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ABSTRACT
Emotion recognition is a field of psychology that involves the pro-
cess of identifying emotions and treating mental conditions like
autism. The advancements in the field of machine learning and
deep learning have paved the way for scientists to develop models
for evaluating emotions by analyzing facial expressions, speech and
text. However, the task of evaluating emotions could be best done
by processing the bio-signals and neural imaging of the brain. In
that sense, bio-signals such as Electroencephalogram (EEG) are less
expensive to use and non-invasive, giving them an edge over tradi-
tional methods like Magnetic Resonant Imaging (MRI). However,
not many datasets are publicly available due to privacy issues and
their availability is highly limited by the classification task. These
constraints, along with the problem of data scarcity, motivates this
work as an attempt to enhance the accuracy scores by generat-
ing synthetic features that are close to actual data distribution. In
this research, we propose a Wasserstein Generative Adversarial
Network with gradient penalty (WGAN-GP) based model that can
help tackle this problem. The dataset that is investigated is DEAP,
one of the benchmark datasets for evaluating emotion recognition
algorithms. In the method proposed, nine descriptive features are
extracted from the original data and baseline models are evaluated.
Subsequently, a WGAN-GP is trained on these extracted features
and it is used to generate a new set of synthetic data features. The
synthetic features are then analysed for quality and appended to
the original data to expand this dataset. Experiments with different
augmentation factors (x2, x3, x4) are investigated to evaluate the
impact of the data augmentation procedure. The experimental re-
sults demonstrate that the proposed method gives a considerable
enhancement of the classification task’s performance.

KEYWORDS
emotion recognition, eeg, data augmentation, generative adversarial
networks
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1 INTRODUCTION
Bio-signals such as Electroencephalogram (EEG) or Electrocardio-
gram (ECG) help to map the activity of the brain and other vital
organs. They are less expensive and non-invasive, giving them an
edge over traditional methods like Magnetic Resonance Imaging
(MRI) and other invasive techniques like extracellular Action Po-
tentials (APs) or the local field potentials (LFPs). EEG is used to
register the activity of the brain by placing electrodes on the scalp
at various locations. Among other applications, EEG signals are
used to detect brain abnormalities by inspection of the signal and
measuring the deviation from normal signal patterns.

Emotions play a vital role in human communication. In earlier
days, facial expressions were used to detect emotions. However,
humans have the ability to suppress facial emotions while EEG
signals are not susceptible to such suppression, as the data is col-
lected directly from the brain. Therefore, the use of EEG signals as
a means of classifying emotions has been extensively researched
[6][2].

In the past decade, researchers have placed tremendous impor-
tance on the process of automating emotion recognition [11]. The
advancements in machine learning, particularly deep learning, have
sparked new ways to classify signals and develop models which
offer better performance. However, the progress of deep learning
is being hindered by the availability of data. This is especially no-
torious in tasks involving private or confidential information as
is the case of medical data. Regarding the EEG recordings, data
is highly sensitive as they belong to the individuals’ bio-signal
recordings undergoing experiments in controlled environments.
Additionally, medical data is often very task-specific. In the case of
EEG, for example, the characteristics of the data are subject depen-
dent with differences due to variables like probe placement, size
of the head, location of the experiment and brain anatomy [10].
Additionally, access to such data is highly restricted and not many
datasets are publicly available due to privacy issues. Additionally,
it is highly difficult to compare model performance with similar
available datasets, leading to research bottlenecks. Moreover, as
above-mentioned, the training data is subject dependent in most
cases, meaning that it is difficult to get similar model performance
on other test subjects. Finally, creating such data using lab driven
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experiments is a demanding task as it needs expert knowledge to
extract and annotate the data along with specialized equipment.
Preliminary data augmentation is generally performed to increase
the spread of data. Nonetheless, the results obtained from the model
fed with such data is not so remarkable. The drawbacks mentioned
above are the main motivation for this research.

1.1 Data Augmentation
Data Augmentation is a technique for increasing the existing dataset
by adding new samples, modifying/transforming existing ones.
Data augmentation helps to curb the problem of over-fitting by giv-
ing it an effect of regularization. This makes the models generalize
better to the patterns of the data [9] and thereby helps to improve
the stability and accuracy. Data augmentation is a very common
technique that is used, for instance, in the field of computer vision,
particularly in object/image recognition. For images, the dataset
is augmented by applying transformations like rotation, transla-
tion, scaling, cropping, padding and flipping. However, EEG is a
time-series signal. Applying such geometric transformations would
undermine the time-dependent features. Additionally, creating la-
bels for the transformed data is not a straightforward task, due to
the fact that EEG data is not visually informative as it is the case of
images.

In the last decade, we have seen tremendous effort in the field
of data augmentation. Data augmentation in the context of EEG is
used in various tasks like emotion recognition, seizure detection,
motor task, sleep stage detection, visual task, mental workload, etc.
In these aforementioned tasks, augmentation methods like noise
addition, generative models, sliding window, sampling, Fourier
transform, etc. have been used. Each method is task-dependent
meaning that certain methods work well only for a particular task.
A detailed study of the available methods is done by the researchers
Lashgari et al [6].

1.2 Problem Statement
The classification of EEG signals is challenging and often, does not
yield great results. This paper focuses on the usability of Genera-
tive Adversarial Networks (GANs) in generating augmented dataset
(synthetic data) to improve classification performance for emotion
recognition tasks. In this regard, this research aims at generating
synthetic medical data by modelling a Wasserstein Generative Ad-
versarial Network with Gradient Penalty (WGAN-GP).

2 DATA
DEAP is a dataset for emotion analysis using EEG, physiological
and video signals [5]. From the time the dataset was made available,
many researchers have experimented on it. Early researchers like
Liu and Sourina [7] exploited the property that EEG is a nonlinear
and multi-fractal signal, hence its fractal decomposition would give
features that can be used to train machine learning algorithms like
Support Vector Machines (SVM). Their results reported an accu-
racy of 53.7% on the classification of emotions. A very recent study
published by Luo and Lu [8] used a Conditional Wasserstein GAN
(CWGAN) to generate Data Entropy features instead of raw EEG

Table 1: Insight of DEAP dataset

Array file Shape
Data 40 x 40 x 8064 (#videos/trial x #channels x #data)
Labels 40 x 4 (#videos x #labels)

data and used it to augment the data. Their research produced as-
tonishing results with an accuracy of 78.17% and 73.89%, an increase
of up to 9.15% and 20.13% for two emotion types.

In this work, we investigate the applicability of WGAN-GP for
data augmentation for the classification task in the DEAP dataset.
The data is private and could only be accessed after signing a EULA.
DEAP consists of EEG data from 32 participants, each of them
watched 40 videos of 1-minute duration. The participants rated
videos with an integer between 0-9 during the self-assessment
phase. A set of four ratings were given for valence, arousal, domi-
nance and liking respectively. In this study, 40 data channels were
used to record the data from different locations on the scalp and
monitor other parameters. In this research, we use the preprocessed
data provided by the DEAP team which consists of a data file for
each of the 32 participants down-sampled to 128Hz including both
data and labels distributed as follows:

(1) An 8064 EEG datapoints array for each of the 40 experiments
obtained from 40 different channels representing 322560 data
points per experiment.

(2) A label array containing a set of four values for each exper-
iment representing the emotions, namely valence, arousal,
dominance, and liking.

Table 1 gives an insight into the data dictionary for each partici-
pant. The label information is a single integer value for each of the
valence, arousal, dominance and liking classes. Figure 1 represents
the distribution of the ratings for different emotion types. In the
first three graphs, the mean is centered around 5, indicating that,
in general, they have mixed emotions for each of the videos and
are not completely sure of their ratings. Using this kind of label
information to classify the tasks might result in weak performances.
On the contrary, there is a mild skew centered around a score of 7 in
the last (liking rate). The hypothesis is that the binary classification
would work better on the liking class than on the other ratings,
namely valence, arousal and dominance.

For a classification task, the integer classes should be converted
into something more interpretable for the model. Each of the label
data is therefore divided into two classes (being rates of 5 and
below considered as class 0 and class 1 otherwise). This allows
binary classification to be evaluated.

2.1 Data pre-processing
The feature dimensionality of the data at hand is high, consist-
ing of 8064 features per experiment. The dimension of this data
must be reduced to train the models in a quick and efficient way.
To that end, various feature representation schemes were used in
previous research. In [12], research gave state-of-the-art results
in DEAP dataset classification. Therefore, we follow a similar ap-
proach, dividing the data (8064 data points, representing 1 minute
of EEG recordings approximately) into 10 batches of approximately
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Figure 1: Gaussian distribution of rating types- valence,
arousal, dominance and liking- for 1280 experiments (32
participants x 40 experiments). The y-axis represents the
counts of the ratings and the X-axis represents the annota-
tions and each graph is an emotion: valence, arousal, domi-
nance and liking ratings respectively.

807 points (around 6-seconds). Then, for each batch, the following
nine features are extracted: mean, median, maximum, minimum,
standard deviation, variance, range, skewness and kurtosis. Conse-
quently, 90 features are extracted per file and channel. Additionally,
the above-mentioned features are calculated on the whole set of
8064 data points and appended to them, increasing the feature
space from 90 to 99. The steps above are repeated for each of the
40 channels and the 32-participant data. This pre-processing task
is specially important in this work due to the complex system im-
plemented (GAN-based architecture) and the limited number of
samples available.

3 METHODOLOGY
Conventional GANs have been proved to give more “realistic” out-
puts than other solutions such as autoencoders. However conven-
tional GANs have two main problems. On the one hand, the gener-
ator and discriminator losses tend to oscillate leading to perturba-
tions that indirectly affect the performance of the generated data.
On the other hand, this architecture is prone to problems like mode
collapse. Mode collapse is a problem wherein the generator finds a
few samples that are able to fool the discriminator into recognising
them as original data. Over time the generator would only produce
samples from this limited space that can mislead the discriminator
andwould not learn further. Eventually, the gradient of the loss func-
tion will collapse to almost 0, meaning that the training is not able to
learn (and consequently generate) more apart from this small sam-
ple space. Additionally, the conventional GANs have problems with
hyperparameter tuning and convergence. They mostly fail to con-
verge and thus, Wasserstein GAN (WGAN) or its counterpart with
Gradient Penalty (WGAN-GP) has been the baseline/starting point
of most of the current GAN-based architectures. In these models, a
new metric called Earth-Mover distance (also called Wasserstein
distance) replaces the Jensen-Shannon divergence of traditional
GANs (whose discontinuity divergence makes it difficult to obtain

gradients to train the GANs which makes the training process un-
stable). The Wasserstein distance metric provides a useful gradient
during WGAN training times and also improves stability [1]. In
this research we use WGAN-GP to overcome the above-mentioned
limitations of conventional GANs.

The discriminator in WGAN is called a critic. The critic does not
directly distinguish the fake samples from the real, but it is used
to learn the weight parameters w of the K-Lipschitz continuous
function. This loss function is a direct measure of the Wasserstein
distance between real and generated distributions. So as the value of
the loss function decreases, it indirectly implies that theWasserstein
distance between real data and generated data is close to zero,
meaning that the generator’s output is closer to that of real data
distribution.

The training process of critic includes the key addition of gradi-
ent penalty loss to the original WGAN loss. The gradient penalty
term is a squared difference between the norm of the gradient of
predictions and 1. The model ensures that the Lipschitz constraint
is met by finding the weights that minimize the gradient penalty
term. It is complicated to calculate the gradient term at every point
of the training process. Instead, the authors of the WGAN-GP pro-
posed a solution to evaluate gradients only at a handful of points
(interpolated images) which is the random average of the real data
and generated data. These interpolated points lie on the line that
connects the batch of real and fake data.

The proposed framework involves using a random noise as input
to theWGAN-GP based generator and critic networks. The network
is trained for 100 epochs and the data generated at the end of
each epoch is stored. The WGAN loss is plotted and evaluated to
find the most promising synthetic data that can be used for data
augmentation. The hypothesis here is that the data withWGAN-GP
losses (generator and discriminator/critic loss) close to zero is of
good quality. This high-quality data is appended to the original
one to be used to evaluate the classification model. The proposed
framework for synthetic data generation is shown in Figure 2.

In order to train and evaluate the data generated from theWGAN-
GP model, it is essential that data is split into two parts: training
and test sets. In this regard, out of 32 subject data available, differ-
ent training and test set ratios were evaluated internally to find a
proper balance for augmenting datasets. Finally, to set up a base-
line for evaluation, the 32 subjects from the DEAP dataset were
shuffled and split in such a way that data from 22 subjects formed
the training dataset. The remaining 10 subject data was used to
test the model before and after data augmentation. This ensures
that the model performance is checked on the same test dataset
thereby allowing a fair comparison. To train and generate the data
using WGAN-GP, the same 22-participant set was used instead
of the whole dataset. Using only this 22-participant set to train
WGAN-GP would prevent any biases and information leaking from
train to test phases. The data generated using the WGAN-GP (with
probability distribution close to the training data) is then appended
to the original training set and this constitutes the new augmented
training data that can be used to evaluate the performance of the
augmented model. Figure 3 shows the whole procedure of splitting
the data and data augmentation.
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Figure 2: The proposed framework for synthetic data generation.

Figure 3: Train/test split strategy for DEAP dataset augmen-
tation.

3.1 WGAN-GP
The critic and generator networks were tested for different num-
bers of layers and configurations. The generator takes in randomly
sampled noise of length 256. It then yields a final output of the
shape (40,99) representing each experiment of a particular subject
(channels and features respectively).

The critic is crucial to calculate the Wasserstein loss and min-
imize it. In the critic model proposed, the input is data of shape
(40,99) followed by a series of convolutional blocks. The final layer
contains a single unit with a linear activation. The linear activation
is used instead of a sigmoid activation to predict a realness score
where -1 represents a real data point and 1 represents a fake data
point.

The training process is executed till the WGAN-GP loss con-
verges. Different epoch sizes (namely 100 and 200) were analyzed,
obtaining similar results. Additionally, different batch sizes rang-
ing from 32 to 128 were evaluated. The best results were obtained
at batch sizes 32 and 40. In this report, the results executing 100
epochs and with a batch size of 40 are discussed.

3.2 Evaluation of generated data
As mentioned before, the WGAN-GP is trained for a set of 100
epochs, while the data generated after each epoch is saved. The

generator and critic loss are plotted per epoch and the data is
evaluated. The hypothesis is - the closer the loss to zero, the better
is the quality of generated data. Due to the limited amount of data,
there is not a third set to generate new samples after the training
process. Instead, the data generated at epochs 89, 91, 97, 100 were
chosen for augmenting the data by 2x, 3x, 4x factors. Then, the
performance of the baseline model (without data augmentation) is
compared against the data augmented models for the classification
task at hand.

4 EXPERIMENTS
Two different experiments were conducted to 1) evaluate the quality
of the data generated and 2) to evaluate our model and its perfor-
mance in comparison with an established baseline.

4.1 Quality of the generated data
As an initial step to check if the data generated is of high quality,
an experiment is set up to compare the performance of the model
that is trained only on the real data in comparison with the perfor-
mance of a model trained only on generated data. The hypothesis
is that, if both datasets have a similar distribution, their relevant
models should reach similar classification performances. K-fold
cross-validation is the state-of-the-art approach when it comes to
evaluating the performance of datasets with limited data. Hence,
32-fold cross-validation on the original data is compared against
the 32-fold cross-validation score of the generated data. The closer
the scores are, the more likely is that the generated and the actual
data have a similar probability distribution.

4.2 Performance of model with data
augmentation

Finally, data generated from the WGAN-GP is used to augment
the existing dataset. To this end, classic machine learning models,
namely K-nearest neighbors (KNN) and Support Vector Machines
(SVM), were used to establish our baseline. The machine learning
models were trained on the four abovementioned emotions -valence,
arousal, dominance and liking. A grid search was applied to find
the best parameters. KNN method with K value from 5-50 was
evaluated for each class. SVM was also tested with different kernels:
linear, RBF and polynomial functions. Best results were obtained
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Table 2: Comparison of classification accuracy (in %) of orig-
inal and synthetic data using K-fold cross-validation.

Data Valence Arousal Dominance Liking
Actual Data 55.16 57.03 59.61 66.80

Generated Data 55.16 56.09 60.86 66.41

by linear kernels. The parameter c was searched from range 1e-4
to 1e2.

Additionally, neural networks were also utilized to train on the
actual data to establish an equitable baseline. For that purpose,
a simple Convolutional Neural network that contains a series of
Conv2D layers in succession was implemented. The network was
optimized using autokeras [3] based grid-search to infer the best
performance. An Adam optimizer with a default learning rate of
0.001 was applied.

Then, the data augmentation technique is evaluated. Several
augmentation levels were considered (namely, x2, x3, x4) for the
purpose of analysing the potential improvement in comparison
with the original dataset. For example, x2 stands for the original
data while adding once synthetic/generated set (same size as the
original dataset).

5 RESULTS
In this section, the results of the experiments described in Section
4 are presented.

5.1 Quality of generated data
The results obtained after conducting the 32-fold cross-validation
on real and generated data is shown in Table 2. The generated data
gives similar classification performance across different emotions-
valence, arousal, dominance and liking. The accuracies of the model
range from 55% and around 70% approximately. For the valence
class, the accuracy scores are identical. Regarding the dominance
class, the score of generated data is slightly higher than the actual
data. Finally, for arousal and liking, the accuracy scores are slightly
lower for the generated data. From the results in Table 2, it is evident
that the performances are not significantly different.

5.2 Performance of the model with data
augmentation

Tables 3, 4 and 5 shows the values of each baseline and augmented
model results of the models using KNN, SVM and simple Convolu-
tional Neural networks respectively. The second row of each table
indicates the performance of the baseline models (labelled as X1).
Every next row shows the accuracy scores of augmentation levels
x2, x3 and x4 respectively. The bold numbers indicate the maximum
accuracy score across the three augmentation levels. The last row
of the table shows the maximum performance improvement which
is the difference between the baseline score and the maximum score
that is encountered across the augmentation levels. All the scores
mentioned in the table are represented as a percentage. The overall
results clearly show an increase in the accuracy scores across dif-
ferent emotions after data augmentation. In terms of percentage of

Table 3: Comparison of KNN accuracies of original and aug-
mented data.

Data size Valence Arousal Dominance Liking
X1(Actual Data) 57.5 56.8 59.0 64.0

X2 61.8 57.0 61.5 71.5
X3 62.0 59.0 61.3 70.3
X4 62.5 59.3 61.0 70.5

Max. improv 5.0 2.5 2.5 7.5

Table 4: Comparison of SVM accuracies of original and aug-
mented data.

Data size Valence Arousal Dominance Liking
X1(Actual Data) 62.5 53.8 53.5 62.8

X2 60.3 55.8 59.5 70.5
X3 60.5 57.5 59.8 70.5
X4 59.8 57.0 58.3 70.5

Max. improv. 0.0 3.75 6.25 7.75

Table 5: Comparison of neural network accuracies of origi-
nal and augmented data.

Data size Valence Arousal Dominance Liking
X1(Actual Data) 58.0 55.8 57.3 53.5

X2 59.3 59.0 59.8 71.0
X3 61.5 59.0 59.5 70.5
X4 58.3 57.8 59.3 70.5

Max. improv 3.5 3.25 2.5 17.5

improvement, the neural network-based models performed better
due to the excess data available. It is a known fact that deep learn-
ing models learn better when more data is available. The neural
networks have shown a noteworthy increase in scores of up to
17.5%. On the other hand, all models tend to perform better on the
liking class as expected in the hypothesis posted before.

The KNN outperforms every other model by yielding max scores
of 62.5%, 59.25%, 61.5% and 71.5% respectively. It is interesting to
see that for SVM, there is no improvement across valence class but
it increased the performance for dominance and liking by 6.25%
and 7.75 respectively. To deduce a general trend in the performance
of models, an augmentation of 2x would lead to more promising
results. After 2x augmentation, the next best performances were
obtained applying x4 and x3 respectively but this improvement is,
in general, marginal. The overall results vary from a range of 53.5%
to 71.5% in the experiments conducted.

6 DISCUSSION
In this work, a new method for EEG data augmentation data us-
ing Wasserstein Generative adversarial networks with gradient
penalty (WGAN-GP) was introduced. It was the first attempt of its
type in using a set of nine explainable features. The task involved
extracting high-level features from the DEAP dataset. The set of
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nine features was extracted at every 6-second interval and was
used as a base for classification algorithms, KNN, SVM and neural
networks. A WGAN-GP based augmentation framework was then
implemented with different design decisions for critic and gener-
ator. The DEAP dataset was split into two parts: one for training
the model and WGAN-GP and the other part for performing con-
sistent tests across different augmentation models. The WGAN-GP
was trained for 100 epochs and the data generated at the end of
the epochs was saved and evaluated. The 32-fold cross-validation
accuracy scores revealed that the performance of the generated
data was similar to that of the original data, thus emphasizing the
fact that the distribution of the generated data must be close to
the real data. Furthermore, after the data augmentation procedure,
the models using KNN, SVM and neural networks showed slight
boosts in their accuracy scores. The highest improvement was, as
expected, observed for the liking emotion (17.5%). The remaining
emotions (valence, arousal and dominance) produced a maximum
enhancement of 5%, 3.75% and 6.25% respectively. This research has
set up a path for future research using state-of-the-art WGAN-GPs
for EEG data augmentation. The overall research could have been
improved but is hindered by the nature of data and the type of
features selected in the earlier stages.

7 CONCLUSIONS
This research was done as an early exploration of the use ofWGANs
in augmenting EEG data for affective computing tasks. This research
should therefore be considered as a stepping stone in the devel-
opment of future research. In this work, we developed a model
able to generate synthetic data with the aim of improving the per-
formance of a emotion classification task. To that end, and with
a view to reduce the complexity of the features used to facilitate
the convergence of a complex model as it is the case of GANs, nine
primitive features are used (namely, mean, median, maximum, min-
imum, standard deviation, variance, range, skewness and kurtosis).
Although this work shows a significant improvement in some cases
(specially when using data from the liking emotion) suggesting a
potential application of this technique for the objective pursued, the
research gave marginal and inconsistent enhancement of accuracy
across different emotion types.

The main limiting factor in this research is the data. The 32 sub-
jects with 40 experiments, while sufficient when using traditional
classification approaches, is unsuitable when it comes to training
WGAN-GP. Notice that only 22-participants data was available for
its training, which is close to 880 experiments. This is far from
ideal since a higher amount of data would be expected to properly
train a WGAN-GP model. Moreover, verifying the performance of
WGAN-GPs on other standard emotion recognition dataset like
SEED should be evaluated.

The second factor that limited performance in this research is
the simple feature engineering used. As this research was about
exploring the use of GANs, simple yet descriptive features were
selected and an emphasis on using complex feature engineering was
not considered in this early step. Further research and experiments
would be needed to verify the performance ofWGAN-GP in tandem
with more powerful EEG features extracted using methods like data
entropy or frequency-based data engineering.

The other important concern with this research is the difficulty
to draw a fair comparison with similar works. It is complicated to
systematically compare the results of this research to other sim-
ilar ones. This is mainly because the test data in our research is
not similar to other works. Developing methods that allow a fair
comparison of results with other researches that involve the same
test data is a problem in itself. A way of framing a suitable metric
and comparison framework would enable future researchers to con-
tribute towards this growing field of using data augmentation in
understanding human emotions and addressing the issue of privacy
and curbing high costs of data acquisition.

Future research can make use of a newer PATE-GAN for generat-
ing synthetic data that offers differential privacy guarantees [4] or
the implementation of a schema considering temporal information
such as Long-Short Term Memory (LSTM) approaches. This could
open up new spheres in the field of data augmentation for EEG.
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