
38

A Module-Linking Graph Assisted Hybrid Optimization

Framework for Custom Analog and Mixed-Signal Circuit

Parameter Synthesis

MOHSEN HASSANPOURGHADI, REZWAN A. RASUL, and MIKE SHUO-WEI CHEN,

University of Southern California

Analog and mixed-signal (AMS) computer-aided design tools are of increasing interest owing to demand
for the wide range of AMS circuit specifications in the modern system on a chip and faster time to mar-
ket requirement. Traditionally, to accelerate the design process, the AMS system is decomposed into smaller
components (called modules) such that the complexity and evaluation of each module are more manageable.
However, this decomposition poses an interface problem, where the module’s input-output states deviate
from when combined to construct the AMS system, and thus degrades the system expected performance. In
this article, we develop a tool module-linking-graph assisted hybrid parameter search engine with neural net-
works (MOHSENN) to overcome these obstacles. We propose a module-linking-graph that enforces equality
of the modules’ interfaces during the parameter search process and apply surrogate modeling of the AMS
circuit via neural networks. Further, we propose a hybrid search consisting of a global optimization with
fast neural network models and a local optimization with accurate SPICE models to expedite the parameter
search process while maintaining the accuracy. To validate the effectiveness of the proposed approach, we
apply MOHSENN to design a successive approximation register analog-to-digital converter in 65-nm CMOS
technology. This demonstrated that the search time improves by a factor of 5 and 700 compared to conven-
tional hierarchical and flat design approaches, respectively, with improved performance.

CCS Concepts: • Hardware → Data conversion; Analog and mixed-signal circuit synthesis; Modeling
and parameter extraction;

Additional Key Words and Phrases: CAD tool, deep neural network

ACM Reference format:

Mohsen Hassanpourghadi, Rezwan A. Rasul, and Mike Shuo-Wei Chen. 2021. A Module-Linking Graph As-
sisted Hybrid Optimization Framework for Custom Analog and Mixed-Signal Circuit Parameter Synthesis.
ACM Trans. Des. Autom. Electron. Syst. 26, 5, Article 38 (May 2021), 22 pages.
https://doi.org/10.1145/3456722

1 INTRODUCTION

The future trends of electronic systems, such as the Internet of Things and 5G communications,
demand high-performance analog and mixed-signal (AMS) intellectual properties (IP) [14].
Concurrently, the AMS IP design is becoming more expensive and time consuming due to more

Authors’ address: M. Hassanpourghadi, R. A. Rasul, and M. S.-W. Chen, University of Southern California, 3737 Watt Way,
Los Angeles, CA 90089-2560; emails: {mhassanp, rrasul, swchen}@usc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1084-4309/2021/05-ART38 $15.00
https://doi.org/10.1145/3456722

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

https://doi.org/10.1145/3456722
mailto:permissions@acm.org
https://doi.org/10.1145/3456722
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3456722&domain=pdf&date_stamp=2021-06-05

38:2 M. Hassanpourghadi et al.

Fig. 1. Design of custom AMS parameter synthesis with optimization.

sophisticated technology design rules and increasing complexity of systems on a chip. Although
sharing an IP among different applications can significantly reduce the design cost, this is an in-
efficient solution since the AMS circuit is application specific and only performs efficiently for a
particular task. Accordingly, the ideal solution then is to optimize the same IP for different target
specifications but with a significantly reduced design cost. Since AMS circuit design of a particular
topology usually follows a similar procedure, the fixed-topology IP can be synthesized for differ-
ent design specifications by a computer-aided design (CAD) tool with reduced design cost and
development time [19].

One imperative step in the automated synthesis of a complex AMS system is parameter syn-
thesis, which is the appropriate sizing of circuit elements. As discussed elsewhere [12, 19, 21],
enhancing the performance of parameter synthesis can significantly improve layout generation
and final verification in the AMS design process. Usually, the parameter synthesis of a complex
AMS system is a two-step iterative process. The steps are evaluation and optimization, and they
occur successively as presented in Figure 1. There are three main ways to perform the evaluation
step: SPICE based, equation based, and regression based [19] as illustrated in Figure 1.

Performing the evaluation step of a complex AMS system in SPICE is accurate but time con-
suming [9]. As a result, it is infeasible to synthesize the entire AMS circuit with SPICE in-loop
and find the appropriate design parameters that meet the specification. To speed up the evalua-
tion step, the circuit’s objectives and the constraints can be expressed as an analytical equation
of the design parameters [4, 8, 23]. Consequently, the evaluation can take place much faster com-
pared to using a SPICE simulation. However, it is complicated to derive accurate equations, and
higher-order effects are often ignored for simplifications, limiting the accuracy of this method. To
bypass manual equation derivation yet maintain evaluation speed, regression models are used. In
this case, the accuracy depends on the number of system-level simulation data used for training
the regression model [3, 6, 11, 16, 20, 25–27, 32, 34, 35].

Among various regression models, such as support vector regression (SVR) [3], random

forest (RF) [35], and knearest neighbors (kNN) [32], the neural network (NN) [34] model
provides a promising opportunity. NN models have shown excellent performance when approx-
imating any non-linear function, given sufficient training data points [12, 16, 18, 34, 36]. Most
previous works employed NN-based models to approximate a less complicated AMS circuit such
as an amplifier with 5, 7, or 10 parameters per Wolfe and Vemuri [34], İslamoğlu et al. [36], and Li
et al. [16], respectively. In Garitselov et al. [11], the NN model was used to approximate a Phase-

Locked Loop (PLL) with 21 parameters; however, the scheme covered a small parameter range
for training and searching because generating training data is expensive for a complete PLL. An
AMS system often consists of a large number of parameters with wide ranges. As a result, gener-
ating a general and accurate NN model requires a huge training dataset for reasonable accuracy,
incurring many time-consuming SPICE simulations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:3

Since modeling a complex AMS circuit altogether is challenging, an improved approach is to
break the system down into multiple simpler modules. This method is called hierarchical design

and improves the accuracy and maintains fast evaluation of the modules [9]. However, module
breakdown poses a unique challenge known as the interface problem [7]. In other words, if the
neighboring modules are not modeled with equal interfaces, their performance estimation may be
inaccurate. Previous works have addressed this challenge by introducing a set of connectivity rules
that help preserve the module input-output conditions when modeled separately [27]. However,
these methods do not guarantee the equality of interfaces and can suffer from inaccuracies.

In this article, we propose MOHSENN, a module-linking-graph (MLG) assisted hybrid pa-
rameter search engine with NNs to alleviate the preceding challenges. We propose an MLG to
address the interface issue, which forces equality on the shared circuit elements at the interface.
To accelerate the design process and cover a wide design parameter range, we propose the hy-
brid search. In the first phase, the hybrid search exploits the adoption of NN regression models on
the MLG in the global search, where it performs a fast and parallel gradient-based optimization
on the design parameters. In the second phase, to attenuate the modeling inaccuracy, we per-
form a local search on the MLG using SPICE simulation. This step is further accelerated with the
proposed gradient-based variable reduction technique that limits the number of selected design
parameters for optimization. To prove the concept, we use MOHSENN for a successive approx-

imation register analog-to-digital converter (SAR ADC) design in 65-nm CMOS technology,
which achieves 5X and 700X faster search speed compared to the conventional hierarchical and
flat approach, respectively, with relatively better ADC performance. Moreover, to demonstrate that
MOHSENN is capable of realizing custom AMS IP, it is used to design three custom SAR ADCs of
a fixed topology with diverse performance specifications.

2 PROPOSED MLG-ASSISTED HYBRID SEARCH ENGINE WITH NN

In the following sections, we will formulate the hierarchical design problem and then introduce
the flow of MOHSENN and the enabling techniques.

2.1 Problem Statement

The objective of the AMS circuit sizing problem is to find the design parameter vector p of size
np within a finite parameter space P to minimize and satisfy the system-level constraints set by
the user desired specification vector u. Circuit design parameters are transistor geometries, biases,
or any other variables that can affect the circuit performance. User desired specifications u are
high-level and simple measures of the AMS IP’s performance understandable to non-expert users.
For example, the number of bits or the bandwidth of an ADC can be u.

In hierarchical design, an AMS circuit is divided into multiple smaller circuits, which are referred
to as modules in this article. For each module, a parameter-to-modules’ metric (P2M) function
is defined that maps the module’s design parameters to its metrics. For example, metric can be the
gain of an amplifier or the delay of a D-flip-flop. For an AMS circuit consisting of N modules, we
can express the P2M function of the ith module as

mi = f i (pi), (1)

where pi is the parameter vector, mi is the metric vector, and f i (.) is the P2M function. We as-
sume that the P2M function can be accurately characterized using SPICE simulation and foundry-
provided device models. In a model-based method, a regression model is approximating the P2M
function and is denoted by f̂ i that outputs the estimated modules’ metrics m̂i .

To design the entire AMS circuit, equations or behavioral models that map the modules’ metrics
to the system-level design objectives or constraints [9, 13] are necessary. With the system-level

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:4 M. Hassanpourghadi et al.

objective function and constraint functions denoted by obj () and h(), respectively, the search prob-
lem can be expressed as follows [16]:

Given u, (2)

arg min
p∈P

obj (m, pB),

s .t . : hj (m, u, pB) ≥ 0, j ∈ {1, 2, . . . ,nh },
m = [m1,m2, . . . ,mN], p = [p1, p2, . . . , pN , pB],mi = f i (pi), i ∈ {1, 2, . . . ,N },

where nh is the number of constraints. In (2), m is derived from concatenating every modules’
metrics, and pB is the system-level parameter vector that is absent in any module but would affect
the final performance. For example, pB can be the number of modules required to drive a clock
routing.

In (2), f generates the modules’ metrics m through circuit-level simulations and both obj and
h are system-level functions of m. However, as opposed to objective function obj, the constraint
functions h also require information from the user desired specification to set the bounds in the
search problem. As an example, obj can be the power or area of an AMS circuit, which should
be minimized via optimization. However, an example of h is the signal-to-noise-ratio (SNR)

of an ADC that should be larger than 6 × nbit + 1.76. In other words, SNR − 6 × nbit − 1.76 ≥ 0,
where u = [nbit] is the user desired number of bits. A concrete example of constraint and objective
function setup for optimizing a SAR ADC design will be provided in Section 4.1.3.

Conventionally, two different levels of optimization are utilized to solve (2). The first step is the
system level, where the constraints on hj s are satisfied by finding modules’ metrics. The second
step is the module level, where each module’s parameters are chosen individually to satisfy the
found metrics at the system level. Designing modules separately exacerbates the interface problem
since it ignores the interrelations between modules. In MOHSENN, we use the proposed MLG to
design the dependent modules jointly. This could significantly increase the conventional optimiza-
tion time; therefore, we propose a hybrid search to accelerate the design process.

2.2 MOHSENN Flow Overview

Figure 2 illustrates the MOHSENN design flow, which requires a one-time offline preparation of
the MLG and the hybrid search.

In the preparation phase, after the module breakdown, we identify the necessary interfaces
among modules that should be modeled in their P2M characterization functions. Subsequently, we
propose to construct the MLG (д(.)) and incorporate the interfaces as the graph’s vertices with
a method that will be discussed in Section 3.1. The MLG accommodates a platform for obtaining
the module metrics in the presence of interfaces from adjacent modules. Note that the MLG’s
output (modules’ metrics) can be obtained either from fast NN models or more accurate SPICE
simulations. This is crucial for the fast yet accurate exploration of the parameter space using the
hybrid search.

The proposed hybrid search algorithm consists of a global and a local search phase. The global
search phase utilizes NN models for evaluation, with the proposed parallel Monte Carlo (Par-

MC) to select multiple random initial points to search over a broad region. This phase outputs a
set of potential parameter candidates, one of which is selected for the local search. The proposed
gradient-based variable reduction technique reduces the number of design parameters for the local
search phase, resulting in a faster search result. This phase utilizes SPICE for evaluation to reduce
the errors introduced by the regression models. The final output of the hybrid search is the design
parameters for the given AMS system topology, which satisfies the user desired specification.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:5

Fig. 2. Proposed MOHSENN flowchart, the preparation, and the hybrid search.

3 MOHSENN PREPARATION AND HYBRID SEARCH

In the following sections, we will describe several enabling techniques in the proposed MOHSENN
flow. For simplification, we denote constraints by h = [h1,h2, . . . ,hnh

], the SPICE model P2M func-

tions by f = [f 1, f 2, . . . , f N], and for the NN models we use f̂ = [f̂ 1, f̂ 2, . . . , f̂ N].

3.1 MLG Construction

If the modules are designed individually without considering the interface present in the AMS
system, modules’ metrics estimated during the design may deviate from actual values, causing
interface problems. In this article, we assume the interface is an inter-module variable that can
simultaneously affect all physically connected modules. For example, this assumption includes
the loading effect, where the load impedance of the driving module and the input impedance of
the loading modules are the same variable and should be equated during the design stage.

Among the prior hierarchical design methodologies, contract-based design [5, 27] is one of the
most successful methods that specifically address the interface problem. This method includes a
set of rules named contracts, which determine the connectivity and the relation among modules
in the system-level design. By using these contracts, the CAD tool shrinks the feasible range for
the interfaces. Hence, the derived interfaces during module design are more accurately matched
compared to conventional methods. However, contract-based design can only guarantee near (not
full)-equality of the interfaces. This near-equality causes a small deviation in module behavior
prediction in the design phase, which can slightly damage the AMS system final performance.

We use an MLG in this work, which enforces full equality of the interfaces among adjacent
modules. The MLG, as shown in Figure 3, can be represented as a directed graph that consists

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:6 M. Hassanpourghadi et al.

Fig. 3. Graphical depiction of MLG.

Fig. 4. Two types of interface modeling in module test benches.

of the design parameters p, user desired specifications u, P2M functions (f or f̂), and modules’
metrics (m or m̂) as the vertices. The functional representation of MLG is given by [m ∨ m̂] =

д
(
p, u, [f ∨ f̂]

)
. In other words, MLG outputs the modules’ metrics when the design parameters

and desired specifications are provided. An interface between modules is modeled as a vertex in
the graph, which either sources edges to or sinks edges from multiple f or f̂ vertices as shown in
Figure 3.

To construct the MLG, we should first depict each module’s sub-graph representation, then
connect those graphs with the interface vertices. The graphical representation of the ith module
sources only from its corresponding parameters (pi) into the P2M function (f i), then sinks into its
metrics vertices (mi). After constructing the module sub-graphs, we add the interfaces’ nodes and
connect them according to the interface characterization type.

MLG can be used with both conventional types of interface characterization (approximation
and replication), as illustrated in the example of Figure 4. When interface approximation is used,
the input impedance of the loading module should be characterized as its metric. Simultaneously,
the load impedance of the driving module should be characterized as its design parameter. Since
they are the same variable in the AMS system, they are represented as a single vertex (i.e., zin in
Figure 4), which sources an edge to the driving module and sinks an edge from the loading module.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:7

However, when interface replication is used, both the driving and the loading modules should be
characterized with the input transistor of the loading module, making it a design parameter for
both. Then, a single vertex in the MLG would represent this interface variable, sourcing two edges
to the modules (i.e., win in Figure 4).

Interface replication is preferable over approximation for MLG. When approximation is em-
ployed, the evaluation of an adjacent module’s P2M functions inside the MLG must be serialized.
In the previous example, the loading module’s input impedance (zin) should be derived first be-
fore evaluating the driving module. In the case of replication, the evaluation can be processed in
parallel as there is no such dependency, resulting in accelerated metric estimation by parallel pro-
cessing. Interface approximation also causes multiple layers in the MLG, which makes gradient
estimation more difficult. In the same example, estimating the gradient of the driving module’s

metrics with respect to the loading module’s parameters (∂m̂l

∂pk) requires back-propagation through

two P2M functions (∂m̂l

∂ ˆzin
and ∂ẑin

∂pk) according to the chain rule. However, the same gradient (∂m̂l

∂win
)

requires back-propagation through a single P2M function in case of replication. Another drawback
of interface approximation arises in systems where the modules cyclically affect each other, such
as in feedback-based circuits (i.e., delta-sigma modulators or PLL). In such circuits, a loop may be
created inside MLG, which slows down the inference and gradient estimation.

Besides ensuring equality of the interface, MLG is also recyclable. This means that the same MLG
can be used to design an AMS system across different corners and CMOS technologies, provided its
topology is fixed. The only parts of MLG that are a function of technology and corner cases are the
P2M functions. This implies that incorporating the new technology or corner (e.g., typical, slow, or
fast) in the test bench to generate the P2M model is sufficient, requiring no MLG alteration. When
the topology of a specific module changes, a slight MLG alteration is required. For example, when
replacing a cascode amplifier module with a folded cascode amplifier [29], the interface models do
not vary, the MLG remains almost unchanged, and only the design parameters vertices of the new
module need to be replaced. This feature of MLG helps accelerate the design flow using MOHSENN
across different technologies, corners, and module topologies.

3.2 Hybrid Search

Unlike hierarchical design, MOHSENN uses monolithic optimization on both the system level and
module level to solve (2). This is obtained by the composition of MLG д() and the system-level
objective function obj and constraints h. Then we can formulate MOHSENN’s search problem as

Given u, (3)

arg min
p∈P

obj
(
д(p, u, [f ∨ f̂]), pB

)
,

s .t . : hj

(
д(p, u, [f ∨ f̂]), u, pB

)
≥ 0, j ∈ {1, 2, . . . ,nh }.

To solve (3), we propose to use the NN model for global optimization (global search), followed
by a local optimization with SPICE model (local search). The NN model evaluation time is usually
less than milliseconds, whereas the SPICE model is of the order of seconds to hours. Further, global
optimization spends an order of magnitude larger number of function evaluations for proper ex-
ploration compared to the local one. The example of Section 4 complies with this statement, which
shows almost 100,000 AMS circuit evaluations for global optimization, compared to less than 1,000
for local ones. Therefore, by sacrificing the accuracy and using NN models instead of SPICE sim-
ulations in global optimization, we can avoid several days of convergence, reducing it to minutes.
This feature can help us to vary the optimizer’s hyper-parameters to achieve better results. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:8 M. Hassanpourghadi et al.

global optimization submits a set of design parameter candidates (denoted by C) for the user to
choose one as the initial point of the local search. Precision is crucial in the local search; hence, we
use a precise SPICE model. Due to NN model utilization in the global search, its results may not be
even sub-optimal or satisfactory. The local optimization helps to improve the results by moving
the candidate toward the nearest optimal point. This combination of the two optimizations helps
to search over a wide range and find appropriate results within a short time.

By transforming the constraint satisfactory problem of (3) into optimization problem, we can
use the hybrid search. In hybrid search, instead of design parameters p as variables, we use a
mapped version of design parameters denoted by x to remove the variable bounds. This step is
necessary for the type of the optimizers used in MOHSENN. p has bounds in its domain P (i.e.,
pmin ≤ p ≤ pmax). So, instead of p, we use mapped parameter x transformed by the saturation
function defined by

sat : Rnp −→ P , (4)

sat (x) =
1

1 + e−x
× (pmax − pmin) + pmin .

Clearly, we can derive the design parameters at any iteration from the mapped variables by
p = sat−1 (x). By constructing MOHSENN’s cost function cost (.) we can formulate (3) as an op-
timization problem expressed by

opt : arg min
x∈Rnp

cost
(
x, [f ∨ f̂]

)
=wobj × obj

(
д
(
sat (x), u, [f ∨ f̂]

)
, pB

)
(5)

+

nh∑
j=1

elu

(
−wh

j × hj

(
д
(
sat (x), u, [f ∨ f̂]

)
, u, pB

))
,

where wh ≥ 0 and wobj ≥ 0 are the positive weights vector for normalization and elu () is the
non-linear exponential linear unit (ELU) defined by

elu (x) =

{
ex − 1 x ≤ 0
x 0 ≤ x

. (6)

The ELU function imposes a high gradient when the specification is not met and exponentially
reduces it if otherwise. Owing to its exponential part, ELU also helps to optimize the specifications
further, even after they are satisfied.

3.2.1 Global Search Phase. In the global search phase, MOHSENN uses a Gradient-Based Op-

timizer (GBO) on the NN regression models in combination with the proposed Par-MC scheme
to find multiple design parameter candidates. Compared to conventional global optimizers such
as simulated annealing (SA) or the genetic algorithm, GBOs require less optimization iterations
to converge. However, they are more prone to getting stuck in local minimums if the problem is
non-convex. In this work, we utilize the Adam optimizer in the global search phase, which has a
higher probability of hopping over the local minimums compared to the conventional GBOs such
as the Gradient Descent optimizer [15], leading to better overall performance. We employ two
hyper-parameters to terminate the search process: the maximum number of iterations (kmax) and
the tolerance (f tol). The optimizer stops when the number of iteration crosses kmax or the cost
function reaches a value smaller than f tol .

Par-MC performs considerably faster than conventional sequential MC schemes if combined
with machine learning tools such as TensorFlow [1]. The conventional sequential MC technique
picks uncorrelated random initial point for the optimizer in each MC experiment for nmc times.
Unfortunately, this approach requires full convergence of each optimization for nmc experiences

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:9

ALGORITHM 1: Proposed gradient-based variable reduction

Input: C, nv

Output: nv variables
1: Choose one candidate from C named xoд

2: Find | |∇xcost (x) | | = [| | ∂cost
x1
| |, | | ∂cost

x2
| |, . . . , | | ∂cost

xnp
| |] at x = xoд

3: Sort | |∇xcost (x) | | and choose nv top variables
4: return nv top variables of x

(each time with different initialization), which slows down the search engine. Par-MC, however,
optimizes only once by paralleling the experiments, which significantly increases the search speed.
In this technique, the variables from different MC experiments are concatenated, and the optimiza-
tion is performed on the aggregation of all resulting cost functions. We construct the MC’s con-
catenated variable matrix denoted by X with the size of [np ,nmc], and we formulate the Par-MC
optimization as

opt : arg min
X∈Rnmc ×np

costmc (X, f̂) =
nmc∑
i=1

cost (Xi, :, f̂), (7)

where cost () is the cost function from (5) and Xi, : is the ith column of the X. The optimization
begins with a randomly picked starting point X(0) and results in Xog. We stack the columns of Xog

and their corresponding cost () value in C for the user to choose.
The final results of Par-MC are almost equivalent to the sequential MC if a GBO is used for

optimization. In a GBO, the optimization direction is only dependent on the gradients and the
starting points. Since the derivatives of Par-MC’s cost function costmc with respect to columns
of X are independent of one another, the optimization direction is only related to the columns’
initialization. Therefore, if the initialization of Xi, :s is equivalent to the sequential MC initialization
for each experiment, the two methods’ final results should be the same. Note that since nmc cost
functions are summed up in the Par-MC scheme, the stopping criterion of tolerance should also
be multiplied by this factor. Therefore, the search result of the Par-MC scheme may vary slightly
from its sequential counterpart for the same initial point.

The proposed scheme reduces the total number of optimization iterations compared to the con-
ventional scheme of optimizing multiple initial points sequentially. However, it comes at the cost
of optimizing more variables per iteration. Thanks to the TensorFlow [1] tool used in this work, the
cost becomes negligible. TensorFlow can handle millions of variables while training deep learning
models, implying that it can easily operate with nmc times more variables in an iteration even for
a sufficiently large value of nmc . As a result, the search space exploration is greatly accelerated.

The global search result cost (Xi, :og, f) can be far from the actual global optimal point if
the NN models’ inaccuracy is too large. Modules’ NN models have regression errors ϵ (m̂) that
cause deviation in the cost function estimation leading to global search performance degrada-
tion. The deviation in the cost function is proportional to the regression errors and deriva-
tives with respect to the modules’ metric. Hence, to reduce the cost function estimation (i.e.,

| |cost (Xi, :og, f̂) − cost (Xi, :og, f) | |) by half, the regression errors should be reduced by half. There-
fore, considering this difference, one can determine the tolerable regression errors and tune the
corresponding hyper-parameters (e.g., dataset size) accordingly [18].

3.2.2 Local Optimization Phase. In the local search phase, we use a gradient-free optimizer

(GFO) [30] and SPICE model, which is more precise than NN models. The initial point of the GFO
is one of the parameter candidates C picked by the user. Since each optimization step with SPICE

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:10 M. Hassanpourghadi et al.

takes a significant amount of time (depending on the module test bench), we want as few steps as
possible for the optimization. Therefore, we enlarge f tol for the local search. In addition, we use
the proposed gradient-based variable reduction technique illustrated in Algorithm 1 to decrease
the number of the optimizer’s variables.

In this technique, we sort the design parameters based on their significance in affecting the cost
function and then keep nv most sensitive parameters as the variables for the local optimization.

We set the sorting criteria to be | | ∂cost (f̂)
∂xi

| | obtained from the NN model in decreasing order, in

which xi is the ith element of the variable vector x.
We know that the initial point for the local search phase is one of the columns of X derived

from Adam optimization. Let us call it xoд . We also know that Adam obtains this value from the
gradients and evaluations performed on the NN model, which suffers from a regression error. The
regression error deviates these partial derivatives for the ith variable by ϵ i

d
; therefore, the last

partial derivative with respect to the ith design parameter is expressed as

∂cost (f̂)

∂xi
×
���
�
1 +

ϵ i
d

∂cost (f̂)
∂xi

���
�
|x=xoд

. (8)

This shows that the cost function is more deviated by the ith variable if either ϵ i
d

is larger or
the absolute partial derivative along this variable is smaller. Therefore, we propose to sort the
parameters in x according to the absolute partial derivatives at xoд in decreasing order and choose
the top nv variables.

There is a trade-off between the choice of nv and the optimization time. Because regression
errors and their effects on the update function are stochastical, we suggest considering nv as a
design hyper-parameter. For this work, we use nv = 40%np as a rule of thumb to enhance the local
search speed by a factor of more than 2. Another method can be to set a maximum bound dmax

for partial derivatives, and parameters are chosen that bring | | ∂cost (f̂)
∂xi

| | < dmax .
After choosing the nv most sensitive variables, we can run a local optimization with the few

remaining parameters. We suggest using the Powell optimization algorithm, which practically
converges faster than other typical GFOs for circuit design. We name the optimization result xol ,
and we find the design parameter by popt = sat

−1 (xol). Finally, we send popt to the output, which
concludes the algorithm.

4 CASE STUDY OF A SAR ADC

This section illustrates an example of our proposed MOHSENN algorithm to design a SAR ADC.
The algorithm runs on the TensorFlow platform on a machine running Red Hat 6.10 OS with an
Intel Xeon E5-2630 CPU and 32 GB of memory. The block-level verification tests are performed
with Spectre on a machine running Red Hat 6.10 OS and with an Intel Xeon E7-4870 CPU and 256
GB of memory.

The SAR ADC is a popular data conversion topology choice due to its power efficiency and wide
range of applications [10, 24, 31]. This section illustrates the design of a SAR ADC proposed in Liu
et al. [17] by the proposed MOHSENN. Figure 5 shows the ADC’s top-level block diagram, includ-
ing four main modules: a comparator (COMP), a track-and-hold with a capacitive DAC (THCDAC),
a SAR sequential logic for driving THCDAC (SEQ1), and a SAR sequential logic for clocking the
comparator (SEQ2). We set the user desired specification as u = [nbit , f reqS], which holds the
number of bits and sampling frequency to cover a wide range of operations for the SAR ADC. In
this case study, we use 65-nm CMOS technology and the design is at the schematic level.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:11

Fig. 5. SAR ADC top level.

Fig. 6. THCDAC architecture and the test bench.

Fig. 7. COMP’s architecture and the test bench.

4.1 Preparation of MOHSENN for SAR ADC Design

4.1.1 SPICE P2M Functions. Modules in the SAR ADC load each other cyclically. Therefore,
if we use interface approximation, the MLG will contain a loop. To avoid this problem, we use
interface replication to model the SAR logic interface with the CDAC and the comparator. There
is no significant addition to the number of module parameters due to this choice. However, the
comparator’s loading effect on the CDAC is approximated with interface approximation for the
purpose of this study.

Table 1 indicates the module parameters with their ranges and brief illustrations. It also contains
the modules’ metrics, their illustrations, and the required simulation type to derive them. Figure 6,
Figure 7, Figure 8, and Figure 9 show the architecture and the test benches of THCDAC, COMP,
SEQ2, and SEQ1, respectively. Moreover, in each figure, the design parameters are shown as part of
the architecture, whereas the interface modeling is presented in the corresponding test bench. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:12 M. Hassanpourghadi et al.

Table 1. Design Parameters, Their Ranges, and Modules’ Metrics of the SAR ADC

Module p [pmin, pmax] Description m Description Sim. Type

THCDAC cu [0.5fF,5.0fF] Unit capacitance bwn NMOS Sw. bandwidth AC

wt n [2,40] Sw. NMOS size bwp PMOS Sw. bandwidth AC

wtp [2,60] Sw. PMOS size vmsb CDAC output swing Tran

d [2,16] Division factor dlyDAC DAC settling time Tran

nbit [3,11] ADC resolution

cin [2fF,30fF] Interface approx.

COMP wck1 [1,10] Inv. size pwc Power Tran

wck2 [1,20] Inv. size dlyRDY CLK-RDY delay Tran

wcin [1,20] Input PMOS size dlyRST Reset delay Tran

wcn [1,40] NMOS size vomin Output common mode Tran

wcp [1,40] PMOS size cin Input Capacitance AC

wt [2,80] Tail PMOS size noisec Input referred noise Noise

wr 1 [1,8] Reset NMOS size —

wr 2 [1,8] Reset NMOS size —

wcinv [1,40] Inv. load size —

wcnand [1,8] NAND load size —

nbit [3,11] ADC resolution —

wdf f inv2 [1,16] Interface replicat. —

wr dy [1,48] Interface replicat. —

wor [1,10] Interface replicat. —

SEQ1 winv1 [1,12] Inv. size pws1 Seg.#1 power Tran

winv2 [2,24] Inv. size pws2 Seg.#2 power Tran

winv3 [2,96] Inv. size dlys1 RDY-DP delay Tran

wnand [1,16] NAND size dlys2 RDY-CLKQ delay Tran

wdf f inv1 [2,16] Seg.#1 DFF Inv. size —

wdf f ck1 [1,10] Seg.#1 DFF Inv. size —

wdf f inv2 [1,16] Seg.#2 DFF Inv. size —

wdf f ck2 [1,16] Seg.#2 DFF Inv. size —

wdf f nand [2,32] Seg.#2 DFF NAND size —

nbit [3,11] ADC resolution —

d [2,16] Division factor —

SEQ2 wor [1,10] OR size pwor OR gate power Tran

wck1 [1,12] Interface replicat. pwbuf Buffer power Tran

pwdrv Driver power Tran

dlyor OR gate delay Tran

dlybuf Buffer delay Tran

dlydrv Driver delay Tran

Fig. 8. SEQ2 architecture and the test bench.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:13

Fig. 9. SEQ1 architecture and the test bench.

Fig. 10. SAR ADC MLG.

SAR ADC modules contain 26 design parameters, with 24 of them belonging to modules gathered
in Table 1. It has two system-level parameters, which are pB = [nbuf ,dctr]. The first is the buffer
number used in SEQ2, and the second is the duty cycle of the sampling clock.

4.1.2 MLG Construction. After module breakdown, we construct the MLG. As mentioned pre-

viously,д(p, u, [f ∨ f̂]) is a function of user desired specifications, module parameters, and module
test benches (P2M functions). Here, the only specification causing an effect is nbit , which is a pa-
rameter used in THCDAC, COMP, and SEQ1. The SAR ADC also has two block-level parameters
pb = [nbuf ,dctr], which are the number of buffers used in SEQ2 and THCDAC’s tracking time
duty cycle. The details related to both of these parameters are shown in Table 1. By knowing all of
the parameters, metrics, and interfaces, we can construct the MLG shown in Figure 10. The shared
vertices of d, wck2, wdf f inv1, wdf f inv2, wdf f ck2, wor show the interface replication graph con-
struction as discussed earlier in Section 3.1. For the specific case of wrdy = 2wdf f inv1 +wdf f ck2,

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:14 M. Hassanpourghadi et al.

Table 2. NN Topology and Hyper-Parameters Used in SAR ADC Design

Module Neurons per Layer ϕ |Dt r ain | |Dt est | Training MAE Loss Test MAE Loss

THCDAC [6, 64, 256, 64, 4] Sigmoid 7,500 2,500 0.013 0.0140

COMP [14, 256, 512, 256, 6] Sigmoid 7,500 2,500 0.013 0.014

SEQ1 [11, 256, 512, 256, 4] Sigmoid 7,500 2,500 0.011 0.014

SEQ2 [2, 50, 50, 6] Sigmoid 120 120 0.0003 0.0003

we placed the relationship in the graph. The only interface approximation modeling is cin con-
necting COMP’s metric to THCDAC’s parameter.

4.1.3 System-Level Design Objective and Constraints. For the SAR ADC design, we construct
the objective function obj and constraints h by

obj = power , (9)

h1 = diдitaldly − analoдdly ≥ 0

h2 =
1

f reqS
− ttr − tq ≥ 0

h3 = SNR − 6nbit − 11.76 ≥ 0

h4 = 2πttr min(bwn ,bwp) − nbit ln 2 ≥ 0

h5 = 4 − 2πttr min(bwn ,bwp) + nbit ln 2 ≥ 0

h6 = vomin − 0.6 ≥ 0,

where

diдitaldly = dlyor + nbuf × dlybuf + dlydrv

analoдdly = dlys1 + dlys2 + dlyDAC

tq = nbit

(
dlyRDY + dlyRST + 2diдitaldly

)
ttr = dctr /f reqS

SNR = 10 log(
(4vmsb)2

4KT /(2nbit cu + cin) + (noisec)2
)

power = nbit

(
pws1 + pws2 + pwor + nbuf × +pwbuf + pwdrv + pwc

)
. (10)

In (9), h1 and h2 hold timing constraints imposed by two different SAR ADC’s loop. h3 holds the
signal to noise ratio requirements, whereas h4 and h5 indicate THCDAC’s bandwidth requirement.
h6 sets constraints on COMP’s output common mode voltage, and obj is the power consumption.

4.1.4 NN Regression Models. We gathered information regarding the NN models for the four
different modules, as presented in Table 2. For COMP, THCDAC, and SEQ1, we used an NN regres-
sion model with five layers, whereas for SEQ2, we used four layers. The number of neurons for
each layer is shown in Table 2. To determine the number of layers and neurons per layer, we used
the method illustrated in Wolfe and Vemuri [34]. The activation function of all layers except the
last one is the Sigmoid function (i.e., ϕ (x) = 1

1+e−x). The last layer uses a linear activation function.
Other than SEQ2’s model, we trained the NN models with a dataset of |Dtr ain | =7,500 and tested it
with |Dtest | =2,500 sample points generated by the previously described test benches. Generating
the whole dataset took almost 5 hours and 50 minutes. For training, we used the Adam algorithm,
and the loss function is the mean absolute error (MAE). The training and testing loss for the
given datasets are presented in Table 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:15

Table 3. Metrics Introduced in Table 1, the Statistical Parameters, and the Regression Error by kNN, RF,

SVR, and NN Modeling with Different Sizes of Training Dataset |Dtr ain |

m μ (m) σ (m) kNN ϵ (m̂) RF ϵ (m̂) SVR ϵ (m̂) NN ϵ (m̂) NN ϵ (m̂) NN ϵ (m̂) NN ϵ (m̂)

|Dt r ain | |Dt r ain | |Dt r ain | |Dt r ain | |Dt r ain | |Dt r ain | |Dt r ain |
= 7,500 = 7,500 = 7,500 = 1,000 = 2,500 = 5,000 = 7,500

THCDAC Metrics

bwn [GHz] 17.33 32.19 6.80 3.20 3.03 1.12 0.58 0.33 0.17

bwp [GHz] 8.17 15.62 3.46 1.46 1.53 0.50 0.26 0.15 0.13

vmsb [mV] 475.55 39.93 8.24 3.77 1.85 1.04 0.35 0.26 0.21

dlyDAC [pS] 241.86 172.52 30.05 15.63 7.70 9.87 7.78 7.45 6.92

COMP Metrics

pwc [μW] 118.93 46.63 13.61 10.77 5.79 9.25 6.24 3.10 1.36

dlyRDY [pS] 320.49 226.78 68.24 46.75 40.68 38.0 24.6 15.5 7.77

dlyRST [pS] 170.90 116.6 38.10 27.69 21.93 26.8 17.7 9.85 4.58

vomin [mV] 745.8 229.0 91.4 47.43 39.48 34.7 21.0 15.8 8.32

cin [fF] 17.1 8.0 2.7 0.87 0.17 0.15 0.12 0.10 0.06

noisec [μV2] 367.8 255.5 84.51 29.41 52.12 54.7 35.7 30.9 13.8

SEQ1 Metrics

pws1 [μW] 189.5 606.8 181.47 31.30 119.13 43.7 20.0 13.0 5.68

pws2 [μW] 12.5 7.1 1.59 0.45 0.37 0.21 0.12 0.08 0.05

dlys1 [pS] 159.5 258.7 72.12 29.18 44.68 30.0 14.5 9.65 6.04

dlys2 [pS] 59.1 25.3 9.80 2.60 5.52 1.70 0.90 0.66 0.50

SEQ2 Metrics, |Dt r ain | = 120 for All Cases

pwor [μW] 10.2 6.9 0.60 0.11 0.08 — — — 0.01

pwbuf [μW] 3.06 1.88 0.164 0.031 0.028 — — — 0.004

pwdrv [μW] 3.43 1.26 0.121 0.025 0.024 — — — 0.005

dlyor [pS] 31.60 1.85 0.355 0.008 0.148 — — — 0.007

dlybuf [pS] 12.71 1.62 0.286 0.007 0.094 — — — 0.006

dlydrv [pS] 14.76 4.33 0.580 0.018 0.185 — — — 0.014

With the available dataset, we approximated all modules’ metrics with four different non-linear
regression models that have been used in circuit design tools (SVR, kNN, RF, and NN), and their
corresponding regression errors are presented in Table 3. For SVR, kNN, and RF, we used the
Python package of scikit-learn [28], and for NN, we used TensorFlow. For SVR, we used the non-
linear rbf kernel, tol of 10−3, and epsilon of 10−12, and the remaining hyper-parameters are scikit-
learn’s default. For kNN, we set the number of neighbors to 100, and for RF, we set the number
of estimators to 100. We chose these hyper-parameters based on manual tuning to achieve the
minimum loss. We included the average μ () and standard deviationσ () of metrics from the training
dataset in Table 3 to be compared with regression errors. Comparatively, among all regression
types, we can observe that NN illicits fewer regression errors for all metrics when the number of
training sample points (|Dtr ain |) are equal to 7,500. We varied the |Dtr ain | to examine its effect on
the NN model accuracy and presented the results in Table 3. As mentioned before, the NN model
regression error can be reduced significantly by augmenting the dataset.

4.2 Search Engine Results

After preparation, the CAD tool with the MOHSENN algorithm can receive u = [nbit , f reqS]
from the user to generate the corresponding circuit. In this work, we start from a design of

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:16 M. Hassanpourghadi et al.

Fig. 11. cost vs. optimization iteration in global search phase, and local search phase.

u =[6, 500MS/s]. We show the global and local search phases when nmc is 1 (single-run Adam
optimization) and when the stopping criterion is restrictive tol = 0.001 for local optimization. In
the next experiment, we change nv to test whether reducing the dimensions with the proposed
gradient-based variable reduction method can still produce reliable results. We also examine the
efficiency of the Par-MC and Adam algorithm, and we compare it to SA optimization and the con-
ventional sequential MC method. Next, we gathered three user desired specifications for u =[10,
200MS/s], u =[8, 340MS/s], and u =[6, 500MS/s] designed by MOHSENN. Finally, we will compare
MOHSENN methodology to other circuit sizing algorithms.

We tested MOHSENN’s hybrid search performance on SAR ADC design. The SAR ADC’s cost
function curve vs. optimization iterations for both global and local searches are presented in
Figure 11. For this test in the global search, the hyper-parameters were the learning rate γ = 0.02,
f tol = 10−5, and nmc = 1, and it took 342 iterations for convergence. In the local search, the hyper-
parameters are f tol = 0.001 and nv = 10, and it took 337 SPICE evaluations within six optimiza-
tion iterations for successful convergence. It can be seen that the global search improves the initial

starting point significantly from cost (x(0), f̂) = 218.05 to cost (xoд, f̂) = −2.85 based on NN model-
ing. Because of the fast NN evaluation, this step converges within 15 seconds. We evaluated every
iteration of the global search with the SPICE model to examine the cost function trend without
the regression errors. During the global search, the cost function is initially cost (x(0), f) = 221.66,
which is minimized to cost (xoд, f) = 4.22 with the SPICE models. In the local search, the Powell
algorithm conducts many SPICE evaluations per iteration. Therefore, for only six iterations, con-
vergence takes more than 1,600 seconds. The final found point is cost (xol , f) = −2.7985, which is
evaluated by the SPICE models.

We compared the proposed Par-MC/Adam optimization (nmc = 50) with the SA optimizer to
examine the efficiency of the proposed scheme for a global search. The results are presented
in Figure 12. SA optimization is stochastic and global, and conventionally used for circuit de-
sign problems [9, 25, 27]. During one SA optimization iteration, several hundred function evalu-
ations are performed. We used an available open source package of SciPy [33] and the function

”scipy.optimize.dual_annealing.” Figure 12(a) and Figure 12(b) show cost (x, f̂) vs. the optimiza-
tion iteration and the optimization time, respectively. These two figures show that SA can achieve

the cost function of cost (xoд, f̂) = −3.00 after 960 iterations. The Adam optimizer with Par-MC

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:17

Fig. 12. Global search phase with Par-MC/Adam optimization (nmc = 20) vs. the SA optimizer in number of

iterations (a) and required time (b).

Fig. 13. Comparison between Par-MC and conventional sequential MC. (a) The optimization result for 20

MC samples with identical initialization. (b) The required time for different nmc .

requires 515 iterations to achieve cost (xoд, f̂) = −3.06. Par-MC with Adam converges to the op-
timized value within only 56 seconds, whereas it takes 1,185 seconds for SA to converge. This
time difference is as result of SA’s more function evaluations per iteration relative to the Par-MC
method. This experiment shows that Par-MC with Adam optimization can reach the same opti-
mized point derived by the conventional SA algorithm at least 20 times quicker.

Figure 13 shows a comparison between conventional sequential MC vs. Par-MC. In Figure 13(a),
we show the optimization results for 20 different initial points. It can be seen that the final results
between the sequential MC and Par-MC are similar, as claimed in Section 3.2.2. Interestingly, all
derived results from the Adam optimizer for this problem are approximately close to the competi-
tive point of cost (xoд, f̂) = −3.06. It infers that even without MC, the Adam optimizer can achieve
respectable results for SAR ADC’s design problem. Figure 13(b) presents a comparison of Par-MC
with sequential MC in terms of speed. In sequential MC, the required time is linearly proportional
to nmc . Therefore, we tested sequential MC for nmc between 10 and 50, then we linearly projected
the possible required time for nmc=1,000, where it took almost 16,000 seconds (≈4 hours). How-
ever, the same number of samples for Par-MC only requires 121.5 seconds. In Section 3.2.2, we
claimed that Par-MC’s completion time does not increase linearly with time on the TensorFlow
platform. In this example, we can achieve more than 130 times faster speed when using Par-MC
(when nmc = 1,000).

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:18 M. Hassanpourghadi et al.

Fig. 14. The local optimization results of 6-bit, 500 MS/s ADC vs. the number of variables nv cost function

(a), number of iterations (b), optimization time (c), and ADC’s FOM (d).

We gathered the local search results with SPICE models and the Powell algorithm when al-
tering nv values to examine its effects on the final optimization results. For this test, the ini-
tial cost function is cost (xoд, f) =2.30. The Powell algorithm from the SciPy package [33] in
”scipy.optimize.minimize” was used with a stopping criteria of tol = 0.1. Figure 14 summarizes
the effect of optimization result vs. nv . Figure 14(a) shows the final achieved optimized value
cost (xol , f) vs. nv . This clearly shows that after nv =10, there is no significant improvement over
the cost function. In other words, the other 16 variables with higher gradients do not contribute
to the local optimization. We can observe the benefit of reducing the variables in Figure 14(b) and
Figure 14(c), which show the required number of iterations and optimization time, respectively.
Both of these increase linearly with nv , which indicates that reducing the variables can signifi-
cantly help to accelerate the search. For each local optimization with different nv , we derived popt

and tested them in the ADC verification test bench. Figure 14(d) shows the measured FOM of the
SAR ADC derived from the SPICE simulation, and there is no significant improvement of FOM
if nv ≥10. For this example, with the introduction of a variable reduction technique by only con-
sidering nv =10 variables, we can achieve the same FOM as nv =26 with almost 2.3 times faster
convergence time.

4.2.1 Different User Desired Specifications. We examined the diverse design capabilities of
MOHSENN by three different user desired specifications of u =[10, 200 MS/s], u =[8, 340MS/s],
and u =[6, 500 MS/s]. For this test, we use MOHSENN’s default hyper-parameters. The global
search uses the Adam optimizer with γ = 0.02, nmc = 500, f tol = 10−5, and kmax = 10, 000. The
local search uses the Powell optimizer with f tol = 0.1 and kmax = 1, 000. For all three cases, we
simulated the SAR ADC with MOHSENN’s offered popt . We tested the ADCs with a monotone

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:19

Fig. 15. The output spectrum of the MOHSENN-designed SAR ADC when input is a single tone sine wave

for [10-bit, 200 MS/s] (a), [8bit, 340 MS/s] (b), and [6-bit, 500 MS/s] (c).

Table 4. MOHSENN Result of the SAR ADC with Given u

Desired Spec. (u) [10, 200MS/s] [8, 340MS/s] [6, 500MS/s]

Global Search iter (#) 1,149,500 360,500 282,000
Global Search Time 394s 124s 91s
Local Search iter. (#) 49 171 89
Local Search Time 311s 1,224s 739s
Verification Time 5h 35m 23s 1h 39m 47s 45m 18s
SNDR (Global/Local) [dB] 57.8/57.8 48.9/48.4 37.0/37.3
SNR (Global/Local) [dB] 60.6/60.5 49.4/49.4 37.0/37.3
SFDR (Global/Local) [dB] 62.0/62.5 59.8/55.7 50.1/43.6
ENOB (Global/Local) [bit] 9.34/9.18 7.86/7.75 5.87/5.92
Power (Global/Local) [mW] 2.70/2.40 2.91/2.58 2.22/1.30
FOM (Global/Local) [fJ/c.step] 20.8/18.5 36.7/35.5 75.9/42.9

sine wave input; their output spectra are shown in Figure 15, and the results are presented in
Table 4. For the 10- and 8-bit ADC design cases, there is no significant improvement with the local
search. This means that the global search result is already close to the nearest optimal point, and
there is no need for further optimization. So the local optimization time could be avoided for these
two cases. However, for the 6-bit ADC, the FOM changes from 67.0 to 43.7 fJ/c.step, which is a
significant improvement.

4.2.2 Comparison to Conventional Methods. To examine the efficiency of MOHSENN, we com-
pared it to two other algorithms. The first is a conventional top-down hierarchical design [2, 20,
22, 27] illustrated in Section 2.1. In this method, for the system level we conduct a global search of
MOHSENN for the system-level optimization yielding poд , and thus feasible metrics m̂oд . In the
module level, we optimize each module separately to render f i (pi) = m̂i

oд , or make f i (pi) better

than m̂i
oд . For the module-level optimization, we use SA optimization and SPICE modeling for ac-

curate results. However, this approach designs modules separately (causing interface problems),
as illustrated in Section 2.1.

The other algorithm is to directly use SPICE for the global search and use SA for the optimiza-
tion. In other words, the optimization problem is the same as (5) with f . We call this approach the
Flat-SPICE method. Since it is a global optimization directly on the overall AMS circuit functional
model with SPICE obj (д(., f)) and h(д(., f)), we expect to find the global optimal point with no
regression errors. However, the optimization time is prolonged.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

38:20 M. Hassanpourghadi et al.

Table 5. Design Parameters and the Search Space of the SAR ADC

Design Method Proposed MOHSENN Hierarchical Design Flat-SPICE (fast SA) Flat-SPICE (slow SA)

Dataset Generation Time 5h 50m 5h 50m 0s 0s

NN Evaluations (#) 282,000 282,000 0 0

NN Search Time 91s 91s 0s 0s

SPICE Evaluations (#) 89 4,178 27,000 103,302

SPICE Search Time 12m 19s 1h 9m 38s 1d 22h 12m 4s 7d 12h 2m 47s

Total Search Time 13m 50s 1h 11m 17s 1d 22h 12m 4s 7d 12h 2m 47s

Total Required Time 6h 3m 7h 1m 1d 22h 7d 12h 2m

SNDR 37.30 dB 37.50 dB 24.07 dB 37.76 dB

Power 1.30 mW 2.00 mW 1.77 mW 1.67 mW

FOM 43 fJ/c.step 67 fJ/c.step 269 fJ/c.step 52 fJ/c.step

We designed a 6-bit, 500-MS/s ADC with these two methods and then inserted the parameter
candidate to the SAR ADC verification test bench. The result is shown in Table 5. MOHSENN uses
its default hyper-parameters. In the hierarchical design, the first step is similar to MOHSENN’s
global search, which uses NN modeling and MLG. However, the second step involves designing
each module separately (without MLG). For the second step of hierarchical design, we used SA
in the SciPy [33] library with a default format, and we only changed the maximum number of
iterations. For the comparator design the number is 50, and for the rest it is 10. Further, for the
second-level design, we do not take pB as variables, and they are set by system-level optimization.
In Table 5, the number of SPICE simulations is the summation of running each module test bench.
As indicated in Table 5, the hierarchical approach converges after 70 minutes, whereas MOHSENN
converges within approximately 14 minutes. Accordingly, the proposed algorithm’s search engine
is five times faster than the conventional hierarchical method while achieving a better FOM for
the SAR ADC.

The other approach (Flat-SPICE) is a single-run SA optimization. Since one optimization con-
vergence would take a considerable amount of time, we demonstrated this method for two cases.
One is SA with a maximum number of iterations of 100, which we call fast Flat-SPICE. For the
other case, this number is 500, and we call it slow Flat-SPICE. The fast technique took almost 2
days to converge, and the results were not satisfactory. However, the slow Flat-SPICE converged
to an excellent point for the SAR ADC (i.e., a power consumption of 1.67 mW and SNDR of 37.76
dB). However, this required more than 7 days to achieve this point, and yet MOHSENN submits
an approximately better result within total required time of 6 hours and 3 minutes including the
initial training and testing dataset generation. This experiment shows that MOHSENN is capable
of designing a SAR ADC as effectively as the Flat-SPICE method while converging 30 times faster.

5 CONCLUSION

This article proposes a method for automatic AMS parameter synthesis. The method uses a novel
MLG methodology to enforce equality between the interfaces of adjacent modules. This leads to
more accurate characterization of modules and, as a result, a better AMS design. Moreover, this
method accelerates the parameter search by the proposed hybrid search. During global search with
NN models, we used the proposed Par-MC technique with Adam optimization, which reduced
the convergence time to minutes. In the local search with SPICE models, we introduced a novel
variable reduction technique based on the gradients achieved from the NN regression models,
which significantly accelerated the search time. The effectiveness of this approach was tested on

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

An MLG-Assisted Hybrid Search for Custom AMS Circuit Parameter Synthesis 38:21

a SAR ADC with 26 parameters, where it achieved almost five times faster speed and better final
performance compared to the conventional hierarchical approach.

ACKNOWLEDGMENTS

The work is supported by Defense Advanced Research Projects Agency (DARPA) under the ERI
POSH program. The authors would like to thank Prof. Pierluigi Nuzzo, Prof. Anthony F. J. Levi,
and Prof. Sandeep K. Gupta from the University of Southern California for valuable technical dis-
cussions.

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al.
2015. TensorFlow:Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] António Manuel Lourenço Canelas, Jorge Manuel Correia Guilherme, and Nuno Cavaco Gomes Horta. 2020. AIDA-C

Variation-Aware Circuit Synthesis Tool. Springer International, Cham, Switzerland, 155–177. DOI:https://doi.org/10.
1007/978-3-030-41536-5_5

[3] V. Ceperic and A. Baric. 2004. Modeling of analog circuits by using support vector regression machines. In Proceedings

of the 2004 11th IEEE International Conference on Electronics, Circuits, and Systems (ICECS’04).IEEE, Los Alamitos, CA,
391–394.

[4] W. Daems, G. Gielen, and W. Sansen. 2003. Simulation-based generation of posynomial performance models for the
sizing of analog integrated circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

22, 5 (May 2003), 517–534. DOI:https://doi.org/10.1109/TCAD.2003.810742
[5] F. De Bernarclinis, S. Gambini, R. Vincis, F. Svelto, A. Sangiovanni Vincentelli, and R. Castello. 2004. Design space

exploration for a UMTS front-end exploiting analog platforms. In Proceedings of the 2004 IEEE/ACM International

Conference on Computer Aided Design (ICCAD’04). IEEE, Los Alamitos, CA, 923–930.
[6] F. De Bernardinis and A. Sangiovanni Vincentelli. 2005. Efficient analog platform characterization through ana-

log constraint graphs. In Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD’05). IEEE, Los Alamitos, CA, 415–421. DOI:https://doi.org/10.1109/ICCAD.2005.1560104
[7] R. De Bernardinis, P. Nuzzo, and A. Sangiovanni Vincentelli. 2005. Mixed signal design space exploration through

analog platforms. In Proceedings of the 2005 42nd Design Automation Conference. IEEE, Los Alamitos, CA, 875–880.
DOI:https://doi.org/10.1145/1065579.1065808

[8] M. del Mar Hershenson. 2002. Design of pipeline analog-to-digital converters via geometric programming. In Pro-

ceedings of the 2002 IEEE/ACM International Conference on Computer Aided Design (ICCAD’02). IEEE, Los Alamitos,
CA, 317–324.

[9] T. Eeckelaert, T. McConaghy, and G. Gielen. 2005. Efficient multiobjective synthesis of analog circuits using hier-
archical Pareto-optimal performance hypersurfaces. In Proceedings of the Design, Automation, and Test in Europe

Conference. IEEE, Los Alamitos, CA, 1070–1075. DOI:https://doi.org/10.1109/DATE.2005.129
[10] Q. Fan and J. Chen. 2019. A 1-GS/s 8-Bit 12.01-fJ/conv.-step two-step SAR ADC in 28-nm FDSOI technology. IEEE

Solid-State Circuits Letters 2, 9 (Sept. 2019), 99–102. DOI:https://doi.org/10.1109/LSSC.2019.2934351
[11] O. Garitselov, S. P. Mohanty, and E. Kougianos. 2012. Fast-accurate non-polynomial metamodeling for nano-CMOS

PLL design optimization. In Proceedings of the 2012 25th International Conference on VLSI Design. IEEE, Los Alamitos,
CA, 316–321.

[12] K. Hakhamaneshi, N. Werblun, P. Abbeel, and V. Stojanović. 2019. BagNet: Berkeley analog generator with layout opti-
mizer boosted with deep neural networks. In Proceedings of the 2019 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD’19). IEEE, Los Alamitos, CA, 1–8.
[13] M. Hassanpourghadi and M. Sharifkhani. 2013. Fast static characterization of residual-based ADCs. IEEE Transactions

on Circuits and Systems II: Express Briefs 60, 11 (Nov. 2013), 746–750. DOI:https://doi.org/10.1109/TCSII.2013.2281908
[14] Y. Huo, X. Dong, and W. Xu. 2017. 5G cellular user equipment: From theory to practical hardware design. IEEE Access

5 (2017), 13992–14010.
[15] D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. arxiv:cs.LG/1412.6980
[16] Y. Li, Y. Wang, Y. Li, R. Zhou, and Z. Lin. 2020. An artificial neural network assisted optimization system for analog

design space exploration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2020),
2640–2653.

[17] C. Liu, S. Chang, G. Huang, and Y. Lin. 2010. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching pro-
cedure. IEEE Journal of Solid-State Circuits 45, 4 (April 2010), 731–740. DOI:https://doi.org/10.1109/JSSC.2010.2042254

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

https://www.tensorflow.org
https://doi.org/10.1007/978-3-030-41536-5_5
https://doi.org/10.1007/978-3-030-41536-5_5
https://doi.org/10.1109/TCAD.2003.810742
https://doi.org/10.1109/ICCAD.2005.1560104
https://doi.org/10.1145/1065579.1065808
https://doi.org/10.1109/DATE.2005.129
https://doi.org/10.1109/LSSC.2019.2934351
https://doi.org/10.1109/TCSII.2013.2281908
https://doi.org/10.1109/JSSC.2010.2042254

38:22 M. Hassanpourghadi et al.

[18] J. Liu, M. Hassanpourghadi, Q. Zhang, S. Su, and M. S. W. Chen. 2020. Transfer learning with Bayesian optimization-
aided sampling for efficient AMS circuit modeling. In Proceedings of the 2020 IEEE/ACM International Conference on

Computer Aided Design (ICCAD’20). IEEE, Los Alamitos, CA, 1–9.
[19] R. Lourenço, N. Lourenço, and N. Horta. 2015. AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC

Sizing. Springer International. DOI:https://doi.org/10.1007/978-3-319-15955-3
[20] N. Lourenço, E. Afacan, R. Martins, F. Passos, A. Canelas, R. Póvoa, N. Horta, and G. Dundar. 2019. Using polynomial

regression and artificial neural networks for reusable analog IC sizing. In Proceedings of the 2019 16th International

Conference on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design (SMACD’19).
IEEE, Los Alamitos, CA, 13–16.

[21] N. Lourenço, R. Martins, A. Canelas, R. Póvoa, and N. Horta. 2016. AIDA: Layout-aware analog circuit-level sizing
with in-loop layout generation. Integration 55 (2016), 316–329.

[22] R. Martins, N. Lourenço, R. Póvoa, A. Canelas, N. Horta, F. Passos, R. Castro-López, E. Roca, and F. Fernández. 2017.
Layout-aware challenges and a solution for the automatic synthesis of radio-frequency IC blocks. In Proceedings of

the 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to

Circuit Design (SMACD’17). IEEE, Los Alamitos, CA, 1–4. DOI:https://doi.org/10.1109/SMACD.2017.7981577
[23] T. McConaghy and G. G. E. Gielen. 2009. Template-free symbolic performance modeling of analog circuits via

canonical-form functions and genetic programming. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 28, 8 (2009), 1162–1175.
[24] J. Nam, M. Hassanpourghadi, A. Zhang, and M. S. Chen. 2018. A 12-bit 1.6, 3.2, and 6.4 GS/s 4-b/cycle time-interleaved

SAR ADC with dual reference shifting and interpolation. IEEE Journal of Solid-State Circuits 53, 6 (June 2018), 1765–
1779. DOI:https://doi.org/10.1109/JSSC.2018.2808244

[25] P. Nuzzo, F. De Bernardinis, and A. Sangiovanni-Vincentelli. 2006. Platform-based mixed signal design: Optimiz-
ing a high-performance pipelined ADC. Analog Integrated Circuits and Signal Processing 49, 3 (Dec. 2006), 343–358.
DOI:https://doi.org/10.1007/s10470-006-9067-8

[26] P. Nuzzo, F. De Bernardinis, P. Terreni, and A. Sangiovanni Vincentelli. 2005. Enriching an analog platform for analog-
to-digital converter design. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems. IEEE,
Los Alamitos, CA, 1286–1289.DOI:https://doi.org/10.1109/ISCAS.2005.1464830

[27] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli. 2012. Methodology for the design of analog integrated
interfaces using contracts. IEEE Sensors Journal 12, 12 (Dec 2012), 3329–3345. DOI:https://doi.org/10.1109/JSEN.2012.
2211098

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[29] B. Razavi. 2000. Design of Analog CMOS Integrated Circuits. McGraw-Hill.
[30] Luis Rios and Nikolaos Sahinidis. 2009. Derivative-free optimization: A review of algorithms and comparison of

software implementations. Journal of Global Optimization 56 (Nov. 2009), 1247–1293. DOI:https://doi.org/10.1007/
s10898-012-9951-y

[31] A. Samiei and H. Hashemi. 2019. A chopper stabilized, current feedback, neural recording amplifier. IEEE Solid-State

Circuits Letters 2, 3 (March 2019), 17–20. DOI:https://doi.org/10.1109/LSSC.2019.2916754
[32] X. Tang and A. Xu. 2016. Multi-class classification using kernel density estimation on K-nearest neighbours. Elec-

tronics Letters 52, 8 (2016), 600–602.
[33] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al. 2020. SciPy 1.0:

Fundamental algorithms for scientific computing in Python. Nature Methods 17 (2020), 261–272. DOI:https://doi.org/
10.1038/s41592-019-0686-2

[34] G. Wolfe and R. Vemuri. 2003. Extraction and use of neural network models in automated synthesis of operational
amplifiers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22, 2 (Feb. 2003), 198–212.
DOI:https://doi.org/10.1109/TCAD.2002.806600

[35] T. Wu, C. Alkan, and T. W. Chen. 2009. Complexity reduction for analog circuit performance models using random
forests. In Proceedings of the 2009 17th IFIP International Conference on Very Large Scale Integration (VLSI-SoC’09).
IEEE, Los Alamitos, CA, 29–34.

[36] G. İslamoğlu, T. O. Çakici, E. Afacan, and G. Dündar. 2019. Artificial neural network assisted analog IC sizing tool.
In Proceedings of the 2019 16th International Conference on Synthesis, Modeling, Analysis, and Simulation Methods and

Applications to Circuit Design (SMACD’19). IEEE, Los Alamitos, CA, 9–12. DOI:https://doi.org/10.1109/SMACD.2019.
8795293

Received August 2020; revised February 2021; accepted March 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 5, Article 38. Pub. date: May 2021.

https://doi.org/10.1007/978-3-319-15955-3
https://doi.org/10.1109/SMACD.2017.7981577
https://doi.org/10.1109/JSSC.2018.2808244
https://doi.org/10.1007/s10470-006-9067-8
https://doi.org/10.1109/ISCAS.2005.1464830
https://doi.org/10.1109/JSEN.2012.2211098
https://doi.org/10.1109/JSEN.2012.2211098
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1109/LSSC.2019.2916754
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TCAD.2002.806600
https://doi.org/10.1109/SMACD.2019.8795293
https://doi.org/10.1109/SMACD.2019.8795293

