
acmqueue | january-february 2021 1

Dear KV,
Recently I’ve been trying to piece together a set of
software packages that are supposedly intended to work
together but seem very fragile. The main source of their
fragility comes from how the developers “resolved” the
dependencies between packages, libraries, and their
own software. Their solution to making all the pieces
work together was to encode the version of the library
or package into the file system, as in, /opt/pkg-v2.87/lib/....
As you might imagine, this causes no end of trouble for
us consuming this software when a library or package is
upgraded. I’ve counted no fewer than 30 locations where
this was done. You cannot tell me that this is the right way
to handle this particular problem, but these people are
paid professionals, and we paid for their software. What
would KV do?

Aversion to Versions

Dear Aversion,
There are many solutions to your problem, and only one of
them calls for dissolving something that tastes like bitter
almonds in the coffee pot of the corporate entity that sold
you this software. If you do this and get caught, please
don’t tell anyone where you got the idea.

The problems of dependency analysis and resolution—as
well as versioning—have been with us since the earliest
days of the software library, and some of the solutions,

Aversion to Versions
Resolving
code-
dependency
issues.

1 of 4 TEXT
ONLY kode vicious

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3454122.3458680&domain=pdf&date_stamp=2021-03-23

acmqueue | january-february 2021 2

such as SAT solvers for package systems, are clever and
elegant and mostly work. Build dependencies are usually
handled by systems such as automake and autoconf,
which, so long as you never look inside them, are quite
useful. If you look inside, you will not see how the sausage
is made so much as how the animals were killed, diced,
sliced, folded in triplicate, sold, bought, used as toilet
paper, recycled into facial tissues, and finally spat back out
as a makefile so long it will make your head spin—and not
in that pleasant head-spinning way, but in a way where you
have to lie down for an hour for the spins to go away. All
of which is to say that these problems are solved, and the
solutions are often complex and tortuous, but we all raise
a glass—or a vial—to those who undertake to solve them.

Then there are those who, either through ignorance or
stupidity, decide just to take a stab in the dark and solve
the problem in their own, inimitable style. It is definitely
these types you are dealing with today. I guess you could
file a bug against the software and see if someone fixes it.
But given the quality of what they have already given you, I
think that’s a long shot.

Since you’ve been able to count the number of these
sins committed in software (and you number them at
30), I am assuming you have some amount of the source
code; perhaps it was even all delivered as source. One
quick and very dirty solution is to use the inimitable sed
(stream editor) program to update the version numbers as
necessary. A manual page can be found here, but I’m sure
Stack Exchange or some other cheater site will give you
code to “swap version numbers throughout my code” or

2 of 4

Ikode vicious

https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=&n=1
https://www.freebsd.org/cgi/man.cgi?query=sed&sektion=&n=1

acmqueue | january-february 2021 3

some such thing. Just slap the code into a repo somewhere,
find the right incantation of sed(1), sacrifice a live animal of
your choice, and voilà, you’ll be able to update the versions
to match the latest library. Purists will scream that this is
not the right way to solve the problem, and they’re correct,
but then purists rarely have a hot bar date they have to get
to on a Friday night and thus have plenty of time to do the
right thing, while the rest of us are trying to do the thing
right.

Of course, the better way—and again you’ll need the
source to do this—is to update the code to actually take a
path argument or inquire after some sort of environment
variable (MYLIBPATH) that can be used to point the
software to the right place, no matter what version you
want it to use. If you go this route, be sure to tell the
developers that you’ll send them the patch so long as they
haven’t already drunk the coffee you made for them.

The higher-level point here is that one should never
hardcode a version or a path inside the code itself. Code
needs to be flexible so that it can be installed anywhere
(the hardcoding of /usr/local is blatantly foolish and yet
persists) and run anywhere so long as the necessary
dependencies can be resolved, either at build time for
statically compiled code or at runtime for interpreted code
or code with dynamically linked libraries. There are, as KV
has just pointed out, current, good ways to get this right, so
it’s a shame that so many people continue to get it wrong.

KV
Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating-system code for

3 of 4

I

T
he higher-
level point
here is that
one should
never hard-

code a version or
a path inside the
code itself.

kode vicious

acmqueue | january-february 2021 4

fun and profit. He also teaches courses on various subjects
related to programming. His areas of interest are code
spelunking, operating systems, and rewriting your bad code
(OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. Neville-Neil is the co-author with
Marshall Kirk McKusick and Robert N. M. Watson of The
Design and Implementation of the FreeBSD Operating
System (second edition). He is an avid bicyclist and traveler
who currently lives in New York City.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

4 of 4

Ikode vicious

