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ABSTRACT
The Portable Computing Language (PoCL) is a vendor indepen-
dent open-source OpenCL implementation that aims to support a
variety of compute devices in a single platform. Evaluating PoCL
versus the Intel OpenCL implementation reveals significant per-
formance drawbacks of PoCL on Intel CPUs – which run 92% of
the TOP500 list. Using a selection of benchmarks, we identify and
analyse performance issues in PoCL with a focus on scheduling
and vectorisation. We propose a new CPU device-driver based on
Intel Threading Building Blocks (TBB), and evaluate LLVM with
respect to automatic compiler vectorisation across work-items in
PoCL. Using the TBB driver, it is possible to narrow the gap to Intel
OpenCL and even outperform it by a factor of up to 1.3× in our
proxy application benchmark with a manual vectorisation strategy.
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1 INTRODUCTION
Of all the TOP500 list [4] systems, 91.8 % feature Intel CPUs. Cur-
rent and foreseeable trends in the TOP500 include i) an increasing
number of accelerators and co-processors - 27.2 % of all systems
have accelerators and co-processors installed, ii) an increasing num-
ber of systems with ARM CPUs - starting with the Fujitsu A64FX
processors of the current number one system, and iii) a raise in x86
CPUs from AMD.
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Given this increasing diversity of HPC architectures, code porta-
bility is more important than ever. In this context, OpenCL [11] with
its wide practical vendor support and recent upgrade to version 3.0
is an important framework for both, direct application development
as well as serving as a backend for higher level abstraction like
SYCL or Intel oneAPI. Its portability-first design supports running
the same code on CPUs, GPUs, and other accelerators like FPGAs,
allowing programmers to work with a single code base for a multi-
tude of architectures. However, achieving performance portability
still takes some effort.

OpenCL implementations are typically provided by the hardware
vendors, but are not always maintained with the same enthusiasm
as other, less portable solutions. Hence, the specific level of OpenCL
support varies across different platforms, and users depend on the
hardware vendor’s policies and decisions. The Portable Computing
Language (PoCL) has been introduced by Jääskeläinen et al. [8]. As
vendor independent open-source OpenCL implementation, PoCL
aims to be easily portable to OpenCL-capable devices, offering an
alternative to vendor provided solutions or a lack thereof. The
core runtime of PoCL is a CPU backend which has been used as
an OpenCL implementation on ARM in previous studies [5, 7, 21,
23, 24]. PoCL also supports certain GPUs and application-specific
instruction set processors.

With these characteristics, PoCL fills a gap in the OpenCL ecosys-
tem. For instance, using LLVM as backend, PoCL provided AVX-512
on Intel x86 targets in December 2017, almost a year before the
Intel OpenCL implementation gained support for AVX-512 in Oc-
tober 2018, which did not include its Xeon Phi (KNL) CPUs. This
demonstrates that PoCL as an open-source project has the poten-
tial to benefit from the community and other projects to adapt
quickly, while vendors might have their priorities and resources
elsewhere. However, the adaptation of PoCL, especially in HPC,
depends on its performance as compared to vendor solutions and
other frameworks.

In this paper, we evaluate PoCL and the Intel OpenCL imple-
mentation regarding performance on Intel CPUs. We employ three
benchmarks of different characteristics to analyse performance dif-
ferences: i) a synthetic micro benchmark, ii) a proxy application
benchmark, and iii) a real world application benchmark. We imple-
ment and evaluate, as well as outline, solutions for improving the
performance of PoCL and narrowing the gap to the Intel OpenCL
implementation.

Specifically, we provide an in-depth discussion of different sched-
uling strategies and propose a new device for PoCL using the
Threading Building Blocks (TBB) open source library. In order to
enable data-parallel execution of work-items as a generic vectorisa-
tion strategy, rather than opportunistic vectorisation inside a kernel
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function, we analyse the state of vectorisation capabilities available
through LLVM. Additionally, we describe our solutions for some
performance bugs we encountered along the way.

This paper is structured as follows: Following related work in
Section 2, we introduce OpenCL and the utilised OpenCL imple-
mentations in Section 3, and the benchmark setup in Section 4. In
Section 5, we analyse the performance differences between PoCL
and the Intel OpenCL implementation. After a deeper analysis of
the scheduling in Section 6, we propose a TBB device for PoCL in
Section 7. We analyse LLVM’s vectorisers with respect to work-
item vectorisation in Section 8, followed by a description of further
contributions to the PoCL project in Section 9. We provide a per-
formance evaluation in Section 10 and conclude with a summary
in Section 11.

2 RELATEDWORK
Performance aspects of OpenCL on CPUs are addressed in the
following studies: Karrenberg et al. showed how to improve the
performance of OpenCL on CPUs inside their own OpenCL driver
derived from LLVM and AMD SDK [10]. Lee et al. evaluated the
performance of Intel OpenCL on Westmere EP CPUs giving several
hints on how to improve performance [12].

In [9], Jääskeläinen et al. investigated how well task-level paral-
lelism is supported in AMD’s and Intel’s OpenCL implementations
and compare them to PoCL on x86 CPUs.

Performance comparisons between PoCL and other non-vendor
OpenCL implementations, or similar programming models, can
be found in the following studies: Zhang et al. demonstrated a
lower scheduling overhead in their OpenCL implementation for
the Matrix-2000 architecture compared to PoCL [27]. Haidl et al.
compared the performance of their framework to PoCL on ARM,
IBM Power8 CPUs and to Intel, PoCL on Sandy Bridge EP, KNL [6].

PoCL has been used by a number of projects on ARM CPUs,
e.g. in combination with FPGAs [7, 24] and in combination with
ARM Mali GPUs [5, 23]. Rafique and Schneider describe PoCL as
single-threaded but it remains unclear why PoCL failed to exploit
task-level parallelism in this particular study [21].

In this work we focus on two major performance drawbacks
discovered in recent PoCL versions on x86 CPUs, i.e., limitations in
the work-group scheduling and code generation phase, both not
addressed sufficiently in previous studies.

3 OPENCL CONCEPT AND USED
IMPLEMENTATIONS

OpenCL (Open Computing Language) is an open standard for cross-
platform, parallel programming introduced in 2009, and maintained
by the Khronos Group. Before looking at the Intel and PoCL im-
plementation of OpenCL, we provide a quick summary of its main
concepts and terminology.

The OpenCL platform model (displayed in Figure 1) is designed
to present a uniform abstraction that can be mapped to different
kinds of parallel processors.

An OpenCL application contains host code and device code. Host
code (written in C/C++) is executed on the host CPU to set-up
the OpenCL environment and to submit work to OpenCL devices
(usually accelerators or the host CPU itself). The device code (also
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Figure 1: The OpenCL platformmodel: One host plus one or
more compute devices (CD) each with one or more compute
units (CU) composed of one or more processing elements
(PE) [11].

called kernel code) is written in OpenCL C (a C99 dialect), compiled
at runtime for a specific device and then executed on that device.

The data elements (or work-items) to process are organised in
work-groups and NDRanges as shown in Figure 2. NDRanges repre-
sent the problem’s dimension and size. Each work-item corresponds
to one instance of the kernel function, all of which are executed in
parallel.Work-itemswithin awork-group are typically processed to-
gether and can be synchronised. Both, work-groups and NDRanges,
can have up to three dimensions with certain OpenCL implemen-
tation or hardware-specific size-limits. The size of a work-group,
i.e. the number of work-groups for a given NDRange, can be cho-
sen implicitly by the OpenCL implementation or explicitly by the
programmer.

The scope of this work are CPUs as compute devices. The rela-
tionship between the data-parallelism entities from Figure 2 and
the platform model entities from Figure 1 mapped to hardware com-
ponents is shown in Table 1. An OpenCL implementation for CPUs
has to exploit the available task (threading) and data parallelism
(SIMD) of the architecture.

Table 2 provides an overview of the main properties of the
OpenCL implementations used in this study. Threads are handled
by an underlying threading library. Typically, there is one software
thread running on each compute unit, i.e. hardware thread. The

NDRange (N=2)

WG WI

Figure 2: Data-Parallelism in OpenCL: Work-items (WI) are
grouped together in work-groups (WG), which are arranged
in N-Dimensional Ranges (NDRange).
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Table 1: Relationship between the data-parallelism entities
from Figure 2 and the platform model entities from Fig-
ure 1 mapped to hardware when using a CPU as compute
device, e.g. work-groups are processed by compute units in
the OpenCL model which map to hardware threads.

data model entity platform model entity hardware unit
NDRange compute device CPU
work-group compute unit hardware thread
work-item processing element execution unit

Table 2: OpenCL implementations overview.

name threading lib math lib compiler
Intel 2021.1 TBB SVML Intel LLVM 12.0.0git*
PoCL 1.4 pthread SLEEF/libclc LLVM 9
PoCL 1.6 pthread SLEEF/libclc LLVM 11

(*as indicated by version string from binary)

math library provides vectorised implementations of the OpenCL
built-in function to properly utilise the SIMD execution units. An
underlying compiler framework is used for the online compila-
tion of the kernel code. Clang/LLVM, which provide an OpenCL
C frontend and a large variety of target architectures are the de-
facto standard here. The following two subsections introduce Intel
OpenCL and PoCL in more detail.

3.1 Portable Computing Language
The Portable Computing Language (PoCL) is a vendor independent
open-source implementation of the OpenCL standard aiming to be
easily portable and to improve performance portability of OpenCL
kernels [8]. PoCL uses Clang as an OpenCL C front-end and LLVM
as its kernel compiler implementation, as well as portability layer.
Using the advantages of open source, this makes it easy to imple-
ment OpenCL support for a specific target architecture (device), if
LLVM has a backend for it.

Each PoCL release is compiled against a specific LLVM version,
and a new PoCL version is usually released after each LLVM major
release supporting its latest changes. PoCL 1.4, which is the baseline
we started this work with, uses LLVM 9, while the most recent
PoCL 1.6 uses LLVM 11.

PoCL uses a combination of SIMD Library for Evaluating Elemen-
tary Functions (SLEEF) [22] and LLVM’s libclc [1] for vectorised
math functions. The kernel compiler is first invoked when calling
the usual clBuildProgram() and clCompileProgram() API entries. The
final assembly code is generated when the number of work-items
is known at the time the kernel is executed. PoCL transforms the
kernel function into a work-group function, but applies no cus-
tom vectorisation steps. Depending on the kernel at hand, LLVM’s
loop vectoriser and SLP vectoriser might or might not find oppor-
tunities to vectorise parts of its code. The alternative is a manual
vectorisation scheme using OpenCL vector data types as described
in Section 8.

PoCL’s default driver for CPUs running Linux is called the
pthread device which employs the pthread library and creates a
thread for each compute unit (i.e. hardware thread) on initialisation
in addition to any application threads.

If no work-group size is specified by the application, PoCL first
tries to maximise the work-group size to a predefined limit of 4096
work-items taking a preferred work-group multiple of 8 work-
items for vectorisation into account. In a second step, the work-
groups size is reduced to ensure that there is at least one work-
group for each compute unit. However, the work-group size will
not be reduced below a predefined minimum work-group size
of 32 work-items. This results in a parallelisation threshold of
32 × numberO f ComputeUnits work-items, below which the PoCL
pthread driver will not run in parallel. This can be omitted by spec-
ifying a work-group size manually and not leaving the choice to
PoCL.

3.2 Intel OpenCL for CPUs
Intel distributes a number of different OpenCL implementations
with open-source (GPU) and proprietary (CPU) licences. At the
time of writing, the latest CPU-only OpenCL implementation is
the proprietary Intel CPU Runtime for OpenCL Applications. We use
version 2021.1.2-266 of this runtime to conduct all our measure-
ments and always refer to this runtime when using the term Intel
OpenCL implementation. This OpenCL implementation reports a
CL_DRIVER_VERSION of 2020.11.12.0.14_160000 and is available as
part of the Intel oneAPI framework.

The Intel OpenCL implementation uses an LLVM-based OpenCL
compiler. The implicit vectorisation module of this compiler first
generates LLVM-IR and then widens each instruction to make use
of vector instructions. For this purpose, the vectoriser performs a
sequence of LLVM transformations and analysis passes proprietary
to Intel. As mentioned in [18], a number of constrains must be met
to generate the best result when using an automatic vectorisation
strategy, e.g. using a work-group size that is a multiple of the archi-
tecture’s vector width in dimension zero. The same vectorisation
scheme can be implemented manually by using OpenCL vector
types as described in Section 8.

The Intel OpenCL implementation makes use of the Intel Short
Vector Math Library (SVML) to implement the OpenCL built-in func-
tions and the Intel Threading Building Blocks (TBB) [26] library to
address task parallelism across CPU cores, including the scheduling
of work-groups to threads. The Intel OpenCL implementation never
generates more software threads than hardware threads including
the application thread that is calling the TBB library.

4 OPENCL BENCHMARK SETUP
In this section, we describe the three benchmarks that we adopt to
analyse and evaluate PoCL and the Intel OpenCL implementation.
As shown in Table 3, the benchmark selection contains one micro
benchmark and two application benchmarks. One of the application
benchmarks has a rather regular and balanced workload, while the
other one is imbalanced (cf. Section 5). All benchmarks are open
source and use a common OpenCL helper library and benchmark
timer [16].

From the application’s point of view there are two strategies
to achieve vectorisation: i) automatic vectorisation using standard
scalar data types and relying on the vectorisation capabilities of the
OpenCL implementation or ii)manual vectorisation using OpenCL’s
vector data types with a specific vector length e.g. double8.
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Table 3: Benchmark overview.

name type workload instruction mix licence
op synthetic balanced per operation Boost
hexciton proxy app balanced FMA Boost
raytracing real world imbalanced various MIT

Table 4: Vectorisation modes available with the op and hex-
citon benchmarks and their properties for an example prob-
lem size of 16 data elements. Vectorisation can be performed
automatically by the compiler or manually by substituting
scalar data types with OpenCL’s vector data types, where
each work-item then processes multiple data items.

vec. mode vec. length #WIs logical data layout
automatic 1 16
manual4 4 4
manual8 8 2

work-item (WI) data element

Table 4 shows the resulting properties when applying these
vectorisation strategies to a problem size of 16 data elements. Note
that the number of work-items is calculated by dividing the number
of data elements by the vector length.

4.1 Micro Benchmark: op
The op_bechmark [15] is a micro, low-level benchmark designed
to measure the performance of individual operations (e.g. +, ÷)
and OpenCL built-in functions (e.g. sqrt, sin). Each operation
or function is applied to a global number of data elements for a
specified number of iterations inside each individual kernel, which
is repeated for multiple runs.

The number of data elements is chosen in such away that all hard-
ware parallelism available can be saturated by the number of work-
items available without any under- or uneven over-subscription of
the execution units. The goal is to measure the individual opera-
tion’s performance as good as possible, while the relatively small
work-load of each kernel can reveal runtime effects otherwise hid-
den by larger problem sizes.

4.2 Proxy Application Benchmark: hexciton
The hexciton_benchmark [14] is a proxy benchmark for the hexciton
computation of the DM-HEOM [17] real-world code, developed by
Noack et al. during a case study on optimising the hexciton kernel
code for multicore and many-core processors [18]. It features the
same kernel in different variants and stages of optimisation for
different target devices. Each kernel is available as a scalar version
to be automatically vectorised by the compiler, and a manually
vectorised version that uses vector data types. Work-group sizes
can be either enforced, or left for the OpenCL implementation to
decide. Beside the OpenCL version, an OpenMP version resembling
the OpenCL runtime as described in Section 8, is available. It uses
the KART library [19] for compiling kernels at runtime, which is
crucial for comparable performance as it enables the same level of
code optimisation as OpenCL provides, e.g. using runtime data as
compile-time constants. The automatic vectorisation kernels are

fine-tuned to meet the requirements of the Intel OpenCL imple-
mentation for automatic vectorisation (cf. Section 3.2). The CPU
optimised kernels of the benchmark use an AoSoA data layout of
interleaved matrices, which allows for contiguous vector load/store
operations instead of costly gather/scatter instructions, if recog-
nised by the compiler. We run the manual vectorisation kernels
with a vector sizes of 8 doubles aiming for AVX-512 vectorisation.
The hexciton_benchmark uses a fixed number of 512 × 1024 small
7 × 7 matrices (data elements), which is derived from real-world
problem sizes. The instruction mix mainly consists of streamlined
FMA instructions.

4.3 Real World Application Benchmark:
raytracing

The raytracing_benchmark [25] is a benchmark derived from a
raytracing code published on Github. To use it as a benchmark, we
modified it by removing interactivity, porting it from Windows to
Linux and adding timemeasurements. The code has not been further
optimised from the source and is supposed to reflect an average real-
world application code, not optimised towards a specific hardware.

The benchmark renders a static scene (see Figure 3) which con-
sists of a Stanford dragon placed on a face with a chequerboard
pattern in front of a background picture. Benchmark parameters
are width, height of the image and the number of frames (iterations)
to render. The quality of the image increases with each iteration.
In each iteration, the benchmark calculates a slightly shifted ray
per pixel. The amount of work that has to be performed per ray
depends on how many times the ray is reflected (up to 5), if the ray
hits the sky or not, as well as the material of the intersected face, if
the ray does not hit the background. Thus, the benchmark is imbal-
anced with respect to the work per work-item. This benchmark has
no manual vectorisation mode. As the kernel uses complex data
structures and work-items can take different code paths, we do
not expect that the kernel can be vectorised properly. The kernel
contains trigonometric and various other built-in functions.

4.4 Methodology
All measurements are obtained on a dual socket Intel Xeon Gold
6138 (Skylake) system comprising 20 cores per socket with hyper-
threading enabled, resulting in 80 hardware threads. This Skylake
system has two AVX-512 units per core, i.e. one AVX-512 unit per
hardware thread.

Each benchmark performs multiple iterations of the measured
kernels and is executed 10 times in total. Runtimes shown reflect
the arithmetic mean over all iterations and benchmark runs.

The employed vectorisation modes and number of work-items
for each benchmark are displayed in Table 5. The number of work-
items for the manual8 mode of the op_benchmark equals PoCL’s
parallelisation threshold (32 × 80 = 2560, cf. Section 3.1).

For the hexciton_benchmark, we selected the aosoa_naive_con-
stants_perm andmanual_aosoa_constants_perm kernels for compar-
ison. For the OpenMP version of the hexciton_benchmark, we add
aosoa_naive_constants_direct_perm, manual_aosoa_constants_di-
rect_perm and aosoa_constants_direct_perm2to5.
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Figure 3: The images rendered by the raytracing_benchmark after 1, 10 and 100 iterations (left to right).

Table 5: Employed benchmark parameters.

benchmark vec. mode #WIs data (read/written)
op automatic 20480 320 KiB/160 KiB

manual4 5120
manual8 2560

hexciton automatic 524288 392 MiB/392 MiB
manual8 65536

raytracing automatic ≈8.3M ≈92 MiB/≈127 MiB

5 PERFORMANCE ANALYSIS: POCL VS.
INTEL OPENCL

In this section, we analyse the performance of PoCL compared
to the Intel OpenCL implementation. Because our measurements
show that PoCL lacks significant performance, we aim to identify
potential bottlenecks and strategies to improve the performance of
PoCL.

5.1 Vectorisation of Built-in Functions
As PoCL and Intel use different libraries for the vectorisation of the
OpenCL built-in functions, we start by measuring the performance
differences of individual operations and built-in functions with the
op_benchmark.

Initial measurements reveal that PoCL 1.4 has a lower perfor-
mance than Intel across all scenarios. Investigating the PoCL source
code, we discover an integer division bug in the scheduler code that
causes an uneven distribution of work-groups to threads, especially
when there are very few work-groups per thread (cf. Section 9.2).
Along the way, we discovered a minor off-by-one issue related to
the PoCL parallelisation threshold (cf. Section 9.1) that caused a
sequential execution in case of manual vectorisation with a vector
length of 8. Both adjustments are included in the PoCL 1.5 release.

Table 6 shows the average kernel execution time of selected op-
erations of the op_benchmark across different vectorisation modes
with PoCL 1.6 LLVM 11 compared to Intel. For most operations,
Intel performs best with automatic vectorisation and worst with
manual vectorisation with a vector size of 4 double elements while
PoCL performs best with manual vectorisation with a vector size
of 8 double elements and worst with automatic vectorisation.

When comparing PoCL to Intel, the performance gap is the
biggest with automatic vectorisation and the lowest with manual
vectorisation with a vector size of 8 double elements. Investigating
the assembly code generated by PoCL, we found that PoCL fails

Table 6: op_benchmark: Average kernel execution time [ms]
of selected operations after fixing the scheduler’s integer-
division bug. Coloured cells denote the minimum value
across all vectorisation modes used to calculate the ratio.

implementation vec. mode fma sqrt sin
automatic 0.59 5.26 5.66

Intel manual4 1.41 4.79 19.02
manual8 0.96 5.92 10.70
automatic 7.54 17.70 145.34

PoCL 1.6 LLVM 11 manual4 2.72 6.74 45.19
manual8 2.08 6.66 28.57

PoCL/Intel performance ratio: 3.53× 1.39× 5.04×

to properly vectorise in automatic vectorisation mode while gen-
erating the expected vector instructions in manual vectorisation
mode.

For both, automatic and manual vectorisation, vectorised ver-
sions of OpenCL’s built-in functions are required. An alternative to
the SLEEF/libclc libraries used by PoCL for vectorised math func-
tions on CPUs would be using Intel’s SVML, which can be enabled
by passing fvec-lib=SVML to Clang. LLVM 12 will add support
for the GNU libmvec fvec-lib=libmvec as well, which should be
available on most Linux systems as part of the libc. However, this
would probably require a larger code change in PoCL.

5.2 Observed OpenCL Runtime Issues
Based on the first assessment with the op_benchmark, we further
check PoCL for potential issues that arise from the runtime be-
haviour of the OpenCL implementations.

The op_benchmark includes a nop kernel and the hexciton_bench-
mark includes an empty kernel. These two scenarios are ideal to
reveal runtime overhead as they do not perform any computation
on top of the kernel execution cost of the OpenCL implementation.
Both benchmarks show that PoCL has a higher kernel execution
overhead than Intel.

To confirm this observation, we scale the iterations of the mul-
tiplication operation of the op_benchmark from 0 to 100000 and
apply a linear regression model (see Figure 4). This analysis reveals
that PoCL has set-up costs of about 1.5ms that do not exist for Intel.
Also note that PoCL has a higher slope than Intel which indicates
that Intel has a better code generation.

As described in Section 3.1, PoCL performs a final compilation
step when launching a kernel. For this final compilation step, PoCL
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Figure 4: Linear regressionmodel for themultiply operation
of the op_benchmark using automatic vectorisation and an
explicit work-group size of 1 (2560 data elements, 45 runs
excluding 5 warmups).

takes runtime parameters specified on kernel launch into account,
e.g. work-group size. We expect Intel to perform a similar approach
as these runtime parameters could affect vectorisation. We do not
measure overheads that occur from last-minute compilation or due
to (kernel-)caching effects, because we exclude warm-up measure-
ments as described in Section 4.

As PoCL and Intel use different libraries for threading, we further
analyse the scheduling behaviour in the following section.

6 SCHEDULING
Mapping work-groups to compute units poses a typical scheduling
problem that each OpenCL implementation has to solve. While
each work-group typically consists of the same number of work-
items, the time needed to execute each work-item can vary, both,
inside a work-group and across work-groups. Depending on the
distribution of these runtime variations and the work-group size,
the work-group runtimes can also vary, or be rather uniform.

We call a scenario in which all work-groups need the same time
to execute a balanced workload. Otherwise, we call it an imbal-
anced workload. Since this behaviour depends on the application,
an OpenCL implementation has to provide a solution that works
well for both scenarios by default. Additional tuning parameters
can be provided for more advanced users to control the scheduling
behaviour of the OpenCL Implementation.

In the following subsections, we discuss how PoCL and compa-
rable frameworks (cf. Table 7) solve this problem of application-
dependent scheduling. Typically, the time needed to execute a sched-
uling item is orders of magnitude higher than the time needed for
scheduling. Thus, we omit scheduling overhead in the following
theoretical considerations except when stated explicitly.

6.1 OpenMP
OpenMP [20] is an open standard that introduces annotations to
parallelise loops amongst other things. The scheduling process of
OpenCL can be mapped to the scheduling process of OpenMP as
demonstrated in [18]. The following example shows an annotated

Table 7: Scheduling across frameworks.

framework scheduling strategies scheduling item
PoCL default work-groups
OpenMP static, dynamic, guided loop iterations
TBB partitioner static, simple, auto, affinity loop iterations
TBB task scheduler work stealing tasks

for-loop applying a function to each element of a data range, e.g.
an array:
#pragma omp parallel for schedule(static)

for (int i = 0; i < num_work_groups; ++i) {

run_work_group(work_group_array[i]);

}

The entity names in the above example indicate how OpenCL
can be mapped to OpenMP, i.e. in OpenCL, the for-loop and its
iterations would become a kernel-launch over an NDRange repre-
senting the global and the local data ranges to process. The local size
within the NDRange defines the work per work-group and is the
equivalent to an element of the work_group_array. The OpenMP
scheduler schedules loop iterations to threads, while an OpenCL
implementation schedules work-groups to threads (cf. Table 7). The
number of iterations or work-groups scheduled to a thread in one
scheduling step is called chunk size.

The OpenMP specification [20] defines three scheduling strate-
gies of interest that can be selected with the schedule clause:
static, dynamic and guided. For static, "iterations are divided
into chunks [...] and the chunks are assigned to the threads [...]
in a round-robin fashion in the order of the thread number". For
dynamic, "each thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be distributed", resulting
in each thread completing multiple passes through the scheduler.
guided is similar to dynamic, except that "the size of each chunk is
proportional to the number of unassigned iterations divided by the
number of threads". Note that threads pass through the scheduler se-
quentially and the number of iterations left to assign decreases after
each pass of a thread. This leads to different numbers of iterations
being assigned to each thread on the first pass.

The above definition of guided has certain degrees of freedom
for its implementation. First, the temporary value of iterations to
assign given as:

proportionality constant × unassigned iterations
number of threads

is likely to be a floating point value. Since only whole work-groups
can be scheduled, a rounding function has to be chosen. Second, the
proportionality constant can have any value of range (0, 1]. Values
above one decrease the performance of the schedule for balanced
workloads, while for imbalanced workloads the average execution
time of the iterations scheduled to the first thread must be below
the average execution time of all iterations to not decrease the per-
formance of the schedule. A value of zero can also occur (depending
on the rounding function) when the proportionality constant is low
or the number of unassigned iterations is low. This would imply
that no work-groups are ever scheduled, which is prevented by
always rounding up or defining a minimum amount of iterations
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Figure 5: Schedules generated by different strategies for a
balanced workload (64 work-groups, 4 threads). Both strate-
gies result in evenly distributed workloads across threads.
The chunk size chosen for static is 4. Higher values (8, 16)
are possible to reduce potential scheduling overhead (ne-
glected in the figure).

to assign to a thread in a scheduling step. The optimal value for
the proportional constant depends on the degree of imbalance of
the workload. However, OpenMP does not allow to control this
constant.

The Intel OpenMP implementation describes guided as "each
thread gets a big chunk on the first pass, and an increasingly small
chunk on the next pass" [13]. This wording suggests that the number
of iterations scheduled on the first pass is the same for all threads.
It is reasonable to do so, as all threads are idle on the first pass.

static is better for balanced workloads while dynamic and
guided are better for imbalanced workloads. guided tries to reduce
scheduling overhead of less imbalanced workloads by starting with
a huge chunk size followed by subsequent reductions. For each
strategy, the chunk size can be specified to concretise the behaviour
of the respective strategy.

6.2 PoCL
OpenCL schedules work-groups instead of iterations. The chunk
size is the number of work-groups scheduled in one scheduling
step.

PoCL’s only scheduling strategy default correspondsOpenMP’s
guidedwith a proportionality constant of one and ceil() as rounding
function, i.e. the number of work-groups assigned to a thread equals
the number of unassigned work-groups divided by the number of
threads, with one thread running per compute unit (CU).

Without scheduling overhead, this strategy performs well for
balanced workloads (see Figure 5), but depending on the work
distribution of imbalanced workloads, the performance of default
can vary (see Figure 6).

Considering imbalanced workloads, the performance of default
highly depends on the average execution time of the work-groups
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default

default
work group (twice the time)work group

Figure 6: Worst case and best case of scheduling 32 imbal-
anced work-groups (8 of them need twice the time) with
default, 4 threads, no scheduling overhead.

scheduled to the first thread in its first pass. As displayed in Figure 6,
the worst case occurs if the work-groups that need the most time to
execute are scheduled to the first thread in its first pass. There are
certain work distributions that can result in a best case scheduling.
They all have in common that the average execution time of the
work-groups scheduled to the first thread in its first pass is equal
to or less than the average execution time of all work-groups.

If the scheduling overhead is not negligible, performance draw-
backs can occur for balanced workloads using default, because
the number of scheduler passes is not the same for all threads in
contrast to static (cf. Figure 5).

6.3 Intel TBB
The Intel Threading Building Blocks (TBB) [26] open source library
is a high-level alternative to pthreads on CPU architectures, used by
the Intel OpenCL implementation internally. With TBB it is possible
to use the parallel_for() construct to execute a function over a
data range that is expressed with a blocked_range data structure
that can have multiple dimensions (similar to OpenCL’s NDRange
concept).

The necessary scheduling process consists of two steps: First,
a partitioner [2] divides the blocked range into tasks, which are
scheduled with a work stealing strategy in the second step.

The auto partitioner (default) "performs sufficient splitting to
balance load". The affinity partitioner is similar to the auto parti-
tioner "but improves cache affinity by its choice of mapping sub-
ranges to worker threads." The static partitioner "distributes range
iterations among worker threads as uniformly as possible, without
a possibility for further load balancing" and maps subranges to
worker threads similar to the affinity partitioner. The simple
partitioner "recursively splits a range until it is no longer divisible."

To control the granularity by which a blocked range is split, a
grain size can be specified for all partitioners which works similar
to the chunk size concept.
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6.4 Summary - Scheduling Strategies
The optimal scheduling strategy depends on the work load. Thus,
OpenMP and TBB provide multiple scheduling strategies, which
allow for the specification of the chunk size and have a static
mode that allows deterministic mapping. While Intel OpenCL uses
TBB internally, it does not expose any means to influence its sched-
uling strategies. PoCL has only one scheduling strategy that may
perform poorly for certain workloads. It does not allow to define a
deterministic mapping from work-group to compute unit. When
compared with the OpenMP standard, OpenCL lacks means to influ-
ence work-group scheduling, which is especially important on CPU
targets. In the next section, we introduce a configurable TBB-based
CPU-driver for PoCL.

7 TBB DEVICE DRIVER FOR POCL
In this section, we describe the main contribution of this work to
the PoCL project: a device driver that allows the usage of the Intel
Threading Building Blocks library for scheduling.

The implementation of the PoCL pthread device does not sup-
port multiple scheduling strategies and has no tuning parameters
as comparable solutions to application depended scheduling as de-
scribed in Section 6. PoCL lacks performance compared to the Intel
OpenCL SDK, which uses the Intel TBB library. Thus, we decided
to write a device driver for PoCL that allows the usage of the TBB
library for scheduling.

The TBB device for PoCL is derived from the pthread device with
the relevant code sections replaced with calls to the TBB library.
This triggered refactoring and code structure changes. Due to a
lack of scheduling options in the OpenCL standard, we added the
possibility for the application developer to choose the partitioner
and grain size to control the TBB behaviour as described in Section
6.3 with the POCL_TBB_PARTITIONER and POCL_TBB_GRAIN_SIZE
environment variables.

Our solution creates a so called meta thread on device initialisa-
tion. The meta thread polls the queue for commands and kernels
to execute, and in the case of kernels executes them in parallel
with a blocking call to the TBB library. While the main applica-
tion threads continues running the host code, TBB uses one worker
thread (including the calling thread) per hardware thread to process
the partitioned problem. The meta thread has the same function as
the worker threads of the pthread device.

By using the TBB library just like Intel OpenCL, we could partly
close the performance gap, and provide users with more control
over the scheduling which Intel OpenCL does not expose. For the
remaining performance differences, we have to assess the quality of
generated kernel code, mainly the compiler vectorisation, and also
the different vector math libraries (SLEEF/libclc vs. SVML). Since
Intel OpenCL is not open source, we cannot examine possible cus-
tom TBB scheduling strategies, the vectoriser Intel implemented, its
SVML library, or other code that might be relevant for performance.

8 VECTORISATION
Another critical performance aspect is the compiler optimisation
performed on the OpenCL kernel code. PoCL uses LLVM/Clang
to compile the kernel code, and hence depends on its optimisa-
tion capabilities. Vectorisation is especially important here, as it

/* automatic vectorisation scheme */
#pragma omp parallel for
for (int group_id = 0;

group_id < (num / VEC_LENGTH);
++ group_id)

{
/* vectorised work -item loop */
#pragma omp simd
for (int local_id = 0;

local_id < VEC_LENGTH;
++ local_id)

{
// scalar typed kernel code
// double

}
}

/* manual vectorisation scheme */
#pragma omp parallel for
for (int group_id = 0;

group_id < (num / VEC_LENGTH);
++ group_id)

{
/* manually vectorised kernel */
// vector typed kernel code
// double_vec_t / double8

}

Figure 7: An OpenCL runtime model written in OpenMP
with a task parallel for loop processing work-groups, and
a data parallel, vectorised loop processing the work-items
within each group. In a manual vectorisation scheme, the
vectorisation result of the SIMD loop is replaced by a kernel
that uses vector instead of scalar data types.

is necessary to make use of the data parallel SIMD instruction set
extensions of CPUs, e.g. AVX2/AVX-512 on x86-64.

When looking at an OpenCL kernel and the surrounding OpenCL
executionmodel, different vectorisation strategies are possible. Con-
ceptually, the vectorisation can be applied on either a) a separated
instance of a kernel, i.e. a single work-item, or b) across work-items,
similar to the execution model known from GPUs where work-
items within a work-group are mapped to SIMD lanes and executed
in a data-parallel fashion.

If we extend the task parallelism code example from Section 6.1
by adding another, SIMD parallelised loop for processing the work-
items within a work-group, we obtain a simple, one-dimensional
OpenMPmodel of the OpenCL runtime: Two nested loopswhere the
first one processes the work-groups and the second one processes
the work-items within each work-group, as shown in Figure 7. The
latter loop is a natural target for vectorisation across work-items
which mirrors the GPU execution model on the CPU’s SIMD units.
The kernel inside this loop nest can be vectorised by replacing
the scalar instruction with vector instructions matching the vector
width of the architecture. As the kernel function might contain
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further loops, a compiler vectoriser needs to be able to perform an
outer-loop vectorisation here.

An alternative to automatic compiler vectorisation is explic-
itly using OpenCL vector data types, e.g. double8 or float16 for
AVX-512, and their corresponding operations which can be directly
mapped to SIMD vector registers and instructions. Like with auto-
matic compiler vectorisation, built-in functions require a vectorised
implementation here. Executing such a kernel via the OpenCL API
then requires to divide the NDRange size by the vector width.

The Intel OpenCL CPU Runtime implements the automatic com-
piler vectorisation described above, and thus provides the program-
mer with a predictable vectorisation strategy. Predictability is im-
portant here, because even though the compiler might vectorise
the code, it does not optimise the memory layout to match the
vectorisation strategy [18]. A mismatch between these can result
in costly, non-contiguous memory accesses via expensive gather/s-
catter instructions instead.

PoCL and LLVM/Clang do not provide the means to perform this
work-item vectorisation scheme, yet. LLVM provides a loop vec-
toriser which can vectorise suitable loops, and the SLP (Superword-
Level Parallelism) vectoriser which can group multiple suitable
instructions into a single SIMD instruction. The loop vectoriser
does not support the required outer loop vectorisation, thus only
inner loops or groups of instructions inside a suitable kernel func-
tion can be vectorised. Intel OpenCL is also based on LLVM, but it
uses its own proprietary optimiser passes for vectorisation.

However, LLVM contains an experimental VPlan vectoriser [3],
which aims to provide the long missing outer loop vectorisation
for LLVM and to eventually replace the LLVM loop vectoriser. The
basic idea of implementing a work-item vectorisation strategy in
PoCL would be to annotate the equivalent to the work-item loop
as shown in Figure 7 to be vectorised by the compiler. Given the
rather complex PoCL code base, we decided to first evaluate this
idea using the OpenMP model of the OpenCL runtime, and the
OpenMP version of the hexciton benchmark that uses the KART
runtime compilation library for the kernel code.

Since the VPlan vectoriser recognises the #pragam omp simd
directives of OpenMP, the benchmark itself can be used as is. We
implemented a wrapper script for the Clang compiler that splits the
compilation process into multiple steps, first generating LLVM IR
with a disabled loop vectoriser, which is then transformed using the
VPlan optimiser pass. This resulting IR is compiled into an object
file. Additionally, the runtime configuration files specifying the
toolset and command line options used to compile the OpenMP
kernels were modified to use this wrapper.

In contrast to LLVM’s regular loop vectoriser, the VPlan pass
manages to vectorise the outer work-item loops of all kernel ver-
sions where the inner loops have a compile-time known loop count.
However, the compiler fails to recognise the continuous memory
access pattern and the vector registers are loaded and stored with
expensive gather and scatter instructions instead. As opposed to the
OpenCL version of the benchmark, the OpenMP benchmark allows
to manually permute the loop order, effectively transforming the
outer loop vectorisation scheme into an inner loop vectorisation
by moving the work-item loop into the loop test. This is possible
due to the specific loop nest of the benchmark kernel, but not in
general. For this transformed version of the kernel, both the VPlan,

and the loop vectoriser succeed and generate the expected contigu-
ous vector load/store instructions, providing an estimate how the
compiler vectorised code could perform.

At the current state, it looks like LLVM’s vectorisation capabili-
ties are not sufficient to result in a work-item vectorisation for PoCL
that can compete with Intel OpenCL’s vectoriser. The benchmark
results are shown and discussed in section 10.2.

9 FURTHER PERFORMANCE
IMPROVEMENTS

In this section, we briefly describe further performance improve-
ments we contributed to the PoCL project during this work.

9.1 Parallelisation Threshold off-by-one Issue
As described in Section 3.1, PoCL has a parallelisation threshold. A
source code comment suggests that using a number of work-items
that equals the parallelisation threshold should result in parallel
execution, which it did not. We developed a patch to fix this off-by-
one issue. This patch was merged to the master branch ahead of
the PoCL 1.5 release.

This patch only improves performance in an edge case when
all of the following three requirements are met: i) the number of
work-items equals the parallelisation threshold, ii) the work-group
size has not been set manually by the application developer, iii)
there is enough work to process per work-item (depending on the
used hardware). The parameters that we chose for the manual8 vec-
torisation mode (cf. Table 4) of the op_benchmark correspond to this
edge case, which results in performance improvements of multiple
orders of magnitude in this particular case since the benchmark
otherwise runs sequentially.

9.2 Scheduler Integer Division Bug
Investigating the pthread device source code revealed an integer
division bug, which could cause an unfavourable assignment of
work-groups to threads. Because of this bug, the scheduler switches
to a smaller chunk size too late, which can result in insufficient or
no work for the last thread. We developed a patch that was merged
to the master branch ahead of the PoCL 1.5 release.

Because of the characteristics of the scheduling strategy (see
Section 6), the consequences of this bug are partially self-healing.
The bug had the highest performance impact in balanced scenar-
ios where the number of work-groups is equal to the number of
compute units or is a small multiple of it.

10 EVALUATION
In this section, we discuss the performance results of our contribu-
tions described in Section 7, 8, and 9.2.

For most workloads, the performance differences between the
PoCL 1.4 (LLVM 9) version with the scheduler’s integer-division
bug fixed, PoCL 1.5 (LLVM 9) and PoCL 1.6 (LLVM 11) are negligi-
ble. Thus, we compare PoCL 1.4 (LLVM 9) to PoCL 1.6 (LLVM 11)
in order to quantify the performance impact of the improvement
described in Section 9.2, and specifically point out where this direct
comparison is not feasible.
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Figure 8: Selected operations from the op_benchmark (20480
data elements, 10000 iterations, 45 kernel runs excluding 5
warmups). For each operation and OpenCL implementation,
only the fastest individual vectorisation mode is displayed
(cf. Table 6). The error bars indicate minimum and maxi-
mum values observed.

10.1 Synthetic Micro Benchmark: op
For selected operations of the op_benchmark, the outcome of our
improvements are displayed in Figure 8. Because there is no single
vectorisation strategy that performs best for all OpenCL imple-
mentations or all operations, we compare the highest performance
value of an operation (or built-in function) across all vectorisation
strategies. The results marked with PoCL 1.4 already include the
off-by-one fix described in Section 9.1.

These initial measurements with PoCL 1.4 show a slowdown of
4.59× for fma, 1.95× for sqrt and 8.39× for sin compared to Intel.
Especially trigonometric functions that are typically implemented
in software and not in hardware significantly lack performance.
This indicates that the libraries used by PoCL do not exploit hard-
ware capabilities as good as Intel’s SVML.

Almost all operations benefit from fixing the integer division
bug in PoCL’s scheduler (cf. Section 9.2), which can be observed
by comparing PoCL 1.4 to PoCL 1.6. Basic arithmetic operations,
e.g. fma, achieve speedups of up to 1.3×, while for more complex
and trigonometric functions speedups of 1.4× to 1.5× are common
(sqrt: 1.40×) and can reach up to 1.7× (sin: 1.66×).

Using the proposed TBB device in PoCL 1.6 with LLVM 11, basic
arithmetic operations and simple functions achieve speedups of up
to 1.8× (fma: 1.58×, sqrt: 1.20×) compared to the pthread device.
Trigonometric functions do not change performance.

The total speedup for both, the fixed integer-division bug, and
the TBB device combined is 2.06× for fma, 1.68× for sqrt and 1.74×,
reducing the slowdown to Intel to 2.23× for fma, 1.16× for sqrt
and 4.84× for sin.

0

10

20

30

automatic vec.
implicit WG size

automatic vec.
explicit WG size

manual vec.
implicit WG size

manual vec.
explicit WG size

a
ve

ra
g
e
 k

e
rn

e
l r

u
n
tim

e
 [
m

s]

Intel vectoriser enabled

Intel vectoriser disabled

PoCL 1.4 LLVM 9

PoCL 1.6 LLVM 11

PoCL TBB LLVM 11 auto partitioner

PoCL TBB LLVM 11 affinity partitioner

Figure 9: hexciton_benchmark vectorisation strategy com-
parison (25 iterations excluding one warmup iteration). The
work-group (WG) size was chosen implicitly by the OpenCL
implementation or explicitly by the application. The error
bars indicate minimum and maximum values observed.

10.2 Proxy Application Benchmark: hexciton
In addition to the synthetic op_benchmark, we use the hexciton_-
benchmark application proxy to evaluate the performance of a
balanced real world applications. We compare two vectorisation
strategies: automatic and manual, as well as two work-group (WG)
sizes: theWG size chosen implicitly by the OpenCL implementation
and a WG size specified explicitly by the application.

Figure 9 compares Intel OpenCL, with and without compiler
vectorisation enabled, with the PoCL 1.4 baseline, the current PoCL
1.6 with the pthreads device, as well as our TBB device with the
automatic and affinity partitioner. For kernels that depend on au-
tomatic vectorisation by the compiler, PoCL shows a much lower
performance, as they do not get vectorised by LLVM’s loop vec-
toriser. The gap of PoCL 1.6 to Intel is 0.51× with the implicit WG
size and 0.72× with the explicitly specified WG size. The scheduler
bug described in Section 9.2 as well as a newer LLVM version do
not improve performance here. Explicitly specifying a WG size
increases performance by a factor of 1.40× for PoCL 1.6. This in-
dicates that the algorithm PoCL employs for determining the WG
size, if none is specified, is sub-optimal here.

Disabling compiler vectorisation for Intel OpenCL for the kernel
versions that depend on automatic vectorisation, makes a differ-
ence of 0.80× and 0.81×. Even with disabled vectorisation, Intel
outperforms PoCL. For the implicit WG sizes, the gap is still 0.77×,
the smaller work-groups size of 256 (25.6 WGs/CU) determined by
Intel OpenCL vs. the 4096 (1.6 WGs/CU) from PoCL which leaves
no room for a good schedule on the 80 hardware threads of the
benchmark system. Explicitly specifying the WG size narrows the
gap to 0.93×, and 0.75× with Intel’s vectoriser enabled.
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Figure 10: Results of the LLVM 11 vectoriser study using the
OpenMP version of the hexciton_benchamrk as described in
Section 8. The term temporaries means that computations
were accumulated in a temporary local variable,while global
buffer means the kernel works directly on the input buffer,
potentially causing more memory accesses. For the inner
SIMD loop version, the SIMD loop was manually permuted
to become the innermost loop. The error bars indicate min-
imum and maximum values observed.

For the manually vectorised kernels, the performance of PoCL
matches the performance of the Intel OpenCL implementation, as
the SIMD-hardware usage no longer depends on the compiler vec-
torisation. When using our proposed TBB device, the performance
of the manually vectorised kernel with the implicit work-group size
increases by a factor of 1.06×. When specifying the affinity parti-
tioner, performance can be improved by a factor of 1.26× compared
to the default auto partitioner of TBB. Using manual vectorisation
and the TBB device with the affinity partitioner allows to outper-
form Intel by up to 1.31×, for the hexciton benchmark.

Figure 10 shows the result of the LLVM vector comparison, as
described in Section 8. These numbers are based on the OpenMP ver-
sion of the hexciton_benchmark using the OpenCL runtime model
as described in Figure 7, and the KART library for runtime compi-
lation. The first two kernels for automatic vectorisation show that
depending on details in the code (here: the way the output data is
accumulated and written) it can make a large difference on whether
the loop vectoriser or the VPlan vectoriser generates the faster code.
In both cases, the loop vectoriser does not actually vectorise the
code, while the VPlan vectoriser performs the intended vectori-
sation. However, its failure to recognise the contiguous memory
access pattern, through the kernel’s AoSoA-layout index compu-
tations, results in expensive gather/scatter instructions. Working
on the global buffer instead of writing temporary results into a
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Figure 11: Average kernel execution time of the ray-
tracing_benchmark with 50 iterations (width×height:
3840×2160 pixels). The error bars indicate minimum and
maximum values observed.

local variable generates so many scatter instructions, that the non-
vectorised version outperforms it by 1.23×. With temporaries, the
VPlan vectoriser outperforms the loop vectoriser by 1.37×.

The manual permutation of the outer SIMD loop into the loop
nest, which this kernel code allows, enables both compilers to gen-
erate efficient SIMD code, i.e. what we would like to see from a
successful outer loop vectorisation as well. As expected, the man-
ually vectorised kernels, which do not depend on the compiler
vectorisation, show the same performance, with a slight slow-down
for the global buffer access.

In conclusion, we can say that implementing work-item vectori-
sation in PoCL via the VPlan vectoriser would generate vectorised
code which, at least in non-trivial cases like this benchmark, is
not on par with both the Intel’s OpenCL compiler, or a manual
vectorisation scheme.

10.3 Imbalanced Workload with Heavy Use of
Built-in Functions: raytracing

The evaluation results for the raytracing_benchmark are displayed
in Figure 11. Initial measurements show that PoCL 1.4 is 1.62×
slower than Intel. Fixing the scheduler integer division bug as
described in Section 9.2 increases execution time by 2 %. Switching
from LLVM 9 to LLVM 11, both with PoCL 1.6, achieves a speedup
of 1.25×. Compared to PoCL 1.6 with LLVM 11, our proposed TBB
device achieves a speedup of 1.09×. Varying partitioner and grain
size does not achieve a higher speedup. Using the TBB device, the
slowdown could be reduced from 1.32× to 1.21× compared to Intel.
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11 SUMMARY
In this paper, we analysed the performance differences between the
closed-source Intel OpenCL implementation and the open-source
Portable Computing Language (PoCL) on Intel CPUs. Our analysis
shows that PoCL is lacking performance compared to Intel OpenCL,
and indicates that this gap is caused by deficits in work-group
scheduling and code generation, especially compiler vectorisation.
Following a deeper analysis of PoCL’s scheduling strategy and a
comparison to other frameworks, we propose an additional driver
for PoCL using the Threading Building Blocks (TBB) library. We
evaluated LLVM’s compiler vectorisers with respect to work-item
vectorisation of OpenCL kernels in PoCL. Additionally, we fixed a
minor issue that improved edge case performance and a bug that
decreased performance in balanced scenarios.

The TBB device enables speedups of up to 1.3× for the proxy ap-
plication benchmark and up to 1.8× for the synthetic micro bench-
mark. For the proxy application benchmark, this also means a
speedup of 1.3× over Intel OpenCL. With our contribution, PoCL’s
users now have the flexibility to choose between the default sched-
uling algorithm and the options of the TBB library to fine tune the
scheduling behaviour to their needs. Providing OpenCL users with
more control over scheduling, especially on CPUs, might be worth
considering for integration into the OpenCL standard.

We found that LLVM currently lacks the necessary vectorisation
capabilities to implement efficient work-item vectorisation in PoCL,
but the VPlan vectoriser puts this goal in reach. For now, manual
vectorisation using vector data types as described in [18] seems to
be the best way to ensure a predictable vectorisation across work-
item, as well as a performance which is on par with Intel OpenCL.
For kernels making heavy use of built-in functions, using Intel
SVML or GNU libmvec might be an alternative to the currently
used SLEEF/libclc libraries.

Overall, PoCL with the TBB device can compete with Intel
OpenCL in cases where automatic compiler vectorisation and built-
in functions are not crucial for kernel performance. For the other
cases, PoCL can build on LLVMs future improvements.
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