
Loop Transformations using Clang’s Abstract Syntax Tree
Michael Kruse

Argonne National Laboratory
Lemont, Illinois, USA
michael.kruse@anl.gov

ABSTRACT
OpenMP 5.1 introduced the first loop nest transformation directives
unroll and tile, and more are expected to be included in OpenMP
6.0. We discuss the two Abstract Syntax Tree (AST) representations
used by Clang’s implementation that is currently under develop-
ment. The first representation is designed for compatibility with the
existing implementation and stores the transformed loop nest in a
shadow AST next to the syntactical AST. The second representation
introduces a new meta AST-node OMPCanonicalLoop that guaran-
tees that the semantic requirements of an OpenMP loop are met,
and a CanonicalLoopInfo type that the OpenMPIRBuilder uses
to represent literal and transformed loops. This second approach
provides a better abstraction of loop semantics, removes the need
for shadow AST nodes that are only relevant for code generation,
allows sharing the implementation with other front-ends such as
flang, but depends on the OpenMPIRBuilder which is currently
under development.

CCS CONCEPTS
• Software and its engineering→ Compilers; Parsers; Parallel
programming languages; Software performance.

KEYWORDS
OpenMP, Clang, abstract syntax tree, semantic analysis, code gen-
eration
ACM Reference Format:
Michael Kruse. 2021. Loop Transformations using Clang’s Abstract Syntax
Tree. In ICPP ’21: 50th International Conference on Parallel Processing, August
09–12, 2021, Chicago, IL. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A compiler front-end is responsible for parsing source code, deter-
mine its meaning (semantics), and translate it into an intermediate
representation (IR) designed to easy analysis an transformation that
is (mostly) unspecific in regards to input programming language
and target instruction set architecture.

Within the LLVM compiler infrastructure project [15], the front-
end for C, C++ and Objective-C is Clang [1]. Clang 3.8 also added

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 09–12, 2021, Chicago, IL
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

source.ll

OpenMPIRBuilder
IRBuilder

AST

Tree-
Transform

source.c source.h

CodeGen

Sema

Parser

Preprocessor

Lexer

SourceManager

FileManager

AST

Characters
SourceLocation

Tokens

Tokens

MemoryBuffer

Figure 1: Clang’s internal component layers

an implementation of OpenMP [3] in using an “early outlining”
approach [4]. That is, all OpenMP semantics are lowered in the
front-end and the generated IR does not contain OpenMP-specific
constructs, but calls to an OpenMP runtime.

1.1 OpenMP Loop Transformation Directives
OpenMP 5.1 [16] added loop nest transformations to the OpenMP
language. Before this change, OpenMP directives could only apply
to statements that a programmer has written explicitly in the source
code. In the new OpenMP version, a loop transformation directive
applied to a loop stands in for another loop as determined by the
directive’s definition.

In the example below, we first apply loop unrolling to the literal
for-loop. This results in another, unrolled, loop onto which another
directive can be applied to; for instance, a parallel for directive:
#pragma omp parallel for
#pragma omp unroll partial(2)
for (int i = 0; i < N; i+=1)

body(i);

ar
X

iv
:2

10
7.

08
13

2v
1

 [
cs

.P
L

]
 1

6
Ju

l 2
02

1

https://orcid.org/0000-0001-7756-7126
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPP ’21, August 09–12, 2021, Chicago, IL Michael Kruse

int i = 0;
for (; i+3 < N; i+=4) { // unrolled

body(i);
body(i+1);
body(i+2);
body(i+3);

}
for (; i < N; i+=1) // remainder

body(i);

Figure 2: Partial unrolling with remainder loop

The code above is semantically equivalent to the following version
where the loop is unrolled manually by the programmer.

#pragma omp parallel for
for (int i = 0; i < N; i+=2) {

body(i);
if (i+1 < N) body(i+1);

}

As a result, transformations are applied in reverse order as they
appear in the source code. This is consistent with any other pragma
that appear before the item they apply to. With the addition of loop
transformations, this can be either a literal loop (by analogy with
literal expression constants) that appears in the source code, or or
a loop that is the result of a transformation, which we refer to as a
generated loop.

Such directives enable the separation of the semantics of algo-
rithms and its performance-optimization [14]. For one, it improves
the maintainability of the code: The directive clearly conveys the
intend of the directives, compared to where the unrolling is inter-
mingled with algorithm itself. Using unrolling as an example, the
body has to be duplicated multiply times. If the unroll factor was
to be changed, multiple expressions have to stay consistent with
each other, including the body copies themselves, with any acci-
dental inconsistency leading to potentially wrong results. Hence,
dedicated loop transformations make it easier to experiment with
different optimization to find the best-performing on a particular
hardware. Moreover, different optimizations can be chosen for dif-
ferent hardware by either using the preprocessor, or the OpenMP
metadirective, while using the same source code for the algo-
rithm itself.

The implementation challenge is that before OpenMP 5.1 no
directive was freely composable with other directives in arbitrary
order and multiplicity. There were only combined and composite
directives with all valid combinations enumerated explicitly in
the specification. OpenMP 5.1 introduced two loop transformation
directives: tile and unroll. Tiling applies to multiple loops nested
inside each other and generates twice as many loops.

Unrolling has a full, partial, and heuristic mode. If fully unrolled,
there is no generated loop that can be associated with another
directive. Partial unrolling can be understood as first tiling the loop
by an unroll-factor, then fully unrolling the inner loop. In heuristic
mode, the compiler decides what to do: Full unroll, partial unroll
with a chosen unroll factor, or not unroll at all.

#pragma omp parallel for schedule(static)
for (int i = 7; i < 17; i += 3)

body(i);

(a)
OMPParallelForDirective
|-OMPScheduleClause
| `-[...]
`-CapturedStmt
`-CapturedDecl nothrow
|-ForStmt
| |-DeclStmt
| | `-VarDecl 0x7fffc6750e68 used i 'int' cinit
| | `-IntegerLiteral 'int' 7
| |-[...]
| |-[... (Cond)]
| |-[... (Incr)]
| `-CallExpr 'void'
| `-[...]
|-ImplicitParamDecl implicit .global_tid. 'const int *const __restrict'
|-ImplicitParamDecl implicit .bound_tid. 'const int *const __restrict'
|-ImplicitParamDecl implicit __context '(unnamed struct) *const __restrict'
`-VarDecl 0x7fffc6750e68

(b)

Figure 3: An OpenMP loop-associated construct (a) and its
AST (b) as printed by clang -Xclang -ast-dump; brackets in-
dicate omissions from the raw output

A typical implementation of unrolling avoids the conditional
within the loop and instead peels the last iteration into a remain-
der loop, as shown in Figure 2. Implementations are allowed to
apply this as an optimization as ling and the code’s semantics are
preserved.

1.2 The Clang Abstract Syntax Tree
An Abstract Syntax Tree (AST) is the structural in-memory repre-
sentation of a program’s source code. Clang’s AST mixes syntactic-
only (such as parenthesis) and semantic-only (such as implicit con-
versions) nodes into the same tree structure. With a few exceptions
it is immutable, meaning that a subtree cannot be modified after it
has been created.

Figure 3 shows an example of an AST for an OpenMP directive
associated to a for-loop. The root of this subtree represents the
parallel for pragma itself. The child nodes at the beginning are
the directive’s clauses and their arguments, if any.

The last child node is the code the directive is associated with. It
is wrapped inside a CapturedStmt which borrows from Clang’s
C++ lambda and Objective-C’s block implementation. The
CapturedDecl node contains the ‘lambda function’ definition,
CapturedStmt represents the statement that declares it and the
OMPParallelForDirective is responsible for calling it.
Re-purposing the lambda/block implementation makes it easier to
outline the directive’s associated code into another function which
is necessary to call it from other threads. Clang also keeps track of
which variables are used inside the CapturedStmt to become
parameters of the outlined function. In Figure 3 these are indicated
by the ImplicitParamDecl nodes for passing the thread
identifiers, a context structure wrapping the captured variables,
and the loop iteration variable itself.

The loop itself is represented by the ForStmt, the same AST node
as if the loop was not part of an OpenMP directive. It’s children

Loop Transformations using Clang’s Abstract Syntax Tree ICPP ’21, August 09–12, 2021, Chicago, IL

Stmt

Expr

…

ForStmt CXXForRangeStmt OMPExecutableDirective

OMPParallelDirective … OMPLoopDirective

OMPForDirective OMPParallelForDirective …

CapturedStmt

Figure 4: Excerpt of the AST node class hierarchy

are the components of a C/C++ for-loop (initialization, condition,
and increment) and its body, here a call to another function. The
iteration variable VarDecl capture of the CapturedStmt is in fact
only a reference to the declaration in the for-loops init-statement.
A C++11 Range-Based For-Loop [7] would be represented by a
CXXForRangeStmt. For convenience in the analysis, its children
also include some of the statements that the range for-loop is equiv-
alent to (“de-sugared”, see Figures 9a and 9b), which has slightly
changed between C++11, C++17 and C++20. Ideally, such changes
are abstracted over such that analysis code does not have to handle
each standard separately.

As shown in Figure 4, OMPParallelForDirective is derived
from OMPLoopDirective, a base class for all loop-associated direc-
tives. The latter is derived from OMPExecutableDirective which
is a base class for all OpenMP directives whose syntax allows them
to be placed wherever a base language statement can appear. Ac-
cordingly, it itself is derived from the Stmt class. Declarations (Decl,
such as CapturedDecl), types (Type) and clauses (Figure 6) are not
related in the class hierarchy, i.e. there is no common base class
for AST nodes. Expressions on the other hand can be uses as a
statement with its result being ignored, hence Expr is derived from
Stmt. For walking over all AST nodes, a visitor pattern separate
for each of the type hierachies must be used (StmtVisitorBase,
DeclVisitor, TypeVisitor, OMPClauseVisitor).

An OMPExecutableDirective may contain additional AST
nodes that are not part of the AST node’s children()
enumeration1 and are not emitted in the AST dump such as in
Figures 3 and 7. We use the term Shadow AST for such hidden
children. Presumably, this was done to not print excessive output,
and/or avoid unintentionally referencing them by AST consumers
and regression tests.

OMPLoopDirective has up to 30 shadow AST statements for
representing a loop nest, plus 6 for each loop in the associated loop
nest. Like the CXXForRangeStmt’s de-sugared AST nodes these
contain implicit code, but without these having been mandated
by the OpenMP specification. Examples of these nodes include:
The expression to compute the number of iterations, whether an
iteration is the last iteration, how to compute the next loop counter
value, etc. That is, a significant portion of the code generation
already takes place when creating the AST.

1The inherited method children() returns a list of Stmts, hence it cannot enumerate
any OMPClauses. They are still printed in an AST dump using specialized functions fo
nearly every AST node subclass.

1.3 Clang Layer Architecture
Clang’s internal organization is sketched in Figure 1. It follows a
typical compiler structure consisting of tokenizer/Lexer, Prepro-
cessor, Parser, semantic analyzer (Sema), and IR code generation
(CodeGen). General control flow is steered by the parser. That is,
when calling the parser’s ParseTopLevelDecl(), it pulls the to-
kens to be consumed from the previous layers. When the parser
has decided what syntactic element it is, it is pushed to Sema to
create an AST node for it. Sema also performs the semantic anal-
ysis including creating implicit AST nodes. The TreeTransform
class creates copies of AST subtrees with some changes applied. Its
primary use is template instantiation: When instantiating or spe-
cializing a template, it creates a new AST subtree with substituted
template parameters.

The result is a complete AST that must not be modified after
this point. It can used by tools such as source-to-source code gen-
erators, clang-tidy, clang-query, IDEs, include-what-you-use, etc.
Since Clang is a compiler, its default action is to pass it to CodeGen,
which produces functions and instructions for the mid-end to be
optimized. Although it is possible to emit diagnostics and errors in
CodeGen, it is preferred to emit them in the semantic analyzer and
the layers before, as tools not using CodeGen including Clang’s
own -syntax-only would otherwise not emit them.

When asked to generate IR for an OpenMP directive, the
designated method decides how to emit IR instructions. CodeGen’s
EmitOMPParallelForDirective method emits a new outlined
function (the #pragma omp parallel part) with the calls to the
OpenMP runtime that manages the threads, emits thread-number
dependent conditionals (the #pragma omp for part), and emits
the loops itself (common for all OMPLoopDirective-derived
directives). Since these parts are modular for OpenMP combined
and composite directives, the actions are chained using callbacks,
where each part can replace the body code generation function
and call the previous callback (“callback-ception”).

The IR instructions themselves are emitted through IRBuilder,
a class that offers many convenience functions to create any in-
struction, inserts them after the previously inserted instruction,
attaches debug info, and offers a callback interface than can make
modifications on just inserted instructions. Additionally, it simpli-
fies expressions (e.g. algebraic simplifications) on-the-fly which
avoids creating instructions that would later be optimized away
anyway.

A recent development is the introduction of the OpenMPIR-
Builder [6] to extract out the base-language independent portion
of the OpenMP lowering from the one that is specific to the Clang
AST. The goal is to share the implementation of the heavy lowering
between Clang and the MLIR OpenMP Dialect [2], similar to how
IRBuilder is used by many language front-ends and not just Clang.
The building blocks provided by OpenMPIBuilder can also be used
by other parallel languages such as OpenACC [5]. MLIR is also
generated by Flang [17], meaning this will enable a shared OpenMP
code generation between C/C++ and Fortran. As of writing of this
paper, this refactoring is still in progress. It can be enabled using
the experimental flag -fopenmp-enable-irbuilder. Eventually,
the OpenMPIRBuilder will replace Clang’s current CodeGen imple-
mentation for OpenMP.

ICPP ’21, August 09–12, 2021, Chicago, IL Michael Kruse

OMPExecutableDirective

OMPParallelDirective …

Stmt

OMPLoopBasedDirective

OMPLoopDirective

OMPForDirective OMPParallelForDirective …

OMPUnrollDirective OMPTileDirective

Figure 5: Stmt class hierarchy for loop transformations

As a result, we implemented two versions of loop transforma-
tion directives. The first version (Section 2) is following the shadow
AST approach which is compatible with the current approach. The
second version (Section 3) implements the base-language invariant
parts in the OpenMPIRBuilder and moving as much of the code
generation from the Sema to the CodeGen layer. This gives the op-
portunity to share the implementation with Fortran and to refactor
the current AST modeling.

2 SHADOW AST REPRESENTATION
The idea behind this implementation is to apply the transforma-
tion on the loops in the AST, creating a new AST, similar to how
TreeTransform works already. This has the advantage that one
can choose, depending on the operation, to either use the AST
representing the parsed code, or the AST that represents the se-
mantics. When normally accessing or printing the AST, only the
parsed/syntactical AST is returned while the transformed AST is
a shadow AST. Unlike a CXXForRangeStmt, the entire de-sugared
statement is stored, not just some individual statements [10, 11].

When another directive is applied to the loop transformation
AST node, it calls getTransformedStmt() to get the semantically
equivalent AST. This has the advantage that the existing code of the
directive for analyzing the loop nest does not need to be changed
and applies to the transformed code as if it was a literal for-loop.

Some care needs to be taken for compiler diagnostics: The exist-
ing semantic analysis assumes that the AST nodes represent code
from the source file, but it may accidentally refer to the internal
shadow AST. For instance, after tiling there is a loop variable for the
inner and one for the outer loop. If a diagnostic prints the variable
name, the user will see a diagnostic such as

note: read of non-const variable '.capture_expr.' is
not allowed in a constant expression

which is not useful to the programmer. If the diagnostic only points
to a SourceLocation, a representative source location for the asso-
ciated literal loop can be used, even though the diagnostic applies
to the transformed AST and may not make sense one the original
AST. A “note” diagnostic2 for explaining the history of the location
similar to template instantiation and macros expansion might be
useful to improve the quality of the implementation.

OMPClause

OMPFullClause OMPPartialClause OMPSizesClause …

Figure 6: OpenMP clause class hierarchy

#pragma omp unroll full
#pragma omp unroll partial(2)
for (int i = 7; i < 17; i += 3)

body(i);

(a)
OMPUnrollDirective
|-OMPFullClause
`-OMPUnrollDirective

|-OMPPartialClause
| `-ConstantExpr 'int'
| |-value: Int 2
| `-IntegerLiteral 'int' 2
`-ForStmt
|-DeclStmt
| `-VarDecl used i 'int' cinit
| `-IntegerLiteral 'int' 7
|-[...]
|-[... (Cond)]
|-[... (Incr)]
`-CallExpr 'void'
`-[...]

(b)

Figure 7: Composition of two directives (a) and its AST (b)

2.1 Abstract Syntax Tree Changes
The changes to the AST’s Stmt class hierarchy are shown in
Figure 5. Most straightforwardly, two classes
OMPUnrollDirective and OMPTileDirective have been added,
representing an unroll pragma, respectively a tile pragma. But they
are derived from OMPLoopBasedDirective, a new class inserted
between OMPExecutableDirective and OMPLoopDirective. The
motivation is that only the transformed AST is needed for loop
transformations, but not the many other shadow AST nodes that
OMPLoopDirective comes with. For instance, the expression that
computes the number of iterations is only needed during the
construction of the transformed AST and will be part thereof. But
it is not needed separately by CodeGen or any other layer once it
has been created. Any directive applied to the transformed loop
will (re-)analyze the transformed AST without needing access to
intermediate steps. As a drawback, the transformed AST must an
OpenMP canonical loop nest itself or otherwise will be rejected by
that analysis.

The extended class hierarchy for clauses is shown in Figure 6,
but with not surprises here.

A transformed loop can itself again become subject of a loop
transformation as demonstrated in Figure 7. Its loop is first partially
unrolled, then fully unrolled, which is effectively equivalent to just
being unrolled completely.

Unlike directives derived from OMPLoopDirective, the loop
body code is not wrapped inside a CapturedStmt. There is no need
for it because it will never be outlined unless nested inside another
2Note diagnostics augment warning and error diagnostics with additional relevant
source locations, such as “template instantiation required here”.

Loop Transformations using Clang’s Abstract Syntax Tree ICPP ’21, August 09–12, 2021, Chicago, IL

ForStmt
|-[int unrolled.iv.i = 3]
|-[...]
|-[unrolled.iv.i < (17-(7-3+1))/3]
|-[unrolled.iv.i += 2]
`-AttributedStmt

|-LoopHintAttr Implicit loop UnrollCount Numeric
| `-IntegerLiteral 'int' 2
`-ForStmt
|-[int unroll_inner.iv.i = unrolled.iv.i]
|-<<<NULL>>>
|-unroll_inner.iv.i < unrolled.iv.i + 2 && unroll_inner.iv.i < 4]
|-[++unroll_inner.iv.i]
`-[... (body)]

Figure 8: TransformedAST of the unroll directive in Figure 7

region that is outlined. For loop transformations themselves it is
imperative to not wrap the code in a CapturedStmt because local
variables are changed to refer the CapturedStmt’s implicit param-
eters which the transformed AST would have to either replicate or
changed back.

Figure 8 shows part of the shadow AST for the inner
OMPUnrollDirective in Figure 7. The loop has been strip-mined
using a tile size of 2. Instead of cloning the body statement
according to the unroll factor, the inner loop is kept and annotated
with a LoopHintAttr attribute, the same as used by
#pragma clang loop unroll_count(2) `\textcolor{black}{.}`

Upon encountering this attribute, the code generator will attach
llvm.loop.unroll.count metadata to the node which is inter-
preted by the LoopUnroll pass in the mid-end to eventually unroll
the loop. No duplication takes place until that point. LoopUnroll
will also handle the case when the iteration count is not a multiple
of the unroll factor.

2.2 Code Generation Changes
A transformed AST is only necessary if the replacement is po-
tentially associated with another directive, which according to
OpenMP rules is only possible if the partial clause is present.
Hence, the outer directive of Figure 7 does not have a shadow AST.
Instead, CodeGen emits its IR directly. Otherwise, the consuming
directive has analyzed the (new) loop bounds and becomes respon-
sible for its code generation.

If encountering a non-associated tile construct, CodeGen will
simply emit the transformed AST in its place. For the unroll direc-
tive, it is more efficient to defer unrolling to the LoopUnroll pass
by attaching llvm.loop.unroll.* metadata to the loop without
even tiling the loop beforehand. This has the additional advantage
that, if the compiler is allowed to choose the unroll factor itself, the
LoopUnroll pass can apply profitability heuristics to determine an
appropriate factor.

If the unrolled loop is consumed by another directive, the unroll
factor must be chosen without LoopUnroll’s heuristic because it
is already used in shadow AST. The unroll factor determines the
number of iterations of the unrolled loop and can become observ-
able when associated by another directive, such as the taskloop
creating as many task as there are iterations. The current imple-
mentation [11] uses the unroll factor of two in this case. Future
improvements may implement a better heuristic.

for (double &Val : Container)
body(Val);

(a)
auto &&__range = Container;
auto __begin = std::begin(__range);
auto __end = std::end(__range);
for (; __begin != __end; ++__begin) {

double &Val = *__begin;
body(Val);

}

(b)
1 auto &&__range = Container;
2 auto __begin = std::begin(__range);
3 auto __end = std::end(__range);
4 size_t Distance = std::distance(__begin,__end);
5 for (int __i = 0; __i < Distance; ++__i) {
6 double &Val = *(__begin + __i);
7 body(Val);
8 }

(c)

Figure 9: Three implementations of loop at various stages of
de-sugaring; Val is the loop user variable, __begin is the loop
iteration variable, and __i is the logical iteration counter

3 CANONICAL LOOP REPRESENTATION
The idea behind this implementation is to move as much code
generation logic as possible from the Sema layer into the CodeGen
layer, specifically into OpenMPIRBuilder such that it can be shared
between Clang and Flang. Unfortunately, significant parts of the
code generation result is stored in the shadow AST of
OMPLoopDirective. However, not all of the loop analysis can be
moved into the CodeGen layer: We still want to diagnose
malformed loops in Sema, and — even more importantly, some
constructs are inherently base-language dependent. In C++ a loop
over iterators or a range-based for-loop requires overload
resolution and potentially template instantiation for expressions
that do not literally appear in the source code. For instance, the
expression 𝑢𝑏 − 𝑙𝑏 to compute the distance between loop start and
loop end, where 𝑙𝑏 and 𝑢𝑏 are iterator classes, requires resolving
the correct overload of the subtraction operator.

Instead we are abstracting the loop iterations variable [9]. That
is, internally (as already in the OpenMP runtime) the logical iter-
ation counter is always a normalized unsigned integer starting at
0 and incrementing by one at each iterations. Its value therefore
corresponds to the logical iteration number used in the OpenMP
specification.

We call the variable that a literal for-loop uses for keeping track
of the iterations the loop iteration variable. A generated loop does
not have a loop iteration variable, whether the IR emitted by Code-
Gen or starts at 0 or any other number is irrelevant and subject to
mid-end optimizations anyway.

Third, the loop user variable is the user-accessible variable that
the loop body code depends on and may have a different value
in each iteration. For a literal for-loop it is identical to the loop

ICPP ’21, August 09–12, 2021, Chicago, IL Michael Kruse

OMPUnrollDirective
`-OMPCanonicalLoop

|-ForStmt
| |-[... (init)]
| |-<<<NULL>>>
| |-[... (cond)]
| |-[... (incr)]
| `-CallExpr 'void'
| `-[...]
|-CapturedStmt
| `-[... (distance)]
|-CapturedStmt
| `-[... (loop value)]
`-DeclRefExpr 'int' lvalue Var 'i' 'int'

Figure 10: Unroll directive using OMPCanonicalLoop

iteration variable, but in range-based for-loop the iterator itself is
inaccessible by user code and only the dereferenced iterator can be
used within body code. For an illustration, see Figure 9. Note that
Figure 9c is only semantically equivalent to Figures 9a and 9b if the
loop fulfills OpenMP’s canonical loop constraints.

We identified the following minimal set of meta-information
that need to be resolved at the Sema-layer:

(1) Distance function: An expression evaluable before entering
the loop for the loop trip count (Line 4 in Figure 9c).

(2) User value function: An expression to convert a logical iter-
ation number into a value for the loop user variable (Line 6).

(3) User variable reference: The user variable that needs to be
updated before each iteration.

This is reduced from the 36 shadow AST nodes required by
OMPLoopDirective.

3.1 Abstract Syntax Tree Changes
Only one additional class derived from Stmt is introduced:
OMPCanonicalLoop. The other classes from Figure 5 introduced
for loop transformations are reused. OMPCanonicalLoop acts like
an implicit AST node similar to an implicit cast. It is inserted as the
parent of a literal for-loop whenever it needs to be “converted”
into an OpenMP canonical loop as part of a loop-associated
directive and can be losslessly removed again if the wrapped loop
needs to be re-analyzed.

Figure 10 shows an example of an AST using OMPCanonicalLoop.
The first child is the loop (ForStmt or CXXForRangeStmt) it is wrap-
ping. The distance and loop user value functions are lambdas rep-
resented by CaptureStmt nodes. Wrapping these expressions in
lambdas is necessary to allow CodeGen to call them with any ar-
gument. An Expr tree references concrete variables that cannot be
changed after Sema.

The distance function has the following signature:
[&](size_t &Result) {

Result = __end - __begin;
}

This sets the Result argument to the loop’s trip count. Here we
are using size_t for the logical iteration count type, but it actually
depends on the precision of the type of subtract expression, e.g.
ptrdiff_t for pointers and most iterators.

__end and __begin are implicitly captured by reference. These
are not necessarily the variables introduced in Figure 9b, but more

generally the loop iteration variable after the for-loop’s init state-
ment has been executed: In other words, the loop iteration variable’s
start value. Similarly, __end is the loop’s upper bound.

Additional complexity may be necessary, such as evaluating
to 0 if __begin is larger than __end, unless iterating in reverse.
Also special care must be taken to allow the maximum number of
iterations. For instance,
for (int32_t i = INT32_MIN; i < INT32_MAX; ++i)

has 0xfffffffe iterations that do not fit into a 32-bit signed integer
and therefore a reason why we always an unsigned logical iteration
counter. The number of iterations cannot be negative, but the trip
count will never be equal to or exceed the range of an unsigned
integer of the same bitwidth. An iteration count of 0xffffffff
with 32 bit integer iteration variables is theoretically expressible in
Fortran, but OpenMPIRBuilder does not support it.

The loop user value function’s signature is the following:
[&,__begin](auto &Result, size_t __i) {

Result = __begin + __i;
}

Again, the result is stored in a variable passed by-reference. The re-
sult cannot be returned using the lambda’s return value because that
would be an r-value of a user-defined type. It may trigger language-
dependent overloads to copy/move its value into a memory location
which can only be done in Sema. By passing by reference (even in
C), the memory referenced by Resultwill just have the expected bit
pattern after the call returns, including having called the destructor
for the previous value if necessary.

Captures take place before the loop itself, but it is evaluated
inside the loop. __begin is captured by-value so at any time it will
contain the start value of the loop iteration variable even though it
will be modified inside the loop.

When eventually Clang switches completely to
OpenMPIRBuilder and removes the OMPLoopDirective-based
implementation, all loop-associated directives can be changed to
derive from OMPLoopBasedDirective instead and no transformed
AST node need to be generated anymore. While the
OMPUnrollDirective does not wrap its associated code
into a CapturedStmt, other directives such as
OMPParallelForDirective still may. They may also become
unnecessary with further adaption of OpenMPIRBuilder which
outlines on the IR-level instead of depending on the front-end to
outline itself.

As a downside, without the transformed shadow AST, the se-
mantic analyzer will need its own logic to verify that a loop nest
after transformations is sufficiently deep to apply loop-associated
directives. For the moment we relay on the existing diagnostic that
comes with the shadow AST implementation.

3.2 Code Generation Changes
When CodeGen has to emit an OMPCanonicalLoop, instead of using
Clang’s functions to emit a ForStmt or CXXForRangeStmt, it calls
OpenMPIRBuilder’s createCanonicalLoop function [8] which cre-
ates a loop skeleton in LLVM-IR (shown in Figure 11). It takes the
loop’s trip count as argument which CodeGen can get by calling
the distance function, and returns a CanonicalLoopInfo object
which represents the loop and its current state in the IR. Among

Loop Transformations using Clang’s Abstract Syntax Tree ICPP ’21, August 09–12, 2021, Chicago, IL

omp_loop.preheader:
 br label %omp_loop.header l

omp_loop.header:
 %omp_loop.iv = phi i32 [0, %omp_loop.preheader], [%omp_loop.next, %omp_loop.inc]
 br label %omp_loop.cond

omp_loop.cond:
 %omp_loop.cmp = icmp ult i32 %omp_loop.iv, %TripCount
 br i1 %omp_loop.cmp, label %omp_loop.body, label %omp_loop.exit

T F

omp_loop.body:
 ... user code ...
 br label %omp_loop.inc

omp_loop.exit:
 br label %omp_loop.after

omp_loop.inc:
 %omp_loop.next = add nuw i32 %omp_loop.iv, 1
 br label %omp_loop.header

omp_loop.after:
 ...

Figure 11: Loop skeleton generated by createCanonicalLoop

other information, it stores which llvm::Value represents the log-
ical iteration counter and the location of the loop’s body3. This is
where CodeGen emits the ForStmt/CXXForRangeStmt’s body code.
Before that, it will call the loop user value function using the logical
iteration counter to fill the loop user variable with content.

The OMPCanonicalLoop can also be used as a handle to pass
to other functions such as createWorkshareLoop [18] which im-
plements the worksharing-loop construct, tileLoops [13] which
implements the tile loop transformations, or collapseLoops [12].

In the case of loop transformations, the methods again return
(one or more) CanonicalLoopInfos that can in turn again be used
as handles. The function may either modify and return the input
canonical loops, or abandon the old handles and create new loops
using the skeleton. In either case, returned loops must adhere to
the loop skeleton invariants which include:

• Explicit basic blocks for preheader, header, condition check,
body entry, latch, exit and after.

• Identifiable logical iteration variable/induction variable.
• Identifiable loop trip count, without requiring analysis by
ScalarEvolution.

4 CONCLUSION
The shadow AST approach has already been implemented [10, 11]
and works (modulo bugs) in the top-of-tree of Clang’s develop-
ment repository which eventually will become Clang 13.0.0. The
OpenMPIRBuilder implementation for handling loops in general [8]
including its use by Clang [9] is still in active development and
will need some time before becoming production-ready. As of this
writing, Clang is missing implementations for any loop-associated
directive other than workshare-loop, any clauses other than the
schedule clause, loop nests with more than one loop, use within
templates, cancellation, exceptions, etc. However, its advantages are
a shared implementation with other front-ends such as Flang, and

3For re-entry into callback-ception, createCanonicalLoop also takes a function ar-
gument. createCanonicalLoop calls it with those two as arguments before it itself
returns.

a simplification of the AST representation including the removal of
“hidden” shadow AST subtrees and wrapping associated statement
into CapturedStmts.

As far as we know, no other compiler has yet implemented
OpenMP loop transformations. Since multiple vendor compilers
are derived from Clang, it is expected that these will inherit the
implementations described here.

OpenMP 6.0 is expected to introduce additional loop transfor-
mations and mechanisms to apply them to not just the outermost
generated loop. For example, after tiling a loop, it is possible to
apply worksharing to the outer loop and simd to the inner loop.
Currently, only the former is possible. Some directives may also
be redefined as loop transformations. For instance, further loop di-
rectives may be applicable to simd-generated loops. The additional
loop transformation will likely include loop fusion and fission that
handle sequences of loops in addition to loop nest. The additional
abstractions provided by the OMPCanonicalLoop AST node and
the OpenMPIRBuilder build the foundation for implementing these
extensions in Clang.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration,
in particular its subproject SOLLVE.

This research used resources of the Argonne Leadership Comput-
ing Facility, which is a DOEOffice of Science User Facility supported
under Contract DE-AC02-06CH11357.

REFERENCES
[1] [n.d.]. Clang: A C Language Family Frontend for LLVM. http://clang.llvm.org
[2] [n.d.].MLIR OpenMP dialect. https://mlir.llvm.org/docs/Dialects/OpenMPDialect/

MLIR Reference Manual.
[3] [n.d.]. OpenMP: Support for the OpenMP language. https://openmp.llvm.org/
[4] Alexey Bataev and Zinovy Nis. 2014. OpenMP Support in Clang/LLVM: Status

Update and Future Directions. LLVM Developer’s Meeting TechTalk. https:
//llvm.org/devmtg/2014-10/#talk1

[5] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. 2018. Clacc: Translating OpenACC
to OpenMP in Clang. In 2018 IEEE/ACM 5th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC). IEEE, 18–29.

[6] Johannes Doerfert. 2019. [OpenMP] Introduce the OpenMP-IR-Builder. LLVM
patch review. https://reviews.llvm.org/D69785

[7] ISO. 2011. ISO/IEC 14882:2011 – Information technology – Programming languages
– C++. Technical Report.

[8] Michael Kruse. 2020. [OpenMPIRBuilder] Implement CreateCanonicalLoop.
LLVM patch review. https://reviews.llvm.org/D90830

[9] Michael Kruse. 2021. [clang][OpenMP] Use OpenMPIRBuilder for workshare
loops. LLVM patch review. https://reviews.llvm.org/D94973

[10] Michael Kruse. 2021. [OpenMP] Implement ’#pragma omp tile’. LLVM patch
review. https://reviews.llvm.org/D76342

[11] Michael Kruse. 2021. [OpenMP] Implement ’#pragma omp unroll’. LLVM patch
review. https://reviews.llvm.org/D99459

[12] Michael Kruse. 2021. [OpenMPIRBuilder] Implement collapseLoops. LLVM patch
review. https://reviews.llvm.org/D93268

[13] Michael Kruse. 2021. [OpenMPIRBuilder] Implement tileLoops. LLVM patch
review. https://reviews.llvm.org/D92974

[14] Michael Kruse and Hal Finkel. 2019. Design and Use of Loop-Transformation
Pragmas. In OpenMP: Conquering the Full Hardware Spectrum. Springer.

[15] Chris Lattner. 2002. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-
ter’s thesis. Computer Science Dept., University of Illinois. http://llvm.org

[16] OpenMP Architecture Review Board. 2020. OpenMP Application Program Inter-
face Version 5.1. https://www.openmp.org/specifications/

[17] Steve Scalpone. 2020. Flang Update. https://youtu.be/rO59gcuq0LU
[18] Alex Zinenko. 2020. [OpenMPIRBuilder] introduce createStaticWorkshareLoop.

LLVM patch review. https://reviews.llvm.org/D92476

http://clang.llvm.org
https://mlir.llvm.org/docs/Dialects/OpenMPDialect/
https://openmp.llvm.org/
https://llvm.org/devmtg/2014-10/#talk1
https://llvm.org/devmtg/2014-10/#talk1
https://reviews.llvm.org/D69785
https://reviews.llvm.org/D90830
https://reviews.llvm.org/D94973
https://reviews.llvm.org/D76342
https://reviews.llvm.org/D99459
https://reviews.llvm.org/D93268
https://reviews.llvm.org/D92974
http://llvm.org
https://www.openmp.org/specifications/
https://youtu.be/rO59gcuq0LU
https://reviews.llvm.org/D92476

	Abstract
	1 Introduction
	1.1 OpenMP Loop Transformation Directives
	1.2 The Clang Abstract Syntax Tree
	1.3 Clang Layer Architecture

	2 Shadow AST Representation
	2.1 Abstract Syntax Tree Changes
	2.2 Code Generation Changes

	3 Canonical Loop Representation
	3.1 Abstract Syntax Tree Changes
	3.2 Code Generation Changes

	4 Conclusion
	Acknowledgments
	References

