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ABSTRACT
We propose a polynomial time algorithm to decide whether
the Galois group of an irreducible polynomial f 2 Q[x] is
abelian, and, if so, determine all its elements along with
their action on the set of roots of f . This algorithm does
not require factorization of polynomials over number �elds.
Instead we shall use the quadratic Newton{Lifting and the
truncated expressions of the roots of f over a p{adic number
�eld Qp , for an appropriate prime p in Z:

1. INTRODUCTION
Let us assume that f 2 Z[x] is a monic irreducible poly-
nomial of degree n, and let Gf be its Galois group over Q,
regarded as a permutation group acting on the roots of f .

H. W. Lenstra [12] states that there is a polynomial time
algorithm that given f decides whether Gf is abelian, and
if so, determines Gf . The proof is based on the observation
that a transitive abelian permutation group of degree n has
order n, applied to a theorem of S. Landau [10], which states
the following:

There is a deterministic algorithm that given f
and a positive integer b decides whether the Ga-

lois group Gf has order at most b, and if so gives
a complete list of elements of Gf , and that runs

in time (b + l)O(1), where l is the length of the
data specifying f .

The algorithm consists in performing successive factoriza-
tions of polynomials over �nite algebraic extensions of Q.

Regards this procedure to decide whether the Galois group
of a polynomial is abelian, V. Acciaro and J. Kl�uners [1]
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remark that it is not very eÆcient (and, therefore, cannot
solve large problems) due to the big complexity of the ex-
isting factorization algorithms over algebraic number �elds.
Acciaro and Kl�uners are interested in deciding whether Gf

is abelian in the sense that they describe a method to com-
pute the conjugates of a root � of a monic irreducible poly-
nomial f with abelian Galois group. This is equivalent to
the computation of the automorphisms of L = Q[�] over
Q, where L is the splitting �eld of f over Q when Gf has
order n. Their method is based on some results concern-
ing prime rami�cation and Frobenius automorphisms, and
it uses the quadratic Newton-Lifting (see [6, 8, 11]) as its
principal technique.

In this paper, based on the method of Acciaro and Kl�uners
previously described, we present a polynomial time algo-
rithm to decide whether Gf is abelian and, in this case, to
determine Gf . Briey, our algorithm consists in applying
the method of Acciaro and Kl�uners to the polynomial f as-
suming Gf is abelian (even if it is not the case), in order to
describe the roots of f as a polynomial function of a �xed
root �. If one of the steps of the mentioned method fails
when applied to f , we will conclude that Gf is not abelian.
Otherwise, if all the steps are satisfactorily ful�lled, we will
conclude that Gf is abelian. Moreover, in this case, we will
give all the elements of Gf along with their action on the
roots of f .

Our algorithm does not require factorizations of polynomi-
als over number �elds. We will use, instead, the quadratic
Newton-Lifting, and will determine, by using the Hensel-
Lifting, truncated expressions of the roots of f over a p-adic
number �eld Qp , for an appropriate prime p 2 Z. This prime
p will be easy to �nd because of the assumption that Gf is
abelian (if such a prime does not appear \easily" we shall
conclude that Gf is not abelian).

Sections 2, 3 and 4 provide di�erent tools allowing us to
validate the results obtained in every step in order to con�rm
their \goodness". The algorithm is presented in section 5
and section 6 is devoted to showing some examples.

For the basic concepts of algebraic number theory used in
this paper we refer the reader to [14] and for the questions
of p-adic analysis to [3].
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2. NOTATION
Let f 2 Z[x] be a monic irreducible polynomial of degree n,
with �1; : : : ; �n its n roots. When we �x any one of these
roots, it will be denoted by �.

We will denote by Gf the Galois group of f over Q, re-
garded as a transitive permutation group acting on the roots
�1; : : : ; �n of f . The centre of Gf will be represented by
Z(Gf ).

The splitting �eld of f over Q is L = Q[�1 ; : : : ; �n]. Gf has
order n if and only if any of the roots of f is a primitive
element of L over Q, that is, L = Q[�].

From now on d will be the discriminant of f , and dL the
discriminant of L over Q.

The ring of integers of L will be denoted by S. It is well
known that S � 1

dL
Z[�1; : : : ; �n]. When L = Q[�], we have

S � 1
d
Z[�].

We will denote by A the set of polynomials F 2 Q[x] of
degree strictly smaller than n, such that F (�) is a root of f :

A = fF 2 Q[x] : deg(F ) < n; F (�) is a root of fg:

3. ABELIAN GALOIS GROUPS
As we have pointed out in the introduction, an abelian tran-
sitive subgroup of the permutation group �n has order n.
This is an important fact that makes our problem easier to
solve, since it implies that any root � of f is a primitive
element of the splitting �eld: thus every root of f can be
described as a polynomial function of �.

Proposition 1. If Gf is abelian then Gf has order n.

Proof. 8i 2 f1; : : : ; ng; jGf j = jStab(�i)jjOrbit of �ij;
where Stab(�i) is the stabilizer in Gf of �i:

Since Gf is transitive then the orbit of �i has length
n and Stab(�j) = �Stab(�i)�

�1, where � 2 Gf such that
�(�i) = �j :

IfGf is abelian, then Stab(�j) = Stab(�i) 8j 2 f1; : : : ; ng:
But � 2 Stab(�i) 8i implies � = id:

Then, jGf j = 1:n = n:

4. SOME PREVIOUS RESULTS
Throughout this section we will consider the case when the
Galois group of f over Q has n elements, i.e., jGf j = n.

Our �rst task consists in giving some results about transitive
Galois groups of order n, which will be necessary in further
discussions. Next, we will state some known results concern-
ing prime rami�cation and Galois groups. We will only give
the proofs (in some cases just part of them) when they can
provide some useful information in order to understand the
description of the algorithm.

Lemma 1. If G is a transitive subgroup of �n of order n
then, for each pair (�i; �j) of f�1; : : : ; �ng, there exists one
and only one � 2 Gf such that �(�i) = �j .

Proof. Since G is transitive, there exists at least one el-
ement �j 2 G such that �j(�i) = �j . Because for every
k = 1; : : : ; n there exists �k 2 G such that �k(�i) = �k

and k 6= k0 ) �k 6= �k0 , we have n di�erent elements of G,
that is, all the elements of G. So, only �j can apply �i onto
�j .

Corollary 1. If G is a transitive subgroup of �n of or-
der n, and �; � 2 G such that �(�i) = �(�i) for some
i 2 f1; : : : ; ng then � = � .

Proof. �(�i) = � (�i)) ��1�(�i) = �i.
As there is only one element of G which �xes �i, and the

identity does this, ��1� = id. This implies that � = �.

Lemma 2. Let us assume that Gf is a transitive subgroup
of �n of order n, and let � be a root of f . If A = fF 2
Q[x] : deg(F ) < n; F (�) is a root of fg, then the mapping

 : A �! Gf

F ! �F

(�F is the only element of Gf such that �F (�) = F (�)) is
a bijection.

Proof. It is easy to prove that  is well de�ned.

�  is surjective:

If � 2 Gf then there exists �i, a root of
f , such that �(�) = �i. Since jGf j = n =
[L : Q], we have L = Q[�] and �i is a linear
combination of 1; �; : : : ; �n�1. So, there ex-
ists F 2 A such that �i = F (�). And then
� = �F .

�  is injective:

�F1 = �F2 ) F1(�) = F2(�) and because
f1; �; : : : ; �n�1g is a base of L over Q, F1 =
F2.

Proposition 2. Let G be a transitive subgroup of �n. G
is of order n if and only if every element of G splits into
disjoint cycles of the same length.

Proof.
): G � �ntransitive of order n.

If � 2 G and � = �1 : : : �r is its decomposition in dis-
joint cycles, let lk = minfl1; : : : ; lrg where li is the length of
�i; (i = 1; : : : ; r).

Let � 2 f�1; : : : ; �ng be moved by �k. Then

�lk(�) = �lk1 : : : �lkr (�) = � ) �lk = 1 )

) �lki = id; 8i ) li � lk; 8i ) li = lk; 8i:

(: G is transitive and every � 2 G splits into disjoint
cycles of the same length:

Because G is transitive, once �xed � there exist �1; : : : ; �n
such that �i(�) = �i 8i = 1; : : : ; n. So, jGj � n.

Moreover, if jGj > n then there exist �; � 2 G, � 6= � ,
such that �(�) = �(�). Then, ���1 has a cycle of length 1,
and so, ���1 = id.

Corollary 2. Let p 2 Z be a prime such that p - d. If
jGf j = n then all the factors in the factorization of f in
(Z=pZ)[x] have the same degree.
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Proof. If jGf j = n then every � 2 Gf splits into disjoint
cycles of the same length. It is a well{known result [7, 16]
that the Galois group Gf of f over Z=pZ is cyclic and gen-
erated by a product of disjoint cycles whose lengths are the
degrees of the factors of f in (Z=pZ)[x], and Gf is a sub-
group of Gf for a certain order of the roots of f . So, the
factors of f in (Z=pZ)[x], must have all the same degree.

Now, we will treat some questions concerning the Galois
group Gf in connection with rami�cation theory and ideal
factorization (see [14]).

Proposition 3. Let us assume that p is a prime of Zwhich
does not divide the discriminant of f , and that Q is a prime
ideal of S lying over p.

Let D be the decomposition group of Q over p:

D = f� 2 Gf : �Q = Qg;

and G the Galois group of S=Q over (Z=pZ). Then

' : D ! G
� ! �

with

�(u+Q) = �(u) +Q 8u 2 S

is a group isomorphism.

Corollary 3. For every prime p such that p 6 jd and for
every prime Q of S lying over p, there exists a unique � 2 Gf

such that �(u) � up mod Q for all u 2 S.

Proof. Since G is cyclic, generated by an element � such
that �(u +Q) = up +Q for all u 2 S, its inverse image by
the isomorphism

' : D ! G
� ! �

satis�es � (u) + Q = up + Q for all u 2 S: that is, � (u) �
up mod Q for all u 2 S.

On the other hand, if there exists � 2 Gf such that
�(u) � up mod Q for all u 2 S, � satis�es the condition
�(Q) � Q and then �(Q) = Q. So, � 2 D and � = � .

By the previous proposition, � = � , and so � is the
unique element in Gf verifying this condition.

The previous corollary says that every prime p gives an ele-
ment of Gf for each prime of S lying over p. The next result,
Chebotarev Density Theorem, states that every element of
Gf can be obtained from a prime p, in fact, from an in�nite
number of primes.

Proposition 4 (Chebotarev Density Theorem). For
every � 2 Gf there exist in�nitely many primes p 2 Z, with
p 6 jd, such that �(u) � up mod Q for all u 2 S, for some
prime ideal Q lying over p.

For the elements of the centre of the Galois group Gf , some-
thing more can be stated.

Proposition 5. If � 2 Z(Gf ) then there exist in�nitely
many primes p 2 Z such that p 6 jd and �(u) � up mod pS
for all u 2 S.

Proof. By the Tchebotarev Density Theorem there exist
in�nitely many primes p with the conditions of the statement
and such that �(u) � up mod Q, where Q is a prime of S
lying over p. Let us �x p one of these primes and assume
that pS = Q1 : : : Qr, with Q1 = Q.

Since for every i 2 f1; : : : ; rg there exists �i 2 Gf such
that Qi = �i(Q), from �(u) � up mod Q, we obtain that
��i(u) = �i�(u) � �i(u)

p mod Qi and then �(u) � up mod
Qi for all u 2 S and i = 1; : : : ; n.

So, �(u) � up mod Q1 : : : Qr = pS for all u 2 S.

T next result, due to Lagarias and Odlyzko [9], gives a bound
for the number of primes necessary to �nd a given element
in Gf .

Proposition 6 (Lagarias and Odlyzko Bound). There
exists an e�ectively computable bound B depending on L
such that each automorphism � 2 Gf veri�es �(�) � �p mod
Q, where Q is a prime lying over p, for at least one prime
p smaller than B:

The best possible bounds are obtained accepting the validity
of the Extended Riemann Hypothesis. Acciaro and Kl�uners
[1] propose

B := (4logjdLj) + 2:5n+ 5)2;

obtained as a consequence of the explicit bounds of Bach
and Sorenson [2].

We will refer to B as the \bound of Lagarias and Odlyzko".

Remember that when jGf j = n, dL = d.

5. DESCRIPTION OF THE METHOD
In this section we present an algorithm deciding, given f 2
Q[x] irreducible, whether its Galois group is abelian or not.
Since every polynomial with rational coeÆcients can be eas-
ily replaced by another monic polynomial with integer co-
eÆcients and the same Galois group over Q, the input of
our algorithm will be always a monic irreducible polynomial
with integer coeÆcients.

The idea will consist in applying the method described by
Acciaro and Kl�uners in [1] to determine the conjugate roots
of � whenGf is abelian, although we do not know in advance
if Gf is indeed abelian. The di�erent steps of the algorithm
lead towards the acceptance or rejection of the abelianity of
Gf .

The following proposition is in the basis of the method of
Acciaro and Kl�uners.

Proposition 7. Let p 2 Z be a prime which does not di-
vide d. If Gf is abelian then there exists a unique F 2 A
such that

F (�) � �p mod pS:
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Proof. Since Gf abelian, Gf = Z(Gf ): By using corol-
lary 3, for Q a prime lying over p, there exists a unique
� 2 Gf such that �(�) � �p mod Q. In the proof of the
proposition 5 we saw that �(�) � �p mod pS. So, the poly-
nomial F corresponding to � veri�es the required conditions.

Next we prove the uniqueness of F : if H 2 Q[x] such
that

H(�) � �p mod pS

then F (�) = H(�) because p does not divide d. Therefore
F = H.

The next subsection describes how to compute the polyno-
mial F in the previous proposition when a prime p is given
and Gf is known to be abelian in advance.

5.1 The Newton-Lifting method
Given p 2 Z a prime not dividing d, if Gf is abelian then
we know, by proposition 7, that there exists F 2 Q[x] of
degree strictly smaller than n such that F (�) is a root of f
and F (�) � �p mod pS. Thus, f(�p) � 0 mod pS.

Newton-Lifting method allows us to compute a polynomial
Fk 2 Z[x] of degree strictly smaller than n such that

f(Fk(�)) � 0 mod p2
k

S; and Fk(�) � �p mod pS:

Since f1; �; : : : ; �n�1g is a base of Q[�] over Q, �p can be
expressed as a polynomial in � of degree smaller than n:

�p = a0 + a1�+ � � �+ an�1�
n�1:

Denoting F0(�) = a0+a1�+ � � �+an�1�
n�1, ai � ai mod p,

ai 2 f0; 1; : : : ; p� 1g, then

Fk(�) � Fk�1(�)�
f(Fk�1(�))

f 0(Fk�1(�))
mod p2

k

S; k � 1:

Since F (�) is a root of f , and all the roots of f belong to
S � 1

d
Z[�], then F must be of the form

F (x) =
1

d
(c0 + c1x+ � � �+ cn�1x

n�1); ci 2 Z:

Assuming

dFk =

n�1X
i=0

ci;k�
i

(ci;k 2 f0; 1; : : : ; p
2k�1g), it is known that if the coeÆcients

of dF are in the interval (�K;K], and 2K < p2
k

, then

ci =

(
ci;k if ci;k < p2

k

=2

ci;k � p2
k

if ci;k � p2
k

=2
:

Acciaro and Kl�uners in [1] give a bound for the absolute
value of the coeÆcients of dF :

jcij � d1=2n(n� 1)(n�1)=2j�1j
n(n�1)=2+1
1 := K;

so that if 2K � p2
k

, we can recover F from Fk.

For the details of the method to do the computations, we
refer the reader to [1, 6, 8]. When recovering F from Fk, this

can be done without computing the discriminant d, by using
the reconstruction techniques of rational numbers shown in
[1, 4, 5].

So, we shall apply Newton-Lifting to our given polynomial f
in order to obtain F for a certain prime p. But, since we do
not know if Gf is abelian or not, it may happen that F (�)
is not a root of f . In this case, we shall conclude that Gf is
not abelian.

If F (�) is a root of f , we continue by applying this method
until all the roots of f are described as polynomial functions
of �, or the bound of Lagarias and Odlyzko is reached. The
problem has been reduced to decide whether F (�) is a root
of f or not, the topic of the next subsection.

5.2 p–adic expansion of the roots of f
A way of checking if F (�) is a root of f is by using the
p{adic expansion of the roots of f .

Proposition 8. There exist in�nitely many primes p 2 Z
which do not divide d and such that f splits completely in
(Z=pZ)[x]. For each one of these primes, f has n di�erent
roots in Zp, the ring of p{adic integers.

Proof. The �rst assertion is a consequence of Chebotarev
Density Theorem: since the identity is an element of Z(Gf ),
there exist in�nitely many primes p in Zwhich do not divide
d and such that id(u) � up mod pS gives the identity auto-
morphism of S=pS. Then, f splits completely in (Z=pZ)[x].

For the second assertion, if �1; : : : ; �n are the n roots of
f mod p, since

f(�i) � 0 mod p;

we have that jf(�i)jp < 1 and because p - d, f 0(�i) 6� 0 mod
p, that is, jf 0(�i)jp = 1.

By Hensel's Lemma (see [3]), there exists �i 2 Zp such
that f(�i) = 0 and �i � �i mod p.

The elements of Zp can be expressed as in�nite sums of
powers of p with coeÆcients in f0; : : : ; p� 1g:

Zp = f
1X

m=0

amp
m : am 2 f0; : : : ; p� 1gg:

For every root �i of f we can construct its expression in Zp

by applying the following rule:

b0 = �i

bm+1 � bm �
f(bm)

f 0(bm)
mod pm+1 (0 � m � k � 1):

bk is an integer number, so that it can be expressed through
division by p in the form

bk = a0 + a1p+ : : : akp
k

with a0 = b0.

We have (see Hensel's Lemma in [3]) that

�i = a0 + a1p+ : : : akp
k +O(pk+1):

(For the operations with p-adic numbers see [13].)
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Since when jGf j = n then all the factors of f in (Z=pZ)[x]
have the same degree, to assure that all the factors of f are
linear in (Z=pZ)[x] it will be enough to �nd a prime p of Z
which does not divide d and such that f has a root in Z=pZ.

Let f0 = f(0), fp1; : : : ; psg the set of primes which divide
d, and c a multiple of p1 : : : ps. Then f(f0c) = f(0)r, where
r � 1 mod pi, for all i 2 f1; : : : ; sg. If r 6= �1 and p is
a prime dividing r, then f has a root in Z=pZ and p does
not divide d. On the other hand, there exists only a �nite
number of multiples c of p1 � � � ps such that r = �1. Anyway,
it will usually be enough to choose a prime divisor of f(b),
for any b 2 Z, and which does not divide d.

If F (�) is a root of f then

F (�) � �i mod p

for only one i 2 f1; : : : ; ng, where p is a prime verifying
the conditions of the proposition. Then, by computing the
p{adic expansion of � and �i up to a certain power k of p,
we will able to decide whether F (�) = �i by just checking
if F (�) � �i mod pk.

It is suÆcient to choose a power k such that some separable
polynomial H 2 Z[x], which has F (�)��i as a root, has its

coeÆcients in the interval (� pk

2
; p

k

2
]: if F (�)� �i � 0 mod

pk, then Hk = H mod pk has a null independent term, and
then the same occurs to H; because it can be recovered from
Hk given the bound for its coeÆcients. So, F (�) � �i =
0: By the same reasoning, if F (�) � �i 6� 0 mod pk then
F (�)��i 6= 0. Notice that k will be polynomial in the size of
f , because the product

Q
j;l2f1;:::;ng(x�(F (�j)��l)) 2 Z[x]

is a polynomial of degree n2 with has F (�)� �i as a root.

The following theorem relates the properties of Galois groups
or order n with the results concerning the restriction of the
automorphisms in Gf to automorphisms of S=pS for integer
primes p not dividing d. It provides a way to determine the
center of a Galois group of order n, and we will use this fact
to conclude that Gf is abelian when we have obtained all
the roots of f as polynomial functions of a �xed root.

Theorem 1. Let F 2 Q[x] with deg(F ) < n and F (�) a
root of f . If jGf j = n then the following facts are equivalent:

(i) F (�i) = �F (�i) for all i = 1; : : : ; n.

(ii) �F 2 Z(Gf ).

(iii) 9p 2 Z prime; p - d; such that F (�) � �p mod pS.

Proof.
(i), (ii): Let �i be the element of Gf such that �i(�) = �i.
Then:

�F (�i) = �F (�i(�)) = �F�i(�)

and

'F (�i) = F (�i) = F (�i(�)) = �i(F (�)) = �i�F (�)

Therefore

�F (�i) = 'F (�i) 8i = 1; : : : ; n ,

, �F�i(�) = �i�F (�) 8i = 1; : : : ; n ,

, �F�i = �i�F 8i = 1; : : : ; n , �F 2 Z(Gf ):

(ii)) (iii): By proposition 5, if �F 2 Z(Gf ) then there

exist in�nitely many primes p 2 Z such that p - d and
�F (u) � up mod pS for all u 2 S.

In particular, there exists p 2 Zprime such that �F (�) �
�p mod pS and, since �F = F (�), we have that F (�) �
�p mod pS.

(iii)) (ii): If Q1; : : : ; Qr are the primes in S lying over

p then F (�) � �p mod pS and therefore F (�) � �p mod Qi

for all i = 1; : : : ; r.
Since �F (�) = F (�), the restriction of �F , for every Qi,

is a Frobenius automorphism of S=Qi over Z=pZ. Therefore,
��1i �F�i = �F for all �i 2 Gf , and �F 2 Z(Gf ).

5.3 The algorithm
Input: A monic irreducible polynomial f 2 Z[x].

Output: The elements of the Galois group Gf and their
action on the roots of f if Gf is abelian and, otherwise,
the statement that Gf is not abelian.

(1) Any polynomial F 2 A is of the form

F =
1

d

n�1X
i=0

cix
i:

Consider a bound K for the absolute values of the ci's:

jcij � jdj
1=2n(n� 1)(n�1)=2j�1j

n(n�1)=2+1
1 := K:

(This is a theoretical bound: it can be improved heuris-
tically). The computation of the discriminant can be
avoided by using Mahler's bound: if f(x) =

Pn
i=0 aix

i

then

jdj < nn(
nX
i=0

jaij)
2n�2:

Set C := f�g and m := 0.

(2) Choose a prime p of Z not dividing the discriminant d
of f and such that

p < (4 log(jdj) + 2:5n + 5)2 =: B;

where B is the Lagarias and Odlyzko bound.

(3) Factorize f into irreducible factors modulo p.

(3.1) If the irreducible factors modulo p have di�erent
degrees then jGf j 6= n, and so, Gf is not abelian.

Return \Gf is not abelian".

(3.2) If all the irreducible factors modulo p have the
same degree then go to step (4).

(4) Compute an integer k such that p2
k

> 2K.

(5) Apply Newton-Lifting to F (�) � �p mod pS.

A polynomial F of degree smaller than n is obtained.

(5.1) If F (�) is not a root of F , then Gf is not abelian.
Return \Gf is not abelian".

(5.2) If F (�) is a root of F go to step (6).
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(6) Set C := C
S
fF l(�) : l 2 Ng, where F l is the compo-

sition of F l times. C is the set of roots of f obtained
as polynomial functions of � during the procedure.

(6.1) If #C = n then Gf is abelian and the action
of all its elements over the roots of f has been
explicitely determined.

Return \Gf is abelian" and END.

(6.2) If #C < n, go to step (7).

(7) Set m:=m+1.

m is the number of primes not dividing d and smaller
than B that have been chosen during the procedure.
Let M be the total number of primes not dividing d
and smaller than B.

(7.1) If m < M then go to step (2) and choose another
prime.

(7.2) If m =M then Gf is not abelian.

Return \Gf is not abelian".

5.4 Correctness of the algorithm
Next the correctness of the algorithm is shown. In the al-
gorithm, the decisions about the abelianity of Gf appear in
steps (3.1), (5.1), (6.1) and (7.2).

Correctness of (3.1): By corollary 2, if the irreducible fac-

tors of f modulo p have di�erent degrees then jGf j 6= n.
Due to proposition 1, Gf abelian implies jGf j = n and we
can conclude in this case that Gf is not abelian.

Correctness of (5.1): Assume that Gf is abelian. Then, as

shown by Acciaro and Kl�uners in [1], by applying Newton-
Lifting to F (�) � �p mod pS, we obtain a polynomial F of
degree smaller than n such that F (�) is a root of f . But
this is a contradiction because in step (5.1) F (�) is not a
root of f . So, we can conclude that Gf is not abelian.

Correctness of (6.1): If #C = n then we have obtained all
the roots of f as polynomial functions of �. This shows up
that � is a primitive element of the splitting �eld L of f over
Q. So, jGf j = n.

Let Fj be the polynomials obtained in step (5) for every
chosen prime and such that Fj(�) = �j . We are within
the conditions of theorem 1 and Fj(�) � �p mod pS for
some prime p which does not divide d. Then, by theorem 1,
�Fj 2 Z(Gf ) and �Fj (�i) = Fj(�i) for all i = 1; : : : ; n.
This implies that we have an element of the center of Gf

and moreover we know its action on the roots of f .

We have also that F l
j (�i) = �lFj (�i) for all i = 1; : : : ; n and

l 2 N, and �lFj 2 Z(Gf ) for all l 2 N, because Z(Gf ) is a
group.

Since for every root �i of f there exists a pair (j; l) 2 N �N
verifying �i = F l

j (�) (because #C = n), we have �lFj (�) =

�i, and thus we have n di�erent elements of Z(Gf ). Since
jGf j = n we conclude that Gf = Z(Gf ) and Gf is abelian.

Moreover, we know the action on the roots of f of every
automorphism of Gf .

Correctness of (7.2): By proposition 6, if jGf j = n then each

automorphism � 2 Gf veri�es �(�) � �p mod Q where Q is
a prime lying over p, for some prime p < (4logjdj+2:5n+5)2.

If Gf is abelian then �(�) � �p mod pS. By Lemma 2 there
exists F 2 A such that � = �F and then F (�) � �p mod pS.

Therefore, if Gf is abelian and we have gone through all
the primes smaller than B not dividing the discriminant, we
must have found all the roots of f as polynomial functions
of �. Otherwise, Gf is not abelian.

5.5 Remark
The factorization of f modulo a prime p is a cheap operation,
so it is interesting to factorize f modulo several primes as a
way to discard that Gf has order n, or to see the cycle type
of the automorphisms associated to those primes.

6. EXAMPLES

Example 1.

f1(x) = x6 � 32x4 + 160x3 � 320x2 + 384x� 256

p = 7 is a prime which does not divide the discriminant of
f1, and

f1 � (x+ 2)(x+ 6)(x2 + 3x+ 6)(x2 + 3x+ 5) mod (7):

Since the factors of f1 mod (7) have di�erent degrees, we
can conclude that Gf1 is not abelian.

Example 2.

f2(x) = x6 � 42x4 + 80x3 + 441x2 � 1680x+ 4516

p = 5 is a prime which does not divide the discriminant and

f2 � (x3 + 4x+ 3)(x3 + 4x+ 2) mod (5):

k 2 N such that 52
k

> 2K can be taken as k = 6.
Applying Newton-Lifting we obtain

dF (x) = �9645354591859453240701x5

+9741221266805364035660x4

+11624509599663382955785x3

+5015977851630218245820x2

�11537915725066967527385x
�476632324842757706770

Since f2(2) = 2952 = 23 32 41, f2 � x2(x+ 1)4 mod 2 and
f2 � (x + 1)6 mod 3, 2 and 3 divide the discriminant. But
f2 � (x+21)(x+17)(x+39)(x+11)(x+32)(x+3) mod 41.
So, p = 41 is a prime which does not divide d and f2 splits
completely modulo 41.

Let � be the root of f2 in Z41 which is congruent to 20
modulo 41. It is easy to check that F (20) � �13 mod 41 and
since �13 is not a root of f2 modulo 41, we can conclude that
F (�) is not a root of f2. So, Gf2 is not abelian.

Example 3.

f3(x) = x8 � 2x6 + 4x4 � 8x2 + 16
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Since

f3 � (x4+2x3+x2+3x+4)(x4+5x3+x2+4x+4) mod (7);

p = 7 is a prime not dividing the discriminant. k 2 N such

that 72
k

> 2K can be taken as k = 6.
Applying Newton-Lifting we obtain

dF (x) = 134217728000000x7 :

Since f3(3) = 5371 = 41 131, this time f3 will be factorized
modulo 131: f3 � (x + 88)(x + 43)(x + 126)(x + 79)(52 +
x)(x+5)(x+3)(x+128) mod (131). Let � be the root of f3
which is congruent to 43 modulo 131.

It is easy to check that F (�) � 79 mod 131 which is an-
other root of f3 modulo 131. Using the 131{adic expansion
of the roots of f3, we can check that F (�) is a root of f3.
Since f3 has two factors of degree 4 modulo 7, the corre-
sponding element of Gf must be a product of two cycles of
order 4 and thus we can obtain the other 2 roots of f3 in
terms of �: F 2(�) and F 3(�). These are, e�ectively, the
roots of f3 congruent to 3 and 126 modulo 131.

Next we choose now another prime: p = 3. Then we
obtain

dF2(x) = �536870912000000x3 :

Now it is checked that F2(�) is the root of f3 congruent to 5
modulo 131. The other roots obtained are the roots congruent
to 3 and 52 modulo 131.

Next we choose now another prime: p = 19. And f3 is
now factorized modulo 19:

f3 � (x2 + 5x+ 17) � (x2 + 11x+ 17)�

�(x2+14x+17) � (x2+8x+17) mod (19):

Then we obtain

dF3(x) = 134217728000000x7 � 268435456000000x5

+536870912000000x3 � 1073741824000000x

Now F3(�) is the root of f3 congruent to 3 modulo 131, which
we have already obtained before.

So, we choose again another prime, for example, p = 23.
Then,

dF4(x) = 536870912000000x3 ;

which agrees with �dF2(x). It can be checked that F4(�) is
the root of f3 congruent with 88 modulo 131, which is the
last root of f to be described in terms of �.

Therefore we conclude that Gf is abelian.

7. COMPLEXITY
Acciaro and Kl�uners in [1] conclude that their algorithm
runs in time that is polynomial in the size of p and f(x) for
a given prime p.

We will apply their method to, at most, all the primes
smaller than (4logjdj+ 2:5n+ 5)2.

Mahler's bound on the discriminant of a polynomial shows
that, if f(x) =

Pn
i=0 aix

i, then

jdj < nn(
nX
i=0

jaij)
2n�2:

Therefore every prime to be used is smaller than

(4n log(n) + (2n� 2) log(

nX
i=0

jaij) + 2:5n + 5)2;

which is also an upper bound on the number of primes.

So, the algorithm of Acciaro and Kl�uners runs in polynomial
time in the size of f .

The other steps of our algorithm that we must take into
account are the veri�cation of F (�) as a root of f , and the
factorization modulo a prime p: but it is known that these
operations are also polynomial in the size of f and p, and
with the same reasoning as before, we can conclude that our
algorithm runs in polynomial time in the size of f .
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