
HAL Id: hal-03379997
https://uphf.hal.science/hal-03379997

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance prediction for convolutional neural
networks on edge GPUs

Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, Abdessamad Ait El Cadi

To cite this version:
Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, Abdessamad Ait El Cadi. Performance prediction
for convolutional neural networks on edge GPUs. 18th ACM International Conference on Comput-
ing Frontiers (CF’21), ACM, May 2021, Catane, Italy. pp.54-62, �10.1145/3457388.3458666�. �hal-
03379997�

https://uphf.hal.science/hal-03379997
https://hal.archives-ouvertes.fr

ar
X

iv
:2

01
0.

11
29

7v
1

 [
cs

.C
V

]
 2

1
O

ct
 2

02
0

Performance Prediction for Convolutional Neural

Networks in Edge Devices

Halima Bouzidi∗, Hamza Ouarnoughi†, Smail Niar†, Abdessamad Ait El Cadi†

∗École Nationale Supérieure d’Informatique, Algiers, Algeria
†Université Polytechnique Hauts-de-France, LAMIH/CNRS, Valenciennes, France

Email:fh bouzidi@esi.dz

Email: firstname.lastname@uphf.fr

Abstract—Running Convolutional Neural Network (CNN)
based applications on edge devices near the source of data
can meet the latency and privacy challenges. However due to
their reduced computing resources and their energy constraints,
these edge devices can hardly satisfy CNN needs in processing
and data storage. For these platforms, choosing the CNN with
the best trade-off between accuracy and execution time while
respecting Hardware constraints is crucial. In this paper, we
present and compare five (5) of the widely used Machine Learning
based methods for execution time prediction of CNNs on two (2)
edge GPU platforms. For these 5 methods, we also explore the
time needed for their training and tuning their corresponding
hyperparameters. Finally, we compare times to run the prediction
models on different platforms. The utilization of these methods
will highly facilitate design space exploration by providing
quickly the best CNN on a target edge GPU. Experimental results
show that eXtreme Gradient Boosting (XGBoost) provides a less
than 14.73% average prediction error even for unexplored and
unseen CNN model architectures. Random Forest (RF) depicts
comparable accuracy but needs more effort and time to be
trained. The other 3 approaches (OLS, MLP and SVR) are less
accurate for CNN performances estimation.

Index Terms—CNN, GPU, Performance Modeling, Multiple
Linear Regression, Multi-Layer Perceptrons, Support Vector
Machine, Random Forest, eXtreme Gradient Boosting.

I. INTRODUCTION AND MOTIVATIONS

Machine Learning (ML) approaches have recently become

very popular for several use cases. Their fields of applications,

in health, agriculture, transport, etc., are growing constantly.

This increasing interest in ML in general and Convolution

Neural Networks (CNN) in particular, could be explained by

two main reasons. The first one is the availability of very pow-

erful Hardware (HW) platforms in Internet of Things (IoT),

edge, fog, Cloud computing and High performance computing

(HPC) platforms. The second reason is the availability and the

diversity of very large datasets on the Internet. These datasets

allow to improve the training of ML algorithms and therefore

enhance their accuracy.

Hence, the use of CNN has made it possible to obtain

significant improvements in terms of accuracy and flexibil-

ity. However, their development and the choice of the best

CNN for a given problem is difficult. Each month, a large

number of complex and accurate CNN models are proposed.

Consequently, finding the CNN which gives the best trade-off

between accuracy and execution time is a tedious task [1].

For edge devices with limited computing power and real-

time constraints such IoT or autonomous cars, choosing the

best CNN implementation is problematic. In [2], authors have

shown that CNN is not necessarily correlated with the number

of FLoating-point OPerations (FLOPs) or the size of the CNN.

Having a design tool for rapid CNN performance estimation

becomes crucial to reduce design time and to obtain a high-

performance system. Early execution time estimation allows

to quickly determine the best CNN implementation for a

given application requirements and a given hardware (HW)

constraints. Depending on the CNN to execute, the user may

need different HW to minimize inference time. Such a tool can

be used either to choose the best CNN for a given HW platform

and/or to explore different HW platforms for a specific CNN.

In this paper, we focus on proposing a methodology to

help the designer in choosing the most efficient CNN for a

given HW platform. The CNN execution time estimator must

provide a high accuracy, a low design time and a high level of

flexibility to be adapted to different CNNs and HW platforms.

In addition, the number of estimator hyperparameters must be

reduced and easy to tune.

In this work, we compare some of the most successful state-

of-the-art prediction algorithms for estimating the execution

time of the CNN inference phase. As these algorithms have

a set of (hyper)parameters, in the rest of the paper, they are

called Models. The following ML-based models have been

considered: Multiple Linear Regression using the Ordinary

Least Squares (OLS), Multi-Layer Perceptrons (MLP), Sup-

port Vector Regression (SVR), Random Forest (RF), and eX-

treme Gradient Boosting (XGBoost). Our work is not intended

to propose new ML-based models but to compare the 5 models

in order to analyze their strengths and weaknesses. For each

of the studied models, we analyze prediction accuracy, time to

tune and train the model and finally, time to run the prediction

models on different Hardware platforms.

The remainder of this paper is organized as follows. Section

II gives a literature review of CNN performance estimation and

design space exploration. In section III, we first analyze and

discuss the CNN features that have to be considered in the

execution time prediction, then a survey of the used ML-based

approaches is presented. Section IV is devoted to experimental

results. Finally, conclusion and future work will be given in

section V.

http://arxiv.org/abs/2010.11297v1

II. RELATED WORKS

Motivated by speed and security purposes, there was re-

cently a trend towards migrating ML applications from cloud

and central computing to edge computing. To find a good

matching between CNN requirements in terms of speed and

energy consumption either in the training or in the inference

phases, several projects have been conducted recently targeting

edge platforms.

In [3], the authors compare: linear regression, support

vector machines and random forests with a Bulk synchronous

parallel (BSP) based analytical model. Machine learning ap-

proaches have been used to provide reasonable predictions

without detailed knowledge of application code or hardware

characteristics. The authors use profiling information from 9

benchmarks on 9 different GPUs. In opposite to our work, their

method is not dedicated to ML applications. In addition, in

our work we use a larger set of benchmarks and we obtain a

better accuracy.

In [4], the authors propose a methodology to estimate

training time for CNNs. In their approach, training time is seen

as the product of the training time per epoch and the number

of epochs which need to be performed to reach the desired

level of accuracy. The deep learning network is decomposed

in several parts and the execution time estimation operates

on these parts. Timings for these individual parts are then

combined to provide a prediction for the whole CNN execution

time.

In [5], the authors propose an analytical framework to

characterize deep learning training workloads in large AI

clouds and clusters. Using different training architectures, the

authors try to identify performance bottleneck for various

DNN workloads. For the training phase, weight and gradient

communication consumes almost 62% of the total execution

time on average. Their simple analytical performance model is

based on the key workload features and allows only to identify

architectural bottlenecks.

PALEO [6] is another framework for estimating training

execution time. In PALEO the number of floating point

operations required for an epoch is multiplied by a scaling

factor to obtain execution time for the training phase. However,

PALEO does not take into account numerous other operations

which do not scale linearly with the number of floating point

operations and which has a big impact on execution time. In

the literature we may also find several tools dedicated to power

and memory optimization for edge HW platforms.

In [7], the authors proposed a multi-variable linear regres-

sion model to predict energy consumption of CNNs based on

the number of SIMD instructions and main memory accesses.

They used an Nvidia Jetson TX1 GPU and they obtained

an average relative error of about 20%. Our profiling and

analysis phases, detailed in Section III, have shown that these

2 parameters must be enhanced by others to obtain a more

accurate estimation.

The idea behind tools in [8], [9] is to explore the hy-

perparameter space for NNs running on a given hardware

platform and to estimate power and memory usages. In most of

the existing projects, a learning-based polynomial regression

approach is used. In our work, we do not treat power con-

sumption estimation. Only tools for execution time estimation

are presented and compared. However, as we will see in the

following sections, the same approaches can be developed for

power and energy consumption.

III. PROPOSED APPROACH

Figure 1 gives an overview of our proposed modeling

methodology. The approach includes three main steps. The

benchmarking step aims to define the benchmarks charac-

teristics and determine the most impacting CNN features. To

make the model simple, only these features will be taken into

account in the models. In the data collection step, we extract

the data used in the elaboration of the CNN execution time

prediction. Finally, the modeling step details the used ML-

models, their training process with hyperparameters tuning and

their evaluation. As explained in the following section, each

of the considered models includes a set of hyperparameters

and a set of parameters. The hyperparameters are different

from one model to another. They draw the model architecture.

The parameters produce one instance of the obtained model

and explain the manner by which the model is implemented

for the prediction. As example for MLP, the hyperparameters

correspond to the number of neurons, the number of hidden

layers, the activation function, etc. The parameters for MLP

correspond to the weights and the biases values used in the

model. More details will be given in sub-Section III-C.

A. Problem Formulation

Predicting CNNs inference time on GPU platforms can be

formulated as follows: As inputs, we have a CNN (noted

CNNi) characterized by a set of n features f1, f2, . . . , fn,

and a GPU platform (noted GPUj) represented by a set of

m Hardware characteristics c1, c2, . . . , cm. The number of

convolutional and fully-connected layers, the image size, and

the number of neurons are examples of CNN features. Platform

parameters may correspond to the number of cores in the GPU,

the memory size, the clock frequency, etc.

An inference time prediction function (noted T) is a map-

ping function from CNNi and GPUj to R+

T : CNNi, GPUj −→ ŷ

ŷ = T (f1, f2, . . . , fn, c1, c2, . . . , cm) (1)

where ŷ is the predicted inference time of CNNi on the

GPUj .

In this paper, due to the lack of space, we only present the

case of two different edge GPUs, namely Nvidia Jetson AGX

Xavier [10] and Nvidia Jetson TX2 [11].

The same modeling methodology has been used on each

edge GPU platform and two sets of models have been obtained.

The equation 1 becomes:

ŷ = TGPUj
(f1, f2, . . . , fn) (2)

where GPUj ∈ {AGX, TX2}.

Fig. 1: Modeling methodology for CNNs execution time prediction models.

In this context, our approach aims to answer the following

questions:

1) What are the most important CNN features that impact

inference time? Our answer is given in sub-section III-B.

2) What are the most relevant modeling algorithms that

give the best accurate predictions of CNNs inference

time? Our answer is given in sub-section III-C.

Our modeling approach is based on finding the relationship

between the input CNN features and observed inference time.

For this purpose, we rely on regression models which are part

of supervised ML algorithms.

B. CNN Features for our Prediction Models

CNNs inference time is mainly impacted by the following

factors:

1) Computational complexity, which corresponds to GPU

cores activities;

2) Memory requirements, which corresponds to read and

write memory operations;

3) CNN internal properties, which corresponds to depen-

dencies between computation operations and memory

operations.

These features are detailed below.

1) Computational complexity: The total number of FLOPs

is used to measure the computational complexity when

performing CNNs inference. As reported in table I, this

number is highly dominated by the number of operations

performed in convolutional layers. Convolutional layers

represent the bottlenecks of computations in CNNs. Our

experimentation shown in figure 2 confirms that CNNs

inference time is not linearly correlated to the number of

FLOPs. We can then conclude that considering only the

computational complexity is not enough to predict accurately

the CNN inference time.

2) Memory requirements: Memory activities have a signif-

icant impact on the execution time on GPUs. However, it’s

hard to extract the information about memory activities and

requirements without profiling the CNNs on the GPU platform.

This solution must be avoided during the prediction as it’s a

time consuming task and will also add a significant overhead

to the prediction latency. To overcome this problem, we rely

on some specific characteristics of CNNs that are correlated

to memory activities. Our experiments show that the major

memory requirements of CNNs can be devoted mainly to 3

factors:

1) Reading CNNs parameters, i.e weights and biases,

2) Reading the input data, writing the output results and

3) Reading and writing the intermediate data of the hidden

layers, i.e activations.

During the CNN inference, convolutional filters and activations

are constantly accessed which increases the inference time

[12]. Moreover, this time increases when activations and

weights can not be mapped entirely in cache memories. Cache

misses considerably increase the CNN inference time. Given

the above facts, we assume that both weights and activations

are highly impacting memory activities when performing

CNNs inference.

3) CNN internal properties: In addition to computational

complexity and memory requirements, other properties related

to CNNs internal architecture impacting inference time have to

be taken into account. We have also considered the Weighted

sum of neurons in convolutional layers. This metric is calcu-

lated by multiplying the number of neurons in convolutional

layers by the filter size: height×width×depth. The idea here

is to give more importance to neurons with large filter sizes.

The number of neurons in fully connected layers is taken as

it is, because the neuron is associated to a single weight.

To select the most important CNN’s features in the execution

time prediction, we used the F-score metric of the XGBoost

algorithm. This technique is used for all of the prediction

models detailed in section III-C. The considered features and

their corresponding impacts are depicted in figure 3.

C. Modeling Approaches

Five ML-based algorithms have been used to design the

CNN inference time prediction models:

1) Multiple Linear Regression using the Ordinary Least

Squares (OLS)

2) Multi-Layer Perceptrons (MLP)

3) Support Vector Regression (SVR)

TABLE I: FLOPS ESTIMATED BY TENSORFLOW PROFILER OF

SOME STATE OF THE ART CNNS. (B: BILLIONS, AND M:

MILLIONS).

CNN Model Conv2D Add Mul Pooling

ResNet-50 7.71B 31.02M 25.58M 1.81M

DenseNet-121 5.67B 7.89M 8.02M 1.98M

DPN-98 23.34B 70.54M 61.63M 2.71M

GoogleNet 3.00B 6.61M 6.64M 12.55M

ResNet-101V2 14.38B 52.32M 44.59M 2.16M

Inception-v3 5.67B 23.80M 23.85M 12.18M

 0

 20

 40

 60

 80

 100

 120

 140

 0 1x10
10

 2x10
10

 3x10
10

 4x10
10

 5x10
10

 6x10
10C

N
N

 I
n

fe
re

n
c

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

FLOPS

Relation between FLOPS and Execution Time

Fig. 2: Execution time versus floating-point operations (FLOPs). This figure
demonstrates that using only the numbers of FLOPS is not sufficient to estimate
execution time. This figure gives the execution time of some of our CNN

benchmarks detailed in Section IV ranked by their FLOPs.

TABLE II: EVOLUTION OF THE ADJUSTED R
2 DURING THE STEPWISE LINEAR REGRESSION. FEATURES ARE ADDED TO THE OLS PREDICTION MODEL

ONE BY ONE, FROM LEFT (MOST IMPORTANT FEATURE) TO RIGHT (LESS IMPORTANT FEATURE) OF THE TABLE

Features Total
number
of
FLOPs

Sum of
activa-
tions

Weighted
sum of
neurons

Number
of con-
volution
parame-
ters

Total
number
of layers

Input im-
age size

Number
of fully
con-
nected
parame-
ters

Number
of batch
normal-
ization
parame-
ters

Number
of batch
normal-
ization
layers

Number
of convo-
lutional
layers

Number
of fully
con-
nected
layers

Adjusted R2 0.970 0.985 0.987 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

Number of fully connected layers

Number of convolution layers

Number of batch normalization layers

Number of batch normalization parameters

Number of fully connected parameters

Input image size

Total number of layers

Number of convolution parameters

Weighted sum of neurons

Sum of activations

Total number FLOPs

 0 50 100 150 200 250 300 350 400

Feature Importance (F-score)

Fig. 3: The feature importance calculated by XGBoost. Features with a high
F-score are the most impacting on the CNNs inference time.

4) Random Forest (RF)

5) eXtreme Gradient Boosting (XGBoost)

In order to tune each model’s hyperparameters, we applied

an exhaustive grid search. During this process, we perform a

K-fold cross validation [13] to select the best hyperparameters

values and combination. Once the hyperparameters are tuned,

the training of the chosen ML algorithms is performed on the

parameters using the training dataset. Finally, the obtained

prediction models are evaluated using the test dataset. We

give an overview of the ML algorithms used in our approach

in the following.

1) Multiple Linear Regression using the Ordinary Least

Squares (OLS): Multiple linear regression approaches use a

linear function to model the relationship between a target

variable (y) and n input features (X1, X2, . . . , Xn):

y = αnXn + αn−1Xn−1...+ α2X2 + α1X1 + β + ǫ (3)

In this equation α1, α2, . . . , αn and β are the parameters of

the MLR. They are fixed during the training phase in such a

way to minimize the difference (ǫ) between estimated (ŷ) and

real (y) values of the inference execution times.

Among the variety of Multiple Linear Regression algo-

rithms, we have chosen the most frequently used Ordinary

Least Squares regression (OLS) [14]. In our study, we have

applied a stepwise regression to choose the best combination

of features with the highest impact on CNNs inference time.

The results of the stepwise regression are given in table II.

The features are added based on their importance showed in

the figure 3.

We notice that the model has achieved a highest adjusted

R2 (98.8%) with only four input features, namely : FLOPs,

sum of activations, weighted sum of neurons, and number

of convolutional layers parameters. The reasons behind

choosing Multiple Linear Regression for CNNs inference

time prediction are: 1) their simplicity in the implementation,

and 2) their short training time. However, this approach

is not accurate when the linear relationship between input

features and the target variable, execution time in our case,

is not valid. To overcome this limitation, other algorithms

which have the ability to model both linear and non-linear

relationships have been implemented and compared. These

algorithms are presented in the following sub-sections.

2) Multi-Layer Perceptrons: The Multi-Layer Perceptrons

(MLP) [15] is a part of Artificial Neural Networks (ANN).

The MLP is a succession of hidden layers where each layer

applies the following transformation on the input features:

ẑ = θ(

n∑

i=1

wixi + b) (4)

where ẑ is the output value, wi is the weight of the feature

xi, b is the bias and θ is the activation function. Choosing the

good MLP architecture is done by fixing the hyperparameters,

such as the number of layers, number of neurons, types

of activation function, etc. We rely on the grid search

method with the K-fold cross validation to choose the best

hyperparameters values. Once these hyperparameters are

fixed, parameters values of wi and b are fixed at the training

phase.

3) Support Vector Regression: Support Vector Machine

[16] is one of the most powerful data driven algorithms used

for classification and regression problems. The SVR deals with

non-linearity by using kernels which are functions that map

the input data from the original space to a higher dimensional

space where features can be linearly separable. The most

important hyperparameters for the SVR are:

• Kernel type: linear, polynomial, sigmoid, and radial basis

function (RBF).

• Gamma: the kernel coefficient for the polynomial, sig-

moid and RBF kernels.

• Cost (C): regularization factor which controls the trade-

off between the training error and the generalization of

the model.

• Epsilon, which defines the interval of errors within which

no penalty is applied to training loss function.

These hyperparameters have been tuned using the grid

search method.

4) Random Forest: Unlike the above methods based on

the best line or hyperplane fitting, Random Forest (RF) uses

decision trees. RF is based on the bagging technique where

predictions are made by multiple predictors (i.e. decision

trees). Each of them is trained on a subset of training samples

and a subset of features selected randomly. The final prediction

is calculated by averaging the predictors outputs. We tune the

following hyperparameters:

• Number of predictors needed to train the model,

• Maximum depth of each decision tree,

• Minimum number of samples required to split nodes,

• Minimum number of samples required for a leaf node,

• Maximum number of features to consider when splitting

the nodes.

We have also used the bootstrap method for data sampling.

5) eXtreme Gradient Boosting: eXtreme Gradient Boosting

(XGBoost) [17] is a decision-tree based algorithm. Unlike

Random Forest, XGBoost is based on the boosting technique.

The boosting technique makes predictions from weak pre-

dictors that are arranged sequentially: the first predictor is

trained on the entire dataset, where the subsequent predictors

are trained on the residuals of the prior predictors. This

technique helps to focus on the mispredicted values. The

algorithm uses the gradient descent algorithm to minimize

prediction errors. As explained in Section III-B, we use first

the feature importance calculated by XGBoost to select the

most impacting features (see figure 3). These features are

then used by the performance estimator. XGBoost has several

hyperparameters to tune, which can be categorized into three

groups:

• General hyperparameters,

• Booster hyperparameters,

• Learning hyperparameters.

Once the optimal combination of hyperparameters is obtained,

we perform a full training on the entire training dataset, with

the early stopping technique.

IV. EXPERIMENTAL RESULTS

This section details the followed evaluation methodology

and the obtained evaluation results. We used two Nvidia GPU

platforms, namely the Jetson TX2 and the Jetson AGX Xavier.

The hardware specifications of each platform is described in

the table III. We have configured the platforms to profiling

mode (maximum power mode) in order to minimize the host

CPU interference. We have used the same underlying software

TABLE III: HARDWARE PLATFORMS USED IN THE EXPERIMENTS

Hardware feature Jetson TX2 Jetson AGX Xavier

CPU(ARM)
6-core Denver and A57

2 GHz
8-core Carmel 2.26

GHz

Memory 8 GB 128-bit LPDDR4
16 GB 256-bit

LPDDR4x

Memory bandwidth 58.4 GB/s 137 GB/s

GPU
256-core Pascal 1.3

GHz
512-core Volta 1.37

GHz + 64 tensor cores

Power 7.5W/15W 10W/15W/30W

configuration in the two edge GPU platforms. CNNs have

been implemented on GPU using the Keras 2.3.1 API with

TensorFlow 1.14 as backend [18]. This framework is running

on top of Cuda version of 10.0 and a cuDNN version of 7.5.3.

The host operating system in both platforms is Linux Ubuntu

18.04.3 LTS with a kernel 4.9.149-tegra.

A. Evaluation Methodology

As shown in figure 1, our modeling process is subdivided

into three main steps: 1) Benchmarking, 2) Data collection

and 3) Modeling.

1) Benchmarking step: The benchmarking step is mainly

based on profiling CNNs inference on different GPUs. The

experiments have been designed based on executing state-of-

the-art image classification CNNs by varying the parameters

presented in table IV.

As shown in table IV, we have implemented the state-of-the-

art CNNs dedicated to image classification. CNN architectures

TABLE IV: DETAILS OF THE BENCHMARKS USED IN THE EXPERIMENTS.
IN TOTAL, WE HAVE 2056 AND 1975 (RESPECTIVELY) INPUT-DATA FOR

AGX AND TX2 (RESPECTIVELY) FOR 5 PERFORMANCE ESTIMATION

MODELS: 70% HAVE BEEN USED FOR TRAINING AND 30% FOR TESTS AND

ACCURACY CALCULATIONS

CNN
Architectures

CNN
variants

Input Image Sizes (squared)

GoogleNet 1
[224,240,256,299,320,331,448,480,
512,568,600,720,800,896,1024]

Inception V3 1 [75,90,112,128,150,224,240,256,
299,320,331,448,480,512,568,600,
720,800,896,1024]

InceptionResNet V2 1

DPN 4
[32,56,64,75,90,112,128,150,224,
240,256,299,320,331,448,480,512,
568,600,720,800,896,1024]

DenseNet 5

Xception 1

EfficientNet 4 [32,56,64,75,90,112,128,150,224,
240,256,299,320,331,448,480,512,
568,600,720,800,896,1024,1200,1600]

MNASNet 5

ResNet V1 12

[32,56,64,75,90,112,128,150,224,
240,256,299,320,331,448,480,512,
568,600,720,800,896,1024,
1200,1600,1792,2400]

ResNet V2 7
MobileNet V1 4
MobileNet V2 5
MobileNet V3 4
ResNext 2
SENet 6
ShuffleNet V1 4
ShuffleNet V2 3

such as: Inception, ResNet, MobileNet, etc., have been tested

on the two GPU platforms. An FP-32 bits representation for

the weights and tensors has been used. The weights of these

CNNs have been set randomly as their values have no impact

on the inference time. We varied three factors:

1) Input Image Sizes: Here the impact of the image size

on the inference time is studied. We tested the fre-

quently used image sizes in the literature from 32*32

to 2400*2400 pixels depending on the CNN.

2) CNN Variants: Different variants of the same CNN ar-

chitecture are considered in order to extend our dataset.

Some of the considered CNN, such as ResNet V1, have

up to 12 different variants.

3) CNN Architectures: Finally, we consider different archi-

tectures of CNN to quantify their impact on the inference

time.

In total, we obtained a dataset of 2056 and 1975 (respectively)

on AGX and TX2 (respectively) as inputs for our performance

estimation models. This difference is due to the fact that

the TX2 GPU platform has a smaller memory and some of

the benchmarks couldn’t be executed. In the experiments,

70% of the input-data has been used for training and 30%

for tests and accuracy measurements. In the experimental

results section, we will evaluate the accuracy of each of the

5 models, when exploration is realized in 3 groups.

2) Data collection step: The dataset used for CNNs infer-

ence time modeling is collected from two sources:

• CNNs implementation descriptions: we have developed a

parser module that takes CNNs implementation as input

and gives their important feature values (see figure 3).

• Performance measurements: CNNs inference times

measurements have been collected using the Nvidia

profiling tool Nvprof [19]. Each inference has been ran

100 times on 100 randomly chosen images in order to

minimize the profiling overhead.

At this point the dataset is collected and ready to use in

the modeling step.

3) Modeling step: Figure 4 details the modeling steps

followed to obtain the 5 prediction models.

Fig. 4: The process of constructing the prediction models.

As shown in the figure 4, our modeling process has two

inputs:

1) ML prediction model name, which corresponds to one

of the five ML algorithms described in section III-C.

2) Collected data, which is the dataset obtained in the data

collection step as described in Table IV.

The collected data is split into training data and test data.

During the training phase, the search space for the hyperpa-

rameters is firstly initialized for each prediction model before

being tuned using the training data. The tuning is realized

using grid search and K-fold cross validation techniques in

order to select the best values of hyperparameters. Finally,

the prediction models are trained with the obtained optimal

hyperparameters.

To evaluate the obtained models on different configurations

we have also split the test data into three exploration spaces:

• Performance estimation of New Image Sizes (NIS):

In this first group of experiments, we evaluate our 5

models on state-of-the-art CNN models with new input

sizes. We varied the input size from 32*32 to 2048*2048

pixels. We obtained different values of FLOPs, sum of

intermediate activations, sum of neurons and eventually

different number of parameters. The number and the type

of layers remain the same.

• Performance estimation of New CNN Variants (NCV):

In this second group of experiments, we measure perfor-

mance estimation when new variants of the same CNN is

considered. Based on an original CNN architecture, new

CNN variants have been obtained by changing the features

such as the number of layers and the used operators.

If we consider ResNet V1 as example, we trained our

predictors on ResNetV1-20 to ResnetV1-100 and we

predict inference time for ResNetV1-200. This leads to

new numbers of: FLOPs, activations, neurons, parameters

and layers.

• Performance estimation of New CNN Architectures

(NCA): In this group of experiments, we evaluate our

predictors on new hand crafted synthetic CNN models.

We randomly generate synthetic CNN architectures where

the input size, number of layers, type of layers, number

of filters, type and parameters of convolutions, parame-

ters of fully-connected layers, and type of pooling and

batch normalization layers, have been randomly set. This

exploration space is the most difficult as we evaluate the

capacity of the 5 models to predict the performances of

completely new CNN architectures not included in the

training dataset. The aim of this 3rd group of exper-

iments is to measure the capacity of the 5 models to

estimate execution time of completely new and unseen

CNN architectures only by characterizing them through

their features.

Inference execution time accuracy is measured using the

Mean Absolute Percentage Error (MAPE).

B. Results and Discussion

After detailing the evaluation methodology, this section

presents and discusses the obtained modeling results in three

perspectives: First, we discuss the predicted CNN inference

times using the 5 ML prediction models compared to the

measured ones. Second, the Mean Absolute Percentage Error

(MAPE) is presented to evaluate the accuracy of each ML

model. We also discuss the hyperparameters configuration. In

the third part of this section, we compare execution times for

training and for tuning, the number of tested hyperparameters’

configurations and finally the prediction latency which corre-

sponds to the execution time of the 5 prediction approaches on

3 different Hardware platforms: on the Jeston AGX GPU, on

the Jetson TX2 GPU and on a development station Intel Xeon.

Implementing our predictors on edge GPU platforms will allow

to adapt the executed CNN to application constraints at run

time.

1) Predicted vs Measured CNN inference time: Figures 6,

7, 8, 9, and 10 present the comparison between the predicted

(y axis) and the measured (x axis) CNN inference time on the

AGX platform. The comparison has been realized for NIS,

NCV (on the left of the figures) and NCA (on the right of the

figures). The used dataset has been detailed in section IV-A

and Table IV.

For NIS and NCV, the predicted execution times are very

close to the measured values, in all of the prediction models

except for OLS (see figure 6). As we have trained our

prediction models on different CNN variants and different

input image sizes, the prediction models have been able to

capture the correlation between different CNN variants and

input sizes. We can also notice that OLS overestimates the

CNN inference time especially for high execution time values.

This is due to the non-linearity between input features and the

CNN inference time where the computation complexity and

memory requirements are very high. This result confirms also

that the inference times could not be accurately estimated by

using a linear regression .

For NCA, the difference between the predicted and the

measured execution times are higher than for NIS and NCV,

in particular for MLP, OLS and SVR prediction models.

As explained in the previous section, the reason behind this

drawback is the fact that in NCA, new and randomly gen-

erated CNNs are explored. For these reasons, the predictions

models are less accurate for these unexplored and unseen CNN

architectures.

In the appendix of the paper, figures 11, 12, 13, 14, and

15 show the results for the NVIDIA Jetson TX2 platform. We

observe the same conclusions as for the NVIDIA AGX.

2) Prediction accuracy and hyperparameters configuration

analysis : To evaluate the accuracy of our prediction models,

the Mean Absolute Percentage Error (MAPE) has been chosen.

Figure 5 and Table V give the obtained MAPE for the 5 studied

prediction models for NIS, NCV and NCA. The prediction

models use data obtained by profiling the benchmarks (Table

IV) on two edge GPU platforms (see section IV-A1).

From figure 5 and Table V, we can note that the MAPE

average values are mostly between ∼ 7% in the best case and

∼ 26% in the worst case. We can also notice that the lowest

MAPE values have been obtained for NIS and NCV.

In general we can say that for NIS, NCV and NCA,

XGBoost outperforms the other prediction models and of-

fers the lowest MAPE values. XGBoost is among the most

powerful ML algorithms. The Boosting technique, to enhance

the prediction accuracy through many estimators arranged

sequentially, makes it very accurate. However, we noticed

that XGBoost is sensitive to hyperparameters values. These

values need to be set carefully in order to achieve the best

performances.

RF is composed of different decision trees trained on

random subsets of training data samples and features. This

property helps to reduce the variance error. Nevertheless,

prediction approaches based on ensemble learning, such as

RF, need to be trained on different scales of data in order to

obtain an accurate mapping of features and execution times. In

addition, by increasing the number or the depth of the decision

trees, the prediction accuracy converges according to our the

experiments. These 2 factors increase the complexity of the

training and the latency of the prediction in RF. For this reason,

when a short interval of time for tuning and training is desired,

XGBoost will be more efficient than RF.

MLP has generally good performances with a slight loss of

generalization for NIS and NCA. This can be due to its nature

that tends to overfit data. Furthermore, MLP is very sensitive

to the variation of hyperparameters, which makes it very hard

to tune. The size of the MLP network has an important impact

Fig. 5: Mean Absolute Percentage Error (MAPE) for the Nvidia AGX (a) and TX2 (b) GPU platforms with the corresponding 95% Confidence Interval. In
this figure we compare the 5 prediction models for exploring: New Image Sizes (NIS), New CNN Variants (NCV) and New CNN Architectures (NCA).

OSL: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 6: Predicted vs. Measured Inference Time for OLS (AGX).

SVR: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 7: Predicted vs. Measured Inference Time for SVR (AGX).

RF: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 8: Predicted vs. Measured Inference Time for RF (AGX).

MLP: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 9: Predicted vs. Measured Inference Time for MLP (AGX).

TABLE V: PREDICTION MODELS ANALYSIS: ACCURACY, TRAINING, TUNING, AND LATENCY

MAPE Training time
Grid Search

execution time
Total number of
hyperparameters Prediction latency

Prediction
Model

Test
Data AGX TX2 AGX TX2 AGX TX2 AGX TX2 AGX TX2

Intel
Xeon

OLS
NIS 24.43% 26.32%

8.14 us 7.3 us 0 0 319.6 ns 468.42 ns 113.93 nsNCV 20.87% 22.95%
NCA 19.30% 20.32%

MLP
NIS 13.04% 15.78%

1.53 s 722 ms 10.35 hr 11.82 hr 14400 15840 22.65 us 30.90 us 9.95 usNCV 9.23% 9.65%
NCA 13.34% 16.31%

SVR
NIS 13.30% 13.84%

127 ms 191 ms 23.61 hr 21.43 hr 18144 18144 41.79 us 52.14 us 20.76 usNCV 7.67% 8.37%
NCA 15.00% 16.72%

RF
NIS 11.19% 11.07%

4.93 s 2.01 s 4.69 hr 4.22 hr 71280 71280 1.03 ms 1.45 ms 393.3 usNCV 10.55% 8.95%
NCA 13.11% 15.22%

XGBoost
NIS 8.75% 10.95%

163 ms 914 ms 11.27 mn 15.17 mn 237 238 2.03 us 3.49 us 175.20 nsNCV 8.12% 9.11%
NCA 12.29% 14.73%

XGboost: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s

)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 10: Predicted vs. Measured Inference Time for XGBoost (AGX).

on the accuracy. We noticed that large MLP networks are prone

to overfitting compared to the small ones.

SVR is less accurate for NIS and NCA compared to the

aforementioned models. The variation in the MAPE values

in the three exploration spaces is quite high which can be

interpreted as overfitting. In terms of hyperparameters config-

uration, SVR is sensitive to the type of kernels and the cost

(C). According to our results, linear kernels perform the best,

whereas the very small values of C, lower than 1, lead to a

huge loss of generalization.

As expected, OLS has the highest MAPE values because

of its limited capacity to capture the different patterns in the

training data. Moreover, the inclusion of non relevant features

in OLS can drastically decrease the model’s accuracy. In this

case, techniques for regularization such as LASSO and Ridge

are recommended to improve the model performances. Due of

time limitation, this point is considered as a possible extension.

If we compare the results of the two GPU platforms, Nvidia

AGX and TX2, we notice that the MAPE is very similar.

This means that our modeling approach is easily adaptable

to other platforms in order to obtain execution time prediction.

3) Comparison of the 5 models in terms of training time,

tuning cost and latency: Table V summarizes the obtained

statistics of the 5 tested modeling approaches.

In addition to MAPE average values, table V gives the

training and tuning time of each prediction model for AGX and

TX2 in Google Colaboratory [20]. We can observe, that except

for SVR and XGBoost, the prediction models require more

time to be trained for AGX than for TX2. This is due to the fact

that the higher resource capacity of AGX allows to run more

CNNs which gives a largest training data compared to TX2.

Table V shows also that tuning the model hyperparameters is

time consuming task, especially for models with high number

of hyperparameters.

Tested hyperparameters values in grid search for the AGX

and for the TX2 are different. This is due to the fact that

CNN execution times ranges are different. For the MLP and

XGBoost, as both of them use the gradient descent algorithm,

the training convergence for AGX and for TX2 is different.

To quantify the execution time of the 5 models, they

have been executed on an AGX, TX2 and Intel Xeon based

Processor development station. Results are given in the three

rightmost columns in Table V. The comparison of the execu-

tion latency is important to measure the performance of the

5 models to explore a large number of CNN architectures in

a limited interval of time. In addition, when an online tuning

of the CNN or the Hardware platform is needed, having a

short execution time of the prediction model is interesting. We

note that in terms of speed, OLS outperforms all of the other

models. This is explained by the simplicity of OLS which is

a simple linear equation. However OLS is the less accurate.

XGBoost has a smaller execution time compared to MLP,

SVR and RF. Which makes this technique very interesting

due to the good trade-off in terms of accuracy and latency. The

highest latency of RF is due to the complexity of exploring

the decision trees included in the Random Forest.

V. CONCLUSION

Edge computing is one of the area targeted by CNN-

based applications. Both CNNs and edge computing are highly

growing and frequently changing domains. Finding the best

matching between CNN model architecture and Hardware of

the edge device under real time constraints is a very time

consuming and complex task. In this paper, we compared

five state of the art ML-based models for CNN inference

time prediction on edge GPUs. These 5 models are useful for

an early performance estimation of CNN-based applications.

Using these models, rapid design space exploration will be

possible to guide the designer to an efficient CNN model and/or

to the most adequate Hardware platform.

We demonstrated that XGBoost and RF gave good execution

time predictions, with an average accuracy close to 92% for

NIS and NCV and 86% for NCA. In terms of trade-off

between: accuracy, model tuning complexity and prediction

latency, XGBoost is the best approach. Exploring new syn-

thetic CNNs, i.e called NCA in our paper, is more complex

and less accurate than the other two spaces: NIS and NCV.

As future work, we plan to extend our comparison to

explore additional CNNs’ characteristics that may improve

our prediction models. We also plan to extend our ML-based

models to predict not only CNNs inference execution time but

also energy consumption and resource utilization. Finally, we

will also integrate the hardware configuration as input in our

models to perform cross platform predictions.

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[2] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE

Access, vol. 6, pp. 64 270–64 277, 2018.

[3] M. Amarı́s, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram,
“A comparison of gpu execution time prediction using machine learning
and analytical modeling,” in 2016 IEEE 15th International Symposium

on Network Computing and Applications (NCA), 2016, pp. 326–333.

[4] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in 2018 IEEE International

Conference on Big Data (Big Data), 2018, pp. 3873–3882.

[5] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia,
“Characterizing deep learning training workloads on alibaba-pai,” in
2019 IEEE International Symposium on Workload Characterization
(IISWC), 2019, pp. 189–202.

[6] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks,” in ICLR, 2017.

[7] C. F. Rodrigues, G. Riley, and M. Luján, “Fine-grained energy profiling
for deep convolutional neural networks on the jetson TX1, year=2017,”
in 2017 IEEE International Symposium on Workload Characterization

(IISWC).
[8] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “Neuralpower:

Predict and deploy energy-efficient convolutional neural networks,” in
Proceedings of The 9th Asian Conference on Machine Learning, ACML,
2017.

[9] D. Stamoulis, E. Cai, D. Juan, and D. Marculescu, “Hyperpower:
Power- and memory-constrained hyper-parameter optimization for neu-
ral networks,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), 2018, pp. 19–24.

[10] “Jetson AGX xavier developer kit,” ac-
cessed: 2018-06-30. [Online]. Available:
developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

[11] “Harness AI at the edge with the jetson TX2
developer kit,” accessed: 2018-06-30. [Online]. Available:
developer.nvidia.com/embedded/jetson-tx2-developer-kit

[12] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos, “Memory
requirements for convolutional neural network hardware accelerators,”
in 2018 IEEE International Symposium on Workload Characterization
(IISWC), 2018, pp. 111–121.

[13] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-
fold cross validation in prediction error estimation,” IEEE transactions

on pattern analysis and machine intelligence, vol. 32, no. 3, pp. 569–
575, 2009.

[14] N. Matloff, Statistical regression and classification: from linear models

to machine learning. CRC Press, 2017.
[15] F. Murtagh, “Multilayer perceptrons for classification and regression,”

Neurocomputing, vol. 2, no. 5-6, pp. 183–197, 1991.
[16] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Sup-

port vector machines,” IEEE Intelligent Systems and their applications,
vol. 13, no. 4, pp. 18–28, 1998.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, 2016, pp. 785–794.
[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation OSDI 16), 2016, pp. 265–283.

[19] “Nvprof overview,” accessed: 2020-06-30. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview

[20] E. Bisong, “Google colaboratory,” in Building Machine Learning and
Deep Learning Models on Google Cloud Platform. Springer, 2019, pp.
59–64.

APPENDIX

A. Obtained results on Jeston TX2

OSL: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 11: Predicted vs. Measured Inference Time for OLS (TX2).

SVR: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 12: Predicted vs. Measured Inference Time for SVR (TX2).

RF: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 13: Predicted vs. Measured Inference Time for RF (TX2).

MLP: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s
)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 14: Predicted vs. Measured Inference Time for MLP (TX2).

XGboost: Predicted vs. Measured Inference Time

 0

 100

 200

 300

 400

 0 100 200 300 400

P
re

d
ic

te
d

 T
im

e
 (

m
s

)

Measured Time (ms)

NIS
NCV

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Measured Time (ms)

NCA

Fig. 15: Predicted vs. Measured Inference Time for XGBoost (TX2).

developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview

	I Introduction and Motivations
	II Related works
	III Proposed Approach
	III-A Problem Formulation
	III-B CNN Features for our Prediction Models
	III-B1 Computational complexity
	III-B2 Memory requirements
	III-B3 CNN internal properties

	III-C Modeling Approaches
	III-C1 Multiple Linear Regression using the Ordinary Least Squares (OLS)
	III-C2 Multi-Layer Perceptrons
	III-C3 Support Vector Regression
	III-C4 Random Forest
	III-C5 eXtreme Gradient Boosting

	IV Experimental Results
	IV-A Evaluation Methodology
	IV-A1 Benchmarking step
	IV-A2 Data collection step
	IV-A3 Modeling step

	IV-B Results and Discussion
	IV-B1 Predicted vs Measured cnn inference time
	IV-B2 Prediction accuracy and hyperparameters configuration analysis
	IV-B3 Comparison of the 5 models in terms of training time, tuning cost and latency

	V Conclusion
	References
	Appendix
	A Obtained results on Jeston TX2

