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Abstract

We propose solving the power flow equations using monodromy. We prove the variety
under consideration decomposes into trivial and nontrivial subvarieties and that the nontrivial
subvariety is irreducible. We also show various symmetries in the solutions. We finish by
giving numerical results comparing monodromy against polyhedral and total degree homotopy
methods and giving an example of a network where we can find all solutions to the power flow
equation using monodromy where other homotopy techniques fail. This work gives hope that
finding all solutions to the power flow equations for networks of realistic size is possible.

1 Introduction

The optimal power flow problem is a nonconvex quadratically constrained quadratic program that
seeks to minimize generation costs of electricity subject to demand constraints, as well as physical
and engineering constraints. The power flow equations are a system of quadratic equations that
give the nonconvex constraints in the optimal power flow problem. Recent work has used techniques
from algebraic geometry to find all solutions to the power flow equations for a fixed network [1, 2, 3],
as well as study the distribution of the number of real solutions [4, 5, 6]. While there has been some
success using numerical and symbolic techniques, these methods don’t take advantage of any of the
symmetry in the power flow equations. In this paper we apply monodromy techniques to find all
complex solutions to the power flow equations for networks of varying size.

2 The Power Flow Equations

We model an n-node electric power network as a biconnected1, undirected graph, G = (V,E),
where each vertex represents a node in the power network. There is an edge, ekm between vertices
vk and vm if the corresponding nodes in the power network are connected. Each edge has a known

1A graph is biconnected if removing any vertex does not disconnect the graph. For a graph that is not biconnected,
the power flow equations decouple so they are analyzed separately on smaller graphs.
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susceptance bkm ∈ R. At each node, k, the relationship between the active power flows is captured
by the nonlinear relations

x2

k
+ y2

k
= 1

n−1
∑

m=0

bkm(xkym − xmyk) = Pk

(2.1)

where Pk ∈ R are the active power injections for k = 1, . . . , n − 1. We fix v0 to be the reference
node, meaning x0 = 1 and y0 = 0. Under these assumptions our power system is lossless and it has
all PV nodes. We assume our network has zero power injections so Pk = 0 for all k = 1, . . . , n− 1.
Under these assumptions the parameters are the susceptances bkm and the variables are xk, yk for
k = 1, . . . , n− 1. For fixed bkm ∈ R we aim to find all complex solutions to (2.1).

3 Symmetry in Solutions

We briefly outline the idea of monodromy below using the same notation as [7], but give [7, 8, 9], as
more complete references. Let Fb be a parameterized polynomial system in N variables and call the
space of all such polynomial systems B. Assume the solution set of Fb is zero dimensional. Let V
denote the solution variety of Fb i.e. V = {(Fb, x) ∈ B × CN : Fb(x) = 0}. Consider the projection
π : V → B that maps a pair (Fb, x) 7→ Fb and the fibers π−1(Fb) = {x ∈ CN : Fb(x) = 0}. For almost
all choices of parameters in B, |π−1(Fb)| = K is constant. Define D to be the discriminant locus
of Fb, this is the set of measure zero in B where |π−1(Fb)| 6= K. We define the fundamental group
π1(B\D) as a set of loops modulo homotopy equivalence that start and finish at a point b ∈ B\D.
Each loop permutes elements in π−1(Fb) and induces a group action called the monodromy action.
Monodromy methods work by taking one solution x̂ to the system of equations F

b̂
and finding other

elements of π−1(F
b̂
) via the monodromy action. The monodromy action is transitive if and only if

the variety V (Fb) is irreducible.
Under the assumptions given in Section 2, for any graph G, equations (2.1) have 2n−1 trivial

solutions of the form (xk, yk) = (±1, 0). Therefore, our problem is reduced to finding all nontrivial
solutions of (2.1). In order to apply monodromy and have any hope of finding all nontrivial solutions
we need the nontrivial solutions to form an irreducible variety.

Lemma 3.1. The nontrivial solutions of (2.1) form an irreducible variety.

Proof. By Theorem 6 of [10], the nontrivial component of (2.1) for tree networks is empty, so this

statement is vacuously true. Consider the change of variables xi =
2ti

1+t2
i

and yi =
1−t2

i

1+t2
i

. This gives a

new system of equations for k = 1, . . . , n− 1

0 =

n−1
∑

m=0

bkm

(2tk(1− t2
m
)− 2tm(1− t2

k
)

(1 + t2
k
)(1 + t2

m
)

)

. (3.1)

By Remark 2 of [7] is suffices to show that the following map has dense image:

π : V → C
n−1

(Fb, t) 7→ t

2
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where Fb is the system of equations defined in (3.1) and t = (t1, . . . , tn−1). For all tk ∈ C\{±
√
−1, 0,±1},

k = 1, . . . , n− 1, this gives a linear system of n− 1 equations in |E| unknowns where the unknowns
are the susceptances bkm. Since we do not consider trees, |E| ≥ n. Let b ∈ R|E| be the vector of
susceptances. Then this linear system can be written as Ab = 0 where A ∈ Cn−1×|E| is a weighted
incidence matrix of G with the first row removed. This matrix has rank n − 1 so long as none of
the weights are zero, which occurs for all tk, tm 6∈ {±

√
−1, 0,±1}, tk 6= tm. Therefore, for generic

t ∈ Cn−1 we can find a nonzero solution b to (3.1) giving that the map (Fb, t) 7→ t is dense in
Cn−1.

In addition to ignoring the trivial component, we also wish to exploit the symmetry of (2.1).

Lemma 3.2. If (x1, . . . , xn−1, y1, . . . , yn−1) is a solution to (2.1), so is (x1, . . . , xn−1,−y1, . . . ,−yn−1)

Proof. Substituting in (x1, . . . , xn−1,−y1, . . . ,−yn−1) to (2.1) the result is immediate.

Lemma 3.3. Let G = (V,E) be a bipartite graph with disjoint vertex sets S, T ⊂ V that partition
V where for all e = vmvn ∈ E, vm ∈ S and vn ∈ T . Without loss of generality, say v1, . . . , vs ∈ S

and vs+1, . . . , vn−1 ∈ T . If (x1, . . . , xn−1, y1, . . . , yn−1) is a solution to (2.1) so is

1. (x1, . . . , xn−1,−y1, . . . ,−yn−1)

2. (−x1, . . . ,−xs, xs+1, . . . , xn−1, y1, . . . , ys,−ys+1, . . . ,−yn−1)

3. (−x1, . . . ,−xs, xs+1, . . . , xn−1,−y1, . . . ,−ys, ys+1, . . . , yn−1)

Proof. At a node k ∈ S the power flow equations are

0 =

n−1
∑

m=s+1

bkm(xmyk − xkym). (3.2)

At a node l ∈ T the power flow equations are

0 =
s

∑

m=1

blm(xmyl − xlym). (3.3)

Substituting in (1)− (3) to the two expressions above, the result is clear.

4 Numerical Simulations

For all numerical computations we use the package HomotopyContinuation.jl [11]. Tables 1 and
2 show the average number of loops tracked to find all solutions using monodromy in comparison
with the number of paths needed to track for polyhedral and total degree homotopy continuation
methods. These tables also show the time it took to find all solutions. In each case, monodromy is
the fastest method to find all solutions.

Remark 4.1. Another advantage to monodromy is that we don’t lose solutions as we track them
from a start to target system. We observed in small networks that all methods found all solutions
but for larger networks polyhedral and total degree homotopy methods lost solutions.
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K4 K5 K6 K7 K8 K9 K10

# of loops: monodromy 24.4 94.8 470.4 1669.2 7915 25112.2 95829.2
# of paths: polyhedral 40 192 864 3712 15488 63488 257536
# of paths: total degree 64 256 1024 4096 16384 65536 262144
time (s): monodromy 0.01 0.05 0.37 1.97 16.39 65.33 357.926
time (s): polyhedral 0.06 0.37 2.53 17.10 112.43 609.49 2637.22
time (s): total degree 0.04 0.21 1.45 8.17 48.78 329.60 1510.01

Table 1: Numerical results to find all solutions for complete networks

C5 C6 C7 C8 C9 C10

# of loops: monodromy 181.6 176.6 962.0 921.6 1110.6 752
# of paths: polyhedral 80 256 832 2688 8704 28160
# of paths: total degree 256 1024 4096 16384 65536 262144
time (s): monodromy 0.13 0.158 1.10 1.46 2.48 2.60
time (s): polyhedral 2.7 3.03 5.37 14.8 56.36 211.24
time (s): total degree 2.11 3.40 9.76 31.91 200.41 862.50

Table 2: Numerical results to find all solutions for cyclic networks

Example 4.2. A final benefit of monodromy when applied to the power flow equations is that
it can find all complex solutions when other methods can’t. We consider the cyclic graph on 20
vertices. This system has 1, 847, 560 complex solutions but ignoring the trivial solutions and up
to symmetry it has 330, 818. If we tried to use total degree homotopy on this system, the Bezout
bound is 274, 877, 906, 944 so we would have to track over 274 billion paths. In addition, polyhedral
methods aren’t practical as the solver could not find a start system. Using monodromy we found
all 330, 818 solutions in 15, 375 seconds after tracking 792,934 loops. This example is the largest
network to the authors’ knowledge for which all solutions to the power flow equations have been
found for a power system model.2

5 Conclusion

In this note we applied monodromy methods to the power flow equations with great results. Mon-
odromy methods gain tremendous computational speed-up by decomposing the variety into trivial
and nontrivial components and solving up to symmetry. Finally, we are able to push the current
computational limits and find all solutions to the power flow equations for the cylic graph on 20
nodes, the largest power network in which all solutions have been found to date.
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2The authors’ note that in [12] all real solutions to a network on 60 vertices were found, but as noted by the
authors in [12], the assumptions in that paper are not attainable by any realistic power systems model.
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