
IPSME- Idempotent Publish/Subscribe Messaging
Environment [v1.4x-18-g036cd77-0423+2023]

Kim Nevelsteen
kim.nevelsteen@mitm.se

MiTM AB

Martin Wehlou
martin.wehlou@mitm.se

MiTM AB

Abstract

The integration (interoperability) of highly disparate systems is an open topic of re-
search in many domains. A common approach for getting two highly disparate systems
to be interoperable, is through an agreed-upon protocol (e.g., via standardization) or by
employing a common framework. The problem of integrating systems arises when many of
these protocols/frameworks come into existence. Both, agreeing on protocols/frameworks
and creating mappings between protocols takes time and effort. An interoperability solu-
tion must be scalable and should not require stakeholders to adapt to major changes in
their system i.e., systems should not need to be re-engineered as other systems are added,
removed or replaced in the integration.

IPSME is introduced as a solution for integrating highly disparate systems. IPSME
decouples the dependencies between interacting participants. Interoperability is achieved
through dynamic translations, avoiding the need for agreed-upon protocols or frameworks.
Scalability is achieved by not having a limitation on the number of messaging environments
or the topological organization thereof. IPSME is minimally invasive and through a net-
work effect reduces the overall complexity of integrating many systems to linear. IPSME
has been evaluated and thus far been tested in three use cases.

keywords: publish/subscribe; integration; interoperability; system of systems; mapping; scal-
ability; evolution; architecture; metaverse; heterogeneous; systems; internet of things; virtual;
idempotence; invocation.

Nevelsteen, Kim and Martin Wehlou (2021). “IPSME- Idempotent Publish/Subscribe Messag-
ing Environment.” In: International Workshop on Immersive Mixed and Virtual Environ-
ment Systems Proceedings (MMVE ’21), Sept.28-Oct.1, 2021, Istanbul, Turkey. ACM.
doi: https://doi.org/10.1145/3458307.3460966.

1 Introduction

The integration (interoperability) of highly disparate systems is an open topic of research
in many domains, including Healthcare [Barthell et al. 2004; Landman et al. 2011], Com-
puter Video Games [Morgan 2009], Internet of Things [Noura, Atiquzzaman, and Gaedke
2019; Nevelsteen, Kanter, and Rahmani 2016], Pervasive Applications [Nevelsteen 2016], and
the Metaverse [Dionisio, Burns III, and Gilbert 2013]. And, by extension Cyber Physical
Systems [Gürdür and Asplund 2018], which incorporates Internet of Things and the Meta-
verse [Rehm, Goel, and Crespi 2015]. The domain of this article can be generalized as the

1

ar
X

iv
:1

80
6.

05
93

1v
3 

 [
cs

.D
C

] 
 2

3 
A

pr
 2

02
1

https://doi.org/10.1145/3458307.3460966


integration of virtual environments of disparate systems, potentially forming a ‘system of sys-
tems’ [Madni and Sievers 2014].

A common approach for getting two highly disparate systems to be interoperable and com-
municate, is by having them speak the same protocol. The problem of integrating systems
arises when many of these protocols/frameworks come into existence. If n distinct systems are
to be integrated, then the eventual complexity will be n(n − 1)/2 [Noura, Atiquzzaman, and
Gaedke 2019].

To address the problem, this article provides – not a call for standardization or a framework
as dependency, which are too restrictive – but, a set of conventions which enables integration
by: ‘decoupling’ [Bass, Clements, and Kazman 2013] dependencies and incorporating ‘interest
management’ [Nevelsteen, Kanter, and Rahmani 2016], allowing for mappings between proto-
cols dynamically, specifying the integrations to be external to the systems being integrated, and
the division of communicating systems into ’regions’ [Nevelsteen, Kanter, and Rahmani 2016;
Nevelsteen 2018]. To provide interoperability and decouple dependencies, a publish/subscribe
system (pubsub) is used in the set of conventions. Wang et al. [Wang et al. 2002] state that
pubsub is “a communication infrastructure that enables data access and sharing over disparate
systems and among inconsistent data models”. Interest management for each system is in-
corporated by having participants simply drop messages not understood or found interesting.
Mappings between protocols can bridge several ‘layers of interoperability’ [Noura, Atiquzzaman,
and Gaedke 2019; Halevy 2005], and in the set of conventions, mappings are specified in a man-
ner so as to resolve schema heterogeneity through ‘decomposition’ [Selberg and Austin 2008] of
the problem. And, the dividing of systems into regions provides the required ‘scalability’ [Bass,
Clements, and Kazman 2013] for the system [Noura, Atiquzzaman, and Gaedke 2019; Nevel-
steen, Kanter, and Rahmani 2016]. The set of conventions together form what is introduced in
this article as an Idempotent Publish/Subscribe Messaging Environment (IPSME).

To the best of the authors knowledge, as of this writing, IPSME is the only interoperability
solution that is, independent of the systems being integrated, and allows for the integration of
n systems with linear complexity, while maintaining scalability.

2 Problem Statement

A common approach for getting two highly disparate systems to be syntactically and seman-
tically interoperable (assuming the systems can communicate i.e., technical interoperability
exists [Noura, Atiquzzaman, and Gaedke 2019]), is by having them speak the same protocol,
either: by having a pre-agreed upon protocol with possibly varying implementations on each
system, or by employing a framework (e.g., Software Development Kit), specifically imple-
mented for each system, to ensure communication. Integration is particularly a problem when
dealing with existing ‘legacy’ systems [Madni and Sievers 2014], which speak different protocols
(or divergent versions), that are difficult to alter.

The problem of integrating systems arises when many of these protocols/frameworks come
into existence. Agreeing on protocols takes time and doesn’t necessarily satisfy all ‘stakehold-
ers’ [Madni and Sievers 2014]. This delay can stifle fast paced innovation [Shapiro and Varian
1999]. Different protocols can be bridged by making a mapping between the several layers of
interoperability. A key issue with mappings is that they also take a considerable amount of
effort e.g., “in a typical data integration scenario, more than half of the effort (and sometimes
up to 80 percent) is spent on creating the mappings, and the process is labor-intensive and
error-prone” [Halevy 2005]. Mappings must not only satisfy syntactical and semantic interop-
erability, but also the conceptual layers of interoperability [Noura, Atiquzzaman, and Gaedke
2019]. There is not necessarily a single correct mapping [Halevy 2005] and when protocols are
updated, any existing mappings must also be updated, exaggerating the problem.

2



3 Related Work

When faced with the problem of integrating highly disparate systems, many [Landman et
al. 2011; Morgan 2009; Branton, Carver, and Ullmer 2011; Barthell et al. 2004] argue that
interoperability can be achieved through standardization, but standardization only has limited
success [Halevy 2005]. Features are either lacking at the time of standardization or the standard
can become bloated with features requested from various stakeholders. It is impossible for a
standardization committee to foresee all possible usages of a given standard. A considerable
amount of time is required to create and update a standard [Noura, Atiquzzaman, and Gaedke
2019], e.g., the proposed standard being outdated before it is standardized.

In Internet of Things, where there is currently active research in interoperability, gateways
employing ‘mediators’ have been developed between devices to “bridge between different spec-
ifications, data, standards, and middleware’s etc.” [Noura, Atiquzzaman, and Gaedke 2019]
These gateways can be expandable via plugins to upgrade interoperability with more systems,
but “this approach has [a] limitation on scalability” [Noura, Atiquzzaman, and Gaedke 2019].
Open challenges for interoperability include scalability and that stakeholders should not have
to “adapt to major changes in their system; the solution should not be dependent on their
system” [Noura, Atiquzzaman, and Gaedke 2019].

4 Introducing IPSME

IPSME is introduced to enable the integration of highly disparate systems. Rather than a frame-
work or standardized protocol, IPSME is a set of conventions that forms an ‘architecture’ [Bass,
Clements, and Kazman 2013] where any participant to talk to any other participant, without
need for a central authority and without standardization, provided groups of participants speak
the same protocol.

IPSME defines the following conventions:
� A messaging environment (ME) is defined as:

◦ A pubsub system which receives messages and relays those messages to all subscribed
participants;

◦ Messages must be idempotent or identifiable as duplicates.

� Each participant:

◦ sends and receives messages in a (local) ME;

◦ simply ignores messages, if not understood.

� Translation of messages is done by having a participant listen to messages on a (local) ME
and sending out translated messages.

� Communication across ME boundaries is through a reflector pair: a participant listener
with a counterpart in another ME, which resends messages there. Communication between
reflectors is left unspecified and completely up to the author(s) of the reflectors, as is the
selection of messages to resend.

The author(s) of a participant is free to implement their own message format as long as the
above conventions are met. The set of conventions is purposely kept non-restrictive for easy
adoption.

3



4.1 Interoperability

A local ME employs the usage of a readily available pubsub resource. On the various operating
systems, there is usually a platform-specific messaging system for inter-process communication
(IPC) where pubsub can be used e.g., NSNotificationCenter on macOS/iOS and MSMQ on
Windows. If a platform-specific messaging system is not available, any other available pubsub
can be used, as long as all participants that are to be local to that ME, know how to access
the ME. If more than one pubsub is utilized on a platform and they are to interact, they must
be interconnected by a pair of reflectors. Participants of a ME are usually processes running
on the platform. Participants can be both publishers and/or subscribers in a ME. The pubsub
in a ME serves no other purpose than to relay published messages by broadcasting them to
subscribers.

Because pubsub is a broadcast system, messages in IPSME are required to be ‘idempo-
tent‘ [Brown, Grossman, and Knight 2002], so as to promote asynchronous communication, by
reducing the amount of acknowledges required, and that identifiable duplicates can be elimi-
nated. If messages are passed across multiple MEs a universally unique identifier (e.g., UUID or
GUID) can be employed to help achieve idempotence. Idempotent messages can be processed
multiple times by a participant, but the processing of each message must give the same result
after the application of the initial message. Because messages are broadcast using pubsub, mes-
sages are the ‘implicit invocation‘ [Garlan and Shaw 1993] of potentially multiple participants.
This does add more complexity to the sender, since the sender must handle zero or multiple
responses e.g., pick the best response or reply to all the responses within a given timeframe.

Rather than trying to obtain interoperability by enforcing a predefined structure or data
model in messages [Eugster et al. 2003], IPSME does not specify a format for message content
i.e., it is possible to use strings, binary or any of the topic-, content- or type-based pubsub
schemes [Eugster et al. 2003]. By not specifying message content IPSME avoids having a
predetermined ‘expressiveness’ [Carzaniga, Rosenblum, and Wolf 2001], perhaps having many
simultaneously. Participants send messages in their own protocol and only participants that
understand those messages will be able to process them i.e., partitioning the semantic and
syntactic space into any number of separate spaces. One of the main tenets that enables
interoperability for IPSME is the interest management of each participant; if a participant
does not understand a message, it simply drops the message and continues processing. This
can lead to scenarios where certain participants might want affirmation that another participant
has received the message. It is possible to send return messages (e.g., Remote Procedure Calls
or Acknowledges) through IPSME, but such a return is not defined in the IPSME specification.
The IPSME conventions are minimally invasive for existing systems, since those systems can
continue to speak the protocol that was previously implemented, but can be externally bound
to a ME.

Any authentication or message security [Uzunov 2016] is up to the author(s) of the partici-
pants i.e., security is left as peripheral to this discussion, but has been taken into consideration
during the design of IPSME. If standard and/or central authentication services are required,
such a service can be provided through the use of a translator.

4.2 Mappings

If each participant sends messages in their own protocol, communication is limited to the
number of participants that understand the sent messages. To broaden the set of participants
that understand a message, specialized participants that translate messages can be inserted in
to a ME. These translators listen for messages that adhere to a certain protocol, translate them
to a different protocol (i.e., a mapping) and send out the translation; translating participants
are considered mediators between other participants.

4



Between all participants of a local ME and through to other MEs via reflectors, translations
have a network effect. Translations are transitively applicable to other participants e.g., if a
translationX translates from participant A to B, then any participant C, that can communicate
with A, can also communicate with B, via X. The network effect of translations has the
potential to reduce the complexity of integrating n participant nodes from an exponential
n(n− 1)/2, to a linear (n− 1).

The use of translators in this manner means IPSME alleviates the problem of resolving
schema heterogeneity through the decomposition of the problem. The translators can collec-
tively divide the problem vertically, horizontally [Uzunov 2016] or even incrementally. A major
advantage of this architecture is a human related one. Authors of participants have a very
limited scope of other communicating participants they must take into account.

Participant communication is not constrained to be via a ME. Participants can negotiate
to communicate directly allowing for ‘explicit invocation’ [Garlan and Shaw 1993]. It is the
responsibility of the participants to negotiate such a communication, and beyond the IPSME
specification.

4.3 Scalability

Through the use of pubsub, IPSME decouples the production and consumption of messages,
increasing scalability by decoupling dependencies (i.e., time, space or synchronization) be-
tween interacting participants. IPSME is not fixed to specific properties such as expressive-
ness [Carzaniga, Rosenblum, and Wolf 2001] or those related to quality of service [Eugster et al.
2003], that can affect scalability. A single ME can take advantage of being centralized, but (for
the integrated systems as a whole) a centralized architecture or a hierarchical topology should
be avoided so as to promote scalability; a centralized architecture being a bottleneck and single
point of failure, and a hierarchical topology having possible performance problems [Carzaniga,
Rosenblum, and Wolf 2001].

Expecting all prospective participants to be connected to the same ME is impractical; not
all prospective participants would easily route to a single ME and a single ME would certainly
be overloaded. Participants can be divided (i.e., into regions) using multiple MEs. IPSME
specifies participants should connect to a local ME, but places no limitation on the number
of MEs or the ‘topology organization’ [Uzunov 2016] thereof. IPSME specifies reflectors for
communication across ME boundaries, and it is this communication that allows MEs to be
connected and organized into a general graph topology.

A reflector is a participant in a ME that listens and filters for particular messages that
should be routed to another ME. The reflector communicates directly with a reflector (i.e., its
counterpart) in that other ME. Upon receiving a message, the counterpart publishes the mes-
sage to its local ME; participants of that local ME will receive messages from the distant ME
transparently i.e., without being aware of any communication complexity thereof. Communi-
cation between two reflectors is left as undefined and is completely up to the author(s) of those
participants. A reply message is routed back through reflectors in a reverse fashion. Similar
to how adding translators adds functionality without changing the existing system, reflectors
can also be inserted into a ME without changing existing implementations; to the participants
using a reflector the ME is simply expanded.

5



Sequence Diagram 1: Minecraft/Doom integration: messaging
for teleporting between Minecraft & Doom3, and back

MC

UEE

Doom3

TxM TxD

MC

MOO

UEE

Doom3

TxM TxD

Figure 2: Translation graphs for three and four participants, re-
spectively (solid lines are implemented translation; dotted lines
are gained through a network effect).

Sequence Diagram 2: Minecraft-Metaverse via MiM: an illus-
tration of using direct communication together with IPSME

6



5 Evaluation

IPSME has thus far been tested in the following three use cases: the Minecraft/Doom integra-
tion1, Medical Resource Scheduling2, and a Minecraft-Metaverse via MiM 3.

A proof-of-concept dubbed Metaverse prototype4 was a precursor to the three use cases,
integrating the video games Minecraft and Doom3, and the virtual world of LambdaMOO. The
proof-of-concept did not use IPSME; the integration between Minecraft and Doom, and the
integration between Minecraft and LambdaMOO were implemented directly in each participant.
No integration from Doom to LambdaMOO was achieved.

5.1 Minecraft/Doom integration

In the Minecraft/Doom integration use case (depicted in Sequence Diagram 1), both Doom and
Minecraft were slightly altered to: connect to the local ME, and expose an API for teleporting in
and out of their respective virtual environments. A single local ME was used, with the following
components attached to it: Doom3, Minecraft (MC), a trivial universal interface component
(UEE) and a Minecraft translation component (TxM). The Doom3 translation participant
(TxD) was implemented in the UEE component. In hindsight, it would have been sufficient for
the translation components (TxM and TxD) to call the Doom3 and MC APIs directly, reducing
the required changes to Doom3 and Minecraft. Although all components were on the same
operating system (i.e., macOS), communication spanned two programming languages: Java for
MC and TxM, and C++ for the ME, UEE and Doom3. TxM was responsible for translating the
custom Minecraft protocol to a custom Hyperjump protocol i.e., syntactical mapping. UEE
understood the Hyperjump protocol and was also responsible for translating to the custom
Doom3 protocol. It should be noted that each signal in Sequence Diagram 1 is a broadcast to
all other components through the local ME. A signal is a reply to the signal that precedes it,
even though no arrow is depicted showing the arrival of the broadcast.

Minecraft was altered so that when a player enters a portal, a PubabPortalPlayerIn mes-
sage is broadcast, which is understood by TxM causing it to subsequently send out a Hyperjump
message. UEE accepts the Hyperjump message and sends out a translated message, with the
Minecraft player (player/MC) translated to the corresponding Doom3 player (player/D3), via
internal semantic and context mapping of player profiles and inventories. TxD understands the
Hyperjump message and translates the message to the Doom3, 3-respawn-player message.
It would have been sufficient for TxD to call Doom3 via an API call, but instead Doom3 ac-
cepts the 3-respawn-player message via ME and spawns the player. An acknowledge is sent
back through in reverse order, so that the player can be removed from the Minecraft virtual
environment. A teleport from Doom3 to Minecraft is handled similarly.

Even with such a small number of participants, the benefit of the network effect of transla-
tions is noticeable. To obtain the complete integration of three participants (i.e., MC, UEE and
Doom), a fully connected translation graph is required; see Figure 2 (left). The two translations
provided by TxM and TxD were implemented, but a third translation from MC to Doom3 is
achieved through the network effect of transitively applying TxM and TxD. The complexity of
the full integration is thereby reduced from 3(3− 1)/2 = 3 to (3− 1) = 2.

In the precursor proof-of-concept, LambdaMOO was integrated with Minecraft. If Lamb-
daMOO were to be integrated into the Minecraft/Doom integration, using IPSME instead, a
MOO participant would be added to the translation graph, with an implemented translation

1Minecraft/Doom integration forming a Metaverse: https://youtu.be/knKZd15rhJE
2Medical Resource Scheduling : https://youtu.be/m_b1PotByx0
3Insane Minecraft Teleportation, in VR, via MiM : https://youtu.be/ORWto-Oo1W4
4Metaverse prototype verbose demo: https://youtu.be/etKJMUyPn-8

7

https://youtu.be/knKZd15rhJE
https://youtu.be/m_b1PotByx0
https://youtu.be/ORWto-Oo1W4
https://youtu.be/etKJMUyPn-8


between MOO and MC; see Figure 2 (right). The integration of MOO and UEE, and also MOO
and Doom3, would be obtained through the network effect. The complexity of the four fully
integrated participants is (4− 1) = 3, rather than 4(4− 1)/2 = 6.

5.2 Medical Resource Scheduling

The primary focus of the Medical Resource Scheduling use case was the ability of various Care
Planner components to dynamically find and negotiate with various medical resource providers
(e.g., operating rooms). Although not in the use case, the system was designed such that each
of the various components could have been on different platform. The entire system is design to
be scalable and allow various stakeholders to negotiate without the need for a central authority.
A large degree of fault tolerance was built into the use case, by detecting failed participants
and executing multiple copies of the same participant to achieve redundancy.

5.3 Minecraft-Metaverse via MiM

The most recent use case, a Minecraft-Metaverse via MiM (depicted in Sequence Diagram 2),
was an attempt to link existing Minecraft server instances, without altering the Minecraft client
or server; this meant manipulating the streaming data of the proprietary Minecraft network
protocol (a task handled by components with a -MC suffix). The normal stream between client
and server was redirected to be: from client (not depicted in Sequence Diagram 2), through
the downstream -MC component, DownMC, through one of the upstream -MC components,
Up1MC or Up2MC, to a corresponding Minecraft server (not depicted). Every -MC component
had a corresponding local ME i.e., the downstream participant, Down, and upstream partici-
pants, Up1 & Up2, connected to their corresponding local MEs on the client-side and server-
side, respectively. Reflectors dynamically connected downstream participants to any number
of upstream participants, forming a star topology for a single Minecraft client. The Proto-
col Buffers5 interface description language was used to generate a protocol between upstream
and downstream participants. Events (detected in the Minecraft protocol stream or received
through the MEs) were shared between Up/Down and -MC component pairs (e.g., Up1 and
Up1MC) via IPC. The programming language for all components was Java, but components
resided on various operating systems e.g., macOS, Linux and Windows.

Sequence Diagram 2 depicts how, after receiving a MC:Teleport message from Up1, the
direct (proprietary Minecraft protocol) communication between DownMC and Up1MC is mi-
grated over to be between DownMC and Up2MC instead. The sequence begins with a successful
connection to Up1MC and Up1 i.e., the packet SPacketChunkData being sent from server to
client, in normal operation. Up1MC detects the movement of the player in the Minecraft
protocol and shares that with Up1 via IPC. Since Minecraft servers were not altered, por-
tal lists were kept in upstream components. Up1 determines that if a player has entered a
portal, broadcasting out a MC:Teleport message in that event, which is then passed over to
Down/ME via reflectors. Down reads the destination ‘Up2’ out of MC:Teleport and sets up a
connection to the potential destination; a MC:LookUpQuery is broadcast out by Down, which
is reflected to all connected upstream participants. If no valid response to MC:LookUpQuery
is received within reasonable time, MC:Teleport is dropped by Down and normal operation
continues. As depicted, Up2 receives MC:LookUpQuery, confirms that it owns the exiting end
of the portal and broadcasts out a corresponding MC:Response. Reflectors carry the response
back to Down triggering: a rebroadcasting of the MC:Teleport message, notifying Up2 of the
players arrival; and, an IPC call to DownMC to pause the communication with Up1MC and
open direct communication with Up2MC. When DownMC detects a successful connection with

5Protocol Buffers: https://developers.google.com/protocol-buffers

8

https://developers.google.com/protocol-buffers


Up2MC (i.e., SPacketJoinGame received), the active connection is migrated from Up1MC to
Up2MC. A player teleport is simulated originating from the Minecraft server (i.e., inserted in
the Minecraft protocol stream, not depicted), and confirmed with a CPacketConfirmTeleport
reply from the client. Up2MC notifies Up2 (via IPC), when the simulated player teleport is
complete. Up2 broadcasts out a corresponding MC:Response, which signals Down to disconnect
from Up1, which was hosting the source end of the portal, and subsequently DownMC from
Up1MC.

5.4 Discussion

Rather than having to wait for features to be added to a standard, IPSME allows a translating
participant to be added dynamically to the system, mediating communication with a mapping.
Each translating participant only provides the required mapping, avoiding the problem of bloat.
If many redundant translating participants are present, those which are not widely used can
be detected, removed and replaced with a more minimal set of translators. Since translating
participants can be added dynamically, it is possible to avoid the delay of waiting for an agreed
upon standard. The same dynamism ensures openness to unforeseeable future requirements.

IPSME can largely be considered a generalization (in software) of Internet of Things gate-
ways as mediators, with the dynamic insertion of translating participants being similar to
gateway plugins. The advantage of IPSME being that it offers a network effect by which trans-
lations become transitively applicable, removing the requirement that all mappings must be
one-to-one. IPSME provides for scalability when the gateway approach was noted as being
limited. Also, because of the dynamism of IPSME, stakeholders are not forced to adapt their
systems to major changes in protocols; which solves that open challenge in the domain of
Internet of Things.

6 Conclusion

In this article, IPSME is introduced as a solution for integrating highly disparate systems.
Through the use of pubsub, IPSME decouples the production and consumption of messages,
increasing scalability by removing dependencies (i.e., time, space or synchronization) between
interacting participants. Rather than requiring two systems to speak the same protocol, IPSME
achieves interoperability through translations that can be dynamically added to the system,
avoiding the need for pre-agreed upon protocols or frameworks, and also avoiding any delay
that is incurred through coming to agreement. IPSME is minimally invasive and can be used
to integrate legacy systems or even the most difficult interoperability cases [Madni and Sievers
2014].

Translations in IPSME can handle several layers of interoperability. The amount of effort
it takes to create a mapping might not be reduced, but through the network effect granted by
IPSME, translations can potentially be reused, reducing the exponential complexity of fully
integrating many systems to linear. And, when protocols are updated, rather than update each
mapping, with IPSME a translation can be added that maps from the original protocol to the
updated one and the integrated systems continue.

The intent is for IPSME to be broadly accepted for the integration of highly disparate
systems, but there are environments which have specialized requirements e.g., the medical field
requires security. The set of conventions defined here as IPSME is only the primary layer of a
multilayered system; additional layers (e.g., to address service discovery and security) are left
for subsequent publications.

9



References
Barthell, Edward N et al. (2004). “Disparate Systems, Disparate Data: Integration, Interfaces, and

Standards in Emergency Medicine Information Technology.” In: Academic Emergency Medicine
11.11, pp. 1142–1148. doi: 10.1197/j.aem.2004.08.008.

Bass, Len, Paul Clements, and Rick Kazman (2013). Software Architecture in Practice. 3rd. Addison-
Wesley Professional. isbn: 978-0-321-81573-6.

Branton, Chris, Doris Carver, and Brygg Ullmer (2011). “Interoperability standards for pervasive
games.” In: Proceedings of the 1st International Workshop on Games and Software Engineering.
New York, NY, USA: ACM, pp. 40–43. doi: 10.1145/1984674.1984689.

Brown, Jeremy, Jeff P Grossman, and Tom Knight (2002). “A lightweight idempotent messaging pro-
tocol for faulty networks.” In: Parallelism in Algorithms and Architectures. New York, NY, USA:
ACM, pp. 248–257. doi: 10.1145/564870.564912.

Carzaniga, Antonio, David S Rosenblum, and Alexander L Wolf (2001). “Design and Evaluation of
a Wide-Area Event Notification Service.” In: ACM Transactions on Computer Systems (TOCS)
19.3, pp. 332–383. doi: 10.1145/380749.380767.

Dionisio, John David n., William G. Burns III, and Richard Gilbert (2013). “3D Virtual Worlds and
the Metaverse: Current Status and Future Possibilities.” In: ACM Computing Surveys 45.3, 34:1
–34:38. doi: 10.1145/2480741.2480751.

Eugster, Patrick Th. et al. (June 2003). “The Many Faces of Publish/Subscribe.” In: ACM Computing
Surveys (CSUR) 35.2, pp. 114–131. doi: 10.1145/857076.857078.

Garlan, David and Mary Shaw (Dec. 1993). “An Introduction to Software Architecture.” In: Advances in
Software Engineering & Knowledge Engineering. Ed. by Vincenzo Ambriola and Genoveffa Tortora.
Vol. 2. World Scientific, pp. 1–39. doi: 10.1142/9789812798039_0001.

Gürdür, Didem and Fredrik Asplund (Mar. 2018). “A systematic review to merge discourses: Interop-
erability, integration and cyber-physical systems.” In: Journal of Industrial Information Integration
9, pp. 14–23. doi: 10.1016/j.jii.2017.12.001.

Halevy, Alon (Nov. 2005). “Why Your Data Won’t Mix.” In: Queue 3.8, pp. 50–58. doi: 10.1145/
1103822.1103836.

Kshemkalyani, Ajay D. and Mukesh Singhal (2008). Distributed Computing Principles, Algorithms,
and Systems. Cambridge University Press.

Landman, Adam B. et al. (2011). “An Open, Interoperable, and Scalable Prehospital Information
Technology Network Architecture.” In: Prehospital Emergency Care 15.2, pp. 149–157. doi: 10.
3109/10903127.2010.534235.

Madni, Azad M. and Michael Sievers (July 2014). “System of Systems Integration: Key Considerations
and Challenges.” In: Systems Engineering, The Journal of The International Council on 17.3,
pp. 330–347. doi: 10.1002/sys.21272.

Morgan, Graham (July 2009). “Challenges of online game development: A review.” In: Simulation &
Gaming 40.5, pp. 688–710. doi: 10.1177/1046878109340295.

Nakagawa, Elisa Y. et al. (2013). “The State of the Art and Future Perspectives in Systems of Systems
Software Architectures.” In: Proceedings of the First International Workshop on Software Engineer-
ing for Systems-of-Systems. SESoS ’13, Montpellier, France. New York, NY, USA: ACM, pp. 13–20.
doi: 10.1145/2489850.2489853.

Nevelsteen, Kim, Theo Kanter, and Rahim Rahmani (June 2016). “Comparing Properties of Massively
Multiplayer Online Worlds and the Internet of Things.” In: 2016 IEEE Symposium on Computers
and Communication (ISCC). Digital Entertainment, Networked Virtual Environments and Creative
Technology (DENVECT), Messina, Italy. IEEE, pp. 1–5. doi: 10.1109/ISCC.2016.7543704.

Nevelsteen, Kim J. L. (May 2016). “Distributed Technology-Sustained Pervasive Applications.” PhD
thesis. Stockholm University, Department of Computer and System Sciences. url: http://urn.kb.
se/resolve?urn=urn:nbn:se:su:diva-129151.

Nevelsteen, Kim J. L. (May 2018). “Virtual World, Defined from a Technological Perspective, and
Applied to Video Games, Mixed Reality and the Metaverse.” In: Computer Animation & Virtual
Worlds 29.1, e1752. issn: 1546-427X. doi: 10.1002/cav.1752.

10

https://doi.org/10.1197/j.aem.2004.08.008
https://doi.org/10.1145/1984674.1984689
https://doi.org/10.1145/564870.564912
https://doi.org/10.1145/380749.380767
https://doi.org/10.1145/2480741.2480751
https://doi.org/10.1145/857076.857078
https://doi.org/10.1142/9789812798039_0001
https://doi.org/10.1016/j.jii.2017.12.001
https://doi.org/10.1145/1103822.1103836
https://doi.org/10.1145/1103822.1103836
https://doi.org/10.3109/10903127.2010.534235
https://doi.org/10.3109/10903127.2010.534235
https://doi.org/10.1002/sys.21272
https://doi.org/10.1177/1046878109340295
https://doi.org/10.1145/2489850.2489853
https://doi.org/10.1109/ISCC.2016.7543704
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129151
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129151
https://doi.org/10.1002/cav.1752


Noura, Mahda, Mohammed Atiquzzaman, and Martin Gaedke (June 2019). “Interoperability in In-
ternet of Things: Taxonomies and Open Challenges.” In: Mobile Networks and Applications 24,
pp. 796–809. doi: 10.1007/s11036-018-1089-9.

Rehm, Sven-Volker, Lakshmi Goel, and Mattia Crespi (2015). “The Metaverse as Mediator between
Technology, Trends, and the Digital Transformation of Society and Business.” In: Journal For
Virtual Worlds Research 8.2. doi: 10.4101/jvwr.v8i2.7149.

Selberg, Scott A. and Mark A. Austin (2008). “10.1.1 Toward an Evolutionary System of Systems
Architecture.” In: INCOSE International Symposium 18.1, pp. 1065–1078. doi: 10.1002/j.2334-
5837.2008.tb00863.x.

Shapiro, Carl and Hal R. Varian (1999). Information Rules: A Strategic Guide to the Network Economy.
Harvard Business School Press. isbn: 978-0-87584-863-1.

Uzunov, Anton V (2016). “A survey of security solutions for distributed publish/subscribe systems.”
In: Computers & Security 61, pp. 94–129. doi: 10.1016/j.cose.2016.04.008.

Wang, Chenxi et al. (Jan. 2002). “Security issues and requirements for Internet-scale publish-subscribe
systems.” In: System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International
Conference on. IEEE, pp. 3940–3947. doi: 10.1109/HICSS.2002.994531.

Wilenius, Jim (2009). “Bidding in Combinatorial Auctions.” PhD thesis. isbn: 978-91-554-7554-3. url:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-102960.

11

https://doi.org/10.1007/s11036-018-1089-9
https://doi.org/10.4101/jvwr.v8i2.7149
https://doi.org/10.1002/j.2334-5837.2008.tb00863.x
https://doi.org/10.1002/j.2334-5837.2008.tb00863.x
https://doi.org/10.1016/j.cose.2016.04.008
https://doi.org/10.1109/HICSS.2002.994531
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-102960

	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Introducing IPSME
	4.1 Interoperability
	4.2 Mappings
	4.3 Scalability

	5 Evaluation
	5.1 Minecraft/Doom integration
	5.2 Medical Resource Scheduling
	5.3 Minecraft-Metaverse via MiM
	5.4 Discussion

	6 Conclusion

