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ABSTRACT
Intrusion detection systems generate a large number of streaming
alerts. It can be overwhelming for analysts to quickly and effectively
find related alerts stemmed from correlated attack actions. What if
fast arriving alerts could be automatically processed with no prior
knowledge to find related actions in near real-time? The Concept
Learning for Intrusion Event Aggregation in Realtime (CLEAR) sys-
tem aims to learn and update an evolving set of temporal ‘concepts,’
each consisting of aggregates of related alerts that exhibit similar
statistical arrival patterns. With no training data, the system con-
structs the concepts in near real-time from statistically similar alert
aggregates. Tracked concepts are then applied to incoming alerts for
fast and high-fidelity aggregation. The concepts learned by CLEAR
are significantly more unique and invariant when compared to
those learned by alternative drift detection methods. Furthermore,
it provides insights for how specific individual, or co-occuring,
alerts arrive with distinct and consistent temporal patterns.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; Usabil-
ity in security and privacy; • Information systems→Data stream
mining.
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1 INTRODUCTION
Intrusion detection systems (IDSs) are commonly used within net-
works to monitor traffic and detect potentially anomalous or mali-
cious behavior [12].While these systems are necessary for maintain-
ing security, they can quickly generate an overwhelming number
of alerts making it difficult or even impossible for an analyst to
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deduce insights in a reasonable amount of time [6]. Alert aggrega-
tion [11] is an emerging field of research that aims to reduce the
overall number of alerts by removing redundant ones, but provides
no further insight into the alerts themselves. IDS alert processing
systems such as attack graphs attempt to correlate alerts to pro-
vide a deeper understanding of the threats facing a network [9];
however, these usually depend on expert knowledge and network
scanning. Finding intrusion alerts that are related or correlated is
a difficult task as there is no direct labeling of alerts to attacker
actions. Mappings such as MITRE ATT&CK [15] are based on ex-
pert knowledge and are not always applicable given how attacker
tactics change over time [25]. There is a need for fast, automated
processing that gives analysts a deeper understanding of related
alerts and their characteristics.

In an attempt to meet this need, research has attempted to auto-
matically summarize alerts as attack models, e.g., [18]. Note that
network traffic and cyber alert arrivals are non-stationary processes
[26]; alert arrival behavior changes over time, sometimes drasti-
cally. Figure 1 illustrates cyber alerts generated over time within
a network. This toy example shows that the arrival patterns are
changing and potentially repeating over time. It would be difficult
for an analyst to detect and track such changes, but an automated
system could potentially process and group alerts in near real-time
without contextual knowledge. By learning and tracking these in-
variant and unique temporal arrival patterns, ‘concepts’ could be
learned to aggregate correlated but not necessarily identical alerts.
Furthermore, it will be of great value if specific alerts, reflecting spe-
cific attack actions, exhibit consistent temporal characteristics. Such
information on the arrival timing of critical alerts can potentially
enable proactive decision making for cyber defense.

Figure 1: An example of intrusion alerts arriving over time

This work introduces the Concept Learning for Intrusion Event
Aggregation in Realtime (CLEAR) system, which is driven by the
intuition that alerts exhibiting similar temporal characteristics are
most likely related to one another in some way. The system con-
sumes alerts as they are produced by IDS. CLEAR adds a dimension
to alert aggregation by grouping alerts based on the stationarity of
their inter arrival times (IATs). Rather than simply reducing ‘redun-
dant’ alerts, aggregates now represent a consistent and continual
arrival behavior captured in near real-time.
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Aggregates with statistically similar distributions are collected
into ‘concepts’ by the system in an unsupervised manner with
no training. This novel system learns, maintains and updates his-
toric concepts as new alerts arrive. Tracked concept’s statistics are
applied to incoming alerts to provide faster and more confident
aggregation. CLEAR’s learning was designed to generate ‘tight,’ in-
variant concepts reflecting specific and unique temporal behaviors.
CLEAR’s continual aggregation and concept learning set it apart
from similar drift detection methods such as the Two stage shift
detection based on EWMA (TSSD-EWMA) [21].

The main contributions of this work are:

• Develop a novel CLEAR system that continually learns to
aggregate alerts in near real-time by statistically matching
the distribution of arrival times to a learned ‘concept.’

• Demonstrate the performance improvements of CLEAR over
the baseline approach, TSSD-EWMA, in terms of concept
uniqueness and tightness, using a real-world cyber intrusion
alert dataset.

• Derive insights of intrusion activities using CLEAR to dis-
cover alerts that exhibit consistent temporal behaviors and
co-occurrence in a real-world penetration testing setting.

The rest of this paper is organized as follows. Section 2 details
the related work in alert aggregation, correlation of cyber events
and concept drift detection. Section 3 describe the CLEAR system
design. Section 4 provides the design of experiments and Section 5
discusses the results of testing. Section 6 concludes the paper.

2 RELATEDWORK
2.1 Alert Aggregation
IDS systems work to detect anomalous or malicious network ac-
tivity and raise alerts to network administrators to allow them to
combat threats to a network [12]. Given the prevalence, size and
complexity of modern networks most IDS systems produce an ex-
tremely large number of alerts [6]. One of the greatest challenges
facing the security field is processing these alerts effectively in
order to construct a clear and unified knowledge of a network’s
security status [13].

Aggregating IDS alert data is an emerging field of study that aims
to reduce the overall number of alerts with minimal information
loss [11]. Alert reduction is accomplished by removing successive
alerts of the same type caused by ongoing activity, e.g, scanning,
or alerts that are generated from the same activity by multiple
scanners [10]. Traditional aggregation aims to remove ‘redundant’
alerts [23] but provides no deeper insight into the alerts presented
to an analyst.

Researchers in [18] aggregated alerts to train Bayesian models
around individual attributes in an attempt to learn attack behaviors.
A naive timing threshold was used that ended an aggregate after a
sufficiently long time with no new arrivals. This approach is not
ideal as it is unclear what a “good" threshold is, or how it should
change depending on overall network patterns. CLEAR’s statistics
driven approach to aggregation based on the stationarity of alert
arrival statistics improves the value of aggregates by ensuring they
represent unique and invariant temporal behaviors.

2.2 Temporal Correlation of Cyber Events
The idea that alerts can be related to temporally near ones is not an
inherently novel idea. Time series modeling has been applied to net-
work traffic, alert counts and cyber intrusion events to model tempo-
ral relationships in the data. ARIMA models effectively forecasting
cyber event counts in [29] suggest that cyber event occurrences are
temporally correlated. Further work found that malicious activity
levels can change and repeat over time [30]. Time series modeling
of hourly counts of individual signatures was conducted in [27] to
detect abnormalities in occurrence. The findings of these related
works indicate it is worthwhile to consider temporal relationships
across alerts. This helped inform the intuition that alerts exhibit-
ing similar temporal characteristics are related. To our knowledge,
this is the first work to process cyber alert inter arrival times to
determine such relationships.

2.3 Concept Drift Detection with EWMA
It cannot be assumed that the distributions of and relationships
between features and labels do not change over time [21]. This
phenomena is commonly referred to as concept drift [16] and is
very common in network and human generated traffic online [26].
Drift can happen abruptly or gradually depending on the data and
its context [7]. If unaccounted for drift will cause a degradation in
model [2].

Concept drift adaptation is an emerging field of study that has
been explored under various names in research [16]. Handling con-
cept drift is a necessary component for processing cyber alerts as
the relevance of features can change over time [19]. Most appli-
cations of drift detection schemes are to classification problems
[7] and it is common to use classifier error for drift detection [1].
Feature or covariate drift measures changes in the distributions of
only the input features of the system [16].

Data streams are increasingly common and the assumption of
stationarity can rarely be made in such a context [28]. While many
are multi-variate, univariate streams exist and can exhibit drift
[5]. A univariate model uses historic measurements to forecast
future ones. Should the relationship between historic and future
measurements change, a feature drift has occurred in the system [5].
Some drift detection tests, such as change detection mechanisms,
process the statistics of individual features to determine if a drift
has occurred [4].

Raza et. al proposed a two stage feature drift detection system for
univariate and multivariate series built around the exponentially
weighted moving average based control chart [21]. A control chart
is a graphical representation of a series used in statistical process
control theory [22]. EWMA Charts measure the moving average of
a series and construct a control limit (CL) based on the standard
deviation of the one step ahead prediction error. It is a two stage
system; in stage one the control chart raises a warning when a
measurement falls outside the CL. In stage two more measurements
are collected and the two-sample Kolmogorov Smirnov test (KS-
Test) [14] is used to determine if drift has occurred.

Recently, research in the area has expanded to address the poten-
tial for historic concepts to re-appear. In such a scenario, a system
that leverages historic concepts can reduce the impact of a drift by
more quickly detecting and adapting to drift [3]. As with standard
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drift detection most methods focus on classification problems. So-
lutions maintain multiple models and make a classification with
an ensemble approach [17]. Little focus has been made towards
learning the statistics of the various concepts exhibited within a
system.

3 CLEAR: DESIGN METHODOLOGY
3.1 Definition: Concepts and Aggregates
CLEAR processes a series of cyber alert event arrivals X , with
timestamps T = {t0, t1, ...tn } and interarrival times ∆i = ti − ti−1.
As new alerts arrive their IAT statistics are processed to group
them based on arrival characteristics in an attempt to capture an
attacker action. An aggregate is defined as a consecutive set of alerts
Aj = {xi , xi+1, ..., xi+n } that exhibit similar inter-arrival times. A
concept Ck is a collection of aggregates whose IAT distributions
are statistically similar to one another.

There are two main components within CLEAR. The first con-
ducts aggregation in near real-time using EWMA control charts in
terms of alert IATs. The second continually learns and maintains
concepts from aggregates and uses the two-sample KS-Test to opti-
mally match the current aggregate Acur to a known conceptCbest .
Completed aggregates are used to update existing concept statis-
tics while tracked concepts are used to assist in ongoing real-time
aggregation. The current aggregate remains open so long as the
distribution of the alert IATs remains stationary. When a change in
stationarity is detected, the current aggregate is ended and passed
to the concept learning engine to find and update the concept that
best reflects its temporal patterns Cbest .
3.2 Control Charts
CLEAR captures aggregates using an EWMA control chart con-
structed around alert IATs. Control charts are designed to measure
the stationarity of a system [22], and have been applied to general
concept drift detection in the past [21]. Control charts are an ideal
candidate for alert processing as they update with each new arrival
and can detect potential changes in stationarity in at most one
additional arrival from the change point.

The control chart maintains a moving average of incoming alert
IATs as shown in (1). Themoving average is used as a one step ahead
forecast for the next IAT measurement ∆̂i+1 = zi . The variance
of this prediction error (2) is incorporated into a second moving
average (3) used to construct control limits for the chart (4). The
Control Limit can be widened or narrowed by changing the param-
eter L; it is normally 1.96 [22]. A measurement that falls outside of
the chart’s CL is refereed to as a point of drift [21].

zi = α∆i + (1 − α)zi−1 (1)
ϵ = xi − zi−1 (2)

σ 2
ϵi = αϵϵ

2
i + (1 − αϵ )σ 2

ϵi−1 (3)
CLi+1 = zi ± Lσϵi (4)

3.3 Two-Sample KS-Test
The two-sample KS-Test measures the maximum distance between
the cumulative distribution function (CDF) of two sample distribu-
tions and is described in (5) where supx is the supremum, and ni is
the number of measurements in a sample.

DKS = supx |CDF1,n1 (x) −CDF2,n2 (x)| (5)

The test operates under the null hypothesis that both samples
are from the same distribution. To test this hypothesis, a critical
distance can be estimated based on the sizes of the samples and the
level of confidence required. This approximation can be found in
(6), with the note that a 95% confidence was used to determine the
scaling coefficient applied to the function [8]. Should the measured
distance of the KS-Test exceed the critical value, the null hypothesis
must be rejected; the two samplesmust be from unique distributions.

Dcr it = 1.36
√

n1 + n2
n1n2

(6)

3.4 CLEAR’s Approach to Aggregation
A flowchart detailing how CLEAR processes a new alert arrival
is described in Figure 2. A current aggregate Acur is maintained
that intakes new alert arrivals in near real-time. When a new alert
arrives it is added to the current aggregate and the most recent IAT
is computed. The IAT is compared with the control limits of the
aggregate’s EWMA chart. If it falls within the chart’s control limit
the KS-Test is used to find the conceptCbest whose IAT distribution
is most statistically similar to the current aggregate’s. If Cbest has
not changed since the last alert the current aggregate’s EWMA
is updated with the most recent IAT. Should a new concept be
determined to be the best match the current aggregate copies that
concept’s EWMA statistics over its own and updates them with all
IATs in the current aggregate. By leveraging the two-sample KS-Test
and historic concept control charts in such a way CLEAR provides
near immediate insight into the expected characteristics of the
current aggregate. Additionally, the confidence in the aggregate’s
control chart is increased as it is built on a larger pool of historic
measurements and not just the limited ones contained in Acur .

Under the TSSD-EWMA system, when a new measurement falls
outside of the CL a warning is raised and the system stops process-
ing until a predefined number of new measurements arrive. These
new measurements are then compared with the measurements
made prior to the warning using the two-sample KS-Test. If the
distance is above the critical value, the measurements made since
the warning are considered a new concept. A new control chart
is generated using these measurements and processing continues
with the prior concept being forgotten.

In CLEAR, a new IAT that falls outside of the CL immediately
ends the current aggregate. Should the concept remain the same
after the drift point the new aggregate will be matched with the
same concept. Functionally, this will result in the same behavior
and control chart without the need to wait for a number of new
measurements. This increases speed without compromising the
effectiveness of concept learning. The most recent alert is removed
from the current aggregate and saved as it will be placed into the
next current aggregate. If the aggregate ended due to small IAT, the
two most recent alerts are removed instead. Figure 3 illustrates why
this is done. Small IATs indicate that the previous alert occurred
more closely to the current alert than to the third most recent.
Although the previous IAT did fall within the control limit it is
more intuitive to treat the two latest arrivals as the beginning of a
new aggregate as highlighted in Figure 3.

Before beginning a new aggregate, the now completed aggregate
is matched with a tracked concept using the KS-Test. The concept
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Figure 2: Flowchart of CLEAR alert processing

Figure 3: New aggregate caused by small IAT

is then updated with all of the aggregate’s alert timestamps, IATs,
and EWMA statistics. After this a new aggregate is created and
populated with the saved alerts. By removing the need to wait for
further measurements seen in the TSSD-EWMA approach CLEAR is
able to process alerts as they arrive and detect changes in behavior
rapidly and confidently. An aggregate is ended with a delay of at
most one additional alert arrival, and learned concepts are tracked
and updated with the end of each aggregate.

4 DESIGN OF EXPERIMENTS
Our experiments aim to assess CLEAR’s ability to effectively corre-
late temporally near alerts through aggregation. The TSSD-EWMA
drift detection approach is used as the baseline for comparison. We
will assert three hypotheses:

• Concepts learned by CLEAR are consistently “tight" within
a stream, with a concept’s IATs exhibiting a minimal coeffi-
cient of variation;

• Concepts learned by CLEAR are unique within a stream,
resulting in high KS Distances between them;

• Analysis of alert within concepts reveal certain signatures
that exhibit consistent temporal patterns across streams;

4.1 Dataset and Experimental Setup
The dataset used for this research consists of Suricata alerts col-
lected during the 2018 National Collegiate Penetration Testing
Competition (CPTC) [20]. Eight teams were provided an identi-
cal network and were tasked with conducting penetration testing.
A similar competition is the National Collegiate Cyber Defense
Competition [31] however there is not the same level of alert gen-
eration, making it difficult to obtain as a full dataset.

The CPTC took place over the course of a single day from 8
AM until 6 PM with eight teams competing. All traffic within each
team’s network was passed through the Suricata [24] IDS to gen-
erate alerts. Data streams were created by filtering alerts first by
team and then by source IP. By parsing the data in this way each
stream can be interpreted as a single attacker’s behavior as each
team member is provided a single machine.

There were 127 total streams of data spread across the eight
teams. Each stream was processed independently by both CLEAR
and TSSD-EWMA using a separate instantiation of each system.
Concepts learned in one stream were not applied to others. While
it was not designed with aggregation in mind, to mimic the ag-
gregation of CLEAR the warnings raised by TSSD-EWMA were
interpreted as the end of aggregates. A window size of 15 alerts
was used for testing if a drift had occurred with the KS-Test in the
TSSD-EWMA system.

4.2 Experimental Hypothesis
4.2.1 Concept Coefficient of Variation. The learned concepts rep-
resent a specific temporal pattern exhibited by the alerts contained
within. While the non-temporal attributes of alerts within a concept
may not be identical, it is expected that the temporal characteris-
tics are similar across all alerts. Therefore, concepts should exhibit
relatively ‘tight’ or consistent behavior throughout, represented
by a low coefficient of variation, CV = σc

µc . If a concept captures
consistent temporal patterns then the overall deviation of its mea-
surements should be minimal relative to their mean. A high mea-
surement variance implies that the concept captured too “vague"
of a behavior, leading to unrelated alert groupings. The tightness
of all concepts learned by CLEAR across all streams was recorded
and is presented in the following section.

4.2.2 Concept Uniqueness. CLEAR aims to learn distinct and unique
concepts within a single stream of intrusion alerts, and therefore
there should be minimal overlap in the IAT statistics of concepts.
Each concept should be significantly unique from all others within
the same data stream. To measure this the Two Sample KS-Test
was applied to all concept pairs within a data stream; for each con-
cept the minimum distance to another concept in the stream was
recorded. Whether or not the null hypothesis of the Two Sample
KS-Test could be rejected was also recorded for all concept pairs.
Ideally no two concepts should exist in a data stream that cannot
reject the hypothesis as they should represent different and unique
arrival statistics.

4.2.3 Alert Signature’s Temporal Characteristics. The purpose of
aggregation in CLEAR is to produce groups of temporally correlated
alerts to gain a better understanding of attack patterns within a
network. After processing alerts and learning the various concepts,
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the alert signatures were analyzed to find any that exhibited con-
sistent temporal patterns. In total there were 193 unique signatures
contained within all streams analyzed by CLEAR. To determine a
potentially consistent signature, a probabilistic approach was taken
in analyzing the distribution of alerts within the concepts learned
for a stream. While no explicit ranking metric was used, a number
of statistics were collected for each signature such as:

• The number of concepts containing a specific signature rela-
tive to the number of streams it appeared in;

• The total number of alerts with that signature;
• The mean and standard deviation of all IATs within concepts
containing the signature;

The rationale for using these statistics is that a signature with
consistent temporal characteristics should be found in a limited
number of concepts per stream. Looking at the overall concept sta-
tistics allows for discovery of consistent signatures should CLEAR
create temporally near or overlapping concepts in a given stream.

5 RESULTS AND DISCUSSIONS
Across all streams CLEAR generated 558 concepts while the TSSD-
EWMA drift scheme only generated 282. There were 69 streams
in which the TSSD-EWMA system did not detect a new concept,
instead classifying all alerts in the stream into a single concept. This
did not occur for any of the streams processed by CLEAR. When
analyzing concept uniqueness for TSSD-EWMA, the streams with
only 1 concept were not included as there was no other concept to
compare with using the two sample KS Test.

5.1 Concept Tightness with CLEAR
Figure 4 plots the coefficient of variation for all concepts learned
by both approaches. CLEAR’s concepts exhibit a much lower ratio
on average indicating significantly “tighter" IAT statistics. CLEAR
concepts averaged a ratio of .864 while TSSD-EWMA resulted in
an average ratio of 6.14. The concepts, and by extension the ag-
gregates, learned by our system show much more uniformity in
their arrival patterns with each other compared to the other ag-
gregation method. As CLEAR learns from historic concepts it can
quickly match recent observations with existing concepts or detect
novel concepts more quickly than TSSD-EWMA can. Low coeffi-
cient of variation highlights CLEAR’s effectiveness at quickly and
accurately detecting the end of aggregates; if there were significant
outliers the CV would be higher.

CLEAR’s ability to generate such ‘tight’ concepts shows that
it more effectively captures uniform alert behavior patterns. This
provides confidence that any two aggregates from the same con-
cept represent extremely similar temporal behaviors. Aggregating
alerts based on their arrival behavior leads to more clearly defined
concepts, and provides a strong temporal correlation. Further re-
lationships found between alerts within a concept give a better
understanding of the potential actions an attacker can take given
the temporal characteristics of intrusion alerts.

The TSSD-EWMA constructs a new concept’s control chart
around the firstmmeasurements regardless of their similarity to one
another allowing for significantly wider concepts. CLEAR instead
is able to apply historic control chart statistics to a new aggregate
as early as the second alert, limiting the likelihood of highly variant
IATs within a concept. In such a potentially dynamic environment

Figure 4: Concept means v. SD for both methods

as cyber intrusion detection this weakness of TSSD-EWMA may
be exacerbated as the data is generated from human driven actions
which quickly change and adapt [26]. When analyzing individual
alert signatures their temporal behaviors are better detailed by our
system. If a signature only occurs within a fixed arrival pattern
it will be found in specific CLEAR concepts. It is more difficult
to isolate a specific signature’s temporal characteristics from the
TSSD-EWMA concepts as they are significantly broader.
5.2 Separation Across Concepts
For each stream, a scatter plot was generated matching the num-
ber of concepts in the stream to the average of the minimum KS-
Distances measured for each concept within the stream and can be
found in Figure 5. The figure summarizes the uniqueness of con-
cept distributions within each individual stream. Two non-unique
concepts would have very similar statistical distributions, which
would lead to a smaller KS-Distance between them.

Figure 5: Total concepts v. avg. min. KS-Dist. in streams

Streams processed byCLEAR resulted inmore statistically unique
concepts overall than those handled by TSSD-EWMA in spite of the
fact that CLEAR on average produces more concepts per stream.
For streams with an equivalent number of concepts across the two
methods in no cases does TSSD-EWMA produce concepts with
higher average minimum KS-Distance than CLEAR. Our system is
able to learn more temporal concepts that are also more distinct
from one another. Knowing concepts are unique gives stronger con-
text to additional relationships found between alerts. Correlations
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found across concepts indicate a behavior independent of temporal
patterns, while those found within a concept can be confidently said
to have a high dependence with the temporal arrival patterns of
alerts. Concept uniqueness increases the concentration of behaviors
to single concepts within a stream.

Figure 6 expands on the uniqueness of concepts by comparing
the overall distribution of minimal KS-Distances between concepts.
Each data point used to generate the histograms represent the small-
est KS-Distance between a single concept and all other concepts in
the same stream. A majority of CLEAR concepts have a minimum
KS-Distance of .8 or greater from the nearest concept, indicating
nearly no overlap between most concepts. TSSD-EWMA concepts
show much more overlap in behaviors captured, with a majority
measuring less than .4 from their nearest concept. These results
show the ability of CLEAR to learn distinct and unique temporal
behaviors within a data stream.

Figure 6: Min KS-Dist. between concepts for CLEAR (top)
and TSSD-EWMA (bot)

Even when looking at individual data streams CLEAR generates
more unique concepts when compared to the TSSD-EWMAmethod.
For a majority of streams the TSSD-EWMA could not detect a sec-
ond concept, while CLEAR always produced at least two concepts.
Considering that alerts are derived from network traffic and that
network traffic is inherently bursty and non-stationary [26], it is
unrealistic to expect a stream should have only one concept. For
streams where the standard drift approach detected more than one
concepts, 28.6% of concepts were close enough to another that
the null hypothesis could not be rejected; meaning it could not
be concluded that the two concepts were generated by different
distributions. CLEAR concepts saw only 14.3% of concepts unable
to reject the null hypothesis, half the rate with more than double
the concepts when compared to the TSSD-EWMA approach.

Unlike in the TSSD-EWMA’s case however, the concepts that
make up CLEAR’s 14.3% statistic are either two small concepts or
one large and one small concept. In the case of very small sample
sizes, it is nearly impossible to reject the null hypothesis for the KS-
test as the critical distance is very large. For CLEAR concepts that
failed to be further from another concept than the critical distance,
marking them “similar;" the average critical value for the KS-test
was .63. In the case of TSSD-EWMA, the average critical value was

.26; a substantially lower value. This means that it was much easier
on average for the concepts learned with the standard drift method
to be statistically different from each other, and yet similar concepts
are still generated by TSSD-EWMA at twice the rate of CLEAR.

To better illustrate the uniqueness of concepts learned by the
two systems box plots were generated over the IATs contained
in the concepts of a single stream and are shown in Figure 7. As
shown TSSD-EWMA produces fairly homogeneous concepts over
time with large amounts of overlap while CLEAR produces distinct
concepts with much lower deviation in the arrival times contained.

Figure 7: CLEAR (top) &TSSD-EWMA (bottom) concept IATs
TSSD-EWMA also lacks the ability to learn and update historic

concepts, leading to seemingly identical concepts being generated at
different times in the stream. CLEAR’s concepts are instead learned
over time to ensure that they are representative of temporal behav-
iors captured within alert aggregates. When analyzing signatures,
it is important to know that individual concepts within a stream
are unique. If a signature only occurs in a single stream it exhibits a
very consistent temporal behavior. Such findings are strengthened
when the same signature is found in statistically similar concepts in
multiple streams. Given the broad and overlapping TSSD-EWMA
concepts, it is difficult to draw any concrete conclusions from sig-
nature analysis.

5.3 Single Stream Results
To better visualize the performance of the aggregation methods, a
single stream of data will be used for the remaining discussion to

157



Near Real-time Intrusion Alert Aggregation Using Concept-based Learning CF’21, May 11-13, 2021, Virtual

better highlight the behavior of the various approaches. Employing
the TSSD-EWMA drift detection scheme detailed in [21] results
in a smaller number of Aggregates split over 2 concepts as shown
in Figure 8. The graph shows the box plots of the IATs in each
of the aggregates generated by the system. In the figure there are
multiple very similar aggregates covering the same ranges of IATs
for most of the stream, with little deviation over time. Looking at
these results, it seems as though the IATs for this specific dataset
are relatively uniform over time.

Figure 8: Aggregates generated by TSSD-EWMA
Arrival patters are not in fact uniform however as shown by a

short period of aggregation obtained when applying the CLEAR
system to the stream in Figure 9. When analyzing new data using
historic learned concepts, the CLEAR system is able to quickly
adapt to changes in arrival patterns, separating arrivals into three
unique concepts.

Figure 9: Aggregates generated by CLEAR
The aggregates in the figure averaged around 3 alerts each, fur-

ther highlighting CLEAR’s reactivity. By applying known concept
statistics to aggregation CLEAR is more sensitive to sudden changes
in arrival behavior. The CLEAR system is able to produce “tighter"
and more unique concepts that may otherwise be overlooked by
traditional streaming drift detection methods.

In such a fast changing environment this reactivity is key, and is
a distinct weakness of the TSSD-EWMA approach by comparison.
Requiring a fixed number of new measurements after a drift point
means that it is possible that two or more unique concepts are

merged together, creating broad non-descriptive aggregates like
those seen in Figure 8.

5.4 Temporally Correlated Alert Signatures
CLEAR’s unique and ‘tight’ concepts ensure alerts are aggregated
based on their temporal arrival patterns accurately. Further rela-
tionships and consistent characteristics of the alerts contained can
be found by analyzing concepts. This section investigates the alert
signatures contained in concepts learned by CLEAR and discusses
some findings.

In the data streams processed by CLEAR there were 161 unique
alert signatures. Individual signatures appeared in an average of
7.68 streams and 14 concepts resulting in an average ratio of 1.83
concepts per stream. Signatures were analyzed based on their over-
all concentration of alerts across streams. A selection of signatures
and their corresponding statistics are presented in Table 1. The
means and standard deviation of IATs for the concepts containing
the signatures as well as the ratio of concepts containing the sig-
nature to streams containing the signature were used to analyze
how consistent a signature’s temporal characteristics were in the
data. Since CLEAR learns both “tight" and unique concepts, should
a signature behave in a relatively consistent temporal manner it
should only appear in a small number of concepts in the streams it
is found in. While the ratio of concepts per streams was the primary
factor in determining concentration, the concept statistics and total
number of alerts was also used to accommodate the potential for a
signature’s temporal range to be wider than that of a single concept
learned by CLEAR.

Table 1: Signature rankings based on various statistics
Sig. Abbr.(ID) Conc./Stream Alerts µ IAT σ IAT
SQLAISA(170) 1 13 0.3 ms N/A
PHPENV(91) 1 34 6.9 ms 0.38 ms
ETWSH(33) 1.5 122 4.38 ms 2.33 ms
ETWS(34) 1.5 122 4.38 ms 2.33 ms
MONGOVR(14) 1.25 45 3.94 ms 14.9 ms
MONGODER(15) 1.25 46 3.94 ms 14.9 ms
PHPINJ(80) 6 111 27.5 ms 39.6 ms
PSSQLSCAN(6) 2.3 966 15.72 s 40.3 s
OSSCAN(9) 1.6 441 0.33 s 0.44 s
CURL(22) 1 116 0.5 s 4.9 s
RFI ATT.(116) 1 1 56.4 ms N/A

5.4.1 Alert Signatures with Consistent Arrival Patterns. Figure 10
shows the box plots of the concepts containing the signature “ET
WEB_SERVER PHP ENV SuperGlobal in URI"(PHPENV(91)) across
the data streams that contain it. This signature appeared in a single
stream of each of two teams and is most likely used as part of
a vulnerability injection. Both concepts exhibit nearly identical
IAT statistics and contain the same 12 signatures. This is strong
evidence of the same action being taken by both teams, most likely
an identical script or exploit.

Another signature that exhibits consistent temporal character-
istics is “ET WEB_SERVER Possible MySQL SQLi Attempt Infor-
mation Schema Access" (SQLAISA(170)). This signature is usually
part of a SQL injection attempt, and was used by one team multiple
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Figure 10: Concepts containing “ET WEB_SERVER PHP
ENV SuperGlobal in URI" (PHPENV(91))

times over the course of the competition. Although the injection at-
tempts were made hours apart from one another, CLEAR classified
all alerts with the signature into the same concept. This result high-
lights the effectiveness of CLEAR’s concept tracking and matching
with aggregates.
5.4.2 Co-occurring Alert Signatures. It was not uncommon to find
groups of signatures where all alerts were aggregated into the same
concepts. Usually these signatures were very closely related (GPL
WEB_SERVER service.cnf access, GPL WEB_SERVER services.cnf
access and GPL WEB_SERVER writeto.cnf access) and only oc-
curred once or twice across all datasets.

A pair of alerts warning of Mongo database version and database
enumeration requests were seen in streams of members from seven
teams. The signatures “ETPRO ATTACK_RESPONSE MongoDB
Version Request" (MONGOVR(14)) & “ETPROATTACK_RESPONSE
MongoDBDatabase Enumeration Request" (MONGODER(15)) were
found together in the same 20 concepts within 16 streams. The sig-
natures detail two unique requests to a Mongo database and occur
in near equal numbers (45 vs. 46 alerts respectively) and with similar
and mostly consistent timing patterns. Nearly all concepts contain-
ing the signatures exhibited microsecond IAT statistics; though one
concept was in the sub-second range.

Similar behavior was observed between the signatures “ETWEB_
SERVER Possible CVE-2014-6271 Attempt" (ETWS(34)) and “ET
WEB _SERVER Possible CVE-2014-6271 Attempt in Headers" (ET-
WSH (33)). Both signatures occurred in pairs of alerts throughout
the two data streams that they appeared in across two unique teams.
This behavior is unique, as there were other streams that contained
only the signature ETWSH(33) without the other. All concept means
fall between 1 and 6 milliseconds which is very consistent across
streams and teams.
5.4.3 Alerts with Multiple Distinct Arrival Patterns. Scanning is an
extremely common, near constant passive action taken by many en-
tities. Given its nature it is not surprising to find that most scanning
signatures, such as “ET SCAN Suspicious inbound to PostgreSQL
port 5432" (PSSQLSCAN(6)), are found in a number of concepts with
varying timing characteristics. Interestingly however another type
of scanning, “ET SCAN NMAP OS Detection Probe" (OSSCAN(9))
was used by 6 teams in one of two distinct “modes" with unique
timing characteristics. Figure 11 shows the concepts containing the
signature; no single stream contained concepts from both modes.

The specific operating mode likely depends on surrounding at-
tacker actions. This could be due to difference in target OS, the
parameters used by the attacker or a complementary action being
executed in parallel.
6 CONCLUDING REMARKS
The CLEAR system is able to intelligently aggregate non-stationary
streaming alerts through efficient concept learning and matching of

Figure 11: Concepts containing signature “ET SCAN NMAP
OS Detection Probe" (OSSCAN(9))

arrivals. It learns concepts that exhibit significantly less variation
and more unique distributions when compared to the TSSD-EWMA
process. Intrusion alert IATs grouped into concepts exhibit a stan-
dard deviation that is on average less than the concept’s mean.
TSSD-EWMA concepts on average have a tightness ratio that is 7.1
times greater than CLEAR. Furthermore, the concepts learned by
CLEAR are significantly more unique than those learned by TSSD-
EWMA. On average, CLEAR concepts are twice as distant from
others within the same stream than those learned by TSSD-EWMA
when measured by the two-sample KS-Test. CLEAR is not limited
in its change point detection and can quickly detect changes in
stationarity correctly without waiting for additional arrivals. By
quickly matching alert aggregates to the optimally matched con-
cept in near real-time, CLEAR reveals attack behaviors exhibited
by temporally related intrusion alerts.

As demonstrated in the experiments conducted using CPTC 2018
intrusion alerts, CLEAR is able to identify specific attack action
signatures with similar temporal characteristics. A number of signa-
tures were found in concepts with consistent arrival patterns across
multiple streams and teams. Groups of signatures such as ETWS(34)
and ETWSH (33) always appeared in concepts together, also across
multiple team’s data streams. Some signatures exhibited multiple
‘modes’ of operation, i.e., different alert arriving speeds. These re-
sults highlight the value of CLEAR, which produces the temporal
context of intrusion activities. Extracting related alert signatures
from temporal proximity and arrival patterns helps to provide se-
curity analysts broader insights on attack behavior: which attack
actions are likely to co-occur together and at what inter-arrival
time. Such insights can be helpful to effectively determine when,
where and how to interrupt a cyberattack campaign.
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