) | > −E(𝑋𝑖 )

)
(1)
≤ Var (𝑋𝑖 )

(−E(𝑋𝑖 ))2
=

𝑖 · Var (𝑠)
(𝑚 − 𝜖 · 𝑖)2

where (1) follows from Chebyshev’s inequality. If we let
𝑖 → ∞ we thus get that P(𝑋𝑖 > 0) converges to 0.

• In the case of equality, we have
∑

𝑖∈Z 𝑖 · 𝑠 (𝑖) = 0: First note
that in this case the above reposing does not work. It does
not even hold that P(𝑋𝑖 > 0) tends to 0 as it has in the
previous case. We again use the same construction of the
RV 𝑋𝑖 as before. We will show that 𝑋𝑖 does eventually
become negative at least once.
From condition c) together with b) we get that there exists
an 𝑖∗ < 0 with 𝑠 (𝑖∗) > 0. From any state 𝑘 we can now
reach a non-positive number in ⌈𝑘/𝑖∗⌉ steps with proba-
bility at least 𝑠 (𝑖∗) ⌈𝑘/𝑖∗ ⌉ > 0 (just take the relative change
𝑖∗ so many times). Our proof now hinges on a famous the-
orem proved by George Pólya that states that any random
walk on Z1 or Z2 with zero mean is recurrent (For a mod-
ern proof see e.g. [49]). As our randomwalk starts in𝑚, i.e.,
𝑋0 =𝑚 we thus get that the process (𝑋𝑖 )𝑖 does return to
𝑚 with probability 1. We can then use the strong Markov
property that states that if we have any stopping time 𝜏
(in our case the first time we revisit𝑚) the process after 𝜏
is identical to the original one. We thus get that as (𝑋𝑖 )𝑖 is
recurrent, i.e., visits𝑚 again almost-surely, it also visits𝑚
infinity many times a.s. As we have just shown, every time
we visit𝑚 there is a (lower bounded) positive probability
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(of 𝑠 (𝑖∗) ⌈𝑘/𝑖∗ ⌉ > 0) of visiting a negative numbers. So we
eventually visit a negative number with certainty (see the
zero-one law in [42] ).

⇒ : We now show the other direction. We prove this by con-
traposition. It is easy to see that if

∑
𝑖 𝑠 (𝑖) < 1 the walk is not

AST as we have a positive probability of moving to the error
state from any state. Similar if 𝑠 = 𝛿0 we are obviously not
terminating. Lastly if

∑
𝑖∈Z 𝑖 · 𝑠 (𝑖) > 0 we can follow similar

reasoning as in the case of strictly negative expectation and
show that the expectation increases in each step. □

Restatement of Lem. 5.6. If {𝑠𝑖 }𝑖∈I is a finite family of
step distributions and each 𝑠𝑖 is AST then {𝑠𝑖 }𝑖∈I is uniform
AST.

Proof. Fix any𝑚. Fix any 𝜖 > 0. By assumption
lim
𝑛→∞

𝔓𝑛
𝑠𝑖
(𝑚, 0) = 1

for every 𝑖 . So for any 𝑖 there exist a 𝑁𝑖 ∈ N such that for
every 𝑛 ≥ 𝑁𝑖 ,𝔓𝑛

𝑠𝑖
(𝑚, 0) ≥ 1 − 𝜖 (By definition of the limit).

Now define 𝑁 =
∑

𝑖 𝑁𝑖 which is finite as I is finite.
Now choose any 𝑛 ≥ 𝑁 . We claim

inf
𝑖1, · · · ,𝑖𝑛

𝔓𝑠𝑖1
· · ·𝔓𝑠𝑖𝑛

(𝑚, 0) ≥ 1 − 𝜖

whichwould immediately give us the result. Choose arbitrary
indices 𝑖1, · · · , 𝑖𝑛 . We show 𝔓𝑠𝑖1

· · ·𝔓𝑠𝑖𝑛
(𝑚, 0) ≥ 1 − 𝜖 . As

𝑛 ≥ 𝑁 there must exists a 𝑖∗ ∈ I that occurs at least 𝑁𝑖∗-
many times among 𝑖1, · · · , 𝑖𝑛 by the pigeon hole principle.
As 0 is an absorbing state we can see that𝔓𝑠𝑖𝔓(𝑚, 0) ≥

𝔓(𝑚, 0) for any stochastic matrix𝔓 (1). Note that multiplica-
tion is commutative, i.e.,𝔓𝑠𝑖𝔓𝑠 𝑗 (𝑚, 0) = 𝔓𝑠 𝑗𝔓𝑠𝑖 (𝑚, 0) (This
does not hold for general matrix multiplication but holds for
𝔓𝑠𝑖 as a random walk is invariant of the current state). We
can thus reorder the indices 𝑖1, · · · , 𝑖𝑛 such that 𝑖∗ fills the
last 𝑁𝑖∗ positions. Together with (1) we thus get

𝔓𝑠𝑖1
· · ·𝔓𝑠𝑖𝑛

(𝑚, 0) ≥ 𝔓
𝑁𝑖∗
𝑠𝑖∗ (𝑚, 0) ≥ 1 − 𝜖

as required. □

D.1 Proof of Thm. 5.9
This section is devoted to a proof of Thm. 5.9. We begin
by giving a rough outline of the proof for orientation. The
fundamental idea is to decompose the set of terminating
traces according to the number of recursive calls made (not
only on the first level). We formalize this decomposition
by a special kind of tree structure called number tree. We
then show a direct correspondence between number trees
and and terminating runs of the random walk generated by
{8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R. Henceforth fix a term `

𝜑
𝑥 .𝑀 .

Number Trees. We define a number tree by the following:
S ≜ 𝑛 ⊲ [S1, · · · ,S𝑛]

where 𝑛 ∈ N. We can depict each number tree by viewing
𝑛 as the label of the node and S1, · · · ,S𝑛 as the children as

𝑛

S1 · · · S𝑛

(a)

2

0 1

0

(b)

2

1 0

0

(c)

Figure 15. Example number trees.

depicted in Fig. 15a. Note that the simplest tree is given by
0 ⊲ []. Two (distinct) example trees are given in Fig. 15b and
Fig. 15c.

Summary Semantics. We define a summary as an el-
ement □𝑟

𝑟 ′ for 𝑟, 𝑟 ′ ∈ R. With 𝔒 we denote the set of all
summaries and with S□ ≜ (𝔒∪R[0,1])∗ the set of summary
traces. We can define a summary semantics working on sum-
mary traces in Fig. 16. For every recursive call, we substitute
in a summary, i.e., an abbreviation for a trace, on the traces.
Note that this semantics closely corresponds to the semantics
in Fig. 5 used to count the recursive calls. The only difference
is that we do not blindly substitute in a dummy value ★ but
predefine the outcome via a summary8. We set

T□𝑟 ↦→𝑟 ′ = {𝒔 ∈ S□ | ⟨body`𝜑𝑥 .𝑀 (𝑟 ), 𝒔⟩ □−→
∗
⟨𝑟 ′, 𝜖⟩}

as all summary traces on which the term on argument 𝑟
evaluates to argument 𝑟 ′.

Number Trees as Traces. The summary semantics ex-
plicitly lists recursive calls, as we can view the summary□𝑟

𝑟 ′

as a placeholder for a trace such that (`𝜑𝑥 .𝑀)𝑟 evaluates to 𝑟 ′.
The summaries allow us to partition the set of terminating
traces according to the number of calls made on each level.
We can specify the number of calls by a number tree. For
a tree 𝑛 ⊲ [S1, · · · ,S𝑛] there should be 𝑛 direct recursive
calls and inside those calls the number of calls is inductively
specified by S𝑖 . We consider the following example for some
intuition:

Example D.1. Consider the term `
𝜑
𝑥 .𝜑 (𝜑𝑥) ⊕

(
0 ⊕ 𝜑𝑥

)
and

the number tree in Fig. 15b. All traces that correspond to this
tree should make 2 recursive calls in the first level. In the
first of those calls, no further call is made and on the second
a single one is made and afterwards none. This corresponds
to the following set of terminating traces:

{𝑠 ∈ S7 |𝑠1 ∈ [0, 12 ], 𝑠2 ∈ ( 12 , 1], 𝑠3 ∈ [0, 12 ],
𝑠4 ∈ ( 12 , 1], 𝑠5 ∈ ( 12 , 1], 𝑠6 ∈ ( 12 , 1], 𝑠7 ∈ [0, 12 ]}

8Note that, unlike in ★→ we do not need to count the number of calls, as
we can simply count the number of summaries in a trace which equals the
number of calls made.
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⟨(_𝑥.𝑀)𝑉 , 𝒔⟩ □−→ ⟨𝑀 [𝑉 /𝑥], 𝒔⟩ ⟨( ` )𝑟,□𝑟
𝑟 ′ :: 𝒔⟩

□−→ ⟨𝑟 ′, 𝒔⟩ ⟨sample, 𝑟 :: 𝒔⟩ □−→ ⟨𝑟, 𝒔⟩
𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ □−→ ⟨𝑁, 𝒔⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ □−→ ⟨𝑃, 𝒔⟩

𝑟 ≥ 0

⟨score(𝑟 ), 𝒔⟩ □−→ ⟨𝑟, 𝒔⟩

⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩
□−→ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩

⟨𝑅, 𝒔⟩ □−→ ⟨𝑀, 𝒔 ′⟩

⟨𝐸 [𝑅], 𝒔⟩ □−→ ⟨𝐸 [𝑀], 𝒔 ′⟩

Figure 16. Small-step reduction rules for □−→.

Definition D.2. For each number tree S we can define a
family of sets of traces {AS

𝑟 ↦→𝑟 ′}𝑟,𝑟 ′∈R by induction on S as
follows:

𝒔1□
𝑟1
𝑟 ′1
𝒔2 · · ·□𝑟𝑛

𝑟 ′𝑛
𝒔𝑛+1 ∈ T□

𝑟 ↦→𝑟 ′
{
¤𝒔𝑟𝑖
𝑟 ′
𝑖

∈ AS𝑖

𝑟𝑖 ↦→𝑟 ′
𝑖

}𝑛
𝑖=1

𝒔1¤𝒔𝑟1𝑟 ′1𝒔2 · · · ¤𝒔
𝑟𝑛
𝑟 ′𝑛
𝒔𝑛+1 ∈ A𝑛⊲[S1, · · · ,S𝑛 ]

𝑟 ↦→𝑟 ′

Elements in A𝑛⊲[S1, · · · ,S𝑛 ]
𝑟 ↦→𝑟 ′ are thus obtained by taking ev-

ery summary trace with exactly 𝑛 summaries that takes 𝑟
to 𝑟 ′. For the 𝑖th summary (the 𝑖th recursive call) we then
substitute in a trace from AS𝑖

𝑟𝑖 ↦→𝑟 ′
𝑖

that is recursively obtained
from the 𝑖th child (S𝑖 ). Every number tree thus defines a
specific set of traces. By induction it is easy to see that for
distinct trees the obtained sets of traces are disjoint. The
interested reader is advised to match this definition with
Ex. D.1. We define AS

𝑟 ↦→R ≜
⋃

𝑟 ′∈R A
S
𝑟 ↦→𝑟 ′ as all terminating

traces with recursion according to S. It is easy to see that
AS
𝑟 ↦→R is measurable.

Probability Distributions on Number Trees. We can
view a number tree as being sampled from a counting distri-
bution 𝑡 : N→ R[0,1] . For every node we sample a number
𝑛 according to 𝑝 , add 𝑛 nodes and continue by sampling the
child nodes. Every counting distribution 𝑡 : N→ R[0,1] thus
gives a natural probability to a number tree S as just the
product over all nodes in S. More generally we define:

DefinitionD.3. For a family of counting distributions {𝑡𝑘 }𝑘 :

N→ R[0,1] and a number tree S we define P{𝑡𝑘 }𝑘inf (S) by in-
duction as

P
{𝑡𝑘 }𝑘
inf (𝑛 ⊲ [S1, · · · ,S𝑛]) ≜

(
inf
𝑘
𝑡𝑘 (𝑛)

)
·

𝑛∏
𝑖=1

P
{𝑡𝑘 }𝑘
inf (S𝑖 )

where we follow the usual convention that
∏0

𝑖=1 = 1.

Note that if {𝑡𝑘 }𝑘 consist of a single element P{𝑡𝑘 }𝑘inf (S) for
a tree S is the product of the probability of every node in
that tree. Taking the infimum follows the general scheme as
e.g. in the definition uniform AST (Def. 5.5). We show that if

we take the family (8`𝜑𝑥 .𝑀 | 𝑟8)𝑟 ∈R the probability of tree is
a lower bound on the measure of AS

𝑟 ↦→R.

Example D.4. For Ex. D.1 we get that the family (8`𝜑𝑥 .𝑀 |
𝑟8)𝑟 ∈R comprises a single element, namely the function 𝑡

defined by 𝑡 (2) = 1
2 , 𝑡 (1) =

1
4 and 𝑡 (0) = 1

4 . The probabil-
ity of the tree S in Fig. 15b, as defined above then equals
1
2
1
4
1
4
1
4 = 1

128 which is less than or equal (in this case equal)
to the measure of AS

𝑟 ↦→R.

Proposition D.5. For every number treeS and any 𝑟 we have

P
{8`𝜑𝑥 .𝑀 |𝑟 ′8}𝑟 ′
inf (S) ≤ `S

(
AS
𝑟 ↦→R

)
Proof. By induction on S with 𝑟 universally quantified. Let
S = 𝑛 ⊲ [S1, · · · ,S𝑛]. We first analyse AS

𝑟 ↦→R: by definition
every 𝒔 ∈ AS

𝑟 ↦→𝑟 ′ has the from 𝒔 = 𝒔1¤𝒔𝑟1𝑟 ′1𝒔2 · · · ¤𝒔
𝑟𝑛
𝑟 ′𝑛
𝒔𝑛+1 for

some 𝒔1□𝑟1
𝑟 ′1
𝒔2 · · ·□𝑟𝑛

𝑟 ′𝑛
𝒔𝑛+1 ∈ T□

𝑟 ↦→𝑟 ′ and ¤𝒔𝑟𝑖
𝑟 ′
𝑖

∈ AS𝑖

𝑟𝑖 ↦→𝑟 ′
𝑖

. We can
observe that {𝒔1 · · · 𝒔𝑛+1 | 𝒔1□𝑟1

𝑟 ′1
𝒔2 · · ·□𝑟𝑛

𝑟 ′𝑛
𝒔𝑛+1 ∈ T□

𝑟 ↦→𝑟 ′, 𝑟
′ ∈

R} = T★body
`
𝜑
𝑥 .𝑀

(𝑟 );𝑛 by comparing the relation ★→ and □−→. If
we concatenate two sets of traces the measure of the new
set is the product of the individual measures. As we know
that 𝑛 traces are substituted we can take the infimum over
all possible arguments which gives us a trivial lower bound
on `S

(
AS
𝑟 ↦→R

)
:

`S
(
T★body

`
𝜑
𝑥 .𝑀

(𝑟 );𝑛
)
· inf
𝑟1, · · · ,𝑟𝑛

𝑛∏
𝑖=1

`S
(
AS𝑖

𝑟𝑖 ↦→R
)
≤ `S

(
AS
𝑟 ↦→R

)
(i)

By induction we get that P{8`
𝜑
𝑥 .𝑀 |𝑟 ′8}𝑟 ′

inf (S𝑖 ) ≤ `S
(
AS𝑖

¤𝑟 ↦→R
)
for

every 𝑖 and every ¤𝑟 . Note that the left hand side does not
depend on ¤𝑟 so in particular

𝑛∏
𝑖=1

P
{8`𝜑𝑥 .𝑀 |𝑟 ′8}𝑟 ′
inf (S𝑖 ) ≤ inf

𝑟1, · · · ,𝑟𝑛

𝑛∏
𝑖=1

`S
(
AS𝑖

𝑟𝑖 ↦→R
)

(ii)
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We can now put this all together and get:

P
{8`𝜑𝑥 .𝑀 |𝑟 ′8}𝑟 ′
inf (S) (1)

= inf
𝑟 ′

8`𝜑𝑥 .𝑀 | 𝑟 ′ 8 (𝑛) ·
𝑛∏
𝑖=1

P
{8`𝜑𝑥 .𝑀 |𝑟 ′8}𝑟 ′
inf (S𝑖 )

(2)
≤ 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) · inf

𝑟1, · · · ,𝑟𝑛

𝑛∏
𝑖=1

`S
(
AS𝑖

𝑟𝑖 ↦→R
)

(3)
≤ `S

(
T★body

`
𝜑
𝑥 .𝑀

(𝑟 );𝑛
)
· inf
𝑟1, · · · ,𝑟𝑛

𝑛∏
𝑖=1

`S
(
AS𝑖

𝑟𝑖 ↦→R
)

(4)
≤ `S

(
AS
𝑟 ↦→R

)
where (1) follows from the definition of P{8`

𝜑
𝑥 .𝑀 |𝑟 ′8}𝑟 ′

inf (S),
(2) from the fact that inf𝑟 ′ 8`𝜑𝑥 .𝑀 | 𝑟 ′ 8 (𝑛) ≤ 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛)
together with fact (ii), (3) from the definition of 8`𝜑𝑥 .𝑀 | 𝑟 ′8
and (4) from (i). □

Number Trees as Terminating Runs. It is easy to see
that for every family of subprobability mass functions on the
natural numbers {𝑡𝑘 }𝑘 ,

∑
S P

{𝑡𝑘 }𝑘
inf (S) ≤ 1. Here the sum is

taken over the countable set of (finite) number trees. What
we can show is the following:

Lemma D.6. If {𝑡𝑘 }𝑘 is a family of counting distributions
and {𝑡𝑘 }𝑘 is uniform AST then∑︁

S
P
{𝑡𝑘 }𝑘
inf (S) = 1

Proof. We define the following set of absolute runs, i.e., se-
quences of states:

Runs𝐴 ≜ {𝑈 ∈ N∗ | 𝑈 (𝑖 + 1) −𝑈 (𝑖) ≥ −1,𝑈 (0) = 1,

𝑈 ( |𝑢 | − 1) = 0,∀1 ≤ 𝑖 < |𝑈 | − 1 : 𝑈 (𝑖) ≠ 0}

Think of elements in Runs𝐴 as terminating runs of the
Markov chain that start in state 1 and eventually reach state
0. The condition 𝑈 (𝑖 + 1) − 𝑈 (𝑖) ≥ −1 is there to ensure
that in each step the value never decrease by more than
1 (Note that 𝑡𝑘 never assign positive probability to values
less than −1). We associate a probability, P(𝑈 ) to elements
𝑈 ∈ Runs𝐴 by:

P(𝑈 ) = inf
𝑘0, · · · ,𝑘 |𝑈 |−2

|𝑈 |−2∏
𝑖=0

𝔓𝑡𝑘𝑖
(𝑈 (𝑖),𝑈 (𝑖 + 1))

which is just the probability of that run when taking the
infimum over all possible choices of transition distribution.
What we observe now is that

lim
𝑛→∞

(
inf

𝑘1, · · · ,𝑘𝑛
𝔓𝑡𝑘1

· · ·𝔓𝑡𝑘𝑛
(1, 0)

)
=

∑︁
𝑈 ∈Runs𝐴

P(𝑈 )

, i.e., the probability of eventually reaching 0 from 1 is the
same as the sum over the probability of each path that termi-
nates starting in 1. By assumption (𝑡𝑘 )𝑘 is uniformly AST so
the left hand side equals 1. Call this (1). Instead of analysis
the absolute path we can also consider the relative change

in each step. We define

Runs𝑅 ≜ {𝑢 ∈ (N ∪ {−1})∗ |
|𝑢 |−1∑︁
𝑖=0

𝑢 (𝑖) = −1,

∀𝑚 < |𝑢 | − 1
𝑚∑︁
𝑖=0

𝑢 (𝑖) > −1}

Each element 𝑢 ∈ Runs𝑅 gives the relative change in each
step such that starting from state 1 we eventual terminate.
The sum of the relative change should thus be −1 but the
sum of every strict prefix is at least 0 (so that termination
only occurs in the last step). There exists a bijective corre-
spondence between elements inRuns𝐴 andRuns𝑅 : For each
𝑢 ∈ Runs𝑅 , define ℌ(𝑢) ∈ Runs𝐴 as the sequence of length
|𝑢 | +1 defined byℌ(𝑢) (𝑖) ≜ 1+∑𝑖−1

𝑗=0 𝑢 ( 𝑗). It is easy to verify
that ℌ(·) is a bijection.
Now lastly we observe that there is a bijection between

the set of number trees and Runs𝑅 . For each number tree S
we inductively define a sequence of integers𝔉(S) ∈ Runs𝑅
by

𝔉(𝑛 ⊲ [S1, · · · ,S𝑛]) = (𝑛 − 1) :: 𝔉(S1) · · ·𝔉(S𝑛)

It is an easy proof to show that 𝔉(·) forms a bijection. We
thus have the bijective situation depicted below.

Runs𝐴 Runs𝑅 NTree

ℌ(·)−1

ℌ(·)

𝔉(·)−1

𝔉(·)

It is now easy to see that for every number treeS,P{𝑡𝑘 }𝑘inf (S) =
P(ℌ(𝔉(S))) asP{𝑡𝑘 }𝑘inf gives probability of the relative change
{𝑡𝑘 }𝑘 which is exactly the same as weighting the transition
directly as in the definition of P.

Asℌ◦𝔉 is a bijection and by (1)we thus get
∑

S P
{𝑡𝑘 }𝑘
inf (S) =

1 as required. □

Restatement of Thm. 5.9. If {8`𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R is uniform
AST then `

𝜑
𝑥 .𝑀 terminates a.s. on every argument.

Proof. We obviously have T(`𝜑𝑥 .𝑀)𝑟,term ⊇ ⊎
S A

S
𝑟 ↦→R (in fact

they are equal but we do not require this for the proof). We
can thus deduce:

`S
(
T(`𝜑𝑥 .𝑀)𝑟,term

)
≥ `S

(⊎
S
AS
𝑟 ↦→R

)
(1)
=
∑︁
S

`S
(
AS
𝑟 ↦→R

)
(2)
≥
∑︁
S
P
{8`𝜑𝑥 .𝑀 |𝑟 ′8}𝑟 ′
inf (S)

(3)
= 1
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where (1) follows from the fact that AS
𝑟 ↦→R is disjoint for dis-

tinct number trees, (2) from Prop. D.5 and (3) from Lem. D.6.
□

D.2 Partial Order on Counting Distributions
We first show:

Lemma D.7. Let 𝑝, 𝑞 : N→ R[0,1] be finite counting distri-
butions with 𝑝 ⊑ 𝑞. If 𝑝 is an AST step distribution then 𝑞 is
an AST step distribution.

Proof. For convenience lets write 𝑝 (𝑖) ≜ ∑
𝑗≤𝑖 𝑝 ( 𝑗) similarly

for 𝑞. As 𝑝 ⊑ 𝑞, we have 𝑝 (𝑖) ≤ 𝑞(𝑖) for every 𝑖 . We now use
Thm. 5.4: As 𝑝 is an AST step distributionwe have

∑
𝑖 𝑖 ·𝑝 (𝑖) =

1,
∑

𝑖 𝑖 ·𝑝 (𝑖) ≤ 1 and 𝑝 ≠ 𝛿1. We now show that 𝑞 satisfies all
those conditions as well and can then use the other direction
from Thm. 5.4.

As 𝑝 is finite we can view 𝑝 : {0, · · · , 𝑘} → R[0,1] for some
𝑘 . As

∑
𝑖 𝑖 · 𝑝 (𝑖) = 1 we get 𝑝 (𝑘) = 1 and thus by assumption∑

𝑖 𝑖 · 𝑞(𝑖) = 𝑞(𝑘) = 1 (1). We can hence also view 𝑞 as a
function 𝑞 : {0, · · · , 𝑘} → R[0,1] . As

∑
𝑖 𝑖 · 𝑝 (𝑖) ≤ 1 and

𝑝 ≠ 𝛿1 we get that 𝑝 (0) = 𝑝 (0) > 0, so 𝑞(0) is also positive
and thus 𝑞 ≠ 𝛿1 (2).

In the following, it remains to show that
∑

𝑖 𝑖 ·𝑞(𝑖) ≤ 1. We
use the combinatorial fact that

∑
𝑖∈N 𝑖 ·𝑝 (𝑖) =

∑
𝑖∈N

∑
𝑗>𝑖 𝑝 ( 𝑗)

and show:∑︁
𝑖∈N

𝑖 · 𝑝 (𝑖) =
∑︁
𝑖∈N

∑︁
𝑗>𝑖

𝑝 ( 𝑗) =
∑︁
𝑖

(
1 −

∑︁
𝑗≤𝑖

𝑝 ( 𝑗)
)

=

𝑘∑︁
𝑖=0

(
1 − 𝑝 (𝑖)

)
= (𝑘 + 1) −

𝑘∑︁
𝑖=0

𝑝 (𝑖)

Analogously
∑

𝑖∈N 𝑖 ·𝑞(𝑖) = (𝑘+1)−∑𝑘
𝑖=0 𝑞(𝑖). As 𝑝 (𝑖) ≤ 𝑞(𝑖)

for all 𝑖 we get:∑︁
𝑖

𝑖 · 𝑞(𝑖) = (𝑘 + 1) −
𝑘∑︁
𝑖=0

𝑞(𝑖)

≤ (𝑘 + 1) −
𝑘∑︁
𝑖=0

𝑝 (𝑖)

=
∑︁
𝑖

𝑖 · 𝑝 (𝑖)

≤ 1 (3)

We are done as (1), (2) and (3) imply that𝑞 is AST by Thm. 5.4.
□

Similarly we can show the following as we can easily ex-
tend ⊑ to distributions on N that result from runs of the
Markov chain𝔓𝑡𝑖 .

Restatement of Lem. 5.10. If 𝑠 , {𝑡𝑖 }𝑖∈I are counting distri-
butions and for all 𝑖 ∈ I, 𝑠 ⊑ 𝑡𝑖 and 𝑠 is AST then {𝑡𝑖 }𝑖∈I is
uniform AST.

D.3 Ensure Progress
The problem with formally counting the number of recursive
calls is that the returned value of a prior call can influence
not only what the next calls are but also how many calls are
made. As an example consider `𝜑𝑥 .if𝑓 𝑥 then 𝑓 𝑥 else 𝑓 𝑥+ 𝑓 𝑥
where the number of recursive calls is either 2 or 3 depend-
ing on the outcome of the first. We present a type system
that guarantees evaluation via →★ to succeed, i.e., when-
ever body`𝜑𝑥 .𝑀 (𝑟 ) is typable, ∑𝑛 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 1 for all
𝑟 ∈ R. There are two conceptually different reasons why∑

𝑛 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 1. Either we get stuck (on a non-null
set of traces) on terms of the from if(★, 𝑁 , 𝑃) or score(★).
The other case is to get stuck on terms of the from score(𝑟 )
for 𝑟 < 0. We focus on the first cause, which informally oc-
curs whenever a recursive outcome is subsequently used in
guards or scores and thereby influences the control flow. The
second cause, on the other hand depends on the concrete
denotation of a program, and at such can not be analysed
statically.

The crux of our approach is thus to disallow the outcome
of recursive calls to influence branching in the programs,
i.e., recursive outcomes may not be used inside guards of
conditionals or score-constructs. Obviously, this cannot be
characterised purely syntactically as the property we seek
is semantic in nature. We enforce this by a more involved
simple type system where we add a dedicated type R⊤ for
recursive outcomes that cannot be used within guards. We
define simple types in Fig. 17a. The idea of R⊤ being more
restrictive than R can be formalized via a subtyping relation
given in Fig. 17b. Typing judgments are of the form Γ ⊢ 𝑀 : 𝛼
and given in Fig. 17c. The crucial step is the rule for condi-
tionals combined with the fixpoint rule. For conditionals we
require that the term in the guard position has R and at the
same time the recursive abstraction ` has the more restric-
tive return type R⊤. Combined with subtyping this gives a
semantic guarantee that the recursive abstraction cannot be
used inside conditionals. Note that the type system works
with the simplified fixpoint constructs, ` . For now on we
assume that the fixed `

𝜑
𝑥 .𝑀 satisfies ⊢ body`𝜑𝑥 .𝑀 (𝑟 ) : R⊤ for

some 𝑟 9.
Whenever body`𝜑𝑥 .𝑀 (𝑟 ) is typable in the system in Fig. 17

recursive outcomes cannot be used inside the conditionals
or score constructs. If, in addition, no score-constructs get
stuck, this already ensures that ★→ enjoys progress10.

9We obviously have that body
`
𝜑
𝑥 .𝑀

(𝑟 ) is typable for some 𝑟 iff it is typable
for all 𝑟 .
10While we can statically ensure that a recursive outcome,★, never occurs
insider a guard or a score-construct, we can not ensure that we only score
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𝛼, 𝛽 ≜ R | R⊤ | 𝛼 → 𝛽

(a)

𝛼 ⊑ 𝛼 R ⊑ R⊤
𝛼 ′ ⊑ 𝛼 𝛽 ⊑ 𝛽 ′

𝛼 → 𝛽 ⊑ 𝛼 ′ → 𝛽 ′

(b)

𝑥 : 𝛼 ∈ Γ
Γ ⊢ 𝑥 : 𝛼

Γ;𝑥 : 𝛼 ⊢ 𝑀 : 𝛽

Γ ⊢ _𝑥 .𝑀 : 𝛼 → 𝛽 Γ ⊢ ` : R⊤ → R⊤ Γ ⊢ 𝑟 : R Γ ⊢ sample : R

Γ ⊢ 𝑀 : 𝛼 𝛼 ⊑ 𝛽

Γ ⊢ 𝑀 : 𝛽

Γ ⊢ 𝑀 : 𝛼 → 𝛽 Γ ⊢ 𝑁 : 𝛼

Γ ⊢ 𝑀𝑁 : 𝛽
Γ ⊢ 𝑀 : R Γ ⊢ 𝑁 : 𝛼 Γ ⊢ 𝑃 : 𝛼

Γ ⊢ if(𝑀, 𝑁, 𝑃) : 𝛼

Γ ⊢ 𝑀1 : R · · · Γ ⊢ 𝑀 |𝑓 | : R
Γ ⊢ 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) : R

Γ ⊢ 𝑀 : R
Γ ⊢ score(𝑀) : R

Γ ⊢ 𝑀1 : R⊤ · · · Γ ⊢ 𝑀 |𝑓 | : R⊤

Γ ⊢ 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) : R⊤

(c)

Figure 17. Simple typing judgments that guarantee that recursive outcomes are never used inside inside conditionals.

Lemma D.8. If body`𝜑𝑥 .𝑀 (𝑟 ) is typable in the system from
Fig. 17 and no subterm of the from score(𝑟 ) for 𝑟 < 0 is
reachable, then

∑
𝑛 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 1 for all 𝑟 .

Proof. We extend the system in Fig. 17 by the axiom Γ ⊢
★ : R⊤ and cn show subject reduction w.r.t. ★→. As terms of
the from if(★, 𝑁 , 𝑃) or score(★) are not typable in Fig. 17
execution via ★→ can never reach terms that contain such
subterms. As by assumption no score-construct can fail,
our reduction does enjoy progress. This directly implies that∑

𝑛 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 1 for all 𝑟 by the same argument as in
[40, Lem. 7]. □

D.4 Intersection Counting System
To count the number of occurrenceswe employ a non-idempotent
intersection (NII) type system. Intersection types are defined
by the mutually recursive grammar 𝛼, 𝛽 ≜ R | 𝑎 → 𝛼 and
𝑎 ≜ [𝛼1, · · · , 𝛼𝑛] where [𝛼1, · · · , 𝛼𝑛] denotes a multiset. A
typing context Γ is a partial map from variables to inter-
sections. The disjoint union of two contexts Γ,Δ denoted
by Γ ⊎ Δ is the elementwise disjoint union of multiset. For
an overview on non-idempotent intersection types see [10].
Typing judgments are of the from Γ ⊢ 𝑀 : 𝛼 and given by
the rules in Fig. 18. Due to the non-idempotent nature, for
each type derivation we can read of the number of seman-
tic occurrences as the cardinality of the intersection type.
E.g. `𝜑𝑥 .𝑀 is a first-order fixpoint and {𝜑 : 𝑎, 𝑥 : 𝑏} ⊢ 𝑀 : R
we get a path in which 𝜑 is used exactly |𝑎 |-many times.
Here |𝑎 | denote the cardinality of an intersection type.

on non-negative values. Checking if the argument of every score is non-
negative requires the inspection of the denotion of a subprogram and is
thus very involved. For most interesting program it is, however, easy to
verify the concrete score value as it is e.g. a constant.

We can easily see that the type system gives a upper bound
on the recursive rank, as each type derivation outlines a
possible execution and the cardinality of a intersection type
represents the semantic use cases of a variable.

Lemma D.9. Let `𝜑𝑥 .𝑀 be a first-order fixpoint term with re-
cuive rank𝑚 (as defined in Sec. 5.4). Then𝑚 ≤ max

{𝜑:𝑎,𝑥 :𝑏 }⊢𝑀:R
|𝑎 |

This lemma justifies the use of the NII-type system to up-
per bound the recursive rank and thus make use of Cor. 5.13
without computing the recursive rank directly. A direct com-
putation would involve probabilistic reasoning, whereas the
type system gives a “easy to compute” upper bound. Note
that for a term `

𝜑
𝑥 .𝑀 , the quantity max

{𝜑:𝑎,𝑥 :𝑏 }⊢𝑀:R
|𝑎 | used in

Lem. D.9 is effectively computable.

D.5 Further example
We consider the Ex. 5.15, i.e., the addition of Ex. 5.1 where we
use probabilistic outcomes as first class citizens. Recall that
𝑝 is the acceptance probability of a print. For each print we
first sample a value 𝑒 uniform on [0, 1] which represents how
broken the product is, i.e., 𝑒 = 0 is a completely fine product
and 𝑒 = 1 would correspond to a total failure. Whenever
the quality is less than 𝑝 we accept the print. In the other
case, as before in Ex. 5.1, there is a chance of sig (𝑥) of the
staff being tired and making mistakes. In case a mistake is
made, we do however not have a fair binary choice between
printing 2 or 3 copies, but instead this depends on the quality
of the most recent print 𝑞. With probability 𝑒 we reprint 3
copies and otherwise only 2. With increasing 𝑒 , i.e., the more
damaged the last print was, the more likely it is to reprint 3
instead of 2. The term we analyse in Ex. 5.15 is the following
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{𝑥 : [𝛼]} ⊢ 𝑥 : 𝛼

Γ;𝑥 : 𝑎 ⊢ 𝑀 : 𝛼

Γ ⊢ _𝑥.𝑀 : 𝑎 → 𝛼

Γ ⊢ 𝑀 : [𝛼𝑖 ] → 𝛽 {Γ𝑖 ⊢ 𝑁 : 𝛼𝑖 }
⊎𝑖Γ𝑖 ⊎ Γ ⊢ 𝑀𝑁 : 𝛽

Γ ⊢ 𝑀 : R Δ ⊢ 𝑁 : 𝛼
Γ ⊎ Δ ⊢ if(𝑀, 𝑁, 𝑃) : 𝛼

Γ ⊢ 𝑀 : R Δ ⊢ 𝑃 : 𝛼
Γ ⊎ Δ ⊢ if(𝑀, 𝑁, 𝑃) : 𝛼 ∅ ⊢ sample : R

Γ1 ⊢ 𝑀1 : R · · · Γ|𝑓 | ⊢ 𝑀 |𝑓 | : R
Γ1 ⊎ · · · ⊎ Γ|𝑓 | ⊢ 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) : R ∅ ⊢ 𝑟 : R

Γ ⊢ 𝑀 : R
Γ ⊢ score(𝑀) : R

Figure 18. Non-idempotent Intersection Type System that counts the number of semantic uses of a variable. Note that this
system is not syntax-guided due to the two rules for conditionals.

𝑧

1

0

𝑒
0 1

𝑑

Figure 19. A geometric interpretation of the probability in
Sec. D.5. Each point in the square correspond to a value of 𝑒
(the error value sampled in the let) and 𝑧 the sampled value
in the binary choice. The blue (striped) area are all value
pairs such that 𝑒 > 𝑑 , i.e., all sampled values for 𝑒 such that
the first conditional takes the right branch. The red (dotted)
area contains all value pairs such that 𝑧 ≤ 𝑒 , i.e., the left
branching in the binary sample is taken.

(parameterised by 𝑝):
`
𝜑
𝑥 .let 𝑒 = sample in if 𝑒 ≤ 𝑝 then𝑥 else( (

𝜑3 (𝑥 + 1) ⊕𝑒 𝜑
2 (𝑥 + 1)

)
⊕sig (𝑥) 𝜑

2 (𝑥 + 1)
)

In particular, note the use of a probabilistic sample (𝑒) as a
first class value and the subsequent use as a probability ⊕𝑒 .
Such behavior cannot be modelled via discrete distributions,
as the quality 𝑒 is an intrinsic continuous value.

We want to check for which instantiation of 𝑝 this term is
AST on every input. To make use of Thm. 5.9 we extract the
counting pattern 8`𝜑𝑥 .𝑀 | 𝑟8 for the program above. If we fix
𝑝 this would become easier. However, for our demonstration,
we treat 𝑝 as a variable. As we want the 𝑝 to stay flexible,
this can be done via some basic geometric reasoning. It is
easy to see that 8`𝜑𝑥 .𝑀 | 𝑟 8 (0) = 𝑝 , 8`𝜑𝑥 .𝑀 | 𝑟 8 (1) = 0
and 8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛) = 0 for all 𝑛 > 3, so it remains to
compute 8`𝜑𝑥 .𝑀 | 𝑟 8 (2) and 8`𝜑𝑥 .𝑀 | 𝑟 8 (3). Lets start

with 8`𝜑𝑥 .𝑀 | 𝑟 8 (3). In order to make 3 recursive calls we
must have that the sampled value 𝑒 satisfies 𝑒 > 𝑝 and in the
later binary choice (⊕𝑒 ) the sampled value (lets cal it 𝑧) must
satisfy 𝑧 ≤ 𝑒 . If we let 𝑒 and 𝑧 be sampled iid from a uniform
distribution on [0, 1] we can interpret the desired probability
as volume of the intersection of the red (dotted) and blue
(striped) area in Fig. 19. We can compute this volume which
is 1−𝑝2

2 . We thus get 8`𝜑𝑥 .𝑀 | 𝑟 8 (3) = sig (𝑟 ) ∗ 1−𝑝2

2 . Similarly
we can compute 8`𝜑𝑥 .𝑀 | 𝑟 8 (2) = (1 − 𝑝) (1 − 1+𝑝

2 sig (𝑟 )).
We now want to use Thm. 5.9 to find values of 𝑝 such

that the term is AST on every input. We again make use of
Lem. 5.10. We define

𝑠 B 𝑝𝛿0 + (1−𝑝)2
2 𝛿2 + 1−𝑝2

2 𝛿3

It is routine to check that 𝑠 ⊑ 8`𝜑𝑥 .𝑀 | 𝑟8 for every 𝑟 . To
analyse for which 𝑝 𝑠 is AST we use Thm. 5.4; so we need to
find values for 𝑝 such that the expectation of 𝑝 is less than
or equal 1 11. We can compute:

𝑝 ∗ 0 + (1−𝑝)2
2 ∗ 2 + 1−𝑝2

2 ∗ 3 ≤ 1

⇔ (1 − 𝑝)2 + 3(1−𝑝2)
2 ≤ 1

⇔ − 1
2𝑝

2 − 2𝑝 + 3
2 ≤ 0

⇔ (𝑝 ≤ −2 −
√
7) ∨ (𝑝 ≥

√
7 − 2)

As we assumed 𝑝 ∈ [0, 1], 𝑠 is AST iff 𝑝 ≥
√
7 − 2. We have

𝑠 ⊑ 8`𝜑𝑥 .𝑀 | 𝑟8 for every 𝑟 so we can appeal to Lem. 5.10
and get that {8`𝜑𝑥 .𝑀 | 𝑟8𝑟 }𝑟 ∈R is uniform AST whenever
𝑝 ≥

√
7 − 2. By Thm. 5.9 we can thus conclude that when

𝑝 ≥
√
7 − 2 the program is AST on every input.

This example demonstrated well, that when we use (con-
tinuous) random outcomes as first class values, the analysis
becomes very intricate. Such examples can not be expressed
in PHORS [34] or with binary probabilistic choice [20, 32, 50].
Our framework can analyse such example efficiently.

11Note that this is equivalent to the fact that the exception of 𝑠 (which is
shifted by −1) is less than or equal 0
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As we will see in the next section, we can automate this
process entirely. I.e., the probably computation and the deriva-
tion of 𝑠 can be done fully automatically (for a fixed 𝑝 ≥√
7 − 2).

E Additional Material - Section 6
E.1 Detailed Algorithm Description
In this section we give a detailed (and formal) description of
our algorithm.

Symbolic Execution Trees. The key step is to evaluate
a term symbolically and use sample variables to postpone
sample decision (c.f. symbolic terms in Sec. B.5). We extend
the syntax of symbolic terms by a new symbol, ⊛, that will
be used as an unknown argument. We now present symbolic
execution as a big-step semantics, where branching on the
term level is represented as branching of a tree. As we are,
in particular, interested in recursive calls we annotate each
call made in the semantics. We define (symbolic) executions
trees by:

ETree ∋ 𝔗 ≜ 𝔙 | ` (𝔗) | 𝑠 (𝔙) (𝔗)
| (𝔙) (𝔗1,𝔗2) | (𝔙) (𝔗1,𝔗2)

where 𝔙 ∈ Val is a symbolic value12. We choose a more
space-economical way to present trees. We occasionally de-
pict execution trees as tree of degree 2 where (𝔙) (𝔗1,𝔗2)
represents a binary branch. Note that an execution tree con-
denses all of the information we are interested in. For branch-
ing, it records the symbolic value as the condition; for score,
it records the symbolic value that is scored, and finally every
recursive call is recorded. To construct an execution tree
from a program it remains to fold13 execution trees:

Definition E.1. Given a function 𝐻 : Val → ETree we can
define the lifted tree fold𝐻 † : ETree → ETree by induction
as follows:

𝐻 † (
𝔙

)
= 𝐻 (𝔙)

𝐻 † ( ` (𝔗)
)
= ` (𝐻 †𝔗)

𝐻 †
(
𝑠 (𝔙) (𝔗)

)
= 𝑠 (𝔙) (𝐻 †𝔗)

𝐻 † ( (𝔙) (𝔗1,𝔗2)) = (𝔙) (𝐻 †𝔗1, 𝐻
†𝔗2)

𝐻 † ( (𝔙) (𝔗1,𝔗2)) = (𝔙) (𝐻 †𝔗1, 𝐻
†𝔗2)

We can now define a big-step semantics by giving a sym-
bolic execution tree for each program, denoted𝑀 ⇓ 𝔗. The
big-step rules are given in Fig. 20 where 𝛽 (𝑥) (𝑦) performs
a 𝛽-step, i.e., 𝛽 (_𝑥 .𝑀) (𝑉 ) ≜ 𝑀 [𝑉 /𝑥] and 𝛽 ( ` ) (𝑉 ) ≜ ★. __
binds the argument of an anonymous function. To avoid con-
fusion, we use the special symbol to distinguish it from ab-
stractions within our language. Note that this system inherits
the structure of a standard big-step semantic (see e.g. [6]).
As we execute symbolically and cannot resolve branching,
we operate on trees and fold each reduction step. For each
12As we have done in Sec. 5.2, we extend symbolic values by a special
symbol★.
13Tree folding is standard in functional programming. In our case, fold
traverses the tree and replaces every leaf with a tree given the folded
function.
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for a fresh 𝛼𝑖

sample ⇓ 𝛼𝑖 𝔙 ⇓ 𝔙

𝔐 ⇓ 𝑡1 𝔑 ⇓ 𝑡2 𝛽 (𝑥) (𝑦) ⇓ 𝑡𝑥,𝑦

𝔐𝔑 ⇓
(
__ 𝑥 .

(
__ 𝑦.

{
` (𝑡𝑥,𝑦) if 𝑥 = `

𝑡𝑥,𝑦 else
)†
𝑡2

)†
𝑡1

𝔐1 ⇓ 𝑡1 · · · 𝔐 |𝑓 | ⇓ 𝑡 |𝑓 |

𝑓 (𝔐1, · · · ,𝔐 |𝑓 |) ⇓
(
__ 𝑥1. · · ·

(
__ 𝑥 |𝑓 | . 𝑓 (𝑥1, · · · , 𝑥 |𝑓 |)

)†
𝑡 |𝑓 | · · ·

)†
𝑡1

𝔐 ⇓ 𝑡𝔐 𝔑 ⇓ 𝑡𝔑 𝔓 ⇓ 𝑡𝔓

if(𝔐,𝔑,𝔓) ⇓
(
__ 𝑥 .

{
(𝑥) (𝑡𝔑, 𝑡𝔓) if ⊛ ∈ 𝑥

(𝑥) (𝑡𝔑, 𝑡𝔓) else

)†
𝑡𝔐

𝔐 ⇓ 𝑡𝔐

score(𝔐) ⇓
(
__ 𝑥 . 𝑠 (𝑥) ( 𝑥 )

)†
𝑡𝔐

Figure 20. Big-step symbolic execution where symbolic terms denote execution trees.

sig (⊛) − 𝛼1

𝛼2

𝑠1
3

1
3

`

★

𝛼4 − 𝛼3

0
𝛼5 − sig (⊛) − 𝛼3

`

★

`

`

★(a)

𝛼2

𝑠1
3

1
3

`

★

𝛼4 − 𝛼3

0
`

★

𝛼4 − 𝛼3

0
`

`

★(b)

Figure 21. Symbolic execution trees for the running example
and all possible strategies (b).

resolved conditional we introduce a binary branch at every
conditional, a 𝑠 (𝑉 ) (𝔗) for every score construct, and a
` (𝔗) for every recursive call. For every term𝑀 there ex-
ist a𝑀 ⇓ 𝔗 and 𝔗 is unique up to reordering of the sample
variables. The termwe analyse is body`𝜑𝑥 .𝑀 (⊛), i.e., the body
with the argument replaced by the distinguished symbol ⊛.

Example E.2. As an running example to demonstrate our
tool consider the following non-trivial term

`
𝜑
𝑥 .
(
score( 13 ) ⊕ 𝜑 𝑥

)
⊕sig (𝑥)

(
let𝑝 = sample in

0 ⊕𝑝

(
𝜑 𝑥 ⊕𝑥+𝑝 𝜑 (𝜑 𝑥)

) )
where sig (𝑥) is the sigmoid function that squashes the real
line into [0, 1]. Checking this program for AST is challenging
as the analysis depends on a complex interplay between the
actual argument 𝑥 and the probabilistic outcomes. Note that
for𝑀 as above: 8`𝜑𝑥 .𝑀 | 𝑟8 ≠ 8`𝜑𝑥 .𝑀 | 𝑟 ′8, if 𝑟 ≠ 𝑟 ′. The term
we analyse in our big-step system is body`𝜑𝑥 .𝑀 (𝑟 ) which in
our case is:(
score( 13 ) ⊕ `⊛

)
⊕sig (⊛)(

let𝑝 = sample in 0 ⊕𝑝

(
`⊛ ⊕sig (⊛)+𝑝 ` ( `⊛)

) )
The tree 𝔗 with body`𝜑𝑥 .𝑀 (⊛) ⇓ 𝔗 is depicted in Fig. 21a.
The interested reader is advised to check the construction
herself.

Strategies. Informally, each red inner node does contain
the unknown argument ⊛ so we cannot determine its prob-
abilistic behaviour without knowing its concrete value. The
route we pursue here is to simply ignore every branching
at red nodes and not treating it as a quantitative but non-
deterministic branching. Loosely speaking, we let the envi-
ronment decide which branch to take. We define strategies
by

𝔖 ≜ 𝔙 | ` (𝔖) | 𝑠 (𝔙) (𝔖) | (𝔙) (𝔖1,𝔖2)
| (𝔙) (𝔖,×) | (𝔙) (×,𝔖)

So strategies almost agree with execution trees but can
choose which path to follow for each red node. A strategy
𝔖 is compatible with an execution tree 𝔗 (written𝔖 ≺ 𝔗) if
it matches the structure.
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Const★( 𝔙 , 𝜖) ≜ R𝑚[0,1]
Const★( ` (𝔗) , ^) ≜ Const★(𝔖, ^)

Const★( (𝔖2) (𝔖1,×)𝔙, 𝑳^) ≜ Const★(𝔖1, ^)
Const★( (𝔖2) (×,𝔖1)𝔙, 𝑹^) ≜ Const★(𝔖2, ^)

Const★( 𝑠 (𝔙) (𝔖) , ^) ≜ Const★(𝔖, ^) ∩𝔙−1 [0,∞)

Const★( (𝔙) (𝔖1,𝔖2), 𝑳^) ≜ Const★(𝔖1, ^) ∩𝔙−1 (−∞, 0]
Const★( (𝔙) (𝔖1,𝔖2), 𝑹^) ≜ Const★(𝔖2, ^) ∩𝔙−1 (0,∞)

Figure 22. Inductive definition of Const★(𝔖, ^) for ^ ∈
Paths▼ (𝔖).

Paths and Probability. As we arranged execution in
a tree, we effectively postponed branching decision. Each
branch in a strategy (or execution) corresponds to a branch-
ing path of the problem. A path is a sequence in ^ ∈ {𝑳, 𝑹}∗
that resolves binary branching decision. For a strategy 𝔖

we denote with Paths▼ (𝔗) the set of terminating paths, i.e.,
paths that lead to a leaf. In the first example strategy in
Fig. 21b paths include 𝑳𝑳 and 𝑳𝑹.

For any strategy𝔖 and terminating path ^ ∈ Paths▼ (𝔖)
we count the numbers of recursive calls on that path, i.e., the
number of times that a fixpoint node, ` (·) , is traversed.
We denote this number with | ` | (𝔖, ^) ∈ N. For a set 𝐶
of natural numbers we abbreviate Paths▼ (𝔖,𝐶) ≜ {^ ∈
Paths▼ (𝔖) | | ` | (𝔖, ^) ∈ 𝐶}.

Assume that all sample variables occurring in a execution
tree𝔗 are within {𝛼0, · · · , 𝛼𝑚−1} and𝔖 ≺ 𝔗 (so sample vari-
ables within𝔖 are also within {𝛼0, · · · , 𝛼𝑚−1}). Then each
path ^ ∈ Paths▼ (𝔖) denotes a measurable subset of R𝑚[0,1]
in the natural way as all assignment such that this path is
followed. We denote this set with Const★(𝔖, ^) ⊆ R𝑚[0,1] and
it is defined by induction in Fig. 22. Const★(𝔖, ^) ⊆ R𝑚[0,1]
denotes the set of assignments for 𝛼0, · · · , 𝛼𝑚−1 such that
the branching and score-constructs are evaluated according
to ^. Red nodes are ignored as we do not interpret them
probabilistically. It is easy to see that Const★(𝔖, ^) is mea-
surable. We abbreviate P★(𝔖, ^) ≜ _𝑚

(
Const★(𝔖, ^)

)
, i.e.,

the Lebesgue measure of all those assignments.

The Algorithm. We are now in a position to present
our algorithm. Given a term `

𝜑
𝑥 .𝑀 we begin by comput-

ing body`𝜑𝑥 .𝑀 (⊛) ⇓ 𝔗⊛. Note that such a tree always exist
and is, up to sample variables, unique. For a strategy𝔖, we
abbreviate P★(𝔖, 𝑛) B ∑

^∈Paths▼ (𝔖,{0, · · · ,𝑛})
P★(𝔖, ^), i.e., the

probability that in𝔖 at most 𝑛 call are made.

We can now define:
Papprox (0) B min

𝔖∈Strat (𝔗⊛)
P★(𝔖, 0)

Papprox (𝑛 > 0) B (
min

𝔖∈Strat (𝔗⊛)
P★((𝔖, 𝑛)

)
−
(

min
𝔖∈Strat (𝔗⊛)

P★((𝔖, 𝑛 − 1)
)

We can understand Papprox (𝑛) as the least probability that 𝑛
calls are made even if the environment chooses in the worst
(worst here meaning more recursive calls) possible way.

Example E.3. Consider all strategies for the running exam-
ple listed in Fig. 21b.We can computePapprox (0) = Papprox (2) =
1
2 and Papprox (𝑛) = 0 for all other 𝑛.

As the same sampling outcome can be used within multi-
ple branching, we must make sure that the non-deterministic
interpretation of branching does not lose any information.
We call a execution tree 𝔗 sufficiently independent if every
sample variable that is used in a red node is not used in the
subtree rooted at that node. Informally speaking, this means
that probabilistic outcomes that we over-approximated by
switching to a non-deterministic view may not be used af-
terwards. They can, of course, be used prior to the non-
deterministic node. The correctness of our approach is then
stated as follows:

Restatement of Thm. 6.2. If 𝔗⊛ is sufficiently independent,
then for every 𝑟 ∈ R, Papprox ⊑ 8`𝜑𝑥 .𝑀 | 𝑟8.

Note that our approach still does not provide a straightfor-
ward way to implement it. While body`𝜑𝑥 .𝑀 (⊛) ⇓ 𝔗⊛ can be
computed effectively and the (finitely many) strategies with
𝔖 ≺ 𝔗 can be enumerated we still to compute P(𝔖, 𝑛) and
therefore the Lebesgue measure of a certain set. However,
our approach does a big leap towards automation as we no
longer need to consider individual arguments. As we argue
later (in the implementation section) the Lebesgue measure
of a set can be computed or approximated efficiently for
certain primitive functions.
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Const( 𝔙 , 𝜖) ≜ R𝑚[0,1]
Const( ` (𝔗) , ^) ≜ Const(𝔗, ^)

Const( 𝑠 (𝔙) (𝔗) , ^) ≜ Const(𝔗, ^) ∩𝔙−1 [0,∞)

Const( (𝔙) (𝔗1,𝔗2), 𝑳^) ≜ Const(𝔗1, ^) ∩𝔙−1 (−∞, 0]
Const( (𝔙) (𝔗1,𝔗2), 𝑹^) ≜ Const(𝔗2, ^) ∩𝔙−1 (0,∞)
Const( (𝔙) (𝔗1,𝔗2), 𝑳^) ≜ Const(𝔗1, ^) ∩𝔙−1 (−∞, 0]
Const( (𝔙) (𝔗1,𝔗2), 𝑹^) ≜ Const(𝔗2, ^) ∩𝔙−1 (0,∞)

Figure 23. Inductive definition of Const(𝔗, ^) for ^ ∈
Paths▼ (𝔗).

E.2 Correctness Proof
It remains to show the correctness of our approach, by prov-
ing Thm. 6.2. For the proof it is actually easiest to ignore some
of the previous work. Instead of analysing body`𝜑𝑥 .𝑀 (⊛) we
fix a actual argumengt 𝑟 and investigate body`𝜑𝑥 .𝑀 (𝑟 ). Most
notably, we get that body`𝜑𝑥 .𝑀 (𝑟 ) ⇓ 𝔗𝑟 for a (up to sample
variables unique) 𝔗𝑟 and we know that 𝔗𝑟 does not contain
a single red node (as it does not contain ⊛ ).

Paths in Trees. Similar to the way we defined paths in
strategies, we can also define paths in execution trees. For a
execution tree 𝔗 we denote with Paths▼ (𝔗) all terminating
paths in 𝔗 and for a ^ ∈ Paths▼ (𝔗) with | ` | (𝔖, ^) ∈ N
the number of times a fixpoint node is traversed. The set of
terminating traces for the execution tree in Fig. 21a includes
e.g. 𝑹𝑹𝑹 𝑳𝑹. As before, for a set 𝐶 of natural numbers we
abbreviate Paths▼ (𝔗,𝐶) ≜ {^ ∈ Paths▼ (𝔗) | | ` | (𝔗, ^) ∈
𝐶}.

Correspondence. For every execution tree 𝔗 that does
not contain ⊛ and ^ ∈ Paths▼ (𝔗) we define a measurable
set Const(𝔗, ^) by induction in Fig. 23. Note that𝔗 must not
be obtained via ⇓. This is similar to the definition in Fig. 22
with the exception that, as ⊛ is not contained, every branch
(both red and white) restricts the set of assignments. Infor-
mally, Const(𝔗, ^) includes all assignments to the sample
variables, such that the branching according to ^ is taken
and all scoreconstructs do not fail. As before, we define
P(𝔗, ^) ≜ _𝑚

(
Const(𝔗, ^)

)
. We can now show a intuitive

correspondence between the paths in body`𝜑𝑥 .𝑀 (𝑟 ) ⇓ 𝔗𝑟 and
the small step semantics ★→ from Fig. 5 (which is similar to
Prop. B.8).

Proposition E.4. If 𝑟 ∈ R and body`𝜑𝑥 .𝑀 (𝑟 ) ⇓ 𝔗𝑟 and 𝑛 ∈ N
then, ∑︁

^∈Paths▼ (𝔗𝑟 ,{𝑛})
P(𝔗𝑟 , ^) = `S

(
T★body

`
𝜑
𝑥 .𝑀

(𝑟 );𝑛
)

This proposition states, that if we are interested in the
number of recursive calls, say 𝑛. Then the set of paths ^ ∈
Paths▼ (𝔗𝑟 , {𝑛}) are all paths on which 𝑛 calls are made and
the constraints along those paths characterize exactly the
traces on which 𝑛 calls are made in the ★→ semantics (Fig. 5).
Note that not all traces in T★body

`
𝜑
𝑥 .𝑀

(𝑟 );𝑛 are of length at most
𝑚.

Replacing Probabilistic by Nondeterministic Choice.
We can show the following (which does not depend on the
fact that 𝔗 must be obtained via our big-step semantics ⇓).
In particular note, that all trees obtained via ⇓ and do not
contain ⊛ also do not contain a red node. For general 𝔗 this
does not hold, i.e., there can be trees containing red nodes
but no ⊛. We need the following simple fact:

Lemma E.5. If ¤𝑎 ≤ 𝑎 and ¤𝑏 ≤ 𝑏 and 𝑝 ∈ R[0,1] then ¤𝑎 ≤
𝑝𝑎 + (1 − 𝑝)𝑏 or ¤𝑏 ≤ 𝑝𝑎 + (1 − 𝑝)𝑏.

Proof. Assume for contradiction 𝑝𝑎 + (1 − 𝑝)𝑏 < ¤𝑎 and 𝑝𝑎 +
(1−𝑝)𝑏 < ¤𝑏 then 𝑝𝑎+ (1−𝑝)𝑏 < 𝑝 ¤𝑎+ (1−𝑝) ¤𝑏. But obviously
also 𝑝 ¤𝑎 + (1 − 𝑝) ¤𝑏 ≤ 𝑝𝑎 + (1 − 𝑝)𝑏, a contradiction. □

Proposition E.6. If 𝔗 is sufficiently independent and does
not contain ⊛ and 𝐶 ⊆ N then there exists a strategy𝔖 ≺ 𝔗,
s.t., ∑︁

^∈Paths▼ (𝔖,𝐶)
P★(𝔖, ^) ≤

∑︁
^∈Paths▼ (𝔗,𝐶)

P(𝔗, ^)

Proof. We generalize the statement. For a measurable set
𝐴 ⊆ R𝑚[0,1] we define P𝐴 (𝔗, ^) ≜ _𝑚 (Const(𝔗, ^) ∩𝐴) and
P★
𝐴
(𝔖, 𝑝) ≜ _𝑚 (Const★(𝔖, 𝑝) ∩𝐴). Note that PR𝑚[0,1] (𝔗, 𝑝) =

P(𝔗, 𝑝) and P★
R𝑚[0,1]

(𝔖, 𝑝) = P★(𝔖, 𝑝).
We now show that the statement holds with P𝐴 instead of

P and P★
𝐴
instead of P★ for any measurable 𝐴 ⊆ R𝑚[0,1] which

obviously subsumes our initial obligation. The proof goes by
induction on 𝔗 with 𝐴 ⊆ R𝑚[0,1] universally quantified.

• If 𝔗 = 𝔙 then define𝔖 ≜ 𝔙 . It is easy to check that
this strategy does satisfy the condition.

• If 𝔗 = ` (𝔗′) . By induction there is a 𝔖′ ≺ 𝔗′ that
satisfies the conditions. Define𝔖 ≜ ` (𝔖′) which trivial
satisfies the condition.

• If 𝔗 = 𝑠 (𝔙) (𝔗′) . Define 𝐴′ ≜ 𝔙−1 [0,∞) ∩𝐴 which is
obviously measurable. Now by induction there is a𝔖′ ≺
𝔗′ such that∑︁

^∈Paths▼ (𝔖′,𝐶)
P★𝐴′ (𝔖′, ^) ≤

∑︁
^∈Paths▼ (𝔗′,𝐶)

P𝐴′ (𝔗′, ^)
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Define𝔖 ≜ 𝑠 (𝔙) (𝔖′) . Now for every ^ ∈ Paths▼ (𝔖)
we have

P★𝐴 (𝔖, ^) = _𝑚
(
Const★(𝔖, ^) ∩𝐴

)
= _𝑚

(
Const★(𝔖′, ^) ∩𝔙−1 [0,∞) ∩𝐴

)
= P★

𝔙−1 [0,∞)∩𝐴 (𝔖
′, ^)

= P★𝐴′ (𝔖′, ^)

Analogously P𝐴 (𝔗, ^) = P𝐴′ (𝔗′, ^). So using the IH we
get ∑︁

^∈Paths▼ (𝔖,𝐶)
P★𝐴 (𝔖, ^) =

∑︁
^∈Paths▼ (𝔖′,𝐶)

P★𝐴′ (𝔖′, ^)

≤
∑︁

^∈Paths▼ (𝔗′,𝐶)
P𝐴′ (𝔗′, ^)

=
∑︁

^∈Paths▼ (𝔗,𝐶)
P𝐴 (𝔗, ^)

• If𝔗 = (𝔙) (𝔗1,𝔗2):We define the set𝐴1 ≜ 𝔙−1 (−∞, 0]∩
𝐴 and 𝐴2 ≜ 𝔙−1 (0,∞) ∩ 𝐴. Both are measurable. By in-
duction there are strategies𝔖1,𝔖2 such that∑︁

^∈Paths▼ (𝔖𝑖 ,𝐶)
P★𝐴𝑖

(𝔖𝑖 , ^) ≤
∑︁

^∈Paths▼ (𝔗𝑖 ,𝐶)
P𝐴𝑖

(𝔗𝑖 , ^) (1)

for 𝑖 ∈ {1, 2}. We define 𝔖 ≜ (𝔙) (𝔖1,𝔖2) and claim
that this fulfils the criterion. We observe the following, for
any ^ ∈ Paths▼ (𝔖1) we have:
P★𝐴 (𝔖, 𝑳^) = _𝑚

(
Const★(𝔖, 𝑳^) ∩𝐴

)
= _𝑚

(
Const★(𝔖1, ^) ∩𝔙−1 (−∞, 0] ∩𝐴

)
= P★

𝔙−1 (−∞,0]∩𝐴 (𝔖1, ^) = P★𝐴1
(𝔖1, ^)

and analogously for every ^ ∈ Paths▼ (𝔖2), P★𝐴 (𝔖, 𝑹^) =
P★
𝐴2

(𝔖2, ^). The same also holds for P instead of P★. We
can now check:∑︁
^∈Paths▼ (𝔖,𝐶)

P★𝐴 (𝔖, ^)

=
∑︁

^∈Paths▼ (𝔖1,𝐶)
P★𝐴 (𝔖, 𝐿^) +

∑︁
^∈Paths▼ (𝔖2,𝐶)

P★𝐴 (𝔖, 𝑅^)

=
∑︁

^∈Paths▼ (𝔖1,𝐶)
P★𝐴1

(𝔖1, ^) +
∑︁

^∈Paths▼ (𝔖2,𝐶)
P★𝐴2

(𝔖2, ^)

And using the same reasoning we have∑︁
^∈Paths▼ (𝔗,𝐶)

P𝐴 (𝔗, ^)

=
∑︁

^∈Paths▼ (𝔗1,𝐶)
P𝐴1

(𝔗1, ^) +
∑︁

^∈Paths▼ (𝔗2,𝐶)
P𝐴2

(𝔗2, ^)

We can now conclude using the inequalities we obtained
via induction (1).

• If 𝔗 = (𝑓 ) (𝔗1,𝔗2): We can assume that _𝑚 (𝐴) > 0 as
otherwise the statement is obvious as any strategy would
work since both sides are equal to zero.
Let ^ ∈ Paths▼ (𝔗1): We make use of the assumption of
sufficient independence. As by assumption 𝔙 does not
contain sample variables occurring in 𝔗1, we get that

𝔙−1 (−∞, 0] and Const(𝔗1, ^) are conditionally indepen-
dent w.r.t. to _𝑚 . In particular,

_𝑚
(
𝔙−1 (−∞, 0] ∩ Const(𝔗1, ^) | 𝐴

)
= _𝑚

(
𝔙−1 (−∞, 0] | 𝐴

)
· _𝑚

(
Const(𝔗1, ^) | 𝐴

)
We can multiply both sides by _𝑚 (𝐴) and derive

_𝑚
(
𝔙−1 (−∞, 0] ∩ Const(𝔗1, ^) ∩𝐴

)
= _𝑚

(
Const(𝔗1, ^) ∩𝐴

)
· _𝑚

(
𝔙−1 (−∞, 0] | 𝐴

)
We can now derive:
P𝐴 (𝔗, 𝑳^) = _𝑚

(
Const(𝔗, 𝑳^) ∩𝐴

)
= _𝑚

(
Const(𝔗1, ^) ∩𝔙−1 (−∞, 0] ∩𝐴

)
= _𝑚 (Const(𝔗1, ^) ∩𝐴) · _𝑚 (𝔙−1 (−∞, 0] | 𝐴)
= P𝐴 (𝔗1, ^) · _𝑚 (𝔙−1 (−∞, 0] | 𝐴)

Analogously P𝐴 (𝔗, 𝑹^) = P𝐴 (𝔗2, ^) · ` (𝔙−1 (0,∞) | 𝐴)
for ^ ∈ Paths▼ (𝔗2). Now:∑︁

^∈Paths▼ (𝔗,𝐶)
P𝐴 (𝔗, ^)

=
∑︁

^∈Paths▼ (𝔗1,𝐶)
P★𝐴 (𝔗, 𝑳^) +

∑︁
^∈Paths▼ (𝔗2,𝐶)

P★𝐴 (𝔗, 𝑹^)

=
∑︁

^∈Paths▼ (𝔗1,𝐶)
P𝐴 (𝔗1, ^)_𝑚 (𝔙−1 (−∞, 0] | 𝐴)

+
∑︁

^∈Paths▼ (𝔗2,𝐶)
P𝐴 (𝔗2, ^)_𝑚 (𝔙−1 (0,∞) | 𝐴)

By the IH there are strategies𝔖1,𝔖2 such that∑︁
^∈Paths▼ (𝔖𝑖 ,𝐶)

P★𝐴 (𝔖𝑖 , ^) ≤
∑︁

^∈Paths▼ (𝔗𝑖 ,𝐶)
P𝐴 (𝔗𝑖 , ^)

for 𝑖 ∈ {1, 2}. Now as _𝑚 (𝔙−1 (−∞, 0] | 𝐴)+_𝑚 (𝔙−1 (0,∞) |
𝐴) = 1 we can apply Lem. E.5. So there exists 𝑖∗ ∈ {1, 2}
such that∑︁

^∈Paths▼ (𝔖𝑖∗ ,𝐶)
P★𝐴 (𝔖𝑖∗ , ^) ≤

∑︁
^∈Paths▼ (𝔗,𝐶)

P𝐴 (𝔗, ^)

In case where 𝑖∗ = 1, we define𝔖 = (𝔙) (𝔖1,×). We can
observe that for all ^ ∈ Paths▼ (𝔖1) we have P★𝐴 (𝔖1, ^) =
P★
𝐴
(𝔖, 𝑳^) as Const★ does not add any constraint. So𝔖

does satisfy the desired property. In the case of 𝑖∗ = 2,
define𝔖 = (𝔙) (×,𝔖2).

□

Changing the Node Colour. As body`𝜑𝑥 .𝑀 (𝑟 ) does not
contain⊛we get that, when body`𝜑𝑥 .𝑀 (𝑟 ) ⇓ 𝔗𝑟 ,𝔗𝑟 does not
contain any red nodes.We do however want to colour𝔗𝑟 sim-
ilarly to what we did with 𝔗⊛ (recall body`𝜑𝑥 .𝑀 (⊛) ⇓ 𝔗⊛).
The first step is to observe that 𝔗⊛ and 𝔗𝑟 do agree struc-
turally if we ignore node colours and the values at nodes.
In fact if we replace every occurrence of ⊛ in 𝔗⊛ with 𝑟 ,
we get, up to the colouring (and reordering of sample vari-
ables), exactly 𝔗𝑟 . To fix the colouring we do the following:
Denote with 𝔗•

𝑟 the tree 𝔗𝑟 but with all nodes that depend
on 𝑟 coloured in red. Formally that is 𝔗•

𝑟 ≜ 𝔗⊛ [𝑟/⊛] where
37



Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

𝔗⊛ [𝑟/⊛] denotes 𝔗⊛ with all occurrence of ⊛ replaced by
𝑟 . In particular 𝔗•

𝑟 and 𝔗𝑟 agree up to reordering of sample
variables and colouring of nodes. Now 𝔗•

𝑟 does contain red
nodes, but does not contains ⊛, in particular every symbolic
value at branching nodes (both red and white) denotes a
function and we can use Prop. E.6. We can then finally show:

Restatement of Thm. 6.2. If 𝔗⊛ is sufficiently independent,
then for every 𝑟 ∈ R, Papprox ⊑ 8`𝜑𝑥 .𝑀 | 𝑟8

Proof. We have body`𝜑𝑥 .𝑀 (⊛) ⇓ 𝔗⊛. Choose any 𝑟 ∈ R and
any 𝑛 ∈ N. Let body`𝜑𝑥 .𝑀 (𝑟 ) ⇓ 𝔗𝑟 . And 𝔗•

𝑟 ≜ 𝔗⊛ [𝑟/⊛]. As
we argued before𝔗•

𝑟 and𝔗𝑟 are identical up to the colouring
of nodes. Furthermore the strategies for 𝔗•

𝑟 and 𝔗⊛ are
identical (up to different labels of red nodes). By Prop. E.6
there exists a strategy𝔖𝑟 ≺ 𝔗•

𝑟 such that∑︁
^∈Paths▼ (𝔖𝑟 ,{0, · · · ,𝑛})

P★(𝔖𝑟 , ^)

≤
∑︁

^∈Paths▼ (𝔗•
𝑟 ,{0, · · · ,𝑛})

P(𝔗•
𝑟 , ^)

(i)

As the strategies for 𝔗•
𝑟 and 𝔗⊛ are identical (up to red

values at red nodes) we get that𝔖𝑟 is also a strategy for 𝔗⊛

(after changing the values at red nodes). Thus∑︁
𝑚≤𝑛
Papprox (𝑚) (1)

= min
𝔖′≺𝔗⊛

∑︁
^∈Paths▼ (𝔖′,{0, · · · ,𝑛})

P★(𝔖′, ^)

(2)
≤

∑︁
^∈Paths▼ (𝔖𝑟 ,{0, · · · ,𝑛})

P★(𝔖𝑟 , ^)

(3)
≤

∑︁
^∈Paths▼ (𝔗𝑟 ,{0, · · · ,𝑛})

P(𝔗𝑟 , ^)

(4)
=
∑︁
𝑚≤𝑛

`S
(
T★body

`
𝜑
𝑥 .𝑀

(𝑟 );𝑚
)

(5)
=
∑︁
𝑚≤𝑛

8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑚)

where (1) is a simple telescoping sum (see the definition of
Papprox ), (2) follows as𝔖𝑟 ≺ 𝔗⊛ (as the strategies for 𝔗⊛

𝔗•
𝑟 are almost identical as we argued before), (3) is by the

choice of𝔖𝑟 (c.f. (i)), (4) follows from Prop. E.4 and (5) by
definition of 8`𝜑𝑥 .𝑀 | 𝑟8. Thus Papprox ⊑ 8`𝜑𝑥 .𝑀 | 𝑟8 as
required. □

F Additional Material - Section 7:
Implementation

F.1 Lower Bound Computation
We can turn our interval-based semantics into an effective
lower bound computation algorithm by iteratively searching
for terminating interval traces.

To do so effectively, our algorithm evaluates a given term
symbolically (see Sec. B.5) in a breath-first manor. Once we
identified a conditional oracle leading to termination, i.e.,
a probabilistic execution leading to a value, we collect the
symbolic constraints along this path. Let {𝔙𝑖 ⊲⊳𝑖 𝑟𝑖 }𝑖∈[𝑚] be
those constraints.

To approximate the probability of this path, i.e., the Lebesgue
measure of sample-variable assignments that satisfy all con-
straints along this path, we use our interval approach. Let
𝛼1, · · · , 𝛼𝑛 be the sample variables occurring in𝔙1, · · · ,𝔙𝑚 .
We use a standard sweep algorithm to split [0, 1]𝑛 into smaller
boxes. In each step we choose a variable among {𝛼1, · · · , 𝛼𝑛}
and split the current box in half along the chosen dimension.
For the resulting smaller boxes we check if the guards are
satisfied (using the interval-based reasoning) and in case
they are not, split the boxes again; If the box does satisfies all
constraints we add the respective volume to the total count.
We stop the computation once the analysed parts of the box
exceed a user specified probability, i.e., the current branch
is analysed such that discovering new terminating interval
traces would only contribute very little to the lower bound.

Optimization. Our prototype implementation should be
considered a proof of concept and as such is not optimized.
The only optimization we use is a dependency analysis that
identifies symbolic contains that do not share sample vari-
ables and computes the probability individually.

We conjecture, that our implementation can be optimized
significantly, by optimizing the split routine. At the moment
we split a box along its longest dimension to keep boxes
as “square” as possible. Ideally one would have a heuristic,
that identifies which dimension should be split and at which
value to split to minimize the overall number on overall
splits. This would decrease the number of computation steps
significantly.

F.1.1 Experimental Results: As lower bound computa-
tion is a iterative, possibly non-terminating, process we set a
termination condition. This can either be given as a time con-
straints, leading the termination to be stopped after a given
time or as a depth constraints where terms are evaluated up
to a given depth. We use the following example programs.
Wherever possible we try to use examples used in the imple-
mentation of [34]. Our results are, however, only partially
comparable to [34]. On the one hand, they only consider
discrete distributions, which is obviously easier to analyse
than the interval-based reasoning we use for continuous
distributions. On the other hand, the main contribution of
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Table 1. Experimental Results for Lower Bound Computations. We give the actual probability of termination (if known), the
Lower Bound computed, the depth at which we stopped the exploration, the number of identified values and total nodes as
well as the time in milliseconds.

Term𝑀 Pterm (𝑀) LB Depth #V #Nodes t
geo 1

2
1 (see Thm. 5.9) 0.9999990463 100 20 356 78

geo 1
5

1 (see Thm. 5.9) 0.9995620416 200 40 1211 192

1dRW 1
2 ,1

1 0.8036193847 200 65535 1376252 28223

1dRW 7
10 ,1

1 0.9720964250 150 8191 204796 10224

gr
√
5−1
2 0.6112594604 80 1773 2046981 4389

print 1
2

1 (see Thm. 5.9) 0.8318119049 90 23714 5056590 15749

print 1
4

?(< 1) 0.3328795089 90 23714 5056590 15749

3print 3
4

1 (see Thm. 5.9) 0.9606655982 80 1773 2046981 4622

bin 1
2 ,2

1 0.9998493194 100 9445 118907 2265

pedestrian 1 0.6002376673 40 7 197 4493

[34] is the insight that the termination probability can be de-
fined as the least fixpoint of higher-order fixpoint equations.
Their tool therefore works on manually extracted fixpoint
equations. As they already noted in their paper, not every
fixpoint equation corresponds to a program; so we can only
apply very few of their examples to our framework.

Examples.

• geo𝑝 B
(
`
𝜑
𝑥 .𝑥⊕𝑝𝜑 (𝑥+1)

)
0 The simple example Ex. 1.1

from Sec. 1 . This term “computes” the geometric dis-
tribution, i.e., the output follows the mass function
𝑛 ↦→ (1 − 𝑝)𝑛𝑝 . It is AST for every 𝑝 > 0.

• 1dRW 𝑝,𝑚 B
(
`
𝜑
𝑥 .if𝑥 then 0 else𝜑 (𝑥 − 1) ⊕𝑝 𝜑 (𝑥 + 1)

)
𝑚

The 𝑝-biased 1-dimensional random walk with a prob-
ability of 𝑝 moving towards 0. The walk is known to
be AST if and only if 𝑝 ≥ 1

2 . In case of 𝑝 = 1
2 this

program is not PAST. Due to the non PAST nature this
program (for 𝑝 = 1

2 ) is intrinsically hard to analyse,
as the termination probability decreases significantly
with increasing evaluation depth, requiring to consider
very long executions. For a 𝑝 > 1

2 this program is PAST
and, as a results, allow for better (faster) lower bound
computation.

• gr B
(
`
𝜑
𝑥 .0 ⊕ 𝜑 (𝜑 (𝜑𝑥))

)
0

Program inspired by [50]. As we can infer from our
counting based framework, this program is actually
not AST and terminates with probability

√
5−1
2 , the

reciprocal of the golden ratio. (see [50])
• print𝑝 B

(
`
𝜑
𝑥 .𝑥 ⊕𝑝 𝜑 (𝜑 (𝑥 +1))

)
0 The example Ex. 1.1

from Sec. 1. This program is AST iff 𝑝 ≥ 1
2 and is case

of 𝑝 = 1
2 it is not PAST. For 𝑝 = 1

4 this is comparable
to the term “Ex2.3-1” from the full version of [34].

• 3print𝑝 B
(
`
𝜑
𝑥 .0 ⊕𝑝 𝜑 (𝜑 (𝜑 (𝑥)))

)
0

Similar to the previous case with three instead of 2
recursive calls. For 𝑝 = 1

4 this is comparable to the
term “Ex2.3-v2” from the full version of [34].

• bin𝑝,𝑚 B
(
`
𝜑
𝑥 .if𝑥 then 0 else (𝑓 (𝑥 − 1) ⊕𝑝 𝑓 (𝑥))

)
𝑚

Inspired by [43].
•

pedestrian B(
`
𝜑
𝑥 .if𝑥 then 0 else

let 𝑠 = sample in

𝑠 + 𝜑
(
(𝑥 − 𝑠) ⊕ (𝑥 + 𝑠)

) )
sample

The term describes a random walk on R+ that models
the situation of a forgetful pedestrian. The example is
taken from [40].

Experimental Setup. Our experiential results are listed
in Table 1. Where Pterm (𝑀) gives the actual probability of
termination, LB the lower bound computed by our tool14,
Depth gives the evaluation depth at which we abort the
search15, #V gives the number of values up to that depth and
#Nodes the total number of terms explored. Finally 𝑡 gives
the time in milliseconds.

14We emphasis again that our tool works with rational numbers and thus
perfect precision. For readability we give the first 10 decimal digits of the
rational output.
15As mentioned previously the computation is a ongoing, possibly infinite
computation that must be ended at some point. This can be done by either
specifying a target depth of time. To keep the results as independent from
the concrete machine as possible, we specify a target depth to increase
reproducibility.
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Table 2. Experimental Results for AST Verification. For each term (all of which our tool can verified to be AST) we give
the counting distribution Papprox computed by our tool (which is analysed via Thm. 5.4). We also give the time used by our
internal computation 𝑡int , by our volume computation ([11]) 𝑡vol and the total time 𝑡 = 𝑡int + 𝑡vol in milliseconds.

𝑀 Papprox 𝑡int 𝑡vol 𝑡

geo 1
2

1
2𝛿0 +

1
2𝛿1 140 99 239

Ex. 1.1, 𝑝 = 1
2 (print 1

2
) 1

2𝛿0 +
1
2𝛿2 138 99 237

3print 2
3

2
3𝛿0 +

1
3𝛿3 274 123 297

Ex. 5.1, 𝑝 = 0.6 0.6𝛿0 + 0.2𝛿2 + 0.2𝛿3 154 242 396
Ex. E.2 0.5𝛿0 + 0.5𝛿2 150 255 405

Ex. 5.15, 𝑝 = 0.65 0.65𝛿0 + 061250𝛿2 + 0.288750𝛿3 158 215 373

F.2 AST Verification
Our proof method from Sec. 6 gives us a straightforward
implementation as all operations are on a finite tree. Our
tool first computes the execution tree and its strategies. The
key difficultly is to compute P(𝔖, ^) for strategy 𝔖 and a
path ^ ∈ Paths▼ (𝔖), i.e., compute the weight associated
with a path. We restrict the primitive operations to addition
and multiplication by a constant (and thus subtraction). Un-
der this restriction, each symbolic value𝔙 denotes a linear
function in the sample variables. The weight of a path is thus
the Lebesgue measure of an intersection of half planes or
equivalently the volume of a polyhedron (a subset of R𝑑 of
the from {®𝑥 | 𝐴®𝑥 ≤ 𝑏}) [21]. As shown in [37] the volume of
such a polyhedron although#𝑃 hard, can be computed via a
simple recursive scheme. We use the optimized implementa-
tion of this scheme in [11] to effective compute the volume.
Our tool thus perform all basic operations on trees and refers
to the tool from [11] for the probabilistic computations.

Experimental Results. Our tool can verify AST for all
examples in this paper (with the identified bounds on free
variables like 𝑝 in Ex. 1.1 or Ex. 5.15). Our results are given
in Table 2. The distribution Papprox is the one automatically
inferred by our tool.

Extensions. Our approach from Sec. 6 is applicable for
all measurable functions as primitive operations. However,
to use the approach effectively and automatically, the prob-
ability of path must be computable. This is so in our case
as the volume of a convex polyhedron is computable. Our
framework and implementation can easily be adjusted to
different primitive operations by merely changing the tool
responsible for volume computation.
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P★(𝔖, ^), the probability of path ^

in strategy𝔖, 35
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𝔒, the set of summary traces, 27
𝔓𝑠 , the transition matrix for step dis-
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Sat𝑚 (Δ), the set of traces of length
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#𝒔
↓(𝑀), number of reduction steps

of trace 𝒔 on𝑀 , 4
#℘
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of interval trace ℘ onM, 5

𝜔 (𝐴), the cumulative weight of a
countable set of standard traces,
6

𝑠 , the step distribution obtained by
shifting 𝑠 by −1, 9

Paths▼ (𝔖,𝐶), terminating paths in
strategy 𝔖 s.t. the number of
fixpoint nodes is contained in
𝐶 , 35

𝜎,𝛾 , a intersection, 7
⊑, the terminating preserving par-

tial order defined on counting
distribution, 10

S, the set of standard traces, 4[
𝔐, ^, 𝑛

Δ

]
, symbolic configuration,

19
𝔐,𝔑,𝔓, symbolic term, 19
𝔙, symbolic values, 19
8`𝜑𝑥 .𝑀 | 𝑟 8 (𝑛), counting pattern of

`
𝜑
𝑥 .𝑀 , 9

TℑM,term, the set of terminating inter-
val traces for M, 5

Pterm (𝑀), the probability of termina-
tion of𝑀 , 4

T
(^)
𝑀,term, terminating traces of𝑀 that

branch according to ^, 18

T★
𝑁 ;𝑛 , 9
T★
𝑁 ;𝑛 , the set of terminating traces
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T𝑀,term, the set of traces on which𝑀
terminates, 4
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𝑀2ℑ, the natrual embedding of
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term, 6

sym−−→, symbolic reduction relation, 19
𝒔, a standard trace, 4
𝔖, a strategy on an execution tree,

11
𝔗, a (symbolic) executions tree, 33
⊳, blabla, 16
⊳, the refinement relation between

interval term and terms as well
as interval traces and traces, 16

℘, a interval trace, 5
𝔙−→, the CbV SPCF reduction relation,

16
𝑒𝑥𝑝𝑉𝑎𝑙 (A), the expectation of a set

type A, 7

counting distribution, a sub-pmf
N→ R[0,1] , 9

step distribution, a sub-pmf 𝑠, 𝑡 :
Z→ R[0,1] , 9
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