
ar
X

iv
:2

00
3.

13
23

2v
3 

 [
cs

.P
F]

  2
6 

O
ct

 2
02

0

Optimal Multiserver Scheduling with Unknown Job Sizes

in Heavy Traffic

ZIV SCULLY, Carnegie Mellon University, USA

ISAAC GROSOF, Carnegie Mellon University, USA

MOR HARCHOL-BALTER, Carnegie Mellon University, USA

We consider scheduling to minimize mean response time of the M/G/k queue with unknown job sizes. In the

single-server : = 1 case, the optimal policy is the Gittins policy, but it is not known whether Gittins or any

other policy is optimal in the multiserver case. Exactly analyzing the M/G/k under any scheduling policy is

intractable, and Gittins is a particularly complicated policy that is hard to analyze even in the single-server

case.

In this work we introduce monotonic Gittins (M-Gittins), a new variation of the Gittins policy, and show

that it minimizes mean response time in the heavy-traffic M/G/k for a wide class of finite-variance job size

distributions. We also show that themonotonic shortest expected remaining processing time (M-SERPT) policy,

which is simpler than M-Gittins, is a 2-approximation for mean response time in the heavy traffic M/G/k

under similar conditions. These results constitute the most general optimality results to date for the M/G/k

with unknown job sizes. Our techniques build upon work by Grosof et al. [15], who study simple policies,

such as SRPT, in the M/G/k; Bansal et al. [6], Kamphorst and Zwart [19], and Lin et al. [23], who analyze

mean response time scaling of simple policies in the heavy-traffic M/G/1; and Aalto et al. [3, 4] and Scully

et al. [32, 33], who characterize and analyze the Gittins policy in the M/G/1.

1 INTRODUCTION

Scheduling to minimize mean response time1 of the M/G/k queue is an important problem in
queueing theory. The single-server : = 1 case has been well studied. If the scheduler has access
to each job’s exact size, the shortest remaining processing time (SRPT) policy is easily shown to be
optimal [29]. If the scheduler does not know job sizes, which is very often the case in practical
systems, then a more complex policy called the Gittins policy is known to be optimal [3, 4, 12].
The Gittins policy tailors its priority scheme to the job size distribution, and it takes a simple form
in certain special cases. For example, for distributions with decreasing hazard rate (DHR), Gittins
becomes the foreground-background (FB) policy,2 so FB is optimal in the M/G/1 for DHR job size
distributions [3, 4, 11].
In contrast to the M/G/1, the M/G/k with : ≥ 2 has resisted exact analysis, even for very simple

scheduling policies. As such, much less is known about minimizing mean response time in the
M/G/k, with the only nontrivial results holding under heavy traffic.3 For known job sizes, recent
work by Grosof et al. [15] shows that amultiserver analogue of SRPT is optimal in the heavy-traffic
M/G/k. For unknown job sizes, Grosof et al. [15] address only the case of DHR job size distributions,
showing that a multiserver analogue of FB is optimal in the heavy-traffic M/G/k.4 But in general,
optimal scheduling is an open problem for unknown job sizes, even in heavy traffic. We therefore
ask:

What scheduling policy minimizes mean response time in the heavy-traffic M/G/k with

unknown job sizes and general job size distribution?

1A job’s response time, also called sojourn time or latency, is the amount of time between its arrival and its completion.
2FB is the policy that prioritizes the job of least age, meaning the job that has been served the least so far. It is also known

as least attained service (LAS).
3Here “heavy traffic” refers to the limit as the system load approaches capacity for a fixed number of servers.
4Both the SRPT and FB optimality results of Grosof et al. [15] hold under technical conditions similar to finite variance.

http://arxiv.org/abs/2003.13232v3
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This is a very difficult question. In order to answer it, we draw upon several recent lines of work
in scheduling theory.

• As part of their heavy-traffic optimality proofs, Grosof et al. [15] use a tagged job method
to stochastically bound M/G/k response time under each of SRPT and FB relative to M/G/1
response time (Fig. 2.1) under the same policy.

• Lin et al. [23] and Kamphorst and Zwart [19] characterize the heavy-traffic scaling of M/G/1
mean response time under SRPT and FB, respectively.

• Scully et al. [33] show that a policy called monotonic shortest expected remaining processing

time (M-SERPT), which is considerably simpler than Gittins, has M/G/1 mean response time
within a constant factor of that of Gittins.

While these prior results do not answer the question on their own, together they suggest a plan of
attack for proving optimality in the heavy-traffic M/G/k.
When searching for a policy to minimize mean response time, a natural candidate is a multi-

server analogue of Gittins. As a first step, one might hope to use the tagged job method of Grosof
et al. [15] to stochastically bound M/G/k response time under Gittins relative to M/G/1 response
time. Unfortunately, the tagged job method does not apply to multiserver Gittins, because it relies
on both stochastic and worst-case properties of the scheduling policy, whereas Gittins has poor
worst-case properties.

One of our key ideas is to introduce a new variant of Gittins, calledmonotonic Gittins (M-Gittins),
that has better worst-case properties than Gittins while maintaining similar stochastic properties.
This allows us to generalize the tagged job method [15] to M-Gittins, thus bounding its M/G/k
response time relative to its M/G/1 response time.
Our M/G/k analysis of M-Gittins reduces the question of whether M-Gittins is optimal in the

heavy-traffic M/G/k to analyzing the heavy-traffic scaling of M-Gittins’s M/G/1 mean response
time. However, there are no heavy-traffic scaling results for the M/G/1 under policies other than
SRPT [23], FB [19], first-come, first served (FCFS) [21, 22], and a small number of other simple
policies [6, 9]. To remedy this, we derive heavy-traffic scaling results for M-Gittins in the M/G/1.
It turns out that analyzing M-Gittins directly is very difficult. Fortunately, M-Gittins has a simpler
cousin, M-SERPT, which Scully et al. [33] introduce and analyze. We analyze M-SERPT in heavy
traffic as a key stepping stone in our heavy-traffic analysis of M-Gittins.
This paper makes the following contributions:

• We introduce the M-Gittins policy and prove that it minimizes mean response time in the
heavy-traffic M/G/k for a large class of finite-variance job size distributions (Theorem 3.1).

• We also prove that the simple and practical M-SERPT policy is a 2-approximation for mean
response time in the heavy-traffic M/G/k for a large class of finite-variance job size distribu-
tions (Theorem 3.2).

• We characterize the heavy-traffic scaling of mean response time in the M/G/1 under Gittins,
M-Gittins, and M-SERPT (Theorem 3.3).

Section 3 formally states these results and compares them to prior work. Their proofs rely on
a large collection of intermediate results, which we outline in detail in Section 4 and prove in
Sections 5–7.

2 PRELIMINARIES

We consider an M/G/k queue with arrival rate _ and job size distribution - . Each of the : servers
has speed 1/: , so regardless of the number of servers, the total service rate is 1 and the system load
is d = _E[- ]. This allows us to easily compare the M/G/k system to a single-server M/G/1 system,
as illustrated in Fig. 2.1. We assume a preempt-resume model with no preemption overhead. This
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Single-Server System

speed 1

_

:-Server System

speed 1/:

speed 1/:

speed 1/:

_

Fig. 2.1. Single-Server and :-Server Systems

means that a single-server M/G/1 system can simulate any M/G/k policy by time-sharing between
: jobs.

Throughout this paper we consider the d → 1 or heavy-traffic limit. This is the _ → 1/E[- ]
limit with the job size distribution - and number of servers : held constant.

We write � for the cumulative distribution function of - and � (G) = 1 − � (G) for its tail. We
assume that - has a continuous, piecewise-monotonic5 hazard rate

ℎ(G) =

d
dG � (G)

� (G)
.

Wealso frequentlyworkwith the expected remaining size of a job at age0, which isE[-−0 | - > 0].
We assume it, too, is continuous and piecewise-monotonic as a function of 0.

The above assumptions on hazard rate and expected remaining size are not restrictive and serve
primarily to simplify presentation. It is very likely that our proofs can be generalized to relax them.

2.1 SOAP Policies and Rank Functions

All of the scheduling policies considered in this work are in the class of SOAP policies [32], gen-
eralized to a multiserver setting. In a single-server setting, a SOAP policy c is specified by a rank
function

Ac : R+ → R

which maps a job’s age, namely the amount of service it has received so far, to its rank, or priority
level. Single-server SOAP policies work by always serving the job of minimal rank, breaking ties
in FCFS fashion.6

As an example, FB is a SOAP policy with A FB(0) = 0. Because lower age corresponds to lower
rank, FB prioritizes the job of least age.7

A multiserver SOAP policy uses the same rank function as its single-server analogue. The only
difference is that the system can serve up to : jobs, so a multiserver SOAP policy works as follows:

• If there are at most : jobs in the system, serve all of them.
• If there are more than : jobs in the system, serve the : jobs of minimal rank, breaking ties
in FCFS fashion.

5A function is piecewise-monotonic if, roughly speaking, it switches between increasing and decreasing finitely many

times in any compact interval.
6The full SOAP class allows a job’s rank to depend on both its age and its “static” characteristics, such as its size or class,

but we do not use this generality in this paper.
7Whenmultiple jobs are tied for least age, FB shares the server among all such jobs because the rank function is increasing.

See Scully et al. [32, Appendix B] for details.
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0 age 0
0

rank

AM-SERPT (0)
ASERPT (0)

0 age 0
0

rank

AM-Gittins (0)
AGittins (0)

Fig. 2.2. Rank Function Examples

We often compare the :-server variant of a policy c to its single-server analogue. When it is
necessary to distinguish between them, we write c-k for the :-server version of a policy, so c-1 is
the single-server version. We write) c-:

G for the size-conditional response time distribution of jobs

of size G under c-k, and we write ) c-: for the overall response time distribution.
There are four main policies we consider in this work: SERPT, M-SERPT, Gittins, and M-Gittins.

None of the policies need job size information, but each uses the job size distribution to tune its
rank function. As an example, Fig. 2.2 shows the four rank functions for a bounded distribution
with nonmonotonic hazard rate.

Definition 2.1. The shortest expected remaining processing time (SERPT) policy is the SOAP policy
with rank function

A SERPT(0) = E[- − 0 | - > 0] =

∫ ∞

0
� (C) dC

� (0)
.

As a reminder, lower rank means better priority, so, as hinted by its name, SERPT prioritizes the
job of least expected remaining size.

Definition 2.2. Themonotonic SERPT (M-SERPT) policy is the SOAP policy with monotonic rank
function

AM-SERPT(0) = max
1∈[0,0]

A SERPT(1).

Definition 2.3. The Gittins policy is the SOAP policy with rank function

AGittins(0) = inf
1>0

E[min{-,1} − 0 | - > 0]

P{- ≤ 1 | - > 0}
= inf

1>0

∫ 1

0
� (C) dC

� (0) − � (1)
.

Definition 2.4. Themonotonic Gittins (M-Gittins) policy is the SOAP policy with monotonic rank
function

AM-Gittins (0) = max
1∈[0,0]

AGittins(1).
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The M-Gittins and M-SERPT policies, which both have monotonic rank functions, are the pri-
mary focus of this paper. Some of our intermediate results apply more broadly to any policy with
a monotonic rank function.

Definition 2.5. A SOAP policy c is monotonic if its rank function is nondecreasing, meaning
Ac (0) ≤ Ac (1) for all ages 0 < 1.8

Figure 2.2 shows the SERPT, M-SERPT, Gittins, and M-Gittins rank functions for a bounded
distribution with nonmonotonic hazard rate. Notice that SERPT and Gittins are not monotonic.
This makes it hard to analyze their M/G/k response time (Appendix A). In contrast, the M-SERPT
and M-Gittins are monotonic: their rank functions alternate between constant regions and strictly
increasing regions.
While the rank functions of Gittins and SERPTmay not bemonotonic, they are still well behaved

under our assumptions on the job size distribution.

Lemma 2.6. Under the assumption that the job size distribution - has continuous and piecewise-

monotonic hazard rate and expected remaining size functions, each of A SERPT, AM-SERPT, AGittins, and AM-Gittins

is continuous and piecewise-monotonic.

Proof. It suffices to prove the claims for A SERPT and AGittins. The claim for A SERPT is exactly our
assumption on expected remaining size, and the claim for AGittins is a known result [4, Theorem 1].

�

2.2 Job Size Distribution Classes

We consider several classes of job size distributions in this paper. We briefly describe each class
before giving the formal definitions.

• TheOR(−∞,−1) class (Definition 2.7) contains, roughly speaking, distributions with Pareto-
like tails.
– We focus especially on the OR(−∞,−2) subclass, all members of which have finite vari-
ance.

• The MDA(Λ) class (Definition 2.12) contains, roughly speaking, distributions with smooth
tails that are lighter than Pareto tails. It includes, among others, exponential, normal, log-
normal, Weibull, and Gamma distributions.

• The QDHR and QIMRL classes (Definitions 2.8 and 2.9) are relaxations of the well-known
decreasing hazard rate (DHR) and increasing mean residual lifetime (IMRL) classes [1–4, 11, 27,
28, 34].QDHR contains distributions whose hazard rate is roughly decreasing with age, even
if it is not perfectly monotonic, and QIMRL contains distributions with roughly increasing
expected remaining size.
– We focus especially on the subclasses MDA(Λ) ∩ QDHR and MDA(Λ) ∩ QIMRL.

• The ENBUE class (Definition 2.10) is a relaxation of the well-known new better than used in

expectation (NBUE) class [3, 4, 34].9 It contains distributions whose expected remaining size
reaches a global maximum at some age.
– We focus especially on the Bounded subclass, which contains all bounded distributions.

These classes play two different roles in our analysis.

• Some of the classes broadly characterize the asymptotic behavior of the tail � . These include
OR(−∞,−1),MDA(Λ), and ENBUE. Virtually all job size distributions of interest are in one

8The nonincreasing case is less interesting, because all nonincreasing rank functions encode FCFS.
9Because the NBUE terminology originates in reliability analysis, the word “better” here means “longer”.
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of these classes, so requiring membership in one of them, as in Theorem 3.3, should not be
viewed as a major restriction.

• Some of the classes impose additional conditions on the job size distribution that help us
bound the M-Gittins and M-SERPT rank functions (Section 6). These includeQDHR,QDHR,
and Bounded. While these classes are much broader than those previously studied (Sec-
tion 3.1), they do not cover all distributions of interest. Requiring membership in one of
them, as in Theorems 3.1 and 3.2, represents a genuine restriction.

Definition 2.7. A function 5 is $-regularly varying if there exist exponents V ≥ U > 0 along
with constants �0, G0 > 0 such that for all ~ ≥ G ≥ G0,

1

�0

(~
G

)−V
≤

5 (~)

5 (G)
≤ �0

(~
G

)−U
.

We write OR(−V0,−U0) for the set of$-regularly varying functions where the exponents U and V

above may be chosen such that U0 < U ≤ V < V0.
10 We use the same OR(−V0,−U0) notation to

represent the class of distributions whose tails are in OR(−V0,−U0).

Definition 2.8. A job size distribution is in the quasi-decreasing hazard rate class, denotedQDHR,
if there exist a strictly increasing function < : R+ → R+, an exponent W ≥ 1, and constants
�0, G0 > 0 such that for all G ≥ G0,

<(G) ≤
1

ℎ(G)
≤ <(�0G

W ).

Definition 2.9. A job size distribution is in the quasi-increasing mean residual lifetime class, de-
noted QIMRL, if there exist a strictly increasing function< : R+ → R+, an exponent W ≥ 1, and
constants �0, G0 > 0 such that for all G ≥ G0,

<(G) ≤ E[- − G | - > G] ≤ <(�0G
W ).

Definition 2.10. A job size distribution is in the eventually new better than used in expectation

class, denoted ENBUE, if there exists an age 0∗ ≥ 0 at which a job’s expected remaining size
reaches a global maximum, meaning that for all G ≠ 0∗,

E[- − 0∗ | - > 0∗] ≥ E[- − G | - > G] .

Definition 2.11. A job size distribution is in the bounded class, denoted Bounded, if there exists

Gmax < ∞ such that � (Gmax) = 0.

Definition 2.12. A job size distribution is said to be in the Gumbel domain of attraction, denoted
MDA(Λ), under certain conditions specified in extreme value theory [26].

The exact characterization of MDA(Λ) is outside the scope of this paper. The most important
property is that distributions in MDA(Λ) are lighter-tailed than all Pareto distributions.

Lemma 2.13. If - ∈ MDA(Λ), then � (G) = > (G−U ) for all U > 0.

Proof. The result follows from a known characterization ofMDA(Λ) [26, Proposition 1.4]. �

10This is not the standard definition of $-regular variation, but it is equivalent to it [8, Section 2.2.1]. Specifically, our

OR(−V0,−U0) contains the$-regularly varying functions whose Matuszewska indices are in the interval (−V0,−U0) .
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3 MAIN RESULTS

We now present our main results, explaining how they relate to prior work in Section 3.1. We
begin with our heavy-traffic M/G/k optimality result.

Theorem 3.1. In an M/G/k, if

- ∈ OR(−∞,−2) ∪ (MDA(Λ) ∩QDHR) ∪ Bounded,

then

lim
d→1

E[)M-Gittins-: ]

E[)Gittins-1]
= 1.

In such cases, M-Gittins-k is optimal for mean response time in heavy traffic.

The M-Gittins policy is based on the Gittins policy, which is somewhat complex to describe
and compute. Fortunately, the M-SERPT policy, which can be much simpler to compute [33], also
performs well in the heavy-traffic M/G/k.

Theorem 3.2. In an M/G/k, if

- ∈ OR(−∞,−2) ∪ (MDA(Λ) ∩ (QDHR ∪ QIMRL)) ∪ Bounded,

then

lim
d→1

E[)M-SERPT-: ]

E[)Gittins-1]
≤ 2.

In such cases, M-SERPT-k is a 2-approximation for mean response time in heavy traffic.

Theorems 3.1 and 3.2 apply to a broad class of finite-variance job size distributions. Roughly
speaking, OR(−∞,−2) covers heavy-tailed distributions, and MDA(Λ) covers non-heavy-tailed
distributions that are unbounded (Section 2.2). Assuming membership in these sets is standard for
heavy-traffic analysis [19]. The main restriction the results impose is on MDA(Λ) distributions,
for which we additionally require membership in QDHR or QIMRL. While slightly relaxing this
restriction is possible,11 removing it entirely appears to be very difficult (Section 8).
A key step in the proofs of Theorems 3.1 and 3.2 is analyzing M-Gittins and M-SERPT in the

heavy-traffic M/G/1. This analysis is itself a new result of independent interest. Notably, it extends
to ordinary Gittins in addition to M-Gittins, thus characterizing the optimal heavy-traffic scaling
attainable by any scheduling policy in the setting of unknown job sizes.

Theorem 3.3. Let c-1 be one of Gittins-1, M-Gittins-1, or M-SERPT-1. If - ∈ OR(−2,−1), then in

the d → 1 limit,

E[) c-1] = Θ

(
log

1

1 − d

)

and if - ∈ OR(−∞,−2) ∪MDA(Λ) ∪ ENBUE, then

E[) c-1] = Θ

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

,

where �−14 is the inverse of the tail of the excess of -, namely

�4 (G) =
1

E[- ]

∫ ∞

G

� (C) dC .

11For example, we only need the QDHR and QIMRL assumptions to prove Theorems 6.3 and 6.5, so we could instead

assume the results of those theorems.
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3.1 Relationship to Prior Work

Theorem 3.1 is the first result proving optimality of a scheduling policy in the heavy-traffic M/G/k
with unknown job sizes and general job size distribution. As mentioned in Section 1, the only prior
results of this type were shown by Grosof et al. [15], who prove similar results for SRPT and FB,
that latter for decreasing hazard rate (DHR) job size distributions.

• SRPT was shown to be optimal in the heavy-traffic M/G/k for job size distributions whose
tail has upper Matuszewska index less than −2 [15, Theorem 6.1], which corresponds to
satisfying the upper bound in Definition 2.7 for some U > 2. This is somewhat broader than
the precondition of Theorem 3.1, though it is still limited to finite-variance distributions.
– Given that SRPT is designed for known job sizes while M-Gittins is designed for unknown
job sizes, Theorem 3.1 complements the prior SRPT results.

• FB was shown to be optimal in the heavy-traffic M/G/k for job size distributions in the
class DHR ∩ (OR(−∞,−2) ∪MDA(Λ)) [15, Theorem 7.13].12 The DHR class is much more
restrictive than QDHR, so this is much narrower than the precondition of Theorem 3.1.
– Given that FB is equivalent to M-Gittins in theDHR case [3, 4], Theorem 3.1 subsumes the
prior FB results.

There is another result that follows from two prior works that complements Theorem 3.1, al-
though to the best of our knowledge it has never been explicitly stated. Köllerström [21, 22] shows
that under FCFS, the mean response times in the M/G/1 and M/G/k converge. This means that if
Gittins and M-Gittins happen to be equivalent to FCFS for a given job size distribution, then FCFS
minimizes mean response time in the heavy-traffic M/G/k. Aalto et al. [3, 4] show this occurs
exactly for job size distributions in the new better than used in expectation (NBUE) class, which
includes some distributions that Theorem 3.1 does not cover.
Finally, versions of the Gittins policy have been shown to be heavy-traffic optimal for two

discrete-state versions of theM/G/k queue [13, 14]. These models support some features our model
does not, such as multiple job classes, but discretizing the state space imposes some limitations.
Specifically, Glazebrook and Niño-Mora [14] require each job to be composed of phases where
each phase has exponentially distributed size; and Glazebrook [13] allows nonexponential job size
distributions but discretizes time and additionally requires ENBUE job size distributions (Defini-
tion 2.10). In contrast, Theorem 3.1 applies to heavy-tailed and other non-ENBUE job size distri-
butions that are of practical importance in computer systems [5, 10, 17, 25].
Theorem 3.2 shows that a simple scheduling policy, namely M-SERPT, has mean response time

within a constant factor of optimal in the heavy-traffic M/G/k with unknown job sizes and gen-
eral job size distribution. Specifically, we show M-SERPT is a 2-approximation. This complements
the result of Scully et al. [33], who show that in the M/G/1, M-SERPT is a 5-approximation for
M/G/1 mean response time at all loads. Our result is tighter and applies to multiserver systems,
not just single-server systems, but it applies only in heavy traffic. The techniques we introduce
could be useful for tightening the upper bound on M-SERPT’s M/G/1 approximation ratio, which
is conjectured to be 2 [33].
Theorem 3.3 characterizes the heavy-traffic scaling of M/G/1 mean response time under Gittins,

M-Gittins, and M-SERPT. There are three other policies whose heavy-traffic scaling has been char-
acterized: FB, SRPT, and a policy called randomized multilevel feedback (RMLF) [7, 18]. We now
compare Theorem 3.3 to each of these prior results.

12While Grosof et al. [15, Theorem 7.13] claim that this result applies to all distributions in DHR with upper Matuszewska

index less than −2, their proof incorrectly cites the preconditions of results of Kamphorst and Zwart [19]. Correcting the

precondition narrows the result to what we state here.
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Kamphorst and Zwart [19] study FB in heavy traffic. They show that if - ∈ OR(−2,−1), then

E[) FB-1] = Θ

(
log

1

1 − d

)
,

matching the first expression in Theorem 3.3. They also show that if - ∈ OR(−∞,−2) ∪MDA(Λ),
then

E[) FB-1] = Θ

(
1

(1 − d) · A SERPT
(
�−14 (1 − d)

)

)

.

This is similar to the second expression in Theorem 3.3, except it replaces the monotonic AM-SERPT

with the nonmonotonic A SERPT, which pinpoints the suboptimality of FB’s heavy-traffic scaling.
Lin et al. [23] study SRPT in heavy traffic. They show that if - ∈ OR(−2,−1), then

E[) SRPT-1] = Θ

(
log

1

1 − d

)
,

and if � has upper Matuszewska index less than −2, which covers - ∈ OR(−∞,−2) ∪ MDA(Λ),
then

E[) SRPT-1] = Θ

(
1

(1 − d) ·�−1(1 − d)

)

,

where

� (G) = 1 −
E[-1(- ≤ G)]

E[- ]
= �4 (G) +

G� (G)

E[- ]
.

Recall that SRPT minimizes mean response time in the presence of job size information, whereas
Gittins does not use job size information, so the heavy-traffic scaling of SRPT is a lower bound on
that of Gittins. By comparing the above result for SRPT with our result for Gittins (Theorem 3.3),
we learn when knowledge of job sizes yields an asymptotic improvement in mean response time.

• For - ∈ OR(−2,−1), meaning - is heavy-tailed with infinite variance, the heavy-traffic
scaling of Gittins matches that of SRPT.

• For - ∈ OR(−∞,−2), meaning - is heavy-tailed with finite variance, the heavy-traffic scal-
ing of Gittins still matches that of SRPT. Specifically, we later show AM-SERPT(0) = Θ(0)

(Theorem 6.2), and one can also show �−1(1 − d) = Θ(�−14 (1 − d)).
• For - ∈ MDA(Λ), meaning - is not heavy-tailed, one can show AM-SERPT(0) = > (0) [26],
implying Gittins has worse heavy-traffic scaling than SRPT in those cases.

We see that, roughly speaking, Gittins matches the heavy-traffic scaling of SRPT if and only if the
job size distribution is heavy-tailed. We conclude that knowledge of job sizes yields an asymptotic
improvement in mean response time for non-heavy-tailed job size distributions.
Bansal et al. [6] study RMLF in heavy traffic. They show that if E[-U ] < ∞ for some U > 2, then

E[) RMLF-1] = $

(
E[) SRPT-1] · log

1

1 − d

)
. (3.1)

Because Gittins minimizes M/G/1 mean response time, this serves as an upper bound on the heavy-
traffic scaling of Gittins. However, as previously discussed when comparing Theorem 3.3 to prior
results on SRPT, there are cases where Gittins matches the heavy-traffic scaling of SRPT, so our
result is a tighter bound. With that said, requiring E[-U ] < ∞ for some U > 2 is more lenient than
the precondition of Theorem 3.3, so there are still instances where (3.1) is the best known bound
on Gittins’s heavy-traffic scaling.
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Key Definitions

• (Section 2.2) Job size distribution classes: QDHR, OR(−∞,−2),MDA(Λ), etc.

• (Sections 4 and 5) Single-server quantities: E[&c-1], E['c-1], and E[(c-1].

• (Section 4.1) Age cutoffs: ~cG and IcG .

Proof Steps

• (Section 5) Compare M/G/k to M/G/1: E[) c-: ] ≤ E[&c-1] + :E['c-1] + (: − 1)E[(c-1],
whereas E[) c-1] = E[&c-1] + E['c-1].

• Show E[&c-1] dominates E['c-1] and E[(c-1] in d → 1 limit.

– (Section 6) Job size distribution classes imply bounds on age cutoffs: for example, if
- ∈ QDHR, then IcG = $ (GW ) for some W ≥ 1.

– (Section 7) Job size distribution classes and bounds on age cutoffs imply E[&c-1]

dominates: for example, if - ∈ MDA(Λ) and IcG = $ (GW ) for some W ≥ 1, then
E[(c-1] = > (&c-1).

• (Section 4.4) Compare M-Gittins-k and M-SERPT-k to Gittins-1.

– M-Gittins-k vs. Gittins-1: prior work shows E[&M-Gittins-1] ≤ E[)Gittins-1], implying
limd→1 E[)

M-Gittins-: ]/E[)Gittins-1] = 1.

– M-SERPT-k vs. Gittins-1: prior work shows E[&M-SERPT-1] ≤ 2E[)Gittins-1], implying
limd→1 E[)

M-SERPT-: ]/E[)Gittins-1] ≤ 2.

Throughout, c stands for either M-Gittins or M-SERPT.

Fig. 4.1. Proof Overview

4 TECHNICAL OVERVIEW

Our main goal is to show that M-Gittins minimizes M/G/k mean response time in the d → 1 limit.
Specifically, we show

E[)M-Gittins-: ] ≤ E[)Gittins-1] + > (E[)Gittins-1]). (4.1)

The only existing technique for proving a bound like (4.1) is the M/G/k tagged job method of
Grosof et al. [15]. In general, tagged job methods work as follows [15, 16, 20, 24, 30–32, 35]: one
focuses on a “tagged” job � throughout its time in the system, tracking how much each other job
delays � . The amount of time for which another job can delay � is called the relevant work due to
that other job. The specific M/G/k tagged job method [15] relates the amount of relevant work in
an M/G/k under c-k to the amount of relevant work in an M/G/1 under c-1.
As a first approach, we might try to prove a result like (4.1) for Gittins-k using the M/G/k tagged

job method. Unfortunately, the method turns out not to work for Gittins, because Gittins can have
a nonmonotonic rank function. It turns out that under nonmonotonic rank functions, jobs can
contribute more relevant work in an M/G/k than in an M/G/1 (Appendix A), resulting in a much
looser response time bound.
Our key insight is that we can generalize the M/G/k tagged job method of Grosof et al. [15] to

any SOAP policy, provided it has a monotonic rank function. In Theorem 5.1 we show that for any
monotonic SOAP policy c ,

E[) c-: ] ≤ E[&c-1] + :E['c-1] + (: − 1)E[(c-1], (4.2)
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0 age
0

rank

~cG

Ac (G)

G IcG ~c
G ′

= G ′ = Ic
G ′

Ac (G ′)

Fig. 4.2. New Job and Old Job Age Cutoffs

where the quantities on the right hand side, defined formally in Section 5, can be thought of as
follows:

• &c-1 and 'c-1 are distributions called waiting time and residence time, respectively [32]. Re-
sponse time in the M/G/1 is the sum of waiting time and residence time.

• (c-1 is a new distribution we call inflated residence time, which is similar to residence time
but longer.

Proving (4.2) is the first stepping stone to proving Theorem 3.1 because it reduces an M/G/k anal-
ysis to an M/G/1 analysis. Only the E['c-1] and E[(c-1] coefficients depend on : , so to prove The-
orem 3.1, we show the E[&c-1] term dominates in the d → 1 limit when c is M-Gittins. Figure 4.1
gives an overview of the main proof steps.
In the remainder of this section, our goal is to bound E[&c-1], E['c-1], and E[(c-1], where c is

either M-Gittins or M-SERPT. We begin in Section 4.1 by explaining in more detail the concepts of
relevant work and of waiting, residence, and inflated residence time. In doing so, we introduce age
cutoffs, quantities which characterize the relevant work due to each job. It turns out that to bound
E[&c-1], E['c-1], and E[(c-1], we first need to bound the age cutoffs. Section 4.2 presents our
age cutoff bounds, deferring proofs to Section 6, and Section 4.3 presents our bounds on E[&c-1],
E['c-1], and E[(c-1], deferring proofs to Section 7. Finally, in Section 4.4, we formally prove The-
orems 3.1–3.3 by combining the intermediate results discussed throughout this section.

4.1 Understanding the Tagged Job Method and Relevant Work

In this section we give intuition for the tagged job method, deferring some formalities to Section 5.
Recall that the tagged job method works by focusing on the journey of a “tagged” job � through

the system. Roughly speaking, the relevant work due to any other job is the amount of time by
which that job delays � ’s departure. A key insight from the M/G/1 SOAP analysis [32] is that to
figure out how much another job delays � , we need to look not at � ’s current rank but at its worst
future rank. This is because even if � has priority over another job at first, if � ’s rank later increases,
the other job can get priority.
Suppose that � has size G . Under a monotonic SOAP policy c , such as M-Gittins or M-SERPT,

the worst future rank � will have is always the rank it will have just before completion, namely
Ac (G). The amount of relevant work due to another job � ′ is the amount of time � ′ is served while
� is in the system until � ′ either completes or reaches rank Ac (G). Due to the FCFS tiebreaking rule
(Section 2.1), exactly what “reaches” means depends on when � ′ arrives.

• New jobs, those that arrive after � , contribute relevant work until they first have rank greater
than or equal to Ac (G). This occurs at a specific age called the new job age cutoff, denoted ~cG .

• Old jobs, those that arrive before � , contribute relevant work until they first have rank strictly
greater than Ac (G). This occurs at a specific age called the old job age cutoff, denoted IcG .
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Figure 4.2 illustrates the new job and old job age cutoffs ~cG and IcG , which are formally defined
below.13 Roughly speaking,

• if Ac is increasing at G , then ~cG = G = IcG ; and
• if Ac is constant at G , then ~cG and IcG are the endpoints of the constant region containing G .

As Fig. 4.2 illustrates, we always have

~cG ≤ G ≤ IcG . (4.3)

Definition 4.1. Let c be a monotonic SOAP policy. The new job age cutoff and old job age cutoff

of size G are, respectively,
~cG = sup{0 ≥ 0 | Ac (0) < Ac (G)},

IcG = sup{0 ≥ 0 | Ac (0) ≤ Ac (G)}.

When the policy in question is clear, we drop the superscript c .

One can use new job and old job age cutoffs to write M/G/1 mean response time under a mono-
tonic SOAP policy [33]. As a first step, we write M/G/1 response time ) c-1 as a sum of two parts,
called waiting time &c-1 and residence time 'c-1 [32]:

E[) c-1] = E[&c-1] + E['c-1] .

We define waiting and residence times formally in Section 5. For now, we just need to know that
their means can be written in terms of ~cG and IcG . Specifically, Scully et al. [33, Propositions 4.7
and 4.8] show

E[&c-1] =

∫ ∞

0

g (IcG )

d (~cG )d (I
c
G )

d� (G),

E['c-1] =

∫ ∞

0

G

d (~cG )
d� (G),

(4.4)

where d and g are defined as

d (0) = 1 − _E[min{-, 0}] = 1 −

∫ 0

0
_� (C) dC,

g (0) =
_

2
E[min{-, 0}2] =

∫ 0

0
_C� (C) dC .

(4.5)

The proof of Theorem 5.1 explains the intuition behind (4.4).
The significance of (4.2) is that it expresses M/G/k response time in terms of waiting and resi-

dence times, which are M/G/1 quantities. It also features a third quantity called inflated residence

time (c-1. We define inflated residence time formally in Section 5. For now, we just need to know
that its mean,

E[(c-1] =

∫ ∞

0

IcG
d (~cG )

d� (G), (4.6)

can be written in terms of ~cG and IcG . Note that E['
c-1] ≤ E[(c-1].

4.2 Bounding New and Old Age Cutoffs

Recall that proving our main results rests on characterizing the heavy-traffic scaling of E[&c ],
E['c ], and E[(c ], where c is either M-Gittins or M-SERPT. As we see in (4.4) and (4.6), both ~cG
and IcG feature prominently in the formulas of E[&c ], E['c ], and E[(c ]. This means the first step
of characterizing the heavy-traffic scaling of E[&c ], E['c ], and E[(c ] is understanding ~cG and IcG .
This is the subject of Section 6, in which we prove bounds on ~cG and IcG for a wide class of job size

13The new job and old job age cutoffs of G are equivalent to what Scully et al. [33] call the previous and next hill ages of G .
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Table 4.1. New Job and Old Job Age Cutoff Bounds

Size Distribution �antity Bound Reference

OR(−∞,−1) ~M-Gittins-1
G Θ(G) Theorem 6.4
IM-Gittins-1
G Θ(G)

~M-SERPT-1
G Θ(G) Theorem 6.2
IM-SERPT-1
G Θ(G)

QDHR ~M-Gittins-1
G Ω(G1/W ) for some W ≥ 1 Theorem 6.5
IM-Gittins-1
G $ (GW ) for some W ≥ 1

QDHR ∪QIMRL ~M-SERPT-1
G Ω(G1/W ) for some W ≥ 1 Theorem 6.3
IM-SERPT-1
G $ (GW ) for some W ≥ 1

These bounds on ~cG and IcG are critical for characterizing heavy-traffic scaling of E[&c -1 ],

E['c -1 ], and E[(c -1 ].

distributions. Table 4.1 summarizes these results. The main takeaway is that ~cG and IcG are always
polynomially bounded relative to G .

4.3 Characterizing Heavy Traffic Scaling

Armed with bounds on age cutoffs, we are ready to characterize heavy-traffic scaling of mean
waiting, residence, and inflated residence times. This is the subject of Section 7, in which

• Theorems 7.4, 7.5, 7.9 and 7.10 characterize M-SERPT’s heavy-traffic scaling; and
• Theorems 7.11 and 7.12 characterizeM-Gittins’s heavy-traffic scaling in terms of M-SERPT’s.

Table 4.2 summarizes these results. The main takeaway of the table is that for all of the finite-
variance job size distribution classes considered,14 if c is either M-Gittins or M-SERPT, E[&c-1]

dominates E['c-1] and E[(c-1], with the latter sometimes requiring an additional condition. Specif-
ically,

• E[&c-1] grows polynomially in 1/(1 − d), whereas
• E['c-1] and E[(c-1] grow subpolynomially in 1/(1 − d).

4.4 From Intermediate Results to Main Results

We now prove our main results. The proofs of Theorems 3.1 and 3.2 both follow the same three
main steps, where c is M-Gittins or M-SERPT, respectively:

• Theorem 5.1 bounds E[) c-: ] in terms of M/G/1 quantities.
• The results in Table 4.2 show limd→1 E[)

c-: ]/E[&c-1] = 1.

• Prior work relates E[&c-1] to E[)Gittins-1].

Proof of Theorem 3.1. An M/G/1 can simulate any M/G/k policy by sharing the server, so the
fact that Gittins minimizes M/G/1 mean response time means E[)M-Gittins-: ]/E[)Gittins-1] ≥ 1. It
therefore suffices to show limd→1 E[)

M-Gittins-: ]/E[)Gittins-1] ≤ 1.
Theorem 5.1 implies

E[)M-Gittins-: ]

E[&M-Gittins-1]
≤ 1 +

:E['M-Gittins-1] + (: − 1)E[(M-Gittins-1]

E[&M-Gittins-1]
.

14That is, for all the classes in Table 4.2 except OR(−2,−1) .
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Table 4.2. Heavy-Traffic Scaling of Waiting, Residence, and Inflated Residence Times

Size Distribution �antity Heavy-Traffic Scaling Reference

OR(−2,−1) E[&c-1] $ (− log(1 − d)) Theorems 7.4 and 7.11
E['c-1] $ (− log(1 − d))

OR(−∞,−2) E[&c-1] Ω((1 − d)−X) for some X > 0 Theorems 7.9 and 7.11
E['c-1] $ (− log(1 − d))

E[(c-1] $ (− log(1 − d)) Theorems 7.9 and 7.12

MDA(Λ) E[&c-1] Ω((1 − d)−(1−Y)) for all Y > 0 Theorems 7.10 and 7.11
E['c-1] $ ((1 − d)−Y) for all Y > 0

MDA(Λ) ∩QDHR E[(c-1] $ ((1 − d)−Y) for all Y > 0 Theorems 7.10 and 7.12
MDA(Λ) ∩QIMRL E[(M-SERPT-1] $ ((1 − d)−Y) for all Y > 0 Theorem 7.10

ENBUE E[&c-1] Θ((1 − d)−1) Theorems 7.5 and 7.11
E['c-1] Θ(1)

Bounded E[(c-1] Θ(1) Theorems 7.5 and 7.12

These bounds hold when c is either M-Gittins or M-SERPT, except for the MDA(Λ) ∩ QIMRL case, in which the

bound holds only for M-SERPT.

Theorems 7.5 and 7.9–7.12 imply that the second term vanishes in the d → 1 limit. A result of
Scully et al. [33, Proposition 4.7] implies

E[&M-Gittins-1] ≤ E[&Gittins-1] ≤ E[)Gittins-1], (4.7)

implying the desired result. �

Proof of Theorem 3.2. Theorem 5.1 implies

E[)M-SERPT-: ]

E[&M-SERPT-1]
≤ 1 +

:E['M-SERPT-1] + (: − 1)E[(M-SERPT-1]

E[&M-SERPT-1]
.

Theorems 7.5, 7.9 and 7.10 imply that the second term vanishes in the d → 1 limit. Scully et al. [33,
Lemma 5.6] show15

E[&M-SERPT-1] ≤ 2E[&M-Gittins-1],

which combines with (4.7) to imply the desired result. �

To prove Theorem 3.3, we simply combine the results in Table 4.2.

Proof of Theorem 3.3. We examine each case in turn.

• For - ∈ OR(−2,−1), we use Theorems 7.4 and 7.11.
• For - ∈ OR(−∞,−2) ∪MDA(Λ), we use Theorems 7.9–7.11.
• For - ∈ ENBUE, we have AM-SERPT(0) = Θ(1) by Definition 2.10, so we use Theorems 7.5
and 7.11. �

5 M/G/k RESPONSE TIME BOUND

This section boundsM/G/kmean response time under anymonotonic SOAP policy c . The notation
used in Theorem 5.1 below is summarized in Table 5.1.

15While Scully et al. [33, Lemma 5.6] mention Gittins instead of M-Gittins, they prove the desired statement for M-Gittins

as an intermediate step of their proof.
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Table 5.1. Summary of Notation

Notation Description Reference

c-k :-server version of SOAP policy c Section 2.1
d (0), g (0) functions of moments of min{-,0} (4.5)
~cG , I

c
G new job and old job age cutoffs Definition 4.1

) c-: response time under c-k Section 2.1
&c-1 waiting time under c-1 (4.4)
'c-1 residence time under c-1 (4.4)
(c-1 inflated residence time under c-1 (4.6)

Additionally, )c -:
G is size-conditional response time for size G , and similarly for

&c -1
G , 'c -1

G , and (c -1
G .

Theorem 5.1. For any monotonic SOAP policy c,

E[) c-:
G ] ≤

1

d (~cG )

(
g (IcG )

d (IcG )
+ :G + (: − 1)IcG

)
, (5.1)

and therefore

E[) c-: ] ≤ E[&c-1] + :E['c-1] + (: − 1)E[(c-1] .

Proof. In order to bound M/G/kmean response time, we use a tagged job method in the style of
Grosof et al. [15], but we generalize it to allow an arbitrary monotonic SOAP policy c . We consider
an arbitrary “tagged” job � of size G arriving to a steady-state system. Our goal is to analyze the
distribution of � ’s response time.
The first step is a shift in perspective: instead of thinking about time passing, we reason in terms

of work completed. Since each of the : servers works at rate 1/: , the system can complete work
at rate 1. While � is in the system, servers sometimes complete work and are sometimes left idle.
This means � ’s response time is the sum of

• the amount of work completed while � is in the system and
• the amount of work “wasted”, meaning service capacity left idle, while � is in the system.

We bound � ’s response time by bounding the total amount of work above. We do so by dividing it
into several pieces:

• Tagged work: the work of � itself.
• Virtual work: work on jobs prioritized behind � , plus wasted work due to servers left idle.
• Relevant work: work on jobs prioritized ahead of � . We divide this into two subcategories:
– Old relevant work: relevant work on old jobs, namely those present when � arrives.
– New relevant work: relevant work on new jobs, namely those that arrive after � .

For the first two categories, we have the same simple bound as Grosof et al. [15]: tagged work
and virtual work add up to at most :G . This is because tagged work is � ’s size G , and the scheduling
policy ensures that a server only completes virtual work while � is in service at another server.
However, bounding the two relevant work categories is more complicated than in Grosof et al. [15].
We begin by asking: what rank must a job have to contribute to relevant work? Note that the

job � will never have rank greater than its rank upon completion, Ac (G), since c is a monotonic
policy. As a result, all new relevant work is from jobs with rank strictly less than Ac (G), and all old
relevant work is from jobs with rank less than or equal to Ac (G). We can put this in terms of the
age cutoffs defined in Definition 4.1:

• jobs contribute new relevant work up to at most age ~cG , and
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• jobs contribute old relevant work up to at most age IcG .

In the rest of this proof, ~G and IG refer to ~cG and IcG , respectively.
To help us bound the amount of old relevant work completed while � is in the system, we define

a new concept: the amount of relevant work in the M/G/k system under c .

Definition 5.2. Let RelWorkc-:G (C) denote the amount of work in the M/G/k at time C which is
relevant to a job � of size G :

RelWorkc-:G (C) =
∑

jobs � ′

(
min{IG , G � ′} − 0 � ′ (C)

)+
,

where G � ′ is the size of job � ′ and 0 � ′ (C) is its age at time C . We write RelWorkc-:G for the steady
state distribution of the amount of relevant work in the M/G/k system.

Since � is a Poisson arrival, RelWorkc-:G is the distribution of the amount of relevant work in the
system when � arrives. That amount is an upper bound on the amount of old relevant work that
will be completed while � is in the system.

To bound new relevant work, note that if a job � ′ of size G ′ arrives while � is in the system, then
� ′ contributes at most min{G ′,~G } new relevant work. As a result, new relevant work can be upper
bounded by considering a transformed M/G/1 system in which the job size distribution is

-~G =st min{-,~G }.

The amount of new relevant work that arrives to our real system is upper bounded by the total
amount of work that arrives to the transformed system. Let �~G (F) be the length of a busy period
in the transformedM/G/1 system started by an initial amount of workF . IfF is the total amount of
tagged, virtual, and old relevant work, then the amount of new relevant work is at most�~G (F)−F .
Combining our bounds, we obtain

) c-:
G ≤st �~G

(
:G + RelWorkc-:G

)
.

Applying Lemma 5.3, stated and proven later in this section, yields

) c-:
G ≤st �~G

(
:G + RelWorkc-1G + (: − 1)IG

)
. (5.2)

Taking expectations gives us

E[) c-:
G ] ≤

E[RelWorkc-1G ] + :G + (: − 1)IG

d (~G )
.

Because c-1 is work conserving with respect to relevant work, the Pollaczek-Khinchine formula
tells us

E[RelWorkc-1G ] =
g (IG )

d (IG )
,

which completes the proof of (5.1).
To connect (5.1) to the quantities E[&c ], E['c ], and E[(c ], we rewrite (5.2) as

) c-:
G ≤st �~G (RelWorkc-1G ) +

:∑

1

�~G (G) +

:−1∑

1

�~G (IG ), (5.3)

where all of the relevant busy periods are independent. Prior work on SOAP policies [32, 33] gives
names to some of the distributions on the right-hand side.16

16We define waiting, residence, and inflated residence times in terms of relevant busy periods. Waiting and residence times

also have natural definitions as components of M/G/1 response time [32, 33], but we do not need them in this paper.
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• The size-conditional waiting time for size G is the random variable&c-1
G =st �~G (RelWorkc-1G ),

and waiting time is &c-1
=st &

c-1
-

.

• The size-conditional residence time for size G is the random variable 'c-1
G =st �~G (G), and

residence time is 'c-1
=st '

c-1
-

.
• As there is no concise name for �~G (IG ) in prior work, we define size-conditional inflated

residence time for size G to be the random variable (c-1G =st �~G (IG ), and we define inflated

residence time to be (c-1 =st (
c-1
-

.

With these definitions in place, (5.3) gives us

) c-:
G ≤st &

c-1
G +

:∑

1

'c-1
G +

:−1∑

1

(c-1G ,

so the result follows by taking the expectation of ) c-:
=st )

c-:
-

. �

Theorem 5.1 applies only to monotonic SOAP policies. It is tempting to try to apply the same
technique to SOAP policies with nonmonotonic rank functions, but as we discuss in Appendix A,
the argument does not readily generalize.

The proof of Theorem 5.1 assumes a bound on RelWorkc-:G . We prove the bound in the following
lemma, which generalizes a similar lemma of Grosof et al. [15, Lemma 7.10].

Lemma 5.3. Let

ΔG (C) = RelWorkc-:G (C) − RelWorkc-1G (C).

Then ΔG (C) ≤ (: − 1)IcG for all times C, and therefore

RelWorkc-:G ≤st RelWorkc-1G + (: − 1)IcG .

Proof. Throughout this proof, IG refers to IcG . We consider a pair of coupled systems with the
same arrival sequence:

• System 1, an M/G/1 using c-1; and
• System :, an M/G/k using c-k.

Our approach is to bound the difference in relevant work between Systems 1 and : at any time C .
Call a job relevant if it has age less than IG . These are the only jobs that contribute relevant

work. To bound ΔG (C), we divide times C into two types of intervals:

• few-jobs intervals, during which there are fewer than : relevant jobs in System :; and
• many-jobs intervals, during which there are at least : relevant jobs in System : .

Note that both types of intervals are defined based on System : alone, so System 1 may or may
not have relevant jobs during either type of interval.
Any time C is in either a few-jobs interval or a many-jobs interval. If C is in a few-jobs interval,

the argument is simple: there are at most : − 1 relevant jobs in System : at time C , so

ΔG (C) ≤ RelWorkc-:G (C) ≤ (: − 1)IG .

Suppose instead that C is in a many-jobs interval. Let B ≤ C be the start of the many-jobs interval
containing C . We will show

ΔG (C) ≤ ΔG (B) ≤ (: − 1)IG .

We begin by showing ΔG (C) ≤ ΔG (B). Note that arrivals do not affect ΔG , because the two
systems experience the same arrivals and have the same definition of relevant work. Next, note that
service to irrelevant jobs does not affectΔG , because irrelevant jobs never become relevant under c ,
since c is a monotonic policy. In fact, the only way that ΔG changes over a many-jobs period is due
to service to relevant jobs. System : serves relevant jobs on all : servers throughout a many-jobs
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0 age
0

rank

~G

AM-SERPT(G)

G IG ~G ′ = G ′ = IG ′

AM-SERPT(G ′)
AM-SERPT(0)
ASERPT (0)

Here ~G stands for ~M-SERPT
G , and similarly for IG , ~G′ , and IG′ .

Fig. 6.1. Relationship Between SERPT and M-SERPT Rank Functions

period, completing relevant work at rate 1. System 1 may or may not serve relevant jobs during a
many-jobs period, so it completes relevant work at rate at most 1. This means ΔG (C) ≤ ΔG (B), as
desired.
All that remains is to show that ΔG (B) ≤ (: − 1)IG . Recall that B is the start of a many-jobs

interval. Many-jobs intervals cannot start due to irrelevant jobs becoming relevant, because c is a
monotonic policy. This means each many-jobs interval starts due to a relevant job arriving while
System : has : −1 relevant jobs. Relevant jobs arriving do not change ΔG , as discussed above. This
means ΔG (B) = ΔG (B

−), where B− is the instant before the arrival that starts the many-jobs interval.
But B− is in a few-jobs interval, so

ΔG (B) = ΔG (B
−) ≤ (: − 1)IG . �

6 RANK FUNCTION BOUNDS

We now have a bound on M/G/kmean response time under monotonic SOAP policies c , including
M-Gittins and M-SERPT. The bound (Theorem 5.1) is expressed in terms of E[&c-1], E['c-1], and
E[(c-1], quantities which in turn are expressed in terms of the new job and old job age cutoffs ~cG
and IcG . In order to prove optimality of M-Gittins in the heavy-trafficM/G/k, we need to understand
the heavy-traffic behavior of E[&c-1], E['c-1], and E[(c-1], which, as we will see in Section 7, boils
down to understanding the behavior of ~cG and IcG in the G → ∞ limit. This section is thus devoted
to asymptotically bounding the new job and old job age cutoffs, and more generally the rank
functions, of M-Gittins and M-SERPT.
Recall from Definition 2.2 that SERPT’s rank function is used to define M-SERPT’s. The follow-

ing lemma shows that the two rank functions are equal at the new job and old job age cutoffs, and
similarly for Gittins and M-Gittins. Figure 6.1 gives an intuitive picture of the result.

Lemma 6.1. The SERPT and M-SERPT rank functions are related by

A SERPT(~M-SERPT
G ) = AM-SERPT(~M-SERPT

G ) = AM-SERPT(G) = AM-SERPT(IM-SERPT
G ) = A SERPT(IM-SERPT

G ),

and analogously for Gittins and M-Gittins.

Proof. We prove the statement for SERPT and M-SERPT, as the proof for Gittins and M-Gittins
is analogous. Throughout this proof, ~G and IG refer to ~M-SERPT

G and IM-SERPT
G , respectively. The

illustration in Fig. 6.1 may provide helpful intuition for the following argument.
We first show the outer equalities. Definition 4.1 implies that AM-SERPT is increasing in the inter-

vals (~G − X, ~G ) and (IG , IG + X) for some X > 0. By Definition 2.2, for AM-SERPT to be increasing
at age 0, we must have AM-SERPT(0) = A SERPT(0), so continuity of AM-SERPT (Lemma 2.6) implies the
outer equalities.
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By (4.3) and the monotonicity of AM-SERPT, it remains only to show AM-SERPT(~G ) = AM-SERPT(IG ).
This is immediate if ~G = IG , and if ~G < IG , then A

M-SERPT is constant over the interval [~G , IG ), so
the result follows by the continuity of AM-SERPT (Lemma 2.6). �

6.1 Bounds on the M-SERPT Rank Function

In this section we show two bounds on ~M-SERPT
G and IM-SERPT

G , each subject to a different assump-
tion on the job size distribution.

Theorem 6.2. If - ∈ OR(−∞,−1), then

A SERPT(0) = Θ(0),

AM-SERPT(0) = Θ(0),

~M-SERPT
G = Θ(G),

IM-SERPT
G = Θ(G).

Proof. By Definition 2.7, there exists U > 1 such that

A SERPT(0) =

∫ ∞

0

� (C)

� (0)
dC ≤ $ (1)

∫ ∞

0

( C
0

)−U
dC = $ (0),

and A SERPT(0) = Ω(0) follows similarly. This implies

AM-SERPT(0) = max
1∈[0,0]

A SERPT(1) = max
1∈[0,0]

Θ(1) = Θ(0),

so the result follows from Lemma 6.1. �

Theorem 6.3. If - ∈ QDHR ∪ QIMRL with exponent W, then

~M-SERPT
G = Ω(G1/W ),

IM-SERPT
G = $ (GW ).

Proof. The QDHR case follows from Theorem 6.5 (Section 6.2) and a result of Scully et al. [33,
Eq. (3.8)] stating

~M-Gittins
G ≤ ~M-SERPT

G ≤ IM-SERPT
G ≤ IM-Gittins

G ,

so only the QIMRL case remains.
In the rest of this proof,~G and IG refer to ~

M-SERPT
G and IM-SERPT

G , respectively. By (4.3), it suffices
to show IG = $ (~

W
G ). Because- ∈ QIMRLwith exponentW , there exists strictly increasing function

< : R+ → R+ such that for all ages 0,

0 ≤ <−1 (A SERPT(0)
)
≤ $ (0W ).

The result follows by plugging in 0 = ~G and 0 = IG and applying Lemma 6.1. �

6.2 Bounds on the M-Gi�ins Rank Function

In this section we show two bounds on ~M-Gittins
G and IM-Gittins

G , each subject to a different assump-
tion on the job size distribution.

Theorem 6.4. If - ∈ OR(−∞,−1), then

~M-Gittins
G = Θ(G),

IM-Gittins
G = Θ(G).
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Theorem 6.5. If - ∈ QDHR with exponent W, then

~M-Gittins
G = Ω(G1/W ),

IM-Gittins
G = $ (GW ).

These bounds are harder to prove than their M-SERPT counterparts from Section 6.1. The most
important component is the following definition, which helps us better understand the M-Gittins
rank function and relate it to the simpler M-SERPT rank function.

Definition 6.6. The time per completion over an age interval (0, 1] is17

[ (0,1) =
E[min{-,1} − 0 | - > 0]

P{- < 1 | - > 0}
=

∫ 1

0
� (C) dC

� (0) − � (1)
.

We extend this definition to the 1 → 0 and 1 → ∞ limits:

[ (0, 0) =
1

ℎ(0)
,

[ (0,∞) = E[- − 0 | - > 0] .

We can write the rank functions of SERPT, M-SERPT, Gittins, and M-Gittins in terms of [ as

A SERPT(0) = [ (0,∞),

AM-SERPT(0) = max
1∈[0,0]

[ (1,∞),

AGittins(0) = min
1∈[0,∞]

[ (0,1),

AM-Gittins (0) = max
1∈[0,0]

min
2∈[1,∞]

[ (1,2).

(6.1)

Armed with Definition 6.6 and (6.1), we are ready to prove Theorems 6.4 and 6.5. The former
proof relies on some technical lemmas that we defer to Section 6.3.

Proof of Theorem 6.4. Throughout this proof,~G and IG refer to~
M-Gittins
G and IM-Gittins

G , respec-
tively. By (4.3), it suffices to show there exist �0, G0 > 0 such that for all G ≥ G0,

IG ≤ �0~G .

We will set �0 ≥ 2, which covers the IG ≤ 2~G case. The rest of the proof is thus devoted to the
IG > 2~G case. Our approach is to show there exist �1,�2 such that for all G ≥ G0,

�1~G ≥ AGittins(~G ) ≥ �2IG . (6.2)

We beginwith the upper bound on AGittins(~G ). By Lemma 6.1, we have AGittins(~G ) = AM-Gittins (~G )

for all sizes G , and by (6.1), we have AM-Gittins (0) ≤ AM-SERPT(0) for all ages 0. Combining these ob-
servations with Theorem 6.2 implies AGittins(~G ) = $ (~G ) and thereby implies the desired upper
bound from (6.2).18

We now turn to the lower bound on AGittins(~G ). This requires Lemmas 6.7 and 6.8, which are
facts about [ that we prove in Section 6.3. Combining Lemma 6.7 with (6.1) and the fact that we
are in the IG > 2~G case gives us

AGittins(~G ) = [ (~G , IG ) ≥ [
(IG
2
, IG

)
.

17Our time per completion function is the reciprocal of what Aalto et al. [3, 4] call the efficiency function.
18This would be more subtle if limG→∞ ~G were finite, but Theorem 6.2 and a result of Aalto et al. [4, Proposition 9] imply

limG→∞ ~G = ∞.
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By Lemma 6.8, there exist �2, G2 such that for all G with IG/2 > G2,

[
(IG
2
, IG

)
≥ �2IG ,

implying the desired lower bound from (6.2). �

Proof of Theorem 6.5. Throughout this proof,~G and IG refer to~
M-Gittins
G and IM-Gittins

G , respec-
tively. By (4.3), it suffices to show IG = $ (~

W
G ). Because - ∈ QDHR with exponent W , there exists a

strictly increasing function< : R+ → R+ such that for all sizes G ,

<(G) ≤
1

ℎ(G)
≤ <($ (GW )).

We have AGittins(~G ) ≤ 1/ℎ(~G ) by (6.1), and Lemma 6.1 implies AGittins(IG ) = AGittins(~G ), so

AGittins(IG ) ≤ <($ (~
W
G )).

It remains only to lower bound AGittins(IG ). We do so using the observation that for any age 0,

AGittins(0) = min
1∈[0,∞]

[ (0,1)

=

(

max
1∈[0,∞]

∫ 1

0
� (C)ℎ(C) dC

∫ 1

0
� (C) dC

)−1

≥
(
sup
1>0

ℎ(1)
)−1

= inf
1>0

1

ℎ(1)

≥ <(0),

where the first inequality follows from viewing the ratio of integrals as a weighted average. Plug-
ging in 0 = IG implies<(IG ) ≤ <($ (~

W
G )), so the result follows because< is strictly increasing. �

6.3 Time per Completion Lemmas

Lemma 6.7. For all sizes G and ages 0, if ~G < 0 < IG , then

AGittins(~G ) = [ (~G , IG ) ≥ [ (0, IG ).

Proof. A property of the Gittins index [12, Lemma 2.2] implies19

AGittins(~G ) = [ (~G , IG ).

In particular, for any 0 ≠ IG ,

[ (~G , 0) ≥ [ (~G , IG ). (6.3)

A basic property of the [ function [33, Eq. (D.3)] is that for any 3 < 4 < 5 ,

[ (3, 4) ≥ [ (3, 5 ) ⇔ [ (3, 5 ) ≥ [ (4, 5 ).

Plugging in 3 = ~G , 4 = 0, and 5 = IG and applying (6.3) yields [ (~G , IG ) ≥ [ (0, IG ), as desired. �

Lemma 6.8. If - ∈ OR(−∞,−1), then there exist constants �0, G0 > 0 such that for all 1 > 0 > G0,

[ (0,1) ≥ �00
(
1 −

0

1

)
.

19The proof given by Gittins et al. [12] is in a discrete setting, but essentially the same proof carries over to our continuous

setting.
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Proof. We can write [ (0,1) as

[ (0,1) =

∫ 1

0
� (C)/� (0) dC

1 − � (1)/� (0)
≥

∫ 1

0

� (C)

� (0)
dC .

Because - ∈ OR(−∞,−1), there exist V > 1 and �1, G1 > 0 such that for all C > 0 > G1,

� (C)

� (0)
≥ �1

( C
0

)−V
.

For all 1 > 0 > G1, we have

[ (0,1) ≥ �1

∫ 1

0

( C
0

)−V
dC =

�10

V − 1

(
1 −

(1
0

)−(V−1) )
.

We now consider two cases: V ≥ 2 or 1 < V < 2. If V ≥ 2, then (1/0)−(V−1) ≤ 0/1 and therefore

[ (0,1) ≥
�10

V − 1

(
1 −

0

1

)
, (6.4)

so setting �0 = �1/(V − 1) and G0 = G1 suffices. If 1 < V < 2, we use the fact that for all D > 0,

DV−1 ≤ 1 + (V − 1) (D − 1).

Substituting D = 0/1 and combining this with (6.4) yields

[ (0, 1) ≥ �10
(
1 −

0

1

)
,

so setting �0 = �1 and G0 = G1 suffices. �

7 HEAVY-TRAFFIC SCALING OF M/G/1 WAITING AND RESIDENCE TIMES

In this section we characterize the heavy-traffic scaling of mean waiting, residence, and inflated
residence times, which are the M/G/1 quantities that appear Theorem 5.1. Because M-SERPT is
a simpler policy than M-Gittins, our approach is to first study M-SERPT’s heavy-traffic scaling
(Sections 7.2 and 7.3) then show that the results extend to M-Gittins (Section 7.4).

7.1 Key Parts of Waiting and Residence Time

Before starting the heavy-traffic analyses of M-Gittins and M-SERPT, we introduce some new
notation. Let

�d (G) =
� (G)

d (G)
.

Definition 7.1. The key M/G/1 response time quantities, or simply “key quantities”, of a monotonic
SOAP policy c are the following:

Ic& =

∫ ∞

0

(
�d (~

c
G ) +�d (I

c
G )

) _g (IcG )� (G)
d (G)2

dG,

IIc& =

∫ ∞

0

_G�d (~
c
G )

2 ·
� (G)

� (~cG )
dG,

IIc' =

∫ ∞

0
_IcG�d (~

c
G )�d (I

c
G ) ·

� (G)

� (~cG )
dG,

IIIc' =

∫ ∞

0
�d (~

c
G ) ·

� (G)

� (~cG )
dG,
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IIc( = IIc' ,

IIIc( =

∫ ∞

0
�d (~

c
G ) dG.

When the policy in question is clear, we drop the superscript c .

In Theorems B.1–B.3 (Appendix B) we show that for any monotonic SOAP policy c ,

E[&c ] = Ic& + IIc& ,

E['c ] = IIc' + IIIc' ,

E[(c ] = IIc( + IIIc( .

Bounding mean waiting, residence, and inflated residence times thus amounts to bounding the key
quantities.
For the most of the rest of this section we focus on the case where c is M-SERPT, deferring the

M-Gittins case to Section 7.4. Until then, ~G , IG , and the key quantities are understood to have an
implicit superscript M-SERPT.
The most important step of bounding the key quantities is bounding �d (~G ) and �d (IG ). As a

first step, we bound �d (G). Let

�4 (G) =
1

E[- ]

∫ ∞

G

� (C) dC (7.1)

be the tail of the excess of - . We can write d (G) as

d (G) = (1 − d) + d�4 (G). (7.2)

This means that for all Y ∈ [0, 1], we have

�d (G) ≤
� (G)

max{1 − d, d�4 (G)}
≤

� (G)

(1 − d)Y (d�4 (G))1−Y
=
� (G)Y�1 (G)

1−Y

(1 − d)Yd1−Y
, (7.3)

where �1 (G) = � (G)/�4 (G) = limd→1�d (G). This bound is useful because it separates �d (G)’s
dependence on G and d : the numerator depends only on G , and the denominator depends only
on d . We will typically choose Y to be either 0 or arbitrarily small.
Having bounded �d (G) in (7.3), we now turn to bounding �d (~G ) and �d (IG ). Recalling the

definition of A SERPT (Definition 2.1),

�1(G) =
� (G)

�4 (G)
=

E[- ]

A SERPT(G)
,

so Lemma 6.1 and the monotonicity of AM-SERPT imply

�1 (~G ) = �1(IG ) =
E[- ]

AM-SERPT(G)
= $ (1). (7.4)

Combining this with (7.3) yields bounds on�d (~G ) and�d (IG ), though the bounds still have � (~G )

and � (IG ) terms. To better understand �d (~G ) and �d (IG ), we need to use our results from Sec-
tion 6 in arguments that depend on what class of distributions contains - . We do this over the
course of Sections 7.2 and 7.3.
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7.2 Infinite-Variance Job Size Distributions

In this section we study the heavy-traffic scaling of M-SERPT’s waiting, residence, and inflated
residence times for infinite-variance job size distributions, specifically those in OR(−2,−1). With
that said, many of the intermediate results we prove will also be useful for the finite-variance
OR(−∞,−2) case (Section 7.3).
Suppose that - ∈ OR(−∞,−1). Combining Theorem 6.2 and (7.4) gives us

~G , IG = Θ(G),

�1(~G ), �1(IG ) = Θ

( 1
G

)
.

(7.5)

This alone is enough to bound all of the key quantities except I& .

Lemma 7.2. Under M-SERPT, if - ∈ OR(−∞,−1), then

II& , II', III', II( , III( = $

(
log

1

1 − d

)
.

Proof. Our approach is to use the fact that, by (4.5),
∫ ∞

0
�d (G) dG =

∫ ∞

0

� (G)

d (G)
dG =

E[- ]

d
log

1

1 − d
. (7.6)

Because II' = II( and III' ≤ III( , it suffices to show that the integrands of II& , II( , and III( are all
$ (�d (G)).

We begin by showing that III( ’s integrand is$ (�d (G)). By (7.5) and the fact that- ∈ OR(−∞,−1),
we have

� (~G ) = � (Θ(G)) = Θ(� (G)),

which yields

�d (~G ) =
� (~G )

d (~G )
≤

� (~G )

d (G)
=
$ (� (G))

d (G)
= $ (�d (G)). (7.7)

This implies the desired bound for III( and III' .
We show II( ’s integrand is $ (�d (G)) by applying (7.3) with Y = 0, (7.5), and (7.7):

_IG�d (~G )�d (IG ) ≤ _IG�d (~G )�1(IG ) = $ (�d (G)).

This implies the desired bound for II( and II' . Similarly,

_G�d (~G )
2 ·

� (G)

� (~G )
≤ _G�d (~G )�1(~G ) = $ (�d (G)),

implying the bound for II& . �

It remains only to characterize the heavy-traffic scaling of I& . Treating the OR(−∞,−2) case
requires some additional care, so we defer it to Section 7.3, focusing on the OR(−2,−1) case for
now. The first step is to bound g (G).

Lemma 7.3. If - ∈ OR(−2,−1), then

g (G) = Θ(G2� (G)).

Proof. By Definition 2.7, there exists V ∈ (1, 2) such that

g (G)

� (G)
=

∫ G

0

_C� (C)

� (G)
dC ≤ $ (1)

∫ G

0
C
( C
G

)−V
dC = $ (G2),

and similarly for the lower bound. �
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We now have bounds on every term in I& ’s integrand, allowing us to bound I& and thereby
mean response time.

Theorem 7.4. If - ∈ OR(−2,−1), then in the d → 1 limit,

E[&M-SERPT-1] = $

(
log

1

1 − d

)
,

E['M-SERPT-1] = $

(
log

1

1 − d

)
,

and therefore

E[)M-SERPT-1] = $

(
log

1

1 − d

)
.

Proof. By Lemma 7.2, it suffices to upper bound I& . We compute

(
�d (~G ) +�d (IG )

) _g (IG )� (G)
d (G)2

≤
(
�1 (~G ) +�1 (IG )

) _g (IG )�1 (G)

d (G)
[by (7.3)]

=
(
�1(~G ) +�1 (IG )

)$ (I2G� (IG )) · �1 (G)

d (G)
[by Lem. 7.3]

=
$ (� (G))

d (G)
[by (7.5)]

= $ (�d (G)),

so (7.6) implies the desired bound. �

7.3 Finite-Variance Job Size Distributions

We now turn to finite-variance job size distributions, specifically those in OR(−∞,−2),MDA(Λ),
and ENBUE. We begin with the simplest case, which is ENBUE.

Theorem 7.5. If - ∈ ENBUE, then in the d → 1 limit,

E[&M-SERPT-1] = Θ

(
1

1 − d

)
,

E['M-SERPT-1] = Θ(1),

and therefore

E[)M-SERPT-1] = Θ

(
1

1 − d

)
.

If additionally - ∈ Bounded, then in the d → 1 limit,

E[(M-SERPT-1] = Θ(1).

Proof. LetGmax be the supremumof- ’s support, sowemayhave Gmax = ∞. Because- ∈ ENBUE,
there exists age 0∗ < Gmax such that

• AM-SERPT(0) < AM-SERPT(0∗) for all 0 < 0∗, and
• AM-SERPT(0) = AM-SERPT(0∗) for all 0 ≥ 0∗.

This means

• ~G ≤ 0∗ for all sizes G ,
• IG ≤ 0∗ for all sizes G ≤ 0∗, and
• IG = Gmax for all sizes G > 0∗.
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Because

d (0∗) < d (Gmax) = 1 − d,

applying (4.4) yields

E[&M-SERPT-1] = Θ(1) +

∫ ∞

0∗

g (Gmax)

d (0∗) · (1 − d)
d� (G) = Θ

(
1

1 − d

)
,

E['M-SERPT-1] = Θ(1) +

∫ ∞

0∗

G

d (0∗)
d� (G) = Θ(1).

If additionally - ∈ Bounded, then Gmax < ∞, so

E[(M-SERPT-1] = Θ(1) +

∫ ∞

0∗

Gmax

d (0∗)
d� (G) = Θ(1). �

We now turn to the OR(−∞,−2) and MDA(Λ) cases, which require the following technical
lemma.

Lemma 7.6. Let

!c (D) =
1

Ac
(
�−14 (1/D)

) ,

where c is SERPT or M-SERPT. If - ∈ OR(−∞,−2), then

!SERPT, !M-SERPT ∈ OR(−1, 0),

and if - ∈ MDA(Λ), then

!SERPT, !M-SERPT ∈ OR(−Y, Y) for all Y > 0.

Proof. Because !M-SERPT is the nonincreasing envelope of !SERPT, it suffices to prove the re-
sult for !SERPT. TheOR(−∞,−2) case follows from closure properties of Matuszewska indices [19,
Lemmas 4.5 and 4.6]. The MDA(Λ) case follows from a result of Kamphorst and Zwart [19, Sec-
tion 4.2.2] which states that if - ∈ MDA(Λ), then !SERPT is slowly varying, a property implying
!SERPT ∈ OR(−Y, Y) for all Y > 0 [8]. �

One implication of Lemma 7.6 is that if - ∈ MDA(Λ), then

�1(G) = $ (� (G)−Y) for all Y > 0. (7.8)

We are now ready to tackle the OR(−∞,−2) and MDA(Λ) cases. As in Section 7.2, we begin
by bounding the five key quantities other than I& . Lemma 7.2 does so for OR(−∞,−2), and the
following lemma does so forMDA(Λ).

Lemma 7.7. Under M-SERPT, if - ∈ MDA(Λ), then

II& , II' , III', II( = $

(
1

(1 − d)Y

)
for all Y > 0.

If additionally - ∈ MDA(Λ) ∩ (QDHR ∪ QIMRL), then

III( = $

(
1

(1 − d)Y

)
for all Y > 0.

Proof. Our overall approach is to use (7.3) on each key quantity to bound it by an expression

of the form (1 − d)−Y ·
∫ ∞

0
Φ(Y, G) dG , where Φ(Y, G) does not depend on d . The challenge is then

to show that the integral converges for arbitrarily small Y > 0.
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We begin with two bounds on �d (~G ) · � (G)/� (~G ), a term which appears in the integrands of
several key quantities. By (4.3),

�d (~G ) ·
� (G)

� (~G )
≤ �d (~G ), (7.9)

�d (~G ) ·
� (G)

� (~G )
=

� (G)

d (~G )
≤

� (G)

d (G)
= �d (G). (7.10)

Combining (7.10) with (7.6) implies the desired bound for III' .
We now bound II& . To do so, we apply (7.3) twice, choosing Y = 0 for �d (~G ) and arbitrarily

small Y > 0 for �d (G):

II& ≤

∫ ∞

0
_G�d (~G )�d (G) dG [by (7.10)]

≤
1

(1 − d)Y

∫ ∞

0

_G� (G)Y�1(~G )�1 (G)
1−Y dG [by (7.3)]

≤
$ (1)

(1 − d)Y

∫ ∞

0
G� (G)Y� (G)−Y (1−Y) dG [by (7.4), (7.8)]

≤
$ (1)

(1 − d)Y

∫ ∞

0
G1−UY

2

dG, [by Lem. 2.13]

where we may choose U > 0 arbitrarily large. Choosing U > 2/Y2 makes the integral converge, so
II& = $ ((1 − d)−Y). The computation for II( is similar:

II( ≤
1

(1 − d)Y

∫ ∞

0
_IG� (IG )

Y�1(~G )�1(IG )
1−Y dG [by (7.3), (7.9)]

≤
$ (1)

(1 − d)Y

∫ ∞

0
I1−UYG dG. [by (7.4), Lem. 2.13]

Because IG ≥ G , the integral converges if we choose U > 2/Y, so II( = $ ((1 − d)−Y). This also
covers II' because II' = II( .
If additionally - ∈ MDA(Λ) ∩ (QDHR ∪ QIMRL) with exponent W , then we can similarly

bound III( :

III( ≤
1

(1 − d)Y

∫ ∞

0

� (~G )
Y�1(~G )

1−Y dG [by (7.3)]

≤
$ (1)

(1 − d)Y

∫ ∞

0
~−UYG dG [by (7.4), Lem. 2.13]

≤
$ (1)

(1 − d)Y

∫ ∞

0
G−UY/W dG, [by Thm. 6.3]

so choosing U > W/Y shows that III( = $ ((1 − d)−Y). �

It remains only to characterize the heavy-traffic scaling of I& .

Lemma 7.8. Under M-SERPT, if - ∈ OR(−∞,−2) ∪MDA(Λ), then

I& =

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

.
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Proof. Because E[- 2] < ∞, we have g (G) = Θ(1), so by (7.3) and (7.4),

I& =

∫ ∞

0

Θ(1)

AM-SERPT(G)
·
� (G)

d (G)2
dG.

For the lower bound, we integrate up to �−14 (1 − d) instead of ∞. For G ≤ �−14 (1 − d), we have

�4 (G) ≥ 1 − d , so (7.2) implies

d�4 (G) ≤ d (G) ≤ (1 + d)�4 (G).

Using this fact along with the monotonicity of AM-SERPT yields

I& ≥
Ω(1)

AM-SERPT
(
�−14 (1 − d)

)
∫ �−1

4 (1−d)

0

� (G)

�4 (G)2
dG

=
Ω(1)

AM-SERPT
(
�−14 (1 − d)

)

(
1

�4
(
�−14 (1 − d)

) − 1

)

[by (7.1)]

= Ω

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

.

For the upper bound, we split the integration region at �−14 (1 − d):

I& =

∫ �−1
4 (1−d)

0

$ (1)

AM-SERPT(G)
·
� (G)

d (G)2
dG +

∫ ∞

�−1
4 (1−d)

$ (1)

AM-SERPT(G)
·
� (G)

d (G)2
dG. (7.11)

The second integral in (7.11) is simple to bound using the monotonicity of AM-SERPT:
∫ ∞

�−1
4 (1−d)

$ (1)

AM-SERPT(G)
·
� (G)

d (G)2
dG

≤
$ (1)

AM-SERPT
(
�−14 (1 − d)

)
∫ ∞

�−1
4 (1−d)

� (G)

d (G)2
dG

≤
$ (1)

AM-SERPT
(
�−14 (1 − d)

)

(
1

1 − d
−

1

1 − d + d�−14 (1 − d)

)

[by (4.5), (7.2)]

= $

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

.

To bound the first integral in (7.11), we change variables to D = 1/�4 (G):
∫ �−1

4 (1−d)

0

$ (1)

AM-SERPT(G)
·
� (G)

d (G)2
dG ≤

∫ �−1
4 (1−d)

0

$ (1)

AM-SERPT(G)
·
� (G)

�4 (G)2
dG [by (7.2)]

=

∫ 1/(1−d)

1

$ (1)

AM-SERPT
(
�−14 (1/D)

) dD

= $ (1)

∫ 1/(1−d)

1
!M-SERPT(D) dD,

where !M-SERPT is as in Lemma 7.6. By Lemma 7.6, we have !M-SERPT ∈ OR(−1,∞), so a result in
Karamata theory [8, Theorem 2.6.1] implies

∫ v

1

!M-SERPT(D) dD = $ (v!M-SERPT(v))
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in the v → ∞ limit. Letting v = 1/(1 − d) yields the desired bound. �

Having characterized the heavy-traffic scaling of all the key quantities, the main heavy-traffic
results for OR(−∞,−2) andMDA(Λ) follow easily.

Theorem 7.9. If - ∈ OR(−∞,−2), then in the d → 1 limit,

E[&M-SERPT-1] = Θ

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

= Ω

(
1

(1 − d)X

)
for some X > 0,

E['M-SERPT-1] ≤ E[(M-SERPT-1]

= Θ

(
log

1

1 − d

)
,

and therefore

E[)M-SERPT-1] = Θ

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

.

Proof. After applying Lemmas 7.2 and 7.8, it remains only to show I& = Ω((1 − d)−X). Using

!M-SERPT from Lemma 7.6, we can rewrite Lemma 7.8 as

I& = Θ

(
1

1 − d
!M-SERPT

(
1

1 − d

))
. (7.12)

By Lemma7.6, we have! ∈ OR(−1, 0), whichmeans there exists V ∈ (0, 1) such that!(D) = Ω(D−V)

in the D → ∞ limit. Letting X = 1 − V and D = 1/(1 − d) yields the desired bound. �

Theorem 7.10. If - ∈ MDA(Λ), then in the d → 1 limit,

E[&M-SERPT-1] = Θ

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

= Ω

(
1

(1 − d)1−Y

)
for all Y > 0,

E['M-SERPT-1] = $

(
1

(1 − d)Y

)
for all Y > 0,

and therefore

E[)M-SERPT-1] = Θ

(
1

(1 − d) · AM-SERPT
(
�−14 (1 − d)

)

)

.

If additionally - ∈ MDA(Λ) ∩ (QDHR ∪ QIMRL), then

E[(M-SERPT-1] = $

(
1

(1 − d)Y

)
for all Y > 0.

Proof. After applying Lemmas 7.7 and 7.8, it remains only to show I& = Ω((1− d)−(1−Y)). This
follows from (7.12) and Lemma 7.6, similarly to the proof of Theorem 7.9. �
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7.4 Extending Heavy-Traffic Analysis from M-SERPT to Gi�ins and M-Gi�ins

Having characterized heavy-traffic scaling under M-SERPT, we now do the same for Gittins and
M-Gittins. Our first result shows that the mean waiting and residence times of Gittins and M-Git-
tins have the same heavy-traffic scaling as that of M-SERPT. Note that the precondition holds for
all of the job size distributions we consider in Section 7.3.20

Theorem 7.11. In the d → 1 limit,

E['Gittins-1], E['M-Gittins-1] = $ (E['M-SERPT-1]),

and if E['M-SERPT-1] = $ (E[&M-SERPT-1]), then

E[&Gittins-1],E[&M-Gittins-1] = Θ(E[&M-SERPT-1]).

Proof. The residence time result follows immediately from results of Scully et al. [33, Eq. (3.8)
and Proposition 4.8], which imply

E['Gittins-1] ≤ E['M-Gittins-1] ≤ E['M-SERPT-1] .

For waiting time, we first invoke further results of Scully et al. [33, Proposition 4.7 and Lemma 5.6],
which imply

E[&Gittins-1] ≥ E[&M-Gittins-1] ≥
E[&M-SERPT-1]

2
.

It thus suffices to show E[&Gittins-1] = $ (E[&M-SERPT-1]). Because Gittins minimizes mean response
time [3, 4, 12], we have

E[&Gittins-1] ≤ E[)Gittins-1] ≤ E[)M-SERPT-1] = E[&M-SERPT-1] + E['M-SERPT-1],

so the result follows from the E['M-SERPT-1] = $ (E[&M-SERPT-1]) precondition. �

Our final heavy-traffic result shows that for certain job size distributions, underM-Gittins, mean
waiting time dominates mean inflated residence time. The conditions are the same as those shown
for M-SERPT over the course of Section 7.3, except QDHR ∪ QIMRL is replaced by QDHR.

Theorem 7.12. If

- ∈ OR(−∞,−2) ∪ (MDA(Λ) ∩QDHR) ∪ Bounded,

then in the d → 1 limit,

E[(M-Gittins-1] = > (E[&M-Gittins-1]).

More specifically, E[(M-Gittins-1] obeys the same scaling bounds as shown for E[(M-SERPT-1] in Theo-

rems 7.5, 7.9 and 7.10.

Proof. The proof is very similar to the proofs of analogous results for M-SERPT (Theorems 7.5,
7.9 and 7.10), so we just describe the differences.

• If - ∈ OR(−∞,−2), we follow the same proof as Theorem 7.9 and the lemmas it requires,
except we use Theorem 6.4 to bound ~M-Gittins

G and IM-Gittins
G .

• If - ∈ MDA(Λ) ∩ QDHR, we follow the same proof as Theorem 7.10 and the lemmas it
requires, except we use Theorem 6.5 to bound ~M-Gittins

G and IM-Gittins
G .

• If - ∈ Bounded, we follow the same proof as Theorem 7.5, except we use a result of Aalto
et al. [4, Proposition 9] to justify the existence of the critical age 0∗. �

20With some extra effort, one can show it also holds for - ∈ OR(−2,−1) .
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8 CONCLUSION

We study optimal scheduling in theM/G/k to minimize mean response time. This problem is solved
by the Gittins policy for the single-server : = 1 case but was previously open for the much more
difficult multiserver case. We introduce a new variant of Gittins called M-Gittins (Definition 2.4)
and show that it minimizes mean response time in the heavy-traffic M/G/k for a large class of
finite-variance job size distributions (Theorem 3.1). We also show that the simple and practical
M-SERPT policy is a 2-approximation for mean response time in the heavy-traffic M/G/k under
similar conditions (Theorem 3.2). As a byproduct of our M/G/k study, we obtain results characteriz-
ing the heavy-traffic scaling of M/G/1 mean response time under Gittins, M-Gittins, and M-SERPT
(Theorem 3.3).

A natural question to ask is whether the conditions underwhichwe proveM-Gittins’s optimality
can be relaxed, particularly theQDHR andBounded assumptions. The difficulty lies in the fact that
for some job size distributions, the bound in Theorem 5.1 is not strong enough because inflated
residence time is infinite. It is possible that the techniques used by Köllerström [21, 22] to analyze
the heavy-trafficM/G/k under FCFS could be helpful, seeing as FCFS has infinite inflated residence
time.
Another major open question is analyzing the performance of M-Gittins outside of the heavy-

traffic limit. In the single-server case, one can generalize the techniques of Scully et al. [33] to
show that M-Gittins is a 3-approximation for M/G/1 mean response time at all loads. However, the
multiserver case remains open.
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A DIFFICULTY OF M/G/k ANALYSIS FOR NONMONOTONIC RANK FUNCTIONS

In this appendix we explain why Theorem 5.1 does not readily generalize to SOAP policies with
nonmonotonic rank functions.
Recall that the proof of Theorem 5.1 considers a tagged job � of size G and considers several

categories of work completed while � is in the system. Our focus here is on relevant work, which
is work on jobs that are prioritized ahead of � . Let Bc-:G be the maximum age at which a new job,
namely one that arrives after � , can contribute relevant work under c-k. When c is monotonic,
Bc-:G does not depend on the number of servers : . Specifically, we have Bc-:G = ~cG . The problem for

nonmonotonic SOAP policies c is that, as we show below, we can have Bc-:G > Bc-1G when : ≥ 2.
The following discussion uses definitions of ~cG and IcG generalized to all SOAP policies c .

• If c is monotonic, then ~cG and IcG are given by Definition 4.1.
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0 age 0
0

rank

~cG = Bc-1G
1 2 = Bc-2G

G IcG

AM-c (0)
Ac (0)

Fig. A.1. Age Cutoffs for Nonmonotonic Rank Functions

• If c is nonmonotonic, we can define ~cG and IcG in terms of a monotonic SOAP policy related
to c [33]. Specifically, letting M-c be the monotonic SOAP policy with rank function

AM-c (0) = max
1∈[0,0]

Ac (1),

we define ~cG = ~M-c
G and IcG = IM-c

G .

Consider the example SOAP policy c and tagged job size G shown in Fig. A.1. In the single-server
: = 1 case, we have Bc-1G = ~cG . To see why, consider the moment a new job � ′ reaches age ~cG while
the tagged job � is still in the system. For this to occur, it must be that � is also at age ~cG , because
otherwise � would have priority over � ′. With both � and � ′ at the same rank, the FCFS tiebreaker
prioritizes � . Thereafter, � never has rank worse than Ac (~cG ), so � ′ remains stuck at age ~cG and is
never prioritized over � .
We now reconsider the same example from Fig. A.1 but with : ≥ 2 servers. The key difference is

that because there are multiple servers, � ′ can receive service even while � has better rank because
� and � ′ can occupy different servers simultaneously. This means � ′ no longer gets stuck at age ~cG .
In particular, if � reaches age 2 and � ′ passes age 1, then � ′ contributes relevant work between ages
1 and 2 . Therefore, Bc-:G = 2 > Bc-1G for : ≥ 2.

The bound in Theorem 5.1 follows from assuming that every new job � ′ will contribute relevant
work until it completes or reaches age Bc-:G . This is a worst-case estimate, because the tagged job �

might complete before � ′ completes or reaches age Bc-:G . When c is monotonic, we have Bc-:G = Bc-1G ,
so this overestimate is tight enough to compare the mean response times under c-k and c-1. How-
ever, when c is nonmonotonic, it may be that Bc-:G > Bc-1G , as explained above, so we do not obtain
a tight comparison between the c-k and c-1 systems. This suggests generalizing Theorem 5.1 to
nonmonotonic SOAP policies requires not relying as heavily on worst-case quantities like Bc-:G .

B NEW FORMULAS FOR MEAN WAITING AND RESIDENCE TIMES

In this appendix we prove the following new formulas for mean waiting, residence, and inflated
residence times.

Theorem B.1. Under any monotonic SOAP policy c,

E[&c-1] =

∫ ∞

0

((
� (~cG )

d (~cG )
+
� (IcG )

d (IcG )

)
_g (IcG )� (G)

d (G)2
+
_G� (~cG )� (G)

d (~cG )
2

)

dG.

Theorem B.2. Under any monotonic SOAP policy c,

E['c-1] =

∫ ∞

0

(
_IcG � (G)� (I

c
G )

d (~cG )d (I
c
G )

+
� (G)

d (~cG )

)
dG.
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Theorem B.3. Under any monotonic SOAP policy c,

E[(c-1] =

∫ ∞

0

(
_IcG � (G)� (I

c
G )

d (~cG )d (I
c
G )

+
� (~cG )

d (~cG )

)
dG.

Proving these results requires new technical machinery for, roughly speaking, performing inte-
gration by parts on expressions involving~cG and IcG , such as those in (4.4). Appendix B.1 introduces
the general technical machinery, which Appendix B.2 then applies to prove the above results.
Throughout this appendix, m denotes the derivative operator, and [C1, . . . , C= ↦→ RHS] denotes

the function that maps variables C1, . . . , C= to expression RHS.

B.1 Integration by Parts with Hills and Valleys

Definition B.4. A hill-valley partition of R+ is a sequence

0 = D0 ≤ v0 < D1 < v1 < D2 < v2 < . . . .

Intervals of the form (D8 ,v8 ] are called valleys, and intervals of the form (v8 , D8+1] are called hills.
21

Definition B.5. Functions ~, I : R+ → R+ are a hill-valley pair for a given hill-valley partition if
for each valley (D8 ,v8 ],

~(G) = D8 , I(G) = v8 , for all G ∈ (D8 ,v8 ],

and for each hill (v8 ,D8+1],

~(G) = G, I(G) = G, for all G ∈ (v8 ,D8+1] .

For compactness, we write ~G = ~(G) and IG = I(G).

It is simple to check that for any monotonic SOAP policy c , the pair ~c , Ic (Definition 4.1) is a
hill-valley pair.

Definition B.6. For functions Φ : R+ → R+, we define the difference ratio operator Δ as follows:

ΔΦ(〈D,v〉) =




Φ(v) − Φ(D)

v − D
if D ≠ v

mΦ(D) if D = v,

where m is the derivative operator. Similarly, for functions with multiple arguments, Δ8 is a version
of Δ that works on the 8th argument:

Δ8Φ(. . . , 〈D,v〉, . . .) = Δ[C ↦→ Φ(. . . , C, . . .)] (〈D,v〉).

Like m, it is easily seen that Δ is a linear operator. When applied to polynomials, Δ elegantly
generalizes m. For example,

Δ

[
C ↦→

1

C

]
(〈D,v〉) =

1

Dv
. (B.1)

The Δ operator also obeys various chain-rule-like identities. We highlight the two we use below.

Lemma B.7. Let Φ,Ψ : R → R be differentiable. For all D,v ∈ R,

Δ[C ↦→ Φ(Ψ(C))] (〈D,v〉) = ΔΦ(〈Ψ(D),Ψ(v)〉) ΔΨ(〈D,v〉).

Proof. If D = v , this is the chain rule. If D ≠ v but Ψ(D) = Ψ(v), then both sides are 0. If
Ψ(D) ≠ Ψ(v), then the result follows by a simple computation. �

21We borrow the terms “hill” and “valley” from Scully et al. [33], who use a similar concept to analyze SOAP policies, but

this definition is abstracted away from the details of SOAP. As a corner case, we consider the first hill or valley to also

include 0.
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Lemma B.8. Let Φ : R2 → R be differentiable. For all D,v ∈ R,

Δ[C ↦→ Φ(C, C)] (〈D,v〉) = Δ2Φ(D, 〈D,v〉) + Δ1Φ(〈D,v〉,v).

Proof. If D = v , this is the multivariable chain rule. If D ≠ v ,

(v − D) Δ[C ↦→ Φ(C, C)] (〈D,v〉) = Φ(v,v) − Φ(D,D)

= Φ(v,v) − Φ(D,v) + Φ(D,v) − Φ(D,D)

= (v − D) (Δ1Φ(〈D,v〉,v) + Δ2Φ(D, 〈D,v〉)). �

The most important result of this appendix is the following lemma, which formulates a version
of integration by parts that works for hill-valley pairs despite their discontinuity.

Lemma B.9. Let ~, I be a hill-valley pair, Φ : R3
+ → R be differentiable, % : R+ → R be differen-

tiable, and % (G) = 2 − % (G) for some 2 ∈ R. If

% (0)Φ(0, 0, I0) = 0,

lim
G→∞

% (G)Φ(~G , G, IG ) = 0,

then∫ ∞

0
Φ(~G , G, IG ) m% (G) dG

=

∫ ∞

0

(
% (~G ) Δ3Φ(~G , ~G , 〈~G , IG 〉) + % (G) m2Φ(~G , G, IG ) + % (v) Δ1Φ(〈~G , IG 〉, IG , IG )

)
dG.

Proof. For each valley (D,v],
∫ v

D

Φ(~G , G, IG ) m% (G) dG

=

∫ v

D

% (G) m2Φ(D, G,v) dG + % (D)Φ(D,D,v) − % (v)Φ(D,v,v)

=

∫ v

D

% (G) m2Φ(D, G,v) dG + % (D)Φ(D,D,D) − % (v)Φ(v,v,v)

+ (v − D)% (D) Δ3Φ(D,D, 〈D,v〉) + (v − D)% (v) Δ1Φ(〈D,v〉,v,v)

=

∫ v

D

(
% (D) Δ3Φ(D,D, 〈D,v〉) + % (G) m2Φ(D, G,v) + % (v) Δ1Φ(〈D,v〉,v,v)

)
dG

+ % (D)Φ(D,D,D) − % (v)Φ(v,v,v)

=

∫ v

D

(
% (~G ) Δ3Φ(~G , ~G , 〈~G , IG 〉) + % (G) m2Φ(~G , G, IG ) + % (v) Δ1Φ(〈~G , IG 〉, IG , IG )

)
dG

+ % (D)Φ(D,D,D) − % (v)Φ(v,v,v).

For each hill (v, D],
∫ D

v

Φ(~G , G, IG ) m% (G) dG

=

∫ D

v

% (G) m[C → Φ(C, C, C)] (G) dG + % (v)Φ(v,v,v) − % (D)Φ(D,D,D)

=

∫ D

v

(
% (G) m3Φ(G, G, G) + % (G) m2Φ(G, G, G) + % (G) m1Φ(G, G, G)

)
dG

+ % (v)Φ(v,v,v) − % (D)Φ(D,D,D)
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=

∫ D

v

(
% (~G ) Δ3Φ(~G , ~G , 〈~G , IG 〉) + % (G) m2Φ(~G , G, IG ) + % (v) Δ1Φ(〈~G , IG 〉, IG , IG )

)
dG

+ % (v)Φ(v,v,v) − % (D)Φ(D,D,D).

Summing the hill and valley expressions over all hills and valleys, most of the non-integral terms
cancel out, and the two that remain are 0 by assumption:

∫ ∞

0
Φ(~G , G, IG ) m% (G) dG

=

∫ ∞

0

(
% (~G ) Δ3Φ(~G , ~G , 〈~G , IG 〉) + % (G) m2Φ(~G , G, IG ) + % (v) Δ1Φ(〈~G , IG 〉, IG , IG )

)
dG

+ % (0)Φ(0, 0, I0) − lim
G→∞

% (G)Φ(~G , G, IG ). �

Our final two lemmas show that integrals using Δ can sometimes be turned into integrals us-
ing m.

Lemma B.10. Let ~, I be a hill-valley pair and Φ : R3
+ → R+ be differentiable with respect to its

second argument. Then

∫ ∞

0
Δ2Φ(~G , 〈~G , IG 〉, IG ) dG =

∫ ∞

0
m2Φ(~G , G, IG ) dG.

Proof. For each valley (D,v],

∫ v

D

Δ2Φ(~G , 〈~G , IG 〉, IG ) dG =

∫ v

D

Δ2Φ(D, 〈D,v〉,v) dG

= (v − D) Δ2Φ(D, 〈D,v〉,v)

= Φ(D,v,v) − Φ(D,D,v)

=

∫ v

D

m2Φ(D, G,v) dG

=

∫ v

D

m2Φ(~G , G, IG ) dG.

For each hill (v, D],
∫ D

v

Δ2Φ(~G , 〈~G , IG 〉, IG ) dG =

∫ D

v

Δ2Φ(G, 〈G, G〉, G) dG

=

∫ D

v

m2Φ(G, G, G) dG

=

∫ D

v

m2Φ(~G , G, IG ) dG.

Summing the hill and valley expressions over all hills and valleys yields the desired result. �

Lemma B.11. Let ~, I be a hill-valley pair and bothΦ : R3
+ → R and Ψ : R+ → R be differentiable.

Then
∫ ∞

0
Δ[C ↦→ Φ(~G ,Ψ(C), IG )] (〈~G , IG 〉) dG =

∫ ∞

0
Δ2Φ(~G , 〈Ψ(~G ),Ψ(IG )〉, IG ) mΨ(G) dG.
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Proof. We compute
∫ ∞

0
Δ[C ↦→ Φ(~G ,Ψ(C), IG )] (〈~G , IG 〉) dG

=

∫ ∞

0
Δ2Φ(~G , 〈Ψ(~G ),Ψ(IG )〉, IG ) ΔΨ(〈~G , IG 〉) dG [by Lem. B.7]

=

∫ ∞

0

Δ2

[
D, C,v ↦→ Δ2Φ(D, 〈Ψ(D),Ψ(v)〉,v) · Ψ(C)

]
(~G , 〈~G , IG 〉, IG ) dG

=

∫ ∞

0
Δ2Φ(~G , 〈Ψ(~G ),Ψ(IG )〉, IG ) mΨ(G) dG. [by Lem. B.10] �

B.2 Proofs of New Formulas

We now apply the theory developed in Appendix B.1 to prove Theorems B.1–B.3. Throughout the
proofs, ~G and IG refer to ~cG and IcG , respectively. Recall that ~, I form a hill-valley pair (Defini-
tion B.5) under any monotonic SOAP policy c .

Proof of Theorem B.1. We compute

E[&c-1] =

∫ ∞

0

g (IG )

d (~G )d (IG )
d� (G) [by (4.4)]

=

∫ ∞

0

(
� (~G )

d (~G )
Δ

[
C ↦→

g (C)

d (C)

]
(〈~G , IG 〉) +

� (IG )g (IG )

d (IG )
Δ

[
C ↦→

1

d (C)

]
(〈~G , IG 〉)

)

dG [by Lem. B.9]

=

∫ ∞

0

(
� (~G )

d (~G )2
Δg (〈~G , IG 〉) +

� (~G )g (IG )

d (~G )
Δ

[
C ↦→

1

d (C)

]
(〈~G , IG 〉)

+
� (IG )g (IG )

d (IG )
Δ

[
C ↦→

1

d (C)

]
(〈~G , IG 〉)

)

dG [by Lem. B.8]

=

∫ ∞

0

(
� (~G )

d (~G )d (~G )
mg (G) + g (IG )

(
� (~G )

d (~G )
+
� (IG )

d (IG )

)
m

[
C ↦→

1

d (C)

]
(G)

)

dG, [by Lem. B.10]

which equals the desired result by (4.5). �

Proof of Theorem B.2. We compute

E['c-1] =

∫ ∞

0

G

d (~G )
d� (G) [by (4.4)]

=

∫ ∞

0

(
IG� (IG ) Δ

[
C ↦→

1

d (C)

]
(〈~G , IG 〉) +

� (G)

d (~G )

)
dG [by Lem. B.9]

=

∫ ∞

0

(
−IG� (IG )

d (~G )d (IG )
md (G) +

� (G)

d (~G )

)
dG, [by (B.1), Lem. B.11]

which equals the desired result by (4.5). �

Proof of Theorem B.3. Very similarly to the proof of Theorem B.2, we compute

E[(c-1] =

∫ ∞

0

IG

d (~G )
d� (G) [by (4.6)]

=

∫ ∞

0

(
IG� (IG ) Δ

[
C ↦→

1

d (C)

]
(〈~G , IG 〉) +

� (~G )

d (~G )

)
dG [by Lem. B.9]
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=

∫ ∞

0

(
−IG� (IG )

d (~G )d (IG )
md (G) +

� (~G )

d (~G )

)
dG, [by (B.1), Lem. B.11]

which equals the desired result by (4.5). �
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