
Using Information in Task Models to Support Design of
Interactive Safety-Critical Applications

Fabio Paternò
CNUCE-C.N.R. Institute

Via V.Alfieri, 1
56010 Ghezzano, Pisa, Italy

+39 050 3153066

f.paterno@cnuce.cnr.it

Vincenzo Sabbatino
Alenia Marconi Systems

Via Tiburtina Km 12,400, Rome, Italy
00131 Rome, Italy
+39 06 41 50 31 95

svin@lti.alenia.it

Carmen Santoro
CNUCE-C.N.R. Institute

Via V.Alfieri, 1
56010 Ghezzano, Pisa, Italy

+39 050 588 3153053

c.santoro@cnuce.cnr.it

ABSTRACT

The use of models has entered into current practice when
developing various types of software product. However, there is a
lack of methods able to use the information contained in relevant
models concerning human-computer interaction for supporting the
design and development of user interfaces. In this paper, we
propose a method for using information contained in formally
represented task models in order to support the design of
interactive applications, with particular attention to those
applications where both usability and safety are the main concern.
Examples taken from our experience in a case study from the
domain of Air Traffic Control are introduced and further
discussed to explain how the method can be applied.
Keywords

Model-based design of user interfaces, task models, interactive
safety-critical applications.

1. INTRODUCTION
Model-based design of interactive applications is a research area
concerning approaches aiming at identifying models able to
support design, development, and evaluation of interactive
applications. Such models highlight important aspects that should
be taken into account by designers. To support the design of
visual interactive applications various types of models have
proved to be useful, such as user, context, and task models. Such
models were not supported in the early model-based approaches,
such as UIDE [4] and HUMANOID [8], that used lower level
abstractions.
In addition, even if the use of task analysis and modelling has
subsequently been applied in the design of interactive
applications, there is still a lack of engineering approaches to the
use of task models. An engineering approach should require at
least:
• Use of flexible and expressive notations with precise

semantics able to represent the different ways to perform

tasks and the many possible temporal and semantic
relationships among them;

• Systematic methods able to indicate how to use the
information contained in the task model for supporting the
design and evaluation of the user interface;

• Availability of automatic tools able to make the development
and analysis of such task models more efficient.

Recently interest in solving this issue has arisen also because the
identification of systematic methods gives the possibility to
develop automatic environment that can support the use of models
and related methods. Something similar already occurred in the
development of software systems with the success of UML [2].
However, despite the nine notations that UML provides it is clear
that it is inadequate to support the design of user interfaces
because these notations have mainly been developed to support
the development of the internal structure of a software system. Of
course, they can be used to design and specify user interfaces but
they are not effective for this purpose. Recently, few
contributions have been put forward in the area of model-based
design of interactive applications [1, 7] and there are many issues
yet to be resolved. The HCI group at CNUCE is involved in a
European project (MEFISTO) where task models are considered
for supporting design of interactive safety-critical applications,
with particular attention to air traffic control. This is an area
where interesting studies on the application of novel interaction
techniques have been carried out [3, 5]. The project involves
industrial partners such as Alenia Marconi Systems that have long
tradition in developing this type of application. More specifically,
in MEFISTO we want to understand to what extent the use of
rigorous techniques, developed in the area of formal methods, can
help in the design of interactive safety-critical applications. To
this end, we pay particular attention to the use of task models to
support such a design and analyse how possible user deviations
during task performance can have an impact on safety.
In this paper, we briefly describe the modelling work developed
in the case study, next we discuss some general criteria to use
information contained in task models to support user interface
design, and then we show how they have been applied in parts of
the case study we have developed. Finally, we further discuss a
set of criteria that can be the core for guidelines to support the
design of interactive safety-critical applications.

2. DEVELOPING THE TASK MODEL
The task models developed have been represented using the
ConcurTaskTrees notation [6]. The purpose of a task model
specified in ConcurTaskTrees is to provide a description of how

the activities should be performed in order to reach the user’s
goals. Such activities are described at different abstraction levels
in a hierarchical manner, represented graphically in a tree-like
format. In contrast to previous approaches, ConcurTaskTrees
provides a rich set of operators with a precise semantics to
describe the temporal relationships among such tasks. The
notation gives also the possibility to use icons or geometrical
shapes to indicate how the performance of the tasks is allocated:
only to the user, only to the application, interaction between user
and application, abstract tasks (which means that they have
subtasks allocated differently). For each task it is possible to
provide additional information including the objects (for both the
user interface and the application) manipulated.

We have considered as case study the air traffic control in an
aerodrome. The increasing air traffic in the last years has
highlighted the need for better support in these areas where
aircraft, and other vehicles, are particularly concentrated. This
problem is more evident in case of bad atmospheric conditions.
The development of the task model of the current system has been
carried out with the support of information gathered in different
ways. We have visited various times the control tower of the
Fiumicino airport in Rome (the photo in Figure 1 was taken
during one of these visits), followed by interviews with
controllers. We have had various meetings with a team of Air
Traffic Control (ATC) systems developers who have long
experience in developing such applications and are involved in
the development of the new prototype.
The current user interface available to controllers in the tower is
composed of a set of rather rudimentary devices (see Figure 1):
the windows where they observe the traffic, the radio for
communicating with pilots, paper strips containing flight data,
and radar screen with basic information concerning flights. We
developed the task model for the existing application considering
in particular the ground controller that is in charge of handling
control of traffic between the gates and the runway and tower
controller that handles the take-off and landing. Modelling the
existing work methods was useful to reach a deeper understanding
of what the activities to support are, what relationships occur
among such activities and possible problems and limitations. At
the highest level of the ground's task model three main tasks are
recognisable: handling the paper strips, maintaining and updating
the picture of the current/future traffic situation and driving the
traffic under his/her responsibility.
If we analyse the task model of the Tower controller we note that
it presents relevant similarities with the ground controller despite
the fact that they manage aircraft in two different phases (from

both temporal and spatial viewpoints). The reason is that they
perform mainly the same general tasks (arrange paper strips,
communicate with pilots, supervise the system, solve possible
hazardous situations, …), although the specific objects they
manage are quite different. For example, both controllers receive
requests from pilots. However, while the requests for the ground
controller aim to have a path to get to the holding position from
the departure’s gate (or from the end of the runway to the arrival’s
gate), the requests directed to the tower controller aim to get the
clearance to take-off or to approach the airport.
Then, we started to model an envisioned application which is able
to support communication using data link, a technology allowing
asynchronous exchanges of digital data containing messages
coded according to a predefined syntax. The basic idea is to
obtain a visual environment that overcomes the limitations of
current systems, based completely on voice communication that
in some cases can be a bottleneck. At any time only one speaker
can broadcast on the frequency, thus, if a pilot is communicating
with the controller and some urgent requests arrive from other
pilots, they have to wait, and, in some cases, the
misunderstanding typical of voice communication in an
international environment can occur.
This new solution gives the possibility to provide controllers with
real-time representations of the current traffic even when there are
bad atmospheric conditions that limit the visibility from the
tower. In addition, in the envisioned system we consider the use
of enriched flight labels. Their purpose is to replace the paper
strips by providing the information concerning a flight directly on
the radar screen. They are interactive which means that
controllers can select them in order to get additional, more
detailed information that is not displayed when they are in the
standard mode.

Figure 1: The Fiumicino Control Tower

The modelling exercise has considered a large number of tasks:
88 ground controller’s tasks, 86 tower controller’s tasks, 63
pilot’s tasks, and 73 cooperative tasks. Cooperative tasks are tasks
that imply actions from two or more users.

3. TASK MODEL-BASED DESIGN
In this section we discuss how it is possible to use information
contained in a task model to give support for the user interface
design in general terms. In particular, our analysis will focus on
two aspects: how to use the temporal operators among tasks to
design and implement the dialogue of the corresponding user
interface and how to analyse a task and its attributes to identify a
suitable presentation technique supporting its performance.

3.1 Analysis of the Operators among Tasks
In this part of the analysis, we focus mainly on the temporal
operators. In Figure 2 we give a schematic representation of a task
model, where the different types of allocation of tasks and
expansion of some subtasks have been neglected (a grey triangle
has been put instead of them). For sake of brevity, task names are
just represented by letters. The aimed goal is to focus on a portion
of a task model little enough not to bore the reader with too many
details but sufficient to explain which information the operators
give to the designer.

Figure 2: A “simplified” representation of a task model

In fact as you can see from the picture, almost all the temporal
operators appear in the selected task model: Enabling ([]>>),
Disabling ([>), Interleaving (|[]|), Iteration task*, Choice ([]) so
the discussion could be easily generalised and re-applied to other
task models.

Figure 3: Implementing choice among tasks.

Referring to this “simplified” task model, the presence of the
Choice operator “[]” at the highest level means that two
possibilities are available. Thus, some suitable interaction
technique should be provided for the user to choose from the two
clearly display options. Then, the dialogue associated to each
branch of the task model can be activated. Using an intuitive
graphical language we express the information obtained up to
now with the picture in Figure 3.
In the part a) of Figure 3 the task model has been shown
highlighting only operators and subtasks at the level that is
currently considered (the root level), neglecting for the moment
the further specification of each subtask. The part (b) of the
picture shows what the task model means in terms of structure of
dialogues and presentations. In this case we have that two
dialogues (whose structure has been temporarily left unspecified)
have to be designed: one is associated to the execution of the
subtask A and another one for subtask B. For the moment, the
choice of the interaction technique most suitable to activate the
two different dialogs can be put off (by using two items in a menu
⎯as stylised in the picture⎯ is just the most intuitive example).
Back to the task model and going ahead in its visit, the analysis
goes down across the subtask A, whose decomposition is shown
in the part (a) of Figure 4.

Figure 4: Implementing disabling operator between tasks.

What is the information associated to the task model in Figure 4?
The presentation associated to A should be structured in such a
way that the activity of the iterative task C could be performed
more than one time until the first action of the disabling task D is
activated. Note that task D is decomposed into D1 []>> Dx and
the first subtask of task D, D1, should be always available to the
user during the whole performance of subtask C ⎯in the shape of
some interaction technique, e.g. a button as in the picture or
something like that. When finally D is started, the presentation
should convey to the user the information captured by the task
model, which is that, once the D1 subtask has started, the C
subtask is no longer available. This effect could be achieved
activating another separate dialogue associated to Dx. Down
again into the C task, its structure can be viewed as that in the part
(a) of the following Figure 5.

Figure 5: Supporting concurrent communicating tasks.

The meaning associated to the |[]| operator is that the activities are
concurrently interconnected each other as they exchange
information and in addition, as the parent task can be performed
more than one time, it is useful to show the presentations
associated to them grouped in the same structure (see part b) in
order to highlight how they exchange information each other.
If we summarise the results achieved up to now, we can say that
—as far as it concerns the temporal constraints between dialogs
associated to subtasks of task A— the presentation should be
structured as in Figure 6 (using the same intuitive representation
that we used before).

3.2 Analysis of the task
The main purpose of this analysis is to identify the presentation
techniques more suitable to perform the task considered. To this
end, we need to consider various types of information concerning
the task. The type and category identify the type of goal
associated with the task and how the performance is allocated.
The task model also indicates objects manipulated by tasks with
their type and cardinality, and attributes, such as frequency or
time-related information.

In particular, the type of task is useful to narrow the space of the
interaction and presentation techniques to consider at the
implementation level for supporting task performance. For
example, spatial tasks (tasks that allow users to provide or
manipulate spatial information) should be supported by graphical
presentations to improve the immediacy with which convey such
information to the user and avoid that the users can perform errors
while they handle those data.

Figure 6: Implementing the example

Another example is that whenever a task manipulates
numerical/quantitative data, provide presentations (using
graphical attributes) that enhance the performance of typical
activities connected with those data (e.g.: comparison). For the
ultimate choice about the best presentation designers should
consider also the cardinality of data to present.

4. AN EXAMPLE APPLICATION
To clarify our approach we consider an example taken from our

case study. We consider the Build Path task of the ground
controller in the envisioned system, which describes all the
activities necessary to answer to a taxi request from a pilot. A taxi
request can be presented either by a departing pilot asking for a
suitable path to reach the runway from the assigned gate, or by an
arriving pilot who has to reach the gate once the aircraft exits the
runway. At its highest level the Build Path task is decomposed
into two main subtasks (see Figure 7):

• Build path with automatic suggestions, which describes the
activities performed by the controller to build a suitable path
exploiting automatic tools (in this case the system really
drives the controller to get the best solution showing the set
of possible solutions);

• Build path without automatic suggestions, when the
controller is more self-confident and builds directly the path
(in this case the role of the system is mainly to support
controllers by helping their decision-making process).

As far as it concerns the subtask Build path with automatic
suggestions, it is composed of an application task (Show
calculated ordered paths) concerning the activity of the system to
calculate and show the paths ordered by the parameter that is
currently the ordering criterion. This activity can be followed by
an iterative subtask (Ordering paths) that describes all the
activities necessary to allow the user to select different parameters
and get the set of possible solutions ordered in a different manner.
For example, if the controller selects the parameter “Length”, the
system will show all the possible paths ordered by this parameter.
First, the paths that have the minimum length, and then the others
in an increasing order (Show ordered paths).

Figure 7: The Build Path task model

This process can be repeated multiple times (the task is iterative)
because the controller can change mind and select another
criterion. However, finally, the controller chooses the “best” path
and after having (optionally) activated a preview of all the
information about this path (Preview task), s/he is able to either
send the path or cancel the whole process and restart it. In the task
model it is modelled by a recursive instantiation of the Build path
task. The subtask Build path without automatic suggestions
allows the controller to build the path specifying directly the
taxiways and optionally specifying whether and which parameter
s/he is interested to know as s/he gradually builds the path. For
example, if the controller has selected the parameter “Length”, as
s/he gradually selects the various segments of the route, the
system updates the overall distance in order to help the controller
to decide on the suitability of that path option. The dialogue
associated to the Ordering paths task is composed of two logical
parts, the first one dedicated to the selection of the parameters,
and the second one where the set of paths are displayed according
to the chosen criterion.
The first dialog is associated to a Selection task (the user has to
select item(s) from a predefined set of elements). Thus, the
decision about its presentation has to consider this in terms of the
possible choices that should be provided, e.g. the cardinality of
this set, how they should be provided to the user (single choice,
multiple choice). For instance, the possible parameters which the
controller could be interested to know are the calculated length of
the path, the number of foreseen runway crossings, how much
time the travel will take (supposing a standard velocity on the
taxiways), and so on.

Figure 8: Selection of a path.

The user interface should allow the user to select a list of
parameters from a pre-defined set (allowing multiple selections)
and mark one of these (single choice) as the sorting criterion. A
possible implementation is shown in Figure 8: controllers can
mark which parameters are relevant to them (a “√” is associated
to each selected parameter) or they can select a different set of
parameters (“Edit” button). However, only one parameter can be
selected as the ordering criterion, which is highlighted by a
different presentation technique in the user interface. There is also
the possibility to choose the ordering criterion on the right side of
the window, by selecting a specific column, which becomes in
such a way the current ordering parameter.
Other considerations have to be done about the type and
cardinality of data, being the ultimate choice about the specific
presentation that has to be used (especially that exploiting
multimedia features) dependent on the integrate consideration of
all those aspects. For example, being the path a spatial data, using

some graphical technique is a good way to present it. This can be
confusing when there are many paths that have to be displayed at
the same time. In this case, a good solution is to provide more
than one type of presentation, for example an immediate textual
path, and the possibility of having a graphical presentation on
request. For example selecting a textual representation of a path,
then the path is graphically highlighted in a separate window as
shown in Figure 9.
As it is possible to understand from the task model, the activity of
managing parameters and display accordingly the solutions could
be performed more than one time, however, at the end the
controller has to decide which is the “best” solution. In order to
allow the controllers to perform this activity at their best, the user
interface should enhance all the interaction techniques that
highlight the comparison of different elements of the same set. In
the picture this is modelled by using an ordered list of elements
that share the same structure, so it is easy to compare different
values referring to the same parameter.

Figure 9: Selection and representation of a path.

When the controller finally selects the path (for example by
double-clicking on it as shown in Figure 10), before sending it a
preview should be made available to show detailed information
(Show detailed information task) of the main characteristics of the
selected path.

Figure 10: Automatic generation of a command to send.

In Figure 10 we show a possible implementation of these
requirements: the controller by double-clicking on a path activates
a window where a possible answer for the pilot has been already
composed. S/he can decide to send this path to the pilot or not, or
to view other information on this path (“More…” button). As this
figure is only for the purpose of explanation, we suppose for sake
of simplicity that only one predefined format exists for replying to

a taxi request (“GO to RWY <rwy> via <path>”). However, this
could easily be extended to enable the controller to select other
formats and/or specifying additional options. For instance, once
the controller has decided a particular path, s/he could decide to
specify other options on when the pilot should start to execute the
order.

5. DEVIATIONS AND WARNINGS
We are considering safety-critical applications, thus one
important aspect is to support designers to better analyse how the
user interface should warn the controller when the system detects
some possible hazardous situations. Three main guidelines should
be followed:

 Different levels of warnings/alarms should be distinguished
depending on the different levels of urgency of situations
that could arise in the system (a “more” serious hazardous
situation requires different presentation techniques with
respect to a “less” serious situation).

 Different media should be used to convey different
information to the controller, exploiting the different nature
of the media used;

 Avoid to overload the controller too much (e.g. too many
different warnings coming from different sources for the
same problem) and too often (select the actual hazardous
situations in order not to make the controller to get
accustomed to see/hear warnings in the system and not to
noise them unnecessarily).

Therefore, when possible hazardous situations are identified in the
task model (for example, a runway incursion is one of the most
serious situations) then the user interface should be designed in
appropriate way to exploit its foreseen multimedia (audio/visual)
capabilities. For example, in case of highly serious situation an
audio warning is the most appropriate way to be sure to capture
the controller’s attention as soon as possible. In fact the controller
could look at other tools in the system, or out of the window so a
visual alarm might not be immediately received. The attributes of
the audio signal could be calibrated in such a way to increase its
effect depending on the importance.

Figure 11: Handle spatial deviation task.

For example, the volume of the alarm could be dependent on the
level of risk, to be sure that controller is aware of it also in noisy
situations. The tone of the alarm could be calibrated in such a way
to use high-pitched sounds to reinforce the urgency of the
warning, and so on. Thus the audio channel should convey

information about how urgent the problem is and how
“catastrophic” its possible consequences are. On the other hand,
once the controller’s attention is captured, the visual channel
(exploiting its not-transient nature) should convey additional
information about the cause of the hazardous situation and, when
possible, showing possible suggestions about the admissible
solutions to the problem itself, although the controller remains the
ultimate responsible for the final decision and actions.
As far as it concerns the possible hazardous situations occurring
on the taxiways, they can be classified depending on two main
criteria: time-based deviations (an aircraft is in the right position
but at the wrong time) and space-based deviations (an aircraft is
in the wrong position).
With regard to the space-based deviation, the user interface
should highlight both the current position of the aircraft and the
position where the aircraft was supposed to be (Show positions
task, see Figure 11), back until where the deviation started to
occur. In this way the controller is able to locate the deviation and
its extent, focussing his/her attention on the most safety-critical
areas (which are those wrongly covered by the aircraft). As in
almost the hazardous situations the time is the most safety-critical
factor, we suppose that the system is in the best position to
calculate the optimum solution to solve the deviation. Thus, a
possible action of the controller is to ask the system for the best
solution (Ask for best solution task in Figure 11): the system
shows the best solution and, if it is okay for the controller, s/he
has only to send it (Select Send task) to the pilot, alternatively
s/he should be able to build an alternative path by him/herself.
However, when controllers cannot wait too long, they can ask for
a fast solution (Ask for fast solution task) to be sure to get a
solution very rapidly.
As the considered domain is highly safety-critical, the ability of
the system to support controllers in handling safely the possible
deviations is one of its most relevant concerns. In Figure 11 we
have shown the activities that should be undertaken when a
general space-based deviation occurs in the system, however, it is
useful to distinguish different situations in the set of the space-
based deviations. In fact there could be some situations where
both the high level of hazard and the short interval of time
available to overtake a suitable repairing action force to
“accelerate” the beginning of the performance of the repairing
action itself. In fact, as you can see from the task model, when a
spatial-based deviation has been located (Locate spatial deviation
task) the controller has to interact with the user interface asking
for some solution. Then, s/he has to wait until the system
calculates and shows the best solution, and finally s/he can choose
if it would be better to send the selected path or to build another
solution.
This could be acceptable when controllers have enough time to
wait for the time necessary to the system to calculate the “best”
solution able to take into account all the specified constraints.
However, it can happen that –as the time is a very crucial
parameter– sometimes a less “optimal” solution but overtaken
earlier can be more helpful in order to solve a hazardous situation.
The idea is to distinguish different space-based deviations
depending on time constraints. Thus, in case of situations when
the controller cannot wait for the “best” solution, the system
provides the possibility of activating very soon the first solution

available and some suitable technique should be adopted in order
to speed up this activation.
In Figure 12 we have summarised a possible solution on how to
handle a spatial deviation. The “abnormal” nature of the situation
is highlighted by means of a message that appears above the
standard label and with an appropriate colour in order to highlight
its urgency and to attract the attention of the controller. The user
interface highlights the deviation and allows the controller to get
quickly a solution (possibly shown in a graphical way) that the
system has automatically calculated to re-integrate safely the
aircraft in the traffic flow.

Figure 12: Example of spatial deviation.

6. OTHER TASK-RELATED ASPECTS
In this work we have identified a number of criteria for the design
of user interface for safety-critical systems starting from the
analysis of the task models. We found that implementing a user
interface dialogue that is consistent with the temporal
relationships indicated in the ConcurTaskTrees model reduces the
possibility to introduce errors, which is important especially for
tasks with high level of safety-criticality. In addition, the task
type and the attributes of the information that is manipulated in
the performance of the task are considered.
In this context, it is important to maintain the information always
up-to-date and allow users to read/modify different information
depending on the activities that have to be performed on a specific
object from time to time. In order to reduce the amount of
information to provide permanently to the user, it is important to
define levels of priority amongst data. This allows designers to
limit the permanently displayed data only to those that are
necessary to get the overall picture of the current and future
situation and gives users the possibility to get additional
information only after an explicit action of the user.
We have seen how to provide different levels of warnings/alarms
for each deviation that could occur depending on the impact on
the safety of the system. The features of each medium can be used
to convey different information to the user about hazardous states
(e.g. audio media to attract attention, visual media to suggest
solutions). This allows designers to avoid overloading users with
too many alarms, and making them accustomed to warnings.
If it is possible to identify different types of users that perform
different activities manipulating the same type of data, then it is
important to design different user interfaces for each of them in
order not to provide them with meaningless information and
useless interactions. This implied that we had to design different
labels for the two controllers.

We have used additional task-related criteria in the design of our
case study. One aspect considered is when there are several tools
that offer different, partial “views” of the same object. Then, we
have to provide users with an automatic link that allows them to
get an immediate correlation among the different views giving the
most complete picture of the object whatever tool is considered.
While each view is more oriented to support a specific task, it is
useful that they are able to support also those tasks that are
primarily performed by the other views. We applied this in
defining the relationships among different tools for the tower
controller in the new environment. Such tools are the set of
enriched flight labels, the list of data link commands received
from pilots and a departure manager that helps controllers to
schedule the departing flights.

Figure 13: An example of a data link clearance.

Finally, another important aspect is to change the task allocation
from the human to the machine for tasks (especially routine tasks)
that force users to distract their attention from the most safety-
critical activities. For example, while in current environments the
ground system containing flight information is manually updated
whenever a flight parameter changes, with data link technology it
is possible to automatically detect such changes and update the
ground system.
The method applied implied the development of task models that
required some effort and time. However, this allowed a more
rigorous understanding of the design implications and a more
extended analysis of possible safety-critical issues that is
particular important given the nature of the application considered
and would have been more difficult to achieve with cheaper
techniques. The design method was particularly useful to make
the main decisions concerning the structure of the dialogue and
presentation of the user interface. Some low-level details
concerning the user interface were designed following general
design rules as well.
The method has been used in the development of a real prototype,
MIDAS (Mefisto Interface Development for Aerodrome Systems)
which has been implemented by Alenia Marconi Systems.

Figure 13 shows an example of the user interface of the current
prototype. We can see how the system provides information
useful to check if the aircraft is on the right path (the path sent by
the controller and stored in the system).

7. CONCLUSIONS
In this paper we have discussed the use of task models to support
visual design of interfaces for interactive safety-critical
applications. We have seen how this approach can give useful
suggestions to designers while they can still tailor them for the
specific case study considered.
Future work is planned to further refine such criteria to support
more extensively the design of low-level user interface aspects.
We also plan to extend our method to support the usability
evaluation phase taking into account the specific features of the
type of application we are considering (safety-critical
applications).

8. REFERENCES
[1] F.Bodart, A.Hennerbert, J.Leheureux, J.Vanderdonckt,

"A Model-based approach to Presentation: A
Continuum from Task Analysis to Prototype", in F.
Paterno' (ed.) Interactive Systems: Design,
Specification, Verification, pp. 3-14 Springer Verlag,
1994.

[2] Booch, G., Rumbaugh, J., Jacobson, I., Unified
Modeling Language Reference Manual, Addison
Wesley, 1999.

[3] Chatty, S., Lecoanet, P. (1996) Pen Computing for Air
Traffic Control, in Proceedings of CHI’96, April 13-
18, 1996 Vancouver, British Columbia, Canada.

[4] Foley, J., Sukaviriya, N., “History, Results, and
Bibliography of the User Interface Design
Environment (UIDE), an Early Model-based System
for User Interface Design and Development”, in F.
Paterno' (ed.) Interactive Systems: Design,
Specification, Verification, pp. 3-14 Springer Verlag,
1994.

[5] Mackay, W.E., Fayard, A.L., Frobert, L., Médini, L.
(1998) Reinventing the familiar: exploring an
augmented reality design space for air traffic control,
in Proceedings of CHI’98, April 18-23, 1998, Los
Angeles, CA USA.

[6] Paternò F., Model-Based Design and Evaluation of
Interactive Applications, ISBN 1-85233-155-0,
Springer Verlag, 1999.

[7] Puerta A., Cheng E., Tunhow O., Min J., MOBILE:
User-Centred Interface Building, Proceedings ACM
CHI’99, pag.426-433, ACM Press, 1999.

[8] Szekely, P., Luo, P., Neches, R., “Facilitating the
Exploration of Design Alternative: The HUMANOID
Model of User Interface Design”, Proceedings
CHI’92, pp. 507-515, ACM Press, 1992.

	INTRODUCTION
	DEVELOPING THE TASK MODEL
	TASK MODEL-BASED DESIGN
	Analysis of the Operators among Tasks
	Analysis of the task

	AN EXAMPLE APPLICATION
	DEVIATIONS AND WARNINGS
	OTHER TASK-RELATED ASPECTS
	CONCLUSIONS
	REFERENCES

