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ABSTRACT
Reflections in videos are obstructions that often occur when videos
are taken behind reflective surfaces like glass. These reflections
reduce the quality of such videos, lead to information loss and de-
grade the accuracy of many computer vision algorithms. A video
containing reflections is a combination of background and reflection
layers. Thus, reflection removal is equivalent to decomposing the
video into two layers. This, however, is a challenging and ill-posed
problem as there is an infinite number of valid decompositions. To
address this problem, we propose a user-assisted method for video
reflection removal. We rely on both spatial and temporal informa-
tion and utilize sparse user hints to help improve separation. The
key idea of the proposed method is to use motion cues to separate
the background layer from the reflection layer with minimal user
assistance. We show that user-assistance significantly improves
the layer separation results. We implement and evaluate the pro-
posed method through quantitative and qualitative results on real
and synthetic videos. Our experiments show that the proposed
method successfully removes reflection from video sequences, does
not introduce visual distortions, and significantly outperforms the
state-of-the-art reflection removal methods in the literature.

KEYWORDS
Video reflection removal, video enhancement

1 INTRODUCTION
With the popularity of digital devices and videography, videos have
become one of the most important information carriers. Users of
such devices are encountered with video capturing conditions that
can be far from optimal. For example, when taking videos behind
glass windows inside a building or a car, reflections from indoor
objects may obstruct the outdoor scene of interest. These reflections
reduce the quality of such videos and decrease the target objects
visibility.

Removing reflections from videos results in clearer and better-
quality videos, which is important for professional photographers
as well as normal users. Moreover, cameras in self-driving cars
are often mounted behind glass windshields causing reflections to
exist in the captured scene. This leads to poor understanding of the
surrounding environment. Furthermore, removing reflections is an
important pre-processing step for many video processing applica-
tions and systems. For example, one of the most common tasks in
video surveillance applications is classifying and tracking objects.
Reflections greatly degrade the localization and tracking accuracy
of such algorithms. Robust systems for scene understanding, e.g.,

robots and self-driving cars, require removing reflections to fac-
tor out the noise in their visual representations and increase their
accuracy.

A video containing reflections can be viewed as a combination of
two layers: background layer and reflection layer. Thus, removing
reflection artifacts from the input video is equivalent to decom-
posing the video into two layers. This, however, is a challenging
and ill-posed problem, as there could be infinite number of valid
decompositions. Most current methods for reflection removal are
targeted towards single images. Applying such methods on videos
frame by frame results in temporal flickering and incomplete sepa-
ration. A recent work on videos [8] utilizes temporal information to
overcome the problem of temporal flickering. However, this work
assumes that the relative motion of the two layers is non-dynamic
and easily distinctive. This assumption leads to incomplete sepa-
ration in many natural scenes where the motions in the different
layers are complex and dynamic.

We propose a method to remove reflections from videos with
complex motion and reflection patterns. The proposed method
incorporates simple user hints with the temporal information avail-
able naturally in videos using a computational approach. Ourmethod
uses motion cues to separate the background and reflection lay-
ers. Sparse user annotations (hints) are used to improve the layer
separation, especially in videos with complex motions. We have
implemented the proposed method and compared it against the
most recent video reflection removal method in [8] as well as the
state-of-the-art image reflection method in [2], after extending it
to support video sequences. To our best knowledge, there are no
datasets available publicly for videos with reflections. Thus, we
captured and collected videos from prior works in various natural
scenarios to test the proposed method in different conditions. The
dataset has videos shot indoors, outdoors, in mobile environments,
and on different reflective surfaces. (We will make our dataset pub-
lic after the review process.) Natural scenes with reflections have no
ground truth decomposition. Thus, we created synthetic videos that
mimic the behavior of reflections to provide quantitative analysis
between our method and prior works. Our performance analysis
shows that our method significantly improves the separation output
measured both qualitatively and quantitatively.

The rest of this paper is organized as follows. We summarize the
related work in Section 2. We formally define the video reflection
removal problem and present our solution for it in Section 3. We
describe our experimental evaluation in Section 4, and we conclude
the paper in Section 5.
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Figure 1: Overview of the proposed method. We start by estimating the motion fields for each layer with the help of sparse
user annotations. We then utilize the motion fields to stabilize each layer and provide initial estimates for the background
and reflection frames. Lastly, the initial estimates pass through an optimisation step to produce the final separated outputs.

2 RELATEDWORK
The problem of removing reflections has been explored extensively
in the image domain under several setups. Whereas the problem
of video reflection removal has received less attention; it has been
addressed only in [8]. We review the related literature on image as
well as video reflection removal.

Reflections in natural images are a particular case of layer com-
position, where two layers are mixed together through addition
forming the final image. Traditional single image reflection removal
handles the ill-posed nature of the problem by relying on strong
assumptions. For example, Levin et al. [5] use statistics of derivative
filters and edge detectors in natural sequences as image priors to
decompose the image into two layers. Li and Brown [7] assume that
both the background and the reflection layers have sparse gradients
where the latter is much smoother. Shih et al. [11] utilize sparse im-
age statistics and encode them as a Gaussian mixture model. They
further constrain the solution using the ghosting artifact assump-
tion. Recently, Arvanitopoulos et al. [1] suppress reflection artifacts
by constraining the number of non zero gradients on the output.
However, these assumptions can only cover a limited number of
natural scenarios.

Fan et al. [2] recently explored image reflection removal using
deep neural networks. This work introduces two sub-networks: one
for predicting the edge map of the background layer and another to
reconstruct the background layer by adopting this edge map. How-
ever, this technique is limited only to blurring reflection artifacts.
In scenarios with strongly textured reflections, the edge prediction
sub-network fails and ruins the background layer reconstruction.
In [15], gradients reconstructions are used as hints to recover the
details of the background. In [21], perceptual and adversarial losses
are used to recover the visual perception and properties of the sepa-
rated images. A recent work uses a non-linear synthesis model with
generative adversarial network (GAN) [17] to remove reflections
from single images.

All the previously mentioned approaches are designed to remove
reflections from one image. In this paper, we focus on recovering
the background and reflection layer in a video sequence. Simply
extending the previous techniques of images to videos, such as
applying the method on a frame by frame manner, does not provide
accurate results as it leads to incomplete separation and temporal
flickering as observed in [8]. To overcome these issues, Nandoriya

et al. [8] proposed an extension of the work in [18] by formulating
an initialization and optimization strategy taking into account the
temporal aspects to remove reflections from videos. This has shown
to overcome the temporal flickering issue. However, this approach
assumes that the two layers have simple non-dynamic motion that
is easily distinctive for each layer. For example, if two objects in
one layer move with different speeds and directions, the algorithm
assigns each object to a different layer instead of both objects to the
same layer, failing to provide an accurate separation. Furthermore,
their work utilizes motion trackers that fail to track weak features
with low color information often found in natural sequences with
reflections. For example, if a reflection part is blurry with low color
information, their method fails to track this feature and thus it
remains in the recovered background layer.

In this work, we develop a new method that can handle com-
mon reflections without relying on specific motion constraints that
do not work on the general case of reflections. We overcome the
limitations associated withmotion estimation by incorporatingmin-
imal user assistance. Our method shows good separation results in
videos with complex reflection texture and dynamic motion.

3 PROBLEM DEFINITION AND PROPOSED
METHOD

3.1 Problem Definition
We mathematically model a video with reflections as a composition
of two layers as shown in Eq. (1), where It is the video frame, Bt is
the background layer and Rt is the reflection layer at time t .

It = Bt + Rt . (1)

Making use of the temporal relationship between frames in
videos, we define a motion field W B

t,ρ as the background layer
warping motion field from frame ρ to frame t . Similarly,W R

t,ρ is
defined as the reflection layer warping motion field from frame ρ
to frame t . Thus, the video compositing equation can be defined as:

It =W
B
t,ρBρ +W

R
t,ρRρ , t = 1, 2, . . . ,N . (2)

The problem addressed in this paper can be stated as follows:
Given an input video of length N frames that is a mixture of back-
ground and reflection layers, we would like to decompose this video
into two separate layers each with N frames. Clearly, there is an



infinite number of valid decompositions which makes this problem
severely ill-posed, and thus challenging to solve.

3.2 Overview of the Proposed Method
The idea of the proposed video reflection removal method is to use
motion cues to separate the background layer from the reflection
layer. In addition, since motion in natural videos are quite complex,
we utilize sparse user hints in the layer separation.

A high-level illustration of the proposed method is shown in
Figure 1. We start by estimating the motion of each layer with
the help of sparse user hints. We utilize the estimated motion to
stabilize both layers and provide initial separation.We then perform
an optimization process on the initially separated layers to provide
the final output for each layer.

As detailed in Section 3.3, motion initialization consists of two
parts, computing motion tracks and then clustering them. Motion
initialization is actually quite difficult to perform, because motions
of objects in the background and reflection layers can overlap and/or
obstruct each other, which can lead to incomplete layer separation.
Thus, we propose a user-assisted motion initialization method that
improves the accuracy of the estimated motion tracks. This is done
with the help of an intuitive graphical user interface that improves
motion tracking by allowing the user to annotate new tracks and
in turn improves the clustering accuracy of these tracks.

After motion initialization, motion fields are known for both
layers. In Section 3.4, we describe how we use a sliding window and
background motion fields to stabilize the background motion in
this window. This results in a stable background layer that can be
separated by temporal filtering. Thus, providing an initial estimate
of the first background frame in this window. The corresponding
reflection frame is then estimated as the residual. We shift the
window frame by frame to estimate the initial layer separation
across all frames.

Finally in Section 3.5, we describe the optimization process to
improve the initial estimates and provide the final separated layers.
The optimization function consists of three terms: data term, layer
prior term, and a smoothness term. The data term is to make sure
that the recovered layers satisfy the video compositing model in
Eq. (2). The layer prior term imposes labeling constraints on the
initially estimated layers. The smoothness term is used for the
spatial smoothness of the recovered layers.

In the following subsections, we describe the details of each step
in our method.

3.3 User-assisted Motion Initialization
The objective of the user-assisted motion initialization is to esti-
mate the two dominating motions in the video. We achieve this by
computing motion tracks and clustering them. Specifically, motion
tracks have been shown before to help in classifying objects with
different motions, e.g., in [9]. To illustrate this concept, we show
an example in Figure 2. In this figure, a track is represented by a
colored dot and defined as a point in the 2-dimensional space of
a scene tracked over a number of frames. The figure shows two
frames from a video sequence where the person in the scene has a
different motion than the background. This is shown by the cluster-
ing of the green dots relative to the red dots. Thus, motion tracks

Figure 2: Top: Two frames from a video shot, from the
human motion database HMDB [4]. Bottom: Clustering of
point tracks indicating regions with similar motion.

Frame 12

In
p

u
t 

V
id

eo
C

o
m

p
u

te
d

 T
ra

ck
s

Frame 1

Figure 3: An example of dead tracks in videos with reflec-
tions. The helmet of the bicycle driver was obstructed by the
reflection layer causing the track to die at frame 12.
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Figure 4: An example of weak features in videos with reflec-
tions. The tracker cannot capture the movement of the per-
son in the reflection layer. Thus, when zooming on the boxes
in the bottom row, no tracks (blue dots) are found.



over a sequence of frames can, in principle, differentiate among
objects with different motions.

As described before, a video with reflection is a mixture of two
layers, where each layer is likely to have a motion pattern inde-
pendent of the other layer. For example, when capturing a scene
from inside a moving bus through a glass window, objects inside
the bus will be reflected on the captured outside scene. Objects
inside the bus, however, typically have different motion patterns
than the outside objects. We exploit this observation to separate
the background layer from the reflection layer. In particular, the
first step of our motion initialization is to compute motion tracks
across multiple frames using a point-based tracking method such
as [12]. This method tracks features such as corners and edges and
provides subpixel accuracy. We chose point-based tracking instead
of object-based tracking, e.g., [14], because it provides finer granu-
larity and hence it can potentially improve the accuracy of layer
separation in videos with reflection.

Motion tracking, however, faces two main problems when ap-
plied on videos with reflection, namely: dead tracks and weak fea-
tures. A dead track occurs when a trajectory is identified for a
limited number of frames only. One of the most common reasons
that dead tracks exist in videos with reflections is occlusion and/or
obstruction by the other layer. This makes the tracker not able to
recognize the features of the target layer in the frames where the
obstruction occurs from the other layer, and thus the trajectory
dies. We illustrate the problem of dead tracks in Figure 3, where
the helmet of the person on the bike is detected in frame 1 but due
to the obstruction from reflection its trajectory died in frame 12.

The second problem for motion tracking in videos with reflection
is the frequent presence of weak features, i.e, features having low
contrast that are difficult to detect by the tracker. Color information
is essential for the tracker to detect and track a feature, and if there
is not enough color information, target tracking is hard or not
possible. We show an example of weak features in Figure 4, where
the motion tracker could not capture the movement of the person
in the reflection layer due to the low color information.

Dead tracks and weak features make motion tracking in videos
with reflection very challenging, and therefore results in inaccurate
layer separation and visual distortions. To address this problem,
we propose using sparse user hints to guide the reflection removal
process. Specifically, we utilize user hints in two ways: (i) first to
improve the labeling of the preliminary tracks and (ii) second to
add more tracks. Preliminary tracks are the ones automatically
computed by the point tracker. We design a simple graphical user
interface to collect sparse hints from users in one frame. Then,
we carefully propagate these hints within the frame as well as to
other frames. Our graphical user interface is based on the motion
clustering method in [10], which utilizes temporal propagation,
long term motion, color distributions, and volume consistencies.

We illustrative our user-assisted motion initialization method by
the example in Figure 5. The top row in the figure shows samples of
the video from frame 0 to frame 30. The second row shows samples
of the preliminary unlabeled tracks. In the third row, we show
the spares user hints in frame 0. The hints are given in form of
blue and red scribbles referring to the background and reflection,
respectively. These hints propagate the labeling to all other tracks in
the same frame using a random walk computation [3]. This means

Frame 0 Frame 30

...

Frame 15

...

...

...

........

... ...

Frame 15

Figure 5: Illustration of spares user assistance in motion ini-
tialization. The first row shows frame samples of the given
video with reflections. The preliminary tracks are shown in
the second row. The user sparsely provides simple annota-
tions as shown in the third row. The blue and red hints cor-
respond to the background and reflection areas, respectively.
The annotations are propagatedwithin the frame and across
the frames as shown in the bottom row.

that within one frame while annotating the video, the user does
not have to mark all areas, just make a few scribbles in areas with
and without ref election. Then, the labeling is propagated across
frames within the considered window of frames using the point-
based tracking method [12]. We combine the newly added tracks
by the user with the preliminary tracks. Each track ti is identified
by a set of (xi j ,yi j ) coordinates and by a label li . The (xi j ,yi j )
coordinate indicates the spatial position of track ti in frame j. The
label li indicates to which layer this track belongs to; 1 for the
background and 2 for the reflection. Using the labeled tracks, we
obtain the initial motion fields for each layer between each pair
of frames. To calculate the motion fields from frame i to frame j,
we first identify which tracks in frame i are still tracked at frame
j. However, since many tracks will die from frame i to frame j if
the difference between them is large, we create a sliding window to
secure more point correspondence between each pair of frames. We
choose 10 as the length of our window as it showed good separation
in most results. Then, in each window, we calculate the projective
warping matrix (homography) from each frame to the first frame
in this window using the shared point tracks between them. This is
done using the iterative re-weighted least squares (IRLS) similar to
[20]. Then, we slide the window frame by frame and calculate the
projective warping matrix between each frame and the first frame
in this window.

3.4 Stabilization and Initial Layer Separation
After motion initialization, the projective warping matrices are
known for both the background and reflection. We use the back-
ground warping matrices to stabilize the background layer and



provide initial background estimation. To perform this, we use a
sliding window of length 10 frames. We stabilize the background
motion in this window by warping the last 9 frames in it onto the
first one using the background warping matrices. This results in
a warped version of each frame on the first frame in this window
where the background motion is nearly stable. We then extract
the initial background layer of the first frame in the window us-
ing minimum temporal filtering which calculates the minimum
intensity across all warped frames. We use a minimum operation
instead of the mean since the minimum is an upper bound for the
backgroundâĂŹs intensity [13]. This is based on the idea that the
reflection layer can only add to the intensity of the dominant (back-
ground) layer, i.e., any contribution from the reflection layer will
only be increasing the background layer intensity. So for each pixel
we calculate its minimum value in all the warped frames and assign
this value to the recovered background layer.

Let IBr,i be the warped version of frame i on the reference frame r ,
i.e., the first frame in the window, using the estimated background
warping fieldW B

r,i . The initial estimate of the background layer
frame r of the sliding window Ω can then be calculated as:

B̂r =min(B̂r , IBr,i ), ∀i ∈ Ω. (3)
The corresponding reflection layer can be taken as the residual

component from Eq. (1) as:

R̂r = Ir − B̂r . (4)

We then slide the window frame by frame and perform the same
operation to get initial estimates of all the background and reflection
frames.

3.5 Optimization
Optimization is done on the initial estimates of the background
and reflection frames to improve the separation accuracy. The opti-
mization function consists of three main terms, the data term (Ed ),
layer prior term (El ) and the smoothness term (Es ) as shown in
Eq. (5). λd , λl and λs are weights we assign to each of these terms
respectively. In our experiments, [2, 2, 1] for [λd , λl , λs ] has shown
to provide good results.

E = λdEd + λlEl + λsEs . (5)

The data term Ed is to make sure that the recovered layers satisfy
the video compositing model formulated earlier in Eq. (2). This is
done by minimizing the error between a layer at time t and its
warped version from time ρ as shown in Eq. (6) where ∥x ∥1 is
the L1-norm and N is the total number of frames in the video. We
chose the L1-norm for its robustness in optimization [19]. The linear
additivemodel itself is simple and have been used successfully in the
past in solving many computer vision problems including reflection
[7].

Ed =
N∑
t=1

N∑
ρ=1

∥Bt −W B
t,ρBρ ∥1 + ∥Rt −W R

t,ρRρ ∥1. (6)

To provide some prior information to our optimisation we use
a similar approach to [6]. We define a layer prior term El that im-
poses labeling constraints on the initial estimated layers. We do this
by defining a binary map Mt indicating to which layer each pixel

belongs to.Mt = 0 for the background, andMt = 1 otherwise.This is
based on the assumption that the background edges and the reflec-
tion edges are independent. That is, if we observe a strong gradient
in the input image, it most likely belongs either to the background
component or the reflection component, but not to both [18]. As
explained earlier during stabilization, we stabilize the motion of
the background layer by warping all frames in the window on the
first frame. Making the background motion in the warped (aligned)
frames stable means that the high frequency components, such
as edges, will have nearly stable magnitudes in all warped frames.
However, the high frequency components not belonging to the
background will have sparse magnitudes across the warped frames.
We then estimate Mt once by thresholding the alignment errors
of the high frequency components during the background layer
stabilization. The formulation for the layer prior term is shown in
Eq. (7), where ∇It is estimated by a canny edge detector and |∇Bt |
and |∇Rt | are the first order spatial gradients of the background
and reflection respectively.

El =
N∑
t=1

(Mt∇It |∇Bt | + (1 −Mt )∇It |∇Rt |). (7)

The third term Es in Eq. (5) is used to provide spatial processing
on the reconstructed frames by enforcing spatial smoothness. This
is done by minimizing the first order spatial gradients as follows:

Es =
N∑
t=1

(|∇Bt | + |∇Rt |). (8)

4 EVALUATION
In this section, we first describe the video dataset used in the exper-
iments. Then, we assess the performance of our method on several
videos. Then, we compare our methods against two recent methods
in the literature. Then, we compare our method as well as others
using a synthetically created video for which we can compute the
ground truth reflection layer. Finally, we analyze the impact of the
user-provided hints on the performance of our method.

4.1 Dataset
Our dataset consists of roughly 156 videos. The number of frames
in each video ranges between 62 to 120 frames. We shot some of
the videos and collected others from prior work by [18] and [8].
This dataset will be made public after the review process.

We have performed experiments on real and synthetic videos
from the dataset under different scenarios, with different back-
ground and reflection objects and various lighting conditions. Some
videos were taken indoors (Figure 6(a) and (d)) and outdoors (Fig-
ure 6(b)). Videos were taken at different times of the day to represent
different lighting conditions. For example, some videos were taken
during twilight (figure is not shown due to space limitations) and
others in the afternoon (Figure 11). Some videos (Figure 6(a), (b),
and (c)) have highly textured background and reflections which our
method manages to recover accurately.

4.2 Performance of our Method
We first note that the best way to see our results is by viewing
the actual videos with and without reflection. We have created a
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Figure 6: Example outputs of our method on natural videos.

combined sequence with multiple videos showing the performance
of our method as well as others,which is posted (anonymously)
on YouTube at: https://youtu.be/7mnyB9-J-vY.

In the following, we only present sample representative frames
from multiple sequences, due to space limitations.

Figure 6 shows the result of our method on a few sample videos
where reflections frequently occur. One of these common cases is
capturing reflective surfaces such as glass covered billboard (Fig-
ure 6 (b), (d)). Our method performs well in such sequences. For
example, in Figure 6 (b), the reflection is strong and highly textured
with many details of the reflection objects, e.g., the trees and the
person capturing the video. However, our method manages to pro-
duce good separation where words on the sign are clearly visible
and the reflection details are recovered.

Moreover, reflections often occur when capturing outdoor scenes
through indoor windows as shown in Figures 6 (a), (c) and (e).
Our method produces a clean recovery of the outdoor scene while
showing the indoor scene details that were hard to see in the original
video. Recovering the background is usually the subject of interest,
however, recovering details from the reflection scene might be
useful in some cases where information needs to be extracted from
the reflection layer.

4.3 Comparison Against Stat-of-the-Art
We compare our method against two state-of-the-art methods for
removing reflections. To the best of our knowledge, there is only
one work specifically designed for removing reflections in videos
in [8]. We compare against this work and the work done by Fan
et al. [2] for removing reflections in images. To compare against
[8], we used the code provided by the authors and refer to this

method as VRR (short for Video Reflection Removal) in the figures.
To compare against [2], we used the code publicly available and
extended it to work on videos by applying their method on a frame
by frame manner. We refer to this work as FbF_RR.

In Figure 7, we show side-by-side comparisons on two sequences.
In the first sequence, shown in Figure 7 (a), our method manages
to remove reflections from the background layer completely, while
there are noticeable artifacts in the results of the other approaches.
For example, as shown in the blue and green patches in the back-
ground layer, FbF_RR results in a blurry backgroundwith noticeable
color changes and reflection artifacts. VRR leads to incomplete sep-
aration and noticeable reflection artifacts. Our method produces a
clean background layer with no noticeable reflection effects and
better color consistency. Moreover, the reflection image recovered
by our method is cleaner than the ones produced by the other meth-
ods. For example, as shown in the green patch in the reflection layer,
the buildings in the background are still visible in the recovered
reflection layer in the results of VRR, while the results of FbF_RR
have color changes and unclear reflection recovery. Our method
recovers the reflection part in this area more accurately. In the blue
patch, FbF_RR cannot capture the reflection part in the corner, VRR
results in a blurred recovery while our approach recovers most of
the reflection texture.

In Figure 7 (b), we show a challenging sequence where the video
was taken from inside a moving bus. The background includes vari-
ous objects with complicated local movements. For the background
layer, other methods result in color changes and reflection artifacts,
while our method produces clean separation with most of the re-
flection parts removed. For example, the blue patch on the helmet
of the bicycle driver still has the reflection part in VRR and FbF_RR
results, while our method removes most of the reflection part in
this area. In the green patch, FbF_RR cannot remove the reflection
part while both our approach and VRR manage to remove it. Since
this is a challenging sequence, the reflection part recovery is hard.
However, our approach recovers most of the reflection parts. As
shown in the blue patch, FbF_RR and VRR cannot recover the re-
flection structure in this area while our method manages to recover
most of the reflection texture.

In summary, the proposed method significantly improves layer
separation compared to current methods in the literature.

4.4 Comparison Against Ground Truth
We are not aware of any public dataset of videos with reflections
along with their ground truth layer separation. It is, actually, im-
practical to capture such ground truth separations in a natural
environment, as this would need capturing the same scene with
and without the reflective surface at the same time.

Recall that a video with reflection is modeled as two mixed
layers. To mimic this scenario, we generate synthetic videos using
an additive layer composition model. We do this by averaging
two synthetic videos V1 and V2 with different coefficients as V =
αV1 + (1 − α)V2, where α is the mixing parameter ranging between
0 and 1. For example, Figure 8 shows the output of such generation
scheme for α = 0.8. In this video, we treat the buildings picture as
the background and the black square as the reflection. We introduce
two different global movements for both layers of magnitude +3 and

https://youtu.be/7mnyB9-J-vY
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Figure 7: Comparison of our method versus state-of-the-art on two natural videos with reflections. We zoom in with blue and
green patches on different locations in the background and reflection layers to show the differences.
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Figure 8: Creating a synthetic video representing the ground
truth to objectively evaluate the proposed video reflection
removal method.

Ground Truth FbF_RR VRR Ours

Figure 9: Comparison of ourmethod against state-of-the-art
using a ground truth (synthetic) video.

-3 pixels per frame in the horizontal direction for the background
and reflection layers, respectively.

After generating the synthetic sequence, we process it using
FbF_RR, VRR, and our method. The background reconstruction
results for this sequence are shown in Figure 9. The figure shows
that that our method produces more accurate reflection removal
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Figure 10: SSIM measured against the ground truth for the
background and reflection frames. n is the frame number.

than others for the synthetic example. For instance, FbF_RR back-
ground reconstruction was blurry and has reflection artifacts. VRR
results were visually better, but still included reflection artifacts.
Ourmethod produced a cleaner background reconstruction than the
other methods, where reflection is not visible in the reconstructed
background layer.

Finally, we objectively compare our methods versus FbF_RR and
VRR, by calculating the accuracy of separation using the spatial
similarity of the recovered layers with the ground truth. Spatial
similarity is measured using the Structural Similarity Index (SSIM)
[16]. An SSIM value of 1 means perfect match between the video
layer (background or reflection) and the corresponding ground
truth, i.e., perfect separation. Figure 10 shows the values of the SSIM
measured against the ground truth for both the background and
reflection frames. The figure shows that our method consistently
outperforms the other two methods.
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Figure 11: Impact of user-assistance. User-assistance leads to more accurate motion initialization and final separation.

4.5 Impact of User Assistance
Finally, we analyze the importance of user-assistance in our ap-
proach. We show the results of applying our method with and
without user assistance on a sample sequence in Figure 11. The
same preliminary tracks are used in both cases. Clustering without
user assistance is performed using a k-means clustering. We show
the motion initialization output in both cases. The figure shows
that motion initialization is more accurate with user hints, which
results in better final layer separation.

5 CONCLUSION
We have presented a user-assisted method to remove undesired
reflections from videos. The method utilizes motion cues as well

as sparse user hints for separating the background layer from the
reflection layer. We overcome the limitations associated with the
state-of-the-art methods for reflection removal by improving the
separation results of videos with a complex dynamic motion that
is hardly distinctive for each layer. We presented quantitative and
qualitative results on challenging real and synthetic examples. Our
method produces clean separation of both the background and
reflection layers. We compared against state-of-the-art video re-
flection removal and video extensions of image reflection removal
methods. Our quantitative and qualitative results show that our
method leads to significant improvements in the separation quality
than prior works.
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