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Designing Robust Models for Behaviour Prediction using Sparse
Data from Mobile Sensing: A Case Study of Office Workers’
Availability for Wellbeing Interventions

SEYMA KUCUKOZER-CAVDAR and TUGBA TASKAYA-TEMIZEL,Middle East Technical Univer-
sity, Turkey
ABHINAV MEHROTRA, Samsung AI Centre, United Kingdom
MIRCOMUSOLESI,University College London, United Kingdom, The Alan Turing Institute, United Kingdom,
and University of Bologna, Italy
PETER TINO, The University of Birmingham, United Kingdom

Understanding in which circumstances office workers take rest breaks is important for delivering effective mobile notifications
and make inferences about their daily lifestyle, e.g., whether they are active and/or have a sedentary life. Previous studies
designed for office workers show the effectiveness of rest breaks for preventing work-related conditions. In this paper, we
propose a hybrid personalised model involving a kernel density estimation model and a generalised linear mixed model to
model office workers’ available moments for rest breaks during working hours. We adopt the experience-based sampling
method through which we collected office workers’ responses regarding their availability through a mobile application with
contextual information extracted by means of the mobile phone sensors. The experiment lasted 10 workdays and involved
19 office workers with a total of 528 responses. Our results show that time, location, ringer mode, and activity are effective
features for predicting office workers’ availability. Our method can address sparse sample issues for building individual
predictive behavioural models based on limited and unbalanced data. In particular, the proposed method can be considered as
a potential solution to the “cold-start problem”, i.e., the negative impact of the lack of individual data when a new application
is installed.

CCS Concepts: • Human-centered computing → Empirical studies in ubiquitous and mobile computing; • Com-
puting methodologies→ Kernel methods; Ensemble methods; Classification and regression trees.

Additional Key Words and Phrases: personalised modelling, cold-start problem, rest break prediction, hybrid model

1 INTRODUCTION
Mobile devices have been widely used for health intervention delivery in recent years. There have been several
projects focusing on when and how to deliver effective intervention messages (e.g., [25, 49]). One of the main areas
where health-related interventions have been adopted is wellbeing at workplaces, especially in offices in which
employees tend to have a sedentary behaviour during working hours [32, 37, 52]. Sedentary workstyle results
in work-related musculoskeletal disorders (WRMSDs) such as carpal tunnel syndrome [56] or repetitive strain
injury (RSI) [35]. It has a negative impact on employees’ health and also causes economic costs to organisations.
For that purpose, many organisations and agencies provide educational material and training to their employees
about WRMSDs and how to prevent them, and also support interventions for behaviour change [42]. The most
common solution for preventing WRMSDs is to have simple micro breaks from repetitive work [4, 26, 32, 42].
However, notification timing is important since taking breaks from repetitive work may decrease the productivity
of employees if the intervention is not delivered at the right moment.
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When the health interventions regarding rest breaks are delivered through mobile phones, circumstances such
as the time of the day and location in which office workers tend to take rest breaks become important contextual
information that can be extracted by means of mobile phone sensors. This information is then used to infer the
most appropriate time to send a notification. Several studies have shown that notifications sent based on time,
users’ activity, location, mobile application usage, cognitive context or ringer mode are more likely to be accepted
and acted upon by users [9, 15, 22, 30, 31, 33, 39, 40, 43, 44, 48].

Self-reported data collection for user modelling studies (e.g., for modelling interruptibility or break availability)
is a time-consuming but an essential task. In the recent years, it has been shown that models built on individual
data (i.e., individual models) are superior to the models that are built on all users’ data (i.e., general or population
models) in predicting interruptibility since user characteristics vary across populations [18, 61]. However,
individual models have an obvious drawback: a certain amount of data has to be collected in order to start making
predictions. A limited amount of data per user can usually be obtained due to dropouts and missed/ignored
messages/notifications. In addition, the number of data points per user varies significantly: this creates a bias
in modelling, i.e., some users might be over-represented (or under-represented) in the training dataset. The
superiority of individual models over generic models has been well-demonstrated when there is sufficient data
[61]. In other words, the model suffers from the so-called cold-start problem. However, the effectiveness of
individual-level models with unbalanced limited data has not been investigated in the past. This is a topic of
crucial importance, since addressing this problem is fundamental for the implementation of these mechanisms in
practical applications.
The goal of this paper is to address the issues listed above. In other words, the aim of this work can be

summarised in the following research question: “Is it possible to develop a model for inferring availability of office
workers and their willingness of having rest breaks using information from mobile phone sensors by considering
the variety in the number and characteristics of the responses and addressing the cold start problem at the same
time?” In particular, in order to answer this question, we propose a hybrid model, which is able to take into
account both the specific individual and the entire population of users simultaneously. It is composed of two
stages: first, we computed the kernel density estimates of each user’s self-reported break availability response
with its corresponding timestamp. In mobile interventions, user responses (including non-responses) with their
corresponding times can be quite helpful to infer users’ availability. For instance, at certain times of the day,
users may be more willing to reply to notifications regardless of their current location.

We first conducted a survey on 19 office workers and requested them to install our mobile sensing application,
which delivers break reminder notifications. These include questions for identifying the context of the office
workers. The experiment was conducted for ten working days. The mobile application used in the study collected
mobile sensor data in the background during the experiment. We obtained 528 valid responses that were used to
construct our hybrid model using generalised linear mixed modelling (GLMM). Our solution is based on a novel
generic population- and individual-level model for unbalanced and limited amount of data.
The main contributions of this paper can be given as follows:

(1) In this study, we propose a hybrid model, which is based on a novel approach. It relies on both individual-
level and population-level data to offer a possible solution to the cold-start problem.Wemodelled availability
of office workers with the features selected (kernel density estimates, location parameters, ringer mode
parameters, physical activity, and mobile application usage) with GLMM using a Markov chain Monte Carlo
method. The main advantage of GLMM resides in its ability to take into consideration both within and
between subjects’ factors successfully. The use of kernel density estimation facilitated the incorporation of
time information into a linear model. Besides, using GLMM at the first stages of an interruption might be
a solution to the cold-start problem of individual-level models when there is unbalanced limited data to
predict a user’s availability.
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(2) We propose new features to represent the interaction between users and indoor locations for modelling
user’s availability for taking breaks. In the literature of context-aware modelling, GPS data has been utilised
extensively for identifying location [8, 43]. However, there is a limited number of studies focusing on the
characterisation of indoor locations for context awareness. In this study, we define several parameters
based on the indoor locations of users such as the duration that they spend in each location, visit frequency
to locations, and location similarity with their workplaces. We investigate the effects of those parameters
on the availability for taking rest breaks.

The findings of our study can be summarised as follows: (a) time of the day, activity, and time duration of a
certain action have significant effects on break availability of office workers for a rest break, (b) GLMM has a
higher predictive power than individual or generalised random forest models when there is a lack of sufficient
and repeated-measures data, (c) consequently, GLMM can be considered as a potential method for dealing with
the “cold-start period”, which affects individual-level models.

We believe that researchers and practitioners in the area of mobile systems for healthcare will benefit from the
findings of our study: in particular, developers who work mainly in the mobile health domain might consider
contextual variables such as time spent in action and activity as input for the design of intelligent mechanisms
for delivering notifications and messages to users, for example in the design of effective positive behaviour
interventions for healthcare, especially in office contexts.

2 RELATED WORK
We now review the state of the art in two areas that are relevant to this study, namely interruptibility and studies
about break reminders and physical activity promotion in workplaces.

2.1 Interruptibility
The most prominent factors that impact or are associated with interruptibility are time [30, 33, 39, 43, 50, 53],
physical activity [22, 24, 30, 33, 34, 36, 53], location [8, 9, 13, 30, 39, 43, 46, 48], application usage [33, 34, 36, 40, 44],
and ringer mode [8, 31, 33, 40, 50].
In terms of time granularity, researchers have considered hour of the day or other subdivision of the day,

such as morning or evening. There are contradictory results about time being significant for interruptibility: the
majority of the studies showed time as a significant variable [30, 33, 39], whereas other variables rather than
time have been found significant on interruptibility in a few studies [43, 50, 53]. Those studies suggest that the
effect of time varies.

One of the significant features for detecting available moments is physical activity. It has been found that users
are more interruptible during activity transitions [22, 24]. In recent works [30, 33], activity type (e.g., walking,
standing, running) obtained from mobile devices has been used for an interruptibility management system. A
number of recent studies (see, for example, [34, 36, 53]) have also used information about the type of activity to
predict opportune moments for notification delivery.

Location is generally collected by GPS [30, 43], user feedback [9, 13, 39, 48] or both [8]. The main limitation of
GPS is that it is unreliable for indoor localisation [55]. Poppinga et al. [43] had to mark 90% of the locations they
collected as “no location” because they were indoors. Ter Hofte [48] and Choi et al. [9] collected the locations
of users with experience-based sampling (ESM) solely, whereas Pejovic and Musolesi [39] also used location
changes with Wi-Fi and Bluetooth in addition. Likewise, Chang and Tang [8] classified locations obtained from
GPS as “work” or “home” locales and discussed the receptivity of users based on different locales. Finally, Exler et
al. [13] presented location groups to users and measured their receptivity in different locations. These studies
show that users’ receptivity to messages or interruptions varies based on the location.
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Ringer mode is another modality discussed in recent works. Specifically, Chang and Tang [8] analysed the
ringer mode settings in different contexts. Their findings suggest that individuals use different ringer modes in
different locales. In [31, 40], researchers found that users respond to messages faster when their phones are in
vibrate mode compared to ring or silent mode. Similarly, Turner, Alan, and Whitaker [50] showed that people are
more receptive when their phones are in sound mode or vibrate mode compared to silent mode.
Finally, Fischer et al. [14] found that users tend to respond more quickly to notifications after an episode of

mobile use. Oh, Jalali and Rain [33] considered the application usage duration as an input for a solution for smart
notifications. In addition, Park et al. [36] and Okoshi et al. [34] studied how device usage can be informative for
the estimation of break-points.

2.2 Studies Related to Break Reminders in Office Environments
Most office workers face repetitive movements and/or static postures in their work lives. Many studies [4, 16, 32]
suggest simple breaks for preventing medical conditions related to computer use (e.g., carpal tunnel syndrome,
tension neck syndrome). Healy et al. [21] showed the association between taking frequent breaks from sitting and
a healthier metabolism. Numerous studies have proved the effectiveness of reminders sent through applications
for desktop computers or mobile devices [5, 7, 10, 47, 52]. In particular, they found that timing is a critical factor.
Van Dantzig et al. [52] showed the importance of taking breaks and how persuasive strategies might be

effectively adopted to increase individuals’ willingness to take them. Berque et al. [5] designed a software system
that persuades users to avoid immoderate typing speeds, to use typing shortcuts, and to take breaks from typing
in order to prevent RSI. The system reminded participants when they exceeded a typing speed and provide them
with appropriate feedback. The results show that the feedback provided by the system has a positive effect on
typing behaviour, and shortcuts for words are used more effectively. As a different perspective, Taylor et al. [47]
suggested two main determinants leading to physical activity behaviour in office environments: (1) attitudes,
behavioural and social determinants, and (2) environmental and policy determinants. Knowledge, behavioural
management skills, self-efficacy, enjoyment, perceived benefits, perceived barriers, and social support from
family, coworkers and friends constitute the first category, whereas workplace norms and “culture”, management
support and available physical space constitute the latter. Hence, they emphasised the workplace routines have
an important role for workers to take breaks or do exercises. Because of that, the social determinants in offices
are explored in this study. Cooley and Pedersen [10] conducted a study with 46 participants for increasing
non-purposeful movement breaks at work in order to reduce prolonged sitting times. They designed a persuasive
software that reminds employees to take a break from their sitting times. They concluded that reminders should
be unobtrusive for the system to be successful in the long term.
Epstein, Avrahami, and Biehl [12] investigated not only the cost of interruptions on work tasks, but also on

disrupting a break itself. The authors also discussed the importance of understanding in which circumstances
office workers take rest breaks. A very recent study [54] describes how to improve the design of systems for
activity tracking in workplaces including those for measuring social dynamics and extracting daily routines of
the employees.
Other studies have investigated interruptibility in an office context. Züger and Fritz [60] used psycho-

physiological sensors in order to identify software developers’ interruptibility with an experiment conducted
in a lab and a field study. They were able to successfully predict interruptibility. Moreover, they found posi-
tive correlation between interruptibility and mental load. Another study [59] focused on reducing in-person
interruptions in the workplace combining a physical interruptibility indicator (a LED light) with an automatic
interruptibility measure using computer activities. Even though they focused on interruptibility in an office
context, their methods differ from our study. We focus on detecting available moments for breaks of different
duration using mobile sensing.
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All the studies showed the importance of personal and social factors in a workplace for effective interventions.
As discussed in Section 2.2, the solutions presented by these studies show that break reminder applications are
effective especially for work-related conditions such as RSI. However, these systems should strike a balance
between healthy behaviour in the office and productivity, by minimising the messages sent to the users in
inappropriate moments. In particular, the studies in Section 2.1 offer solutions for detecting interruptibility using
context information using data from computers, smartphones or wearable sensors.

The goal of our study is to develop a system exploring the trade-off between effectiveness of the interventions
and the number of notifications/messages sent to the users.

3 RESEARCH METHOD AND EXPERIMENTAL DESIGN
Mobile-based ESM was adopted throughout the study. ESM is used for capturing and recording human behaviour
as it happens in their natural settings [11]. Hence, the data obtained by ESM has higher validity and less bias
compared to other methods [38]. For these reasons, ESM is indeed a powerful methodology for capturing users’
natural feelings and thoughts.

We designed a user experiment for investigating the factors related to rest break availability of office workers.
The main steps of the experiment design are as follows: (1) Delivery of the pre-experiment questionnaire, which
consisted of questions about demographic information, routine break times, and daily routines in mobile phone
usage; (2) Installation of the mobile sensing application; (3) ESM sampling during 10 work days; (4) Model fitting.

3.1 Pre-ExperimentQuestionnaire
We delivered a pre-experiment questionnaire to collect demographic information (age, gender, occupation, job
role, and educational background) to understand the work routines of the participants. The work start/end hours
and the participants’ favourite times for breaks, type of the break (e.g., social, tea/coffee, lunch), location of the
breaks (in the same office, outside the office on the same/different floor, or outside the building) and availability
for a physical exercise in those breaks were also collected in order to understand work routines of the participants.
Finally, the participants were asked to state in which ringer mode they use their mobile phones at each possible
situation (e.g., in a meeting, in a rest break) during work hours.

3.2 Design of the Mobile Sensing Application
We developed a mobile sensing application to remind rest breaks to employees during office hours, which is also
used for collecting a variety of contextual information. The application works on mobile devices equipped with
the Android operating system version 4.2 or higher. It has a basic user interface with three main menus. In the
first menu, 5-minute and 10-minute-long two videos showing basic office exercises are presented to users, one of
which can be preferred according to the duration of their break. In the second one, the reminder messages are
shown. In the third one, an explanation about the study is displayed and a communication box is provided to
the participants in order for them to access researchers for their questions. Sample screenshots are depicted in
Figure 1.

In the background, the mobile application collects Wi-Fi access point information, GPS location, accelerometer,
activity type returned by the Google Activity Recognition API, ringer mode, Google calendar data, screen activity,
and application usage information. After the Android API level 21, the UsageStatsManager API requires system-
level permission and is not granted to third-party apps. Users are required to make manual security changes
from settings and some might prefer to opt out. Consequently, the screen on/off times and user’s screen presence
are also captured at all times. Through this information we were able to detect when a user started using their
mobile phone, which applications were used, and when their interaction with their phone ended. In particular,
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Fig. 1. Screenshots of the mobile sensing application. Left : A screenshot of the form used for questions. Right : A screenshot
showing a video used to promote office exercises.

for those who made the necessary security changes, the mobile application continuously stores which and when
application packages have been used.

The ringer mode is recorded every time it is changed. Activity data is only captured when significant motion
(i.e., a sensor is triggered when a change is identified in the user’s location) [1] is detected. The sampling starts
whenever the participant starts moving and the activity type (e.g., walking, driving, and running) is stored
in one-minute intervals until the user stops. In each state transition from still to moving and moving to still,
Wi-Fi access point data including BSSID, SSID, frequency and level information is recorded. For the phones
without a significant motion sensor activity, accelerometer data is recorded every three seconds for one minute
in five-minute intervals. A server application was developed to automatically download the sensor data from
each user at the end of the day.

3.3 Notification Delivery and ESMQuestions
We delivered the ESM questions to the participants through the mobile sensing application each time we sent a
rest break reminder; hence, we used ESM questions as the reminders themselves. The ESM questions used in the
study are:

• Question 1: How long is your current break duration or for how long are you able to take a break? Options:
1 = cannot take a break now, 2 = less than 5 minutes, 3 = between 5-15 minutes, 4 = more than 15 minutes

• Question 2: What are you doing now? Options: In a meeting, working on computer, in a tea/coffee break,
in a lunch/snack break, on road, in a social break (chatting, talking on the phone etc.), in a bathroom break,
in a smoking break, following the media (news, magazines etc.), in a health break, in a praying break, and
other.
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The reminder delivery algorithm is designed to dispatch notifications only during working hours. First, the
algorithm discards the time slots when the user has a calendar event. Then, it selects two notification times from
the preferred time slots of the users, if stated in the pre-experiment questionnaire. Then, the remaining four
notification times are randomly picked. If a participant has no preference, all six notification times are randomly
chosen. Each time a reminder is sent, a motivational message for taking a break or doing a simple exercise is also
included. More specifically, the notification times must satisfy the following constraints for each user: (1) The
notification times must be delivered between work start time and end time. (2) The notification times must not
overlap with calendar events. (3) If stated, two of the notification times must be selected from the preferred time
slots of the user. For example, if a break is scheduled between 12:00 and 13:00, a random time is picked from this
interval. (4) There must be at least one hour between two notification times. The pseudocode of the notification
delivery algorithm is given in Appendix A.
When a reminder is sent with an ESM questionnaire, the message is seen in the notification bar as a regular

notification. The intensity of the notifications changes based on the ringer mode of devices, i.e., it is based on
system default settings. For example, if the device is in vibrate mode, the system notifies the user with a vibration.
The participants were not asked to disable the “mute” mode. There were no re-prompts if users missed a prompt.
Three possible scenarios may happen after the arrival of the message: (1) user sees the message and responds to
it; (2) user sees the message but does not respond; or (3) user does not see the message. We refer to the time a
user takes to respond to a notification as “response notification time”. If the notification is not responded in 15
minutes after its delivery, it is automatically deleted as in a previous study [31].

3.4 Procedure
3.4.1 Ethics Committee Approval. The ethics committee approval for data collection through mobile phones and
questionnaires were obtained from the university’s research centre for applied ethics.

3.4.2 Participant Recruitment. Participants were recruited with convenience sampling method. The experiment
was advertised among the students of a graduate institute in a university and promoted in social media. The
participants were directed to the website of the experiment, in which we presented the pre-experiment ques-
tionnaire and the mobile application download links to them. The participants were granted a coffee coupon if
they filled the pre-questionnaire and replied to at least 25% of the ESM messages, and that coupon was the only
compensation for taking part in the experiment.

3.4.3 Pilot Phase. The main aim of the pilot phase is to evaluate all the experiment steps to oversee any potential
technical problems such as scaling that might be encountered during the main experiment, which was planned
with a larger participant pool. The experiment was conducted with five participants having different mobile
phones in terms of brands and Android versions, and working in different workplaces. Three of the participants
were male and two of them were female. Four participants were affiliated with different universities. One of them
was an engineer working in a corporate company. A summary of the descriptive statistics about the participants
is given in Table 1.
The procedure in this phase was conducted exactly in the same way as the main experiment. Nevertheless,

two additional datasets were collected, which are specific to this phase. This is due to the fact that this additional
data collection was time-consuming and cannot be easily extended to a large participant pool. The first dataset
was constructed based on the answers of the five participants who were requested to fill a form indicating their
location information (e.g., home, work, outdoor) at the end of each day. To facilitate the process, we automatically
identified all the locations where each user spent more than five minutes each day and presented them with the
associated timestamp. Finally, the participants labelled them. The second dataset comprised both the raw activity
data and the labelled activity data by Google Activity API. These additional datasets were used for the following
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Table 1. Descriptive information of the participants

Pilot Phase Main Experiment

Number of participants 5 14
Gender Female 2 6

Male 3 8
Age Min 27 24

Max 34 42
Median 31 30.5
Mean 30.4 31.73
Std. dev. 2.33 5.25

Work duration per day Min 7 6
Max 8.5 10
Median 8 9
Mean 7.9 8.92
Std. dev. 0.49 1.16

Work experience (years) Min 1.42 0.08
Max 8.25 21.50
Median 7 3
Mean 5.45 4.18
Std. dev. 2.94 4.63

Occupation Engineer 1 8
Academics 4 3
Bank personnel 0 1
IT specialist 0 1
Technician 0 1

Work sector Private 3 7
Government 2 5
Freelance 0 2

tasks in the study: (1) to label activity types later to be used to categorise them into still and moving actions
(see Section 4.2.2), (2) to cluster user locations later to be used for finding location similarity and frequency (see
Section 4.2.3 for details), which requires a parameter setup. The optimal parameter (a.k.a. threshold) was used
when we investigated the statistical relationships between the features and the break availability using repeated
measures correlation (see Table 5) as the results need to be reported based on factual data. The details of the
collected data from the pilot participants can be seen in Table 2.

3.4.4 Experiment. After conducting the pilot phase, the main experiment was advertised to a larger pool of
participants. The system setup and the procedure were exactly the same as in the pilot phase. In total, 46
individuals responded to the pre-experiment survey in full. Thirty-eight of them successfully installed the mobile
application. Six participants dropped out of the experiment. Fourteen of the 32 participants had a response rate
of 25% or higher, hence, the data obtained from them were included in the analyses. The descriptive information
of the participants is given in Table 1. None of the participants were affiliated with the research group.
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Table 2. Descriptive statistics of the collected data during the pilot phase and the main experiment

Pilot Phase Main Experiment

Number of ESM responses 131 397
Location labels Number of data points 415 N/A

Min data points per individual 51 N/A
Max data points per individual 95 N/A
Median data points per individual 59 N/A
Mean data points per individual 66.43 N/A
Std. dev. data points per individual 17.51 N/A

Activity data Smartphones with Google Activity API support 5 9
Smartphones without Google Activity API support 0 5

Ringer mode ESM messages sent at sound mode 106 230
ESM messages sent at vibrate mode 19 161
ESM messages sent at silent mode 6 6
Number of participants whose base state is sound 5 7
Number of participants whose base state is vibrate 0 6
Number of participants whose base state is silent 0 1

4 DATA COLLECTED AND FEATURE EXTRACTION
We consider five main features for modelling and characterising user behaviour as suggested in previous works,
namely answer time [30, 33, 39, 43, 50, 53], activity [22, 30, 33, 34, 36], location [8, 13, 30, 39, 43, 48], application
usage [33, 34, 36, 40, 44], and ringer mode [8, 31, 33, 40, 50]. In the following sections, we discuss each factor in
detail.

4.1 Collected Data
In total, 921 ESM messages were sent to all users throughout the experiment (pilot phase is included). A total of
292 messages were sent in the preferred time slots of each user as stated in the pre-experiment questionnaire. The
participants responded to 528 ESM messages, 131 of them were collected from the pilot participants as shown in
Table 2. In the following sections, we report the whole data (pilot and main part). The details of the data collected
in the pilot phase and the second part of the experiment can be seen in Table 2.
Ninety-seven of 292 messages sent in the preferred time slots were labelled as “can take a break” by the

participants whereas 37 of them were labelled as “cannot take a break”, and 158 of the messages were not
answered. Similarly, 208 of 629 messages sent in a random time were labelled as “can take a break”, 37 of them
were labelled as “cannot take a break”, and 301 of the messages were not responded.

The response rates of each user are given in Figure 2 (top). The response rates are grouped into two categories
corresponding to the cases in which the message is sent in preferred time slots and randomly, respectively. In
the same figure (middle), the positive (i.e., “can take a break”) and negative (i.e., “cannot take a break”) response
rates for preferred and random messages are displayed. The number of positive responses is higher than that of
negative ones overall. This may be due to the fact that the participants responded to the messages when they
were usually available and ignored the notification messages at other times.

The bottom figure shows the average duration of preferred times per day in minutes for each user. In the
pre-experiment questionnaire, some users reported a wider range of time intervals whereas some did not report
any, such as Users 15 and 16. The figures indicate that there is no significant difference between the notifications
sent at preferred and at random times. There might be two possible explanations for this result. Although some
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types of break might take place at around the same time over different days, such as lunch or praying breaks,
others may shift or change due to the nature of the tasks that users are carrying out on a specific day. Another
reason could be that some users did not report their daily schedule correctly when filling out the questionnaire.

Fig. 2. Top: Total response rates of users to the messages sent in preferred and random time slots. Middle: Positive and
negative response rates of users to the messages sent in preferred and random time slots. Bottom: Average duration of
preferred time slots of users during work hours per day (in minutes).

4.2 Training and Parameter Setting Phase
In this section, activity classification and modelling user locations based on the user labelling in the pilot phase is
explained. Table 3 shows the abbreviations that are used throughout this paper.

4.2.1 Modelling User Activity. User activity is defined as whether a user is moving or still when notifications are
sent. To identify user activity, still periods, i.e., the periods during which the mobile phone is detected as being
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Table 3. Abbreviations

Abbreviation Description

𝑁 Notifications set
𝑆𝑃 Still periods set
𝐿 Locations set

𝑡𝑠𝑡𝑎𝑟𝑡 𝑗 Start time of 𝑗𝑡ℎ still time period (∀𝑗 ∈ 𝑆𝑃 )
𝑡𝑒𝑛𝑑 𝑗

End time of 𝑗𝑡ℎ still time period (∀𝑗 ∈ 𝑆𝑃 )
𝑡𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛 Submission time of response to notification 𝑛 (∀𝑛 ∈ 𝑁 )
𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑟𝑡 Work start time
𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑑 Work end time
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛 Activity when notification 𝑛 is sent (∀𝑛 ∈ 𝑁 )
𝑇𝑆𝐴𝑛 Time spent in action when the notification 𝑛 is responded (∀𝑛 ∈ 𝑁 )
𝐿𝑆𝑛 Similarity between the location where the notification 𝑛 is responded and the base location (∀𝑛 ∈ 𝑁 )
𝐿𝐹 Visit frequency of the location where the notification 𝑛 is responded (∀𝑛 ∈ 𝑁 )
𝐴𝑃 Wi-Fi access points set
𝐴𝑈𝑡𝑛 Application usage in 𝑡 minutes prior to the notification 𝑛 (∀𝑛 ∈ 𝑁,∀𝑡 ∈ {5, 10, 15, 30, 45, 60})
𝑇𝑏 Probability density of break availability category 𝑏 (∀𝑏 𝑖𝑛1, 2, 3, 4)
𝑅𝑀 Ringer mode
𝑅𝑀𝐶 Ringer mode change
𝐶𝐼 Credible interval
𝑓𝑖 (𝑎) RSSI of access point 𝑎 overheard at location 𝑖 (∀𝑎 ∈ 𝐴𝑃,∀𝑖 ∈ 𝐿)

still for more than five minutes were extracted. Every still period j has a start 𝑡𝑠𝑡𝑎𝑟𝑡 𝑗 and end time 𝑡𝑒𝑛𝑑 𝑗
. The start

time of a still period is the moment when the activity is read as still with an accuracy of 100% by the Google
Activity library. The end time of a still period is the time when the activity type returns a value other than still. A
still period set (SP) includes all still period data.

Equation 1 shows how the activity was labelled: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛 denotes the activity of the user when notification 𝑛
is received. If the user’s submission time of response 𝑡𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛 to notification 𝑛 is between any start time and
end time of still periods, then the activity is labelled as “still”. Otherwise, it is labelled as “moving”.

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛 =

{
𝑠𝑡𝑖𝑙𝑙, if 𝑡𝑠𝑡𝑎𝑟𝑡 𝑗 ≤ 𝑡𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛 ≤ 𝑡𝑒𝑛𝑑 𝑗

𝑚𝑜𝑣𝑖𝑛𝑔, otherwise
, 𝑗 ∈ 𝑆𝑃, 𝑛 ∈ 𝑁 . (1)

4.2.2 Predicting Activity from Accelerometer Data. The smartphones of five participants in the main experiment
did not show significant motion sensor activity, hence, their activity types could not be directly recorded in the
database. We therefore fitted a model to classify their activity types based on their raw accelerometer data. Ustev
et al. [51] used three features for classifying activity data: standard deviation of magnitude of accelerometer data,
variance of the magnitude of accelerometer data, and mean 𝑧 value of accelerometer data using kNN. For our
case, the mean, standard deviation, and variance were computed upon the samples of the raw accelerometer
data which is collected every three seconds for one minute in five-minute intervals, i.e., the window size of
the subsamples is one-minute for every five minutes. We also used kNN with a value of 𝑘 = 51 for which we
obtained the best results (the value of 𝑘 was set using cross-validation). We also used a support vector machine
(SVM) classifier with radial basis kernel for predicting activity (the kernel width of the SVM model was obtained
through cross-validation). The classifiers were trained and validated on (disjoint) data obtained in the pilot study.
The out-of-sample accuracy of the kNN model is 81.40%, whereas the accuracy of the SVM model is slightly
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better: 82.43%. Hence, the classification of activity was carried out using the SVM model for the five participants
in the main experiment. After the classification of the activity, the ongoing activity when notifications were sent
was classified using Equation 1.

4.2.3 Modelling User Location. GPS sensor data is unreliable for indoor localisation [55]. Since the participants
of the study spend most of their time indoor (in their offices), we first need to differentiate indoor locations where
a user has been. This has been done using an existing RSSI fingerprinting based on Wi-Fi access points (APs) in
the literature.

Briefly, this method computes the similarity between two locations based on the RSSI of Wi-Fi APs recorded at
two locations. The similarity computation is given in Equation 2. Wi-Fi APs recorded at locations 𝑙1 and 𝑙2 are
denoted as 𝐴𝑃1 and 𝐴𝑃2, 𝐴𝑃 = 𝐴𝑃1 ∪𝐴𝑃2. 𝑓𝑖 (𝑎) denotes the RSSI of AP, 𝑎 ∈ 𝐴𝑃 , recorded at location 𝑙𝑖 .

𝑆 =
1

|𝐴𝑃 |
∑

∀𝑎∈𝐴𝑃

𝑚𝑖𝑛(𝑓1 (𝑎), 𝑓2 (𝑎))
𝑚𝑎𝑥 (𝑓1 (𝑎), 𝑓2 (𝑎))

(2)

For each user in the experiment, an 𝑀 ×𝑀 similarity matrix was computed where 𝑀 is the number of still
periods of that user. At first, each still period was considered as a single location. However, the user may be in the
same location at different times of the day. In order to identify the locations of a user in still periods, hierarchical
clustering was used since it enables to adopt a threshold value for identifying clusters. Different threshold values
were attempted for identifying clusters. The accuracy of the method was computed by comparing labels extracted
by means of the clustering algorithm with those assigned by the participants in the pilot study. The total number
of the labelled locations was 415. The threshold values of .05, .10, .15, .20, .30, .40 and .50 were used for clustering.
The best accuracy (71.33%) was obtained when the threshold value was set to .15. Hence, if the similarity of two
still periods is higher than .15, then they are considered as the same location. The accuracy dropped significantly
when the threshold was greater than .20.

It is worth mentioning that the main reason for not achieving a higher accuracy value may be related to errors
in the labelling process during the pilot study. In fact, the pilot study participants filled the location form provided
to them, however, they may have forgotten the locations where they had been for a very short period of time, so
that they may have specified wrong location in the form for that time period. Since the data obtained from the
participants gave the most accurate result when the threshold was set to .15, the two still time periods, which had
a similarity higher than .15, were considered as the same location. However, given the issues related to clustering,
we consider all the values of the threshold of the clustering algorithm, as discussed in the next section.

4.3 Feature Space
We defined the feature space before modelling the data. Since we were not able to detect the exact locations of
users, we introduced new features for representing locations in terms of duration, similarity, and frequency using
the location clusters. The following features are calculated for all users who participated in the experiment.

4.3.1 Time Spent in Action. After defining user locations inferentially by clustering based on the similarities, the
locations where users answered ESM messages were extracted. Then, we defined the model features based on the
locations and the activity of the users. The first one is the time spent in action (TSA). It quantifies the duration
(in minutes) of the action when the ESM message is answered. The action is considered as “still” or “moving”
based on the still time periods calculated. The duration calculation is given in Equation 3.

𝑇𝑆𝐴𝑛 =

{
𝑡𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛 − 𝑡𝑠𝑡𝑎𝑟𝑡 𝑗 , if 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛 = ”𝑠𝑡𝑖𝑙𝑙”
𝑡𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛 − 𝑡𝑒𝑛𝑑 𝑗−1 , if 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛 = ”𝑚𝑜𝑣𝑖𝑛𝑔”

, 𝑗 ∈ 𝑆𝑃, 𝑛 ∈ 𝑁 (3)



Designing Robust Models for Behaviour Prediction using Sparse Data from Mobile Sensing • 13

4.3.2 Location Similarity. Since the experiment was conducted during the working hours of the participants, it
is assumed that the location each participant spent most of her time is her workplace and named as her “base
location”. It is labelled as the place where the sum of the TSAs for all the notifications is the highest for still
periods. Location similarity is defined as the similarity between the location where the ESM message arrived
and the user’s base location. If the user is in the base location (i.e., in her workplace) when the message has
arrived, then the location similarity is set to one. On the other hand, if the user is in a totally different place (e.g.,
in a cafeteria for lunch), then the location similarity is set to zero. The location similarity is calculated using
Equation 2.

4.3.3 Location Frequency. Location frequency is defined as the total number of visits to the location 𝑖 throughout
the experiment over the total number of visits to all locations throughout the experiment. For example, while
the frequency of visits to the base location is expected to be the highest, the frequency of the locations where
participants have their lunch is expected to be significantly lower, such as 10 visits (over the total number of
visits) if the individual had lunch every day at the same place during the experiment.

4.3.4 Ringer Mode Status. In the pre-experiment questionnaire, we collected the ringer mode in which partici-
pants were keeping their mobile phones during their office hours and breaks. Figure 3 shows the responses of the
participants. It can be seen that users keep their phones in different modes in different situations. In praying,
health breaks, and in meetings, the participants set the ringer mode of their mobile phones either to silent or
vibrate but not to sound mode.

Fig. 3. Ringer modes kept in office breaks and different locations

Out of the 528 ESM messages, 337 messages arrived when the mobile phone was set to sound mode, 180 arrived
in vibrate mode and 11 in silent mode. Since the number of data points for the silent mode is significantly lower
than the others, silent and vibrate mode data are combined in a silent-or-vibrate mode category to be used in the
modelling phase.
We calculated the total duration of the adoption of each ringer mode over the experiment for each user. The

results showed that 14 users kept their mobile devices in the sound mode more than 50% of the total duration and
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the remaining five of them kept them in vibrate mode. As a result, we used two variables linked to the ringer
mode data. In the first case, we just used “ringer mode” whether it is in sound mode or silent-or-vibrate mode.
In the second case, we defined a variable named “ringer mode change” showing whether the ringer mode has
changed compared to the base state, which is determined as the state in which a user mostly keeps her mobile
phone during work hours. For this variable, we consider the silent mode as it is (i.e., we did not merge with
vibrate mode for ringer mode change detection). In our dataset, the number of silent and vibrate modes were
lower compared to sound mode. For this reason, we merged them for developing our model. This was the only
data pre-processing we performed. We hypothesise that the ringer state change occurs when a significant state
change in the user’s daily routine is about to happen.

4.3.5 Application Usage. We define a phone usage session as the time spent between screen-on and off [3, 28].
We extracted the information concerning the phone usage of each user in terms of start time, end time, duration
of the session (end time - start time) and inter-event times. We also merged the sessions where inter-event time
is less than five seconds as in previous studies [3, 28]. We investigated usage sessions with a duration of 5, 10,
15, 30, 45, and 60 minutes before message delivery. We collected application types and names in phone usage
sessions; however, we only included phone usage sessions as application usage variables in this study.

4.3.6 Break Types and Break Availability. We selected break availability of users as the target variable for
prediction. Recall that we also asked participants to report the ongoing task when notifications arrived. The
percentages of the number of responses with respect to break availability and break type categories are given
in Table 4. The participants stated that they cannot take a break, or they can take up to 5-minutes break when
they are working (51.75% and 30.26% respectively). Similarly, when they are in a meeting, they stated that they
are not available (89.19%). Note that when participants are in a lunch/snack break, they mostly marked their
availability selecting the “more than 15 minutes” option (71.43%). We can also see that the duration of social,
bathroom or tea/coffee breaks is approximately 5-15 minutes. We performed Fisher’s Exact Test on break type
and break availability variables since sample sizes are small and the data is unequally distributed among the cells
of the contingency table, and the result shows that break availability and break types are significantly related
(𝑝 < .001). Since break availability gives a strong indication of the break type, we focused on predicting break
availability.

5 PROPOSED APPROACH
Our proposed model is composed of two stages: in the first stage, we focus on modelling time, then, in the second
stage, we model break availability with time and other variables described in the previous section. The flowchart
of the model is given in Figure 4.
Before continuing with modelling phase, we first split our dataset into training and test sets using repeated

random sub-sampling validation (i.e., repeated hold-out). The training and test sets are constructed with the
proportions of 30-70, 40-60, 50-50, 60-40, and 70-30 with stratified sampling, which enables to balance class
proportions in each set. Twenty random sets per configuration were used.

5.1 Modelling Response Submission Time
First, user response submission time is converted into a numeric variable corresponding to a decimal representation
of the number of hours in a day from 0 to 23.99. In other words, a decimal representation is used for representing
fractions of hours. For example, if a user responded to a notification at 12:30:46, the response submission time
in hours is equal to 12.51. Then, we considered the self-reported duration of the break availability obtained
from ESM because there are certain time intervals during which users prefer to take macro or micro breaks. We
used kernel density estimation (KDE) to estimate the probability density of the break duration versus response
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Table 4. Percentages of the number of responses with respect to break availability over their reported task/break type during
the notifications considering the entire dataset.

Current Task/Break
vs. Break Availability

Cannot take
a break

Less than
5-min

5-15
min

More than
15-min

Working 51.75% 30.26% 17.54% .44%
Tea/coffee break 2.38% 38.10% 45.24% 14.29%

Other 32.43% 13.51% 10.81% 43.24%
Praying break 10.00% 10.00% 40.00% 40.00%

Following the media .00% 26.32% 57.89% 15.79%
Bathroom break .00% 44.44% 50.00% 5.56%

Health break 25.00% .00% 25.00% 50.00%
Smoking break 28.57% 42.86% 28.57% .00%

Social break 5.88% 20.59% 50.00% 23.53%
In a meeting 89.19% 5.41% 5.41% .00%
Lunch/snack 3.90% 11.69% 12.99% 71.43%

On road 33.33% 6.67% 33.33% 26.67%

Fig. 4. Flowchart of the hybrid model proposed

submission time. KDE uses density estimation to find the optimal cut-points, automatically adapts sub-intervals
to the data and finds the number of bins by the cross-validated log-likelihood [45]. Hence, we did not include
time as a discretized variable as in previous studies.

As an example, in Figure 5 it is possible to observe a user’s KDE plot. The figure shows that the user has mostly
macro breaks (more than 15 minutes) at 12:00. Similarly, the tendency to have micro breaks (5 minutes or less) is
higher between 14:00-16:00. The user does not have breaks or did not respond to any message before 10:00 or
after 17:00 so that no information is present for those periods.
We used the kde function of the ks package in R Software. We used Gaussian kernel, where the bandwidth

is selected with the plug-in bandwidth selector (a reliable method for bandwidth selection [23]). Since break
availability times and durations vary with each individual, we fitted a 2-D KDE on each user’s training dataset
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Fig. 5. Density plot of a user’s break availability levels based on hours of the day.

comprising self-reported break availability responses with their corresponding timestamps. Then, we defined
four new variables associated to break availability predictions called𝑇 1,𝑇 2,𝑇 3 and𝑇 4 corresponding to “Cannot
take a break”, “Less than 5 minutes”, “Between 5-15 minutes”, and “More than 15 minutes”. Finally, for each ESM
notification time in the training dataset, the notification-time-conditional probability density function predictions
of𝑇 1,𝑇 2,𝑇 3 and𝑇 4 were obtained for the test set, and included in the mixed model analysis later. In other words,
we build the 2-D density Parzen window estimator using the training set. Then we apply it to make predictions
on the test set, conditional on the particular times found in the test set.

5.2 Modelling and Predicting Break Availability
After modelling the response submission time in the first phase, we then applied a method for predicting break
availability with the time variables generated from KDE, and other variables stated in Section 4.3. We selected
Generalised Linear Mixed Models (GLMM) as our main model. We discuss the reasons beyond this choice below.

5.2.1 Why GLMM?. Generalised linear models (GLM) extends linear models by handling response variables
with non-normal distribution [20, 29]. Generalised linear mixed models (GLMM) incorporate random effects
(individuals, populations, species or vials with a large number of levels [20]) in GLMs. In its simplest form, a
GLMM can be written as in Equation 4 where 𝑦 is a 𝑁 ×1 column vector, the target variable (𝑁 is the total number
of data points in the dataset); 𝑥 is the matrix of fixed predictors with the dimension of 𝑁 × 𝑝 (𝑝 is the number of
predictors); 𝛽 is a 𝑝 × 1 column vector of the fixed-effects coefficients; 𝑧 is the design matrix with the dimension
of 𝑁 × 𝑞 corresponding to the 𝑞 random predictors (accounting for the random complement to the fixed 𝑥 ); 𝑏 is a
𝑞 × 1 vector of the random effects (the random complement to the fixed 𝛽); and 𝛽0 is a 𝑁 × 1 residuals vector. For
our study, 𝑦 is the break availability level as the target variable, 𝑥 represents the predictors, namely the activity,
location similarity, time spent in action etc., and 𝑧 indicates the participants as the random predictors.
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𝑦 = 𝛽0 + 𝑥𝛽 + 𝑧𝑏 (4)
GLMMs can deal with numerous response distributions and repeated-measures observations. Specifically,

the use of GLMMs is appropriate when there are many levels (e.g., individuals, species), few data on each level,
or when the number of samples for each level is not the same. Since GLMM incorporates random effects (i.e.,
individuals), it is possible to obtain an individual prediction from GLMM. It simply fits separate linear regression
lines for each random effect included. A Bayesian framework using Markov Chain Monte Carlo (MCMC) methods
is a convenient way to fit a GLMM specifically for modelling non-Gaussian data because integrating over the
random effects is compelling [20].
Since our dataset consisted of multiple responses of participants, the data points could not be considered as

independent. Besides, the number of responses is not the same for each participant. Moreover, the response
variable is ordinal, which means that its distribution is not Gaussian. For these reasons, the assumptions of
approaches such as ANOVA have been violated. In this case, it is suggested to use approaches such as generalised
linear mixed models (i.e., hierarchical or multilevel modelling) [2].
There is a variety of methods for Bayesian model selection including deviance information criterion (DIC),

widely applicable information criterion (WAIC), leave-one-out cross-validation or 𝐾-fold cross-validation [41].
Our performance evaluation was performedwith the R package namedMCMCglmm [20].We used cross-validation
for model selection as the package does not return the pointwise log-likelihood directly for the WAIC calculation.
Hence, we used 9-fold cross-validation. We considered all users’ data in each fold (i.e., we stratified users’
responses to each fold). In the case of 10-fold, we did not have a user’s data in the test dataset. The convergence
of the Markov chains is checked using the Gelman-Rubin diagnostic criterion for which the value of 1.002 (or
below) indicates the convergence [17]. Finally, autocorrelation between consecutive iterations in the chain should
be less than .10, which indicates the chain has mixed well [20]. After several trials where we looked for MCMC
convergence and consistency among runs using a random search, a burn-in value of 8000, a thinning interval
of 50, and the number of MCMC iterations of 50000 were selected. We used weakly informative priors for an
ordinal response variable. We set the variance component to 1 as in [20]. Finally, Gelman-Rubin diagnostics were
close to 1, and autocorrelation plots were stationary, which means that the autocorrelation between consecutive
samples in the chain is low enough for the convergence. One of the autocorrelation plots is given in Figure 6 for
the variable location frequency.

Fig. 6. Posterior distribution of a model parameter. Left: Time series of a parameter in the model as MCMC iterates (note
that the range of 𝑥-values is from 8000 to 50000). Right: probability density estimates of the parameter. The peak of the
distribution (the posterior mode) is the most likely value.
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5.2.2 Comparison of GLMM with Other Methods and Individual Models. Because our dataset consists of personal
data, the level of the variables used in the analyses may be quite different from user to user. For example, one may
take regular breaks, hence the number of his/her activity switches between still and moving categories might be
higher than another person who mostly spends his/her time at his/her desk. In such situations, previous studies
[53, 61] showed deficiencies on transferring general models to individual-level ones. For this reason, individual
models (i.e., trained only on one user’s data) usually lead to more accurate results. On the other hand, individual
models may suffer from the lack of sufficient individual data for training in the beginning, which is named as the
“cold-start problem” [61].

As a comparator, we used the random forest classifier. For training random forest models, we used both general
(with all participants) and individual data. We generated user-specific models with random forest classifier on
each participant’s data separately. For all random forest classifiers (general and individual) in the study, the
number of trees was set to 500 since it gave the most accurate results among several values (50, 100, 150, 250, 500,
750, 1000) when cross-validated on a dataset reserved at the beginning of the experiment and not used later to
form test sets. We also calculated the baseline performance with the majority classifier that always predicts the
class with the highest number of data points.

6 DATA ANALYSIS AND RESULTS
In this section, we report the results of our hybrid model for inferring break availability of office workers using
mobile sensors by considering the cold start problem, the variety in the number and characteristics of the
responses, and repeated-measures in the data. We also investigate how the model is comparable to individual and
population-level models.

6.1 Model and Feature Set Selection using GLMM
We first analyse the repeated-measures correlations (rmcorr) [2] between the predictor variables and break
availability using the data obtained from all the users both in the pilot study and the main experiment. rmcorr
shows the linear association between the variables. GLMM is inherently a linear model, so we consider the
correlation results for feature set selection instead of variable selection with Gini or other metrics. Table 5 shows
the correlation results, which provides insights about which variables are related to break availability.

As it is possible to observe in Table 5, location similarity (LS), time spent in action (TSA), and location frequency
(LF) are the significantly related variables to the break availability at the .001 level. We also included 5-min
application usage (𝐴𝑈5) in the models even it is not significantly related to break availability (although having
the highest 𝑟𝑟𝑚 among all application usage variables) in order to ensure that we have at least one representative
variable for application use. Hence, we include a combination of those variables in the GLMM in addition to
the response submission time variables. However, in order to prevent multicollinearity issues, variable pairs
that have a correlation coefficient with higher than .70 are not included. Location frequency (LF ) and location
similarity (LS) are highly correlated (𝑟𝑟𝑚 = .870, 𝑝 < .001). We select LF is selected since it has a higher relation
to break availability (𝑟𝑟𝑚 = −.152, 𝑝 < .001) than LS (𝑟𝑟𝑚 = −.140, 𝑝 < .001).

MCMC GLMM fits are built iteratively with the KDE predictions of each break availability level (duration) at a
given time T1, T2, T3 and T4 together with TSA, LF, activity (A), ringer mode (RM), ringer mode change (RMC), and
5-min application usage (𝐴𝑈5) parameters, which are given to the models as fixed components (𝑥 in Equation 4).
The random component of the models (𝑏𝑧 part in Equation 4) refers to the users (19 participants). The response
variable (𝑦 in Equation 4) is the break availability with four levels.

Table 6 summarises the models fitted for predicting break availability with several combinations of the
covariates. The simplest model (Model 1) consists of T1, T2, T3, T4, TSA and LF as the fixed components. Then, in



Designing Robust Models for Behaviour Prediction using Sparse Data from Mobile Sensing • 19

Table 5. Repeated measures correlation (rmcorr) coefficients for the predictor and the target variables

LS LF TSA 𝐴𝑈5 𝐴𝑈10 𝐴𝑈15 𝐴𝑈30 𝐴𝑈45 𝐴𝑈60

LS 𝑟𝑟𝑚 1 .870 .119 -.120 -.129 -.088 .093 .067 .052
𝑝 <.001 .007 .006 .004 .05 .04 .13 .24

LF 𝑟𝑟𝑚 1 .114 -.105 -.104 -.079 .065 .048 .028
𝑝 .01 .02 .02 .08 .14 .28 .53

TSA 𝑟𝑟𝑚 1 -.059 -.065 -.079 -.002 .013 .010
𝑝 .18 .15 .07 .97 .77 .82

𝐴𝑈5
𝑟𝑟𝑚 1 .849 .739 .086 .042 .043
𝑝 <.001 <.001 .05 .35 .34

𝐴𝑈10
𝑟𝑟𝑚 1 .893 .107 .070 .065
𝑝 <.001 .02 .11 .14

𝐴𝑈15
𝑟𝑟𝑚 1 .134 .092 .083
𝑝 .002 .04 .06

𝐴𝑈30
𝑟𝑟𝑚 1 .930 .854
𝑝 <.001 <.001

𝐴𝑈45
𝑟𝑟𝑚 1 .957
𝑝 <.001

Break
Availability

𝑟𝑟𝑚 -.140 -.152 -.226 .071 .066 .019 -.022 -.065 -.054
𝑝 .001 <.001 <.001 .109 .139 .667 .627 .144 .226

Model 2, 𝐴𝑈5 is added as another fixed component. In Model 3, A is added instead of 𝐴𝑈5. In Models 4 and 5, RM
and RMC are added as another fixed component separately and all were included in Model 6.

Table 6. Models fit upon different covariates for predicting break availability

Model No Covariates

1 𝑇 1 +𝑇 2 +𝑇 3 +𝑇 4 +𝑇𝑆𝐴 + 𝐿𝐹
2 𝑇 1 +𝑇 2 +𝑇 3 +𝑇 4 +𝑇𝑆𝐴 + 𝐿𝐹 +𝐴𝑈5
3 𝑇 1 +𝑇 2 +𝑇 3 +𝑇 4 +𝑇𝑆𝐴 + 𝐿𝐹 +𝐴
4 𝑇 1 +𝑇 2 +𝑇 3 +𝑇 4 +𝑇𝑆𝐴 + 𝐿𝐹 +𝐴 + 𝑅𝑀
5 𝑇 1 +𝑇 2 +𝑇 3 +𝑇 4 +𝑇𝑆𝐴 + 𝐿𝐹 +𝐴 + 𝑅𝑀𝐶
6 𝑇 1 +𝑇 2 +𝑇 3 +𝑇 4 +𝑇𝑆𝐴 + 𝐿𝐹 +𝐴 + 𝑅𝑀 + 𝑅𝑀𝐶

We used accuracy and macro F1 scores as performance metrics. In macro F1, all classes are considered as
equally important, which is the case in our domain. But, there might other domains where one class might be
considered more important, then, weighted F1 score might be a better choice. For instance, for prediction of break
availability of doctors, finding non-interruptible moments might be more important than correctly estimating
the duration of the availability.

All the models are evaluated on five datasets, four of which are subsamples of the original dataset (Table 7). The
main reason for running the models on different subsamples is to avoid spurious results affected by the variations
in the number of responses. Hence, in each subsample, we eliminated the data points of the participants with the
highest and lowest response rates incrementally. To be more specific, the first sample is the full original dataset
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consisting of all the responses of users (N=528 with 19 users). In the second dataset, two users are removed from
the first dataset. These users are those with the highest and lowest number of ESM responses, and so on. As a
result, the four sampled datasets include N=528 with 19 users (the original dataset), N=469 with 17 users (Dataset
2), N=410 with 15 users (Dataset 3) and N=350 with 13 users (Dataset 4) respectively. Finally, the fifth dataset
consists of the users who have Google Activity API in their mobile phones, which means that five users whom
we predicted their activities from the first dataset (N=369 with 14 users).

Table 7. Accuracy values and macro F1 scores of the GLMM used to predict the break availability for different models on
different datasets.

Accuracy
Model No Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

1 44.21% ± 7.79% 45.31% ± 7.90% 46.20% ± 7.89% 46.55% ± 6.84% 47.36% ± 6.05%
2 44.13% ± 7.71% 45.00% ± 8.13% 45.98% ± 8.13% 46.52% ± 7.05% 47.82% ± 6.59%
3 44.48% ± 9.50% 45.85% ± 9.50% 46.15% ± 9.94% 46.13% ± 9.19% 47.19% ± 6.26%
4 44.92% ± 8.25% 45.96% ± 8.63% 47.50% ± 9.42% 47.10% ± 8.93% 47.63% ± 6.15%
5 45.01% ± 8.72% 46.36% ± 9.34% 47.48% ± 8.63% 47.88% ± 8.47% 48.16% ± 5.85%
6 45.23% ± 8.62% 46.57% ± 9.43% 47.68% ± 8.69% 47.58% ± 8.16% 47.90% ± 5.74%

Macro F1 Scores

1 52.58% ± 3.49% 55.10% ± 4.92% 54.07% ± 5.56% 51.76% ± 6.60% 47.59% ± 7.00%
2 51.29% ± 4.13% 54.21% ± 5.20% 53.21% ± 4.84% 51.45% ± 5.64% 46.98% ± 7.51%
3 53.72% ± 4.72% 57.64% ± 4.62% 54.26% ± 5.35% 51.86% ± 8.17% 47.59% ± 5.51%
4 53.52% ± 4.90% 56.10% ± 5.22% 54.46% ± 5.23% 52.58% ± 5.73% 46.55% ± 6.19%
5 51.62% ± 8.89% 58.63% ± 6.65% 57.88% ± 6.19% 56.02% ± 6.43% 58.29% ± 5.91%
6 54.69% ± 4.82% 59.07% ± 5.10% 57.75% ± 5.00% 55.93% ± 6.32% 58.33% ± 6.30%

We fitted the same models using different threshold values used for clustering users’ locations in order to
investigate the effects of threshold selection. Note that although in Section 4.2.3, we found that the optimal
threshold value for location labelling was .15 based on the pilot phase data, we did not use it here since we
included all the participants’ data. Instead, we used all possible threshold values during modelling. The ideal
case would be to record all the locations precisely and look for the relationships. However, in the wild, it is not
the case. Because of that, in our experiment, the modelling phase did not use any predetermined thresholds and
the experiments were repeated with a range of possible values for these features. As a result, the values of LF
and TSA variables in five datasets change according to seven threshold values (.05, .10, .15, .20, .30, .40, and .50),
which resulted in 35 different runs for each model. Since we have six models and used 9-fold cross-validation,
this resulted in a total of 35 × 6 × 9 = 1890 runs. Table 7 summarises these runs with the mean and standard
deviation of the accuracy values and macro F1 scores for each model and dataset.
In order to test whether there is a statistical difference between the models, we applied Friedman Test on

the accuracy and macro F1 values of the models. The results show that six models are significantly different
(𝜒2 (5) = 19.857, 𝑝 < .05 for accuracy values, 𝜒2 (5) = 21.114, 𝑝 < .001 for F1 scores). Binary comparisons of models
using Wilcoxon signed rank tests with the Bonferroni p-value adjustment revealed that Model 1 and 2 are not
significantly different based on their accuracy values (𝑉 = 14036, 𝑝 = .610); however, they are different based on
F1 scores (𝑉 = 16118, 𝑝 < .05). For this reason, we selected Model 1, since it has higher F1 scores than Model 2 has.
Similarly, Model 1 and Model 3 are not significantly different based on their accuracy values (𝑉 = 15430, 𝑝 = .660)
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but they are different based on F1 scores, which means that adding 𝐴 to the model variables leads to better
results. Model 3 and 4 are statistically different based on their accuracy values (𝑉 = 9770.5, 𝑝 < .001), but their F1
scores are only different at .10 level of significance (𝑉 = 14142, 𝑝 < .10). This means that RM is also effective
on predicting break availability. Models 4 and 5 are not significantly different based on the accuracy values
(𝑉 = 20962, 𝑝 = .34). However, Model 5’s F1 score is significantly higher than Model 4’s (𝑉 = 2486, 𝑝 < .001).
Finally, Model 5 and 6 are not statistically different from each other (𝑉 = 17000, 𝑝 = .772 for accuracy values,
𝑉 = 17432, 𝑝 = .797 for F1 scores); yet, we selected Model 6 for the remainder of our analysis, since it has the
highest accuracy values and F1 scores among all six models over all datasets.

6.2 Prediction Results
Table 8 shows the posterior distributions of each parameter in Model 6 with their posterior means, 95% credible
intervals (2.5 and 97.5 percentiles of the posterior distribution), and the significance values (p). T1 and T4 have a
significant effect on break availability prediction. It means that the KDE of break availability for “Cannot take a
break” and “More than 15 minutes” are more effective in predicting the output variable. The inverse relationship
between T1 and the output shows that an increase in the likelihood for the estimation of break availability BA
level 1 (i.e., “Cannot take a break”) is a sign of a decrease in the break availability. The positive relationship
between T4 and break availability similarly shows an increase in the likelihood for the estimation of BA level
4 (i.e., “More than 15 minutes”), which suggests an increase in the break availability. The T2 and T3 variables,
which correspond to BA level 2 and 3 respectively, are not significant for predicting break availability levels.

Table 8. Posterior means, 95% credible intervals (CI) and 𝑝 values of parameters for Model 6

Parameters Posterior mean 95% CI 𝑝

(Intercept) 2.01 (1.17, 2.92) <.001
T1 -1.48 (-1.93, -.97) <.001
T2 -.19 (-.61, .26) .41
T3 -.23 (-.72, .30) .34
T4 1.14 (.64, 1.58) <.001

A[MOVING] .22 (.09, .37) .002
RM[SILENT] -.15 (-.32, .00) .07

RMC[CHANGE] -.19 (-.40, .05) .10
LF -.54 (-1.11, .04) .07

TSA -.11 (-.22, -.01) .03

The model outputs show that there is a negative relation between break availability and LF (posterior mean=-
.54; 95% CI [-1.11, .04]), and significant negative relation between break availability and TSA (posterior mean=-.11;
95% CI [-.22, -.01]). The results imply that as the location frequency increases, the duration of the breaks decreases
and vice versa. Similarly, as the time spent in action increases, the duration of the breaks decreases or vice versa.
Based on the values of the magnitude, we can say that LF has a higher effect than TSA.
In addition to the location parameters, we consider the impact of the activity on the break availability. The

model considers “still” category as the basis and calculates the posterior mean of the “moving” category as .22
with 95% CI= [.09, .37]. It means that users tend to take longer breaks when they are moving. Similarly, there is
an inverse relationship with ringer mode change and break availability. The relationship with ringer mode is
also found as positively correlated. Users have a longer break when their phones are in sound mode. The results
obtained from the pre-experiment questionnaire support these findings since users mostly change their ringer
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modes when they attend a meeting or when they do not want to be notified in other words in the situations when
they cannot take a break. Figure 7 shows that the ringer state change (specifically vibrate→silent, sound→silent,
sound→vibrate) occurs mostly when users cannot take a break or can take a break with a duration of less than 5
minutes.

Fig. 7. Number of counts of each break availability category grouped by ringer mode change. The ringer mode on the left
hand side of the arrow shows the base ringer mode (ringer mode which user keeps his/her mobile phone in general), whereas
the ringer mode on the right shows the current ringer mode when ESM questionnaire is answered. The ringer modes without
arrows show the unchanged ringer modes.

6.3 Comparison Results
The variables used in the evaluation of the random forest models (population and individual level) were the same
as those reported in the analysis of the GLMM results discussed above: T1, T2, T3, T4, A, RM, RMC, LF and TSA.
We report the accuracy and the macro F1 scores of the models as the performance metrics by averaging 20 runs.
We also performed 1-person-out cross-validation (CV) on the dataset in order to re-validate the performance of
the classifiers. The biases caused by individuals that were uniformly distributed in other splits were avoided by
performing 1-person-out CV. In Table 9, the mean and standard deviations of the accuracy values and the F1
scores obtained from six different classifiers for predicting break availability are presented.
As can be seen from the table, GLMM predicts break availability levels better than all other classifiers for all

training percentages. As expected, the accuracy obtained using 1-person-out CV is lower since the individuals’
own data are highly informative and we do not use them in 1-person-out CV. In order to compare the accuracy
values of the classifiers, we conducted statistical tests on the accuracy values and the F1 scores obtained from all
runs. The Shapiro-Wilk Test shows that the accuracy values and the F1 scores of the models do not distribute
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Table 9. Comparison of model accuracy values and macro F1 scores for predicting break availability

Accuracy
Training
Percentage GLMM GLM General RF

(Selected Variables)
General RF

(All Variables) Individual RF Baseline

30% 53.47% ± 12.70% 45.01% ± 11.20% 45.73% ± 14.47% 48.08% ± 14.19% 33.42% ± 14.10% 33.87% ± 12.06%
40% 52.86% ± 13.36% 44.44% ± 12.04% 46.69% ± 14.50% 48.79% ± 14.06% 33.16% ± 14.61% 34.28% ± 11.89%
50% 52.36% ± 14.13% 43.58% ± 12.62% 44.95% ± 15.76% 48.04% ± 15.32% 34.38% ± 15.03% 33.15% ± 13.11%
60% 53.07% ± 16.19% 45.31% ± 14.93% 46.99% ± 17.99% 49.41% ± 17.29% 33.96% ± 18.00% 33.86% ± 15.09%
70% 53.51% ± 19.88% 45.64% ± 18.80% 46.79% ± 19.74% 49.77% ± 19.86% 34.42% ± 19.07% 31.51% ± 16.46%

LOOCV 49.36% ± 16.56% 41.86% ± 13.76% 46.63% ± 17.27% 51.25% ± 17.22% NA 32.73% ± 13.80%

F1 Scores

30% 55.57% ± 13.62% 55.15% ± 13.81% 51.83% ± 13.92% 53.10% ± 13.55% 51.64% ± 13.92% 50.03% ± 13.00%
40% 57.77% ± 13.33% 56.98% ± 14.56% 53.79% ± 13.65% 54.87% ± 13.58% 51.71% ± 14.85% 49.99% ± 13.49%
50% 57.38% ± 13.47% 57.14% ± 13.75% 53.62% ± 13.84% 55.09% ± 14.50% 52.19% ± 15.38% 48.73% ± 14.45%
60% 61.23% ± 15.12% 61.19% ± 15.28% 57.39% ± 16.01% 58.76% ± 15.44% 54.93% ± 15.89% 50.15% ± 15.73%
70% 63.35% ± 16.92% 63.25% ± 17.29% 60.76% ± 17.15% 62.51% ± 16.63% 57.14% ± 16.87% 48.87% ± 16.02%

LOOCV 55.51% ± 17.82% 51.55% ± 13.80% 54.53% ± 17.77% 53.58% ± 16.59% NA 53.10% ± 8.47%

normally (𝑝 < .001), hence, the Friedman Test was performed. The results of Friedman Test show that the average
accuracy values obtained from four classifiers are significantly different for the prediction of break availability
(𝜒2 (3) = 1908.315, 𝑝 < .001). Then, Wilcoxon signed rank tests were conducted for binary comparisons of the
models as post-hoc tests using the Bonferroni p-value adjustment. The results of Wilcoxon signed rank tests
show that the accuracy obtained from GLMM is significantly higher than the accuracy of general random forest
model with all variables (𝑉 = 16208,𝑉 = 17809,𝑉 = 16292, 𝑝 < .05 for 40%, 50% and 60% training percentages
respectively), individual random forest model’s accuracy (𝑉 = 38379,𝑉 = 36349,𝑉 = 31784,𝑉 = 31109,𝑉 = 27688
for 30%, 40%, 50%, 60% and 70% training respectively and 𝑝 < .001 for all training percentages), and the baseline
model accuracy (𝑉 = 37962,𝑉 = 30413,𝑉 = 27844,𝑉 = 26580,𝑉 = 23828 for 30%, 40%, 50%, 60% and 70% training
respectively and 𝑝 < .001 for all training percentages). Although there is not a significant difference between
accuracy values of GLMM and general RF models, F1 scores of GLMM is significantly higher than general RF with
selected variables according to the Friedman Test results (𝑉 = 39826,𝑉 = 39297,𝑉 = 37336,𝑉 = 36336,𝑉 = 25469
for 30%, 40%, 50%, 60% and 70% training respectively and 𝑝 < .001 for all training percentages). GLMM also
outperforms general RF with all variables in F1 scores (𝑉 = 38046,𝑉 = 39345,𝑉 = 35059,𝑉 = 35923,𝑉 = 25518 for
30%, 40%, 50%, 60% and 70% training respectively and 𝑝 < .001 for all training percentages). The overall accuracy
and F1 of GLMM are higher than GLM’s although the difference between GLM and GLMM performances was
not found significant.

6.4 Performance of Individual Models
We also report the accuracy values of each user’s model with their means and standard deviations in Table 10.
Seventy percent of training data was used for the runs reported in the table, and in total, 20 runs were made. The
bold values in the table show the highest accuracy among the four classifiers. The results are given based on
the participants’ number of responses (N ) in descending order. The participants whose number of responses is
less than 20 (N=7 users) are not included in the table because such a limited number of data points might not be
sufficient for individual models to learn the target category.

The accuracy values obtained from the individual random forest classifiers were not as high as those obtained
from GLMM and the general random forest classifier most of the time. The individual random forest classifiers
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Table 10. The average and standard deviation of accuracy values for predicting break availability levels with GLMM, GLM,
general RF, individual RF, and baseline classifier

User
No

Number of
Responses GLMM GLM General RF Individual RF Baseline

U15 50 51.25% ± 11.74% 50.67% ± 11.11% 31.25% ± 9.78% 13.75% ± 10.28% 26.25% ± 8.54%
U17 49 53.21% ± 9.33% 27.67% ± 11.5% 40.36% ± 12.70% 33.57% ± 9.14% 37.14% ± 9.25%
U16 47 50.33% ± 13.80% 37.50% ± 15.00% 43.00% ± 13.17% 45.33% ± 10.13% 25.33% ± 11.49%
U03 45 61.70% ± 11.42% 49.29% ± 10.07% 61.79% ± 7.06% 61.07% ± 9.12% 43.57% ± 10.59%
U06 37 50.00% ± 14.89% 48.18% ± 13.55% 46.82% ± 12.26% 43.64% ± 13.06% 27.73% ± 13.02%
U12 36 50.91% ± 11.94% 51.36% ± 12.26% 39.09% ± 11.83% 34.09% ± 9.27% 49.09% ± 14.86%
U07 32 53.50% ± 15.65% 50.50% ± 14.68% 56.50% ± 15.31% 52.00% ± 15.08% 26.50% ± 8.13%
U01 31 40.56% ± 13.62% 31.67% ± 14.54% 46.67% ± 13.77% 38.33% ± 13.23% 19.44% ± 7.10%
U04 31 47.78% ± 12.54% 43.89% ± 16.31% 37.78% ± 13.20% 23.89% ± 9.72% 31.11% ± 10.57%
U13 27 51.88% ± 14.21% 49.38% ± 14.32% 40.63% ± 17.62% 31.25% ± 13.75% 45.00% ± 14.28%
U08 25 50.71% ± 15.00% 49.29% ± 15.70% 47.86% ± 18.11% 30.71% ± 16.24% 40.71% ± 21.88%
U05 24 55.00% ± 18.11% 45.71% ± 18.88% 32.14% ± 15.28% 35.71% ± 15.72% 17.14% ± 8.79%

provide the prediction accuracy results that are even worse than the baseline classifier for six users. Furthermore,
GLMM predicted nine users’ break availability most accurately among five classifiers. In this comparison, GLMM
appears to be the best performing method to predict the break availability of the participants of our study.

6.5 Cold-Start User Evaluation
In order to compare the performance of the models in addressing the cold-start problem, we employed an iterative
modelling for each of them. As reported in Table 9, we employed LOOCV removing each participant’s data
from the dataset, trained the models with the other remaining participants’ data, and validated the models on
that removed participant’s data. In cold-start user evaluation, we added each participant’s daily data to training
iteratively and tested the model on the consequent days of the same user’s data. For example; as seen in the
upper left of Figure 8, we added the first two days’ data of a participant to the training set (remember that there
are already remaining participants’ all days-data is in the training set), and validated the model performance
on the same participant’s remaining 8-days data. Note that we repeated this process for the same twelve users
reported in Table 10 because of the limited number of data. Iteratively, we employed this method for each day,
and reported the performance of each model for Day 2, Day 4, Day 6, and Day 8 using macro F1 scores (hence
tested on the remaining 8, 6, 4 and 2 days of the individuals respectively). In Figure 8, each line represents a user,
orange lines show the participants whose GLMM performance is higher than RF, and the purple lines indicate
the opposite cases. The number of users that are associated to a better GLMM performance is higher on Day 2.
This indicates that GLMM is able to predict most of our participants’ responses even on Day 2. As days pass by,
the RF model improves its performance, since the amount of available data for each user also increases. The same
analysis was also conducted without using location frequency parameters to observe their effects on prediction
results during cold-start evaluation. This way also enabled us to prevent any biases that might be caused by
the threshold selection. The resulting figure is given in Appendix B. It can be seen that there is no significant
difference between Figure 8 and Appendix B indicating that random forest model does not outperform GLMM
even in the absence of location frequency variable. Location frequency was not found as significant in Table 8,
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thus excluding it might not have affected cold-start evaluation of the classifiers. Given these results, GLMM can
be considered as a potential solution to the cold-start problem.

Fig. 8. F1 scores of GLMM, RF, GLM and baseline classifiers for predicting 8, 6, 4 and 2 days of the experiment for each
individual using their own data on the first 2, 4, 6 and 8 days of their data respectively with LOOCV. Upper-left : shows the F1
scores of the models trained on users’ 2-days data and tested on 8-days data. Upper-right : F1 scores of models trained on
users’ 4-days data and tested on 6-days data. Bottom-left : F1 scores of models trained on users’ 6-days data and tested on
4-days data. Bottom-right : F1 scores of models trained users’ 8-days data and tested on 2-days data. The orange lines indicate
the users whose GLMM performance is higher than RF and purple lines refer to those whose RF model performance is higher.

7 DISCUSSION
In this study, we built a hybrid model for inferring availability of office workers for having rest breaks using
mobile phone sensing. The focus of this work is on the cold-start problem, the impact of the variance of the
number and characteristics of user responses, and the repeated-measures design of the data. We compared our
hybrid solution with individual and general models. In this section, we discuss our findings with respect to each
feature used in our model in detail.

7.1 Time
Previous studies are mainly based on two types of time representation, namely hour of the day [16, 18, 25] or
part of the day (e.g., morning, evening) [30, 33, 50]. However, if there is no linear relationship between target
variable and time, time information may not be found significant in linear models, although it may actually be
the case. For this reason, we converted time as a likelihood of each break availability level with a 2-D KDE. This
conversion facilitated the modelling of time using generalised linear mixed models. Based on our results, time
appears to be an effective factor in predicting break availability. Specifically, in our study, office workers tend to
have longer breaks especially at midday (between 12-2 PM). They also tend to have shorter breaks at about 2-4
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PM. The results presented in this study might be specific to the population under consideration, but we believe
that the methodology we propose has general applicability.

7.2 Location
Previous studies showed that location is an important context information for predicting interruptibility [8, 9, 13,
30, 39, 43, 46, 48]. Since it was not possible to detect the exact indoor location of the users, we defined metrics in
order to better understand user’s presence in specific places. We investigated the effects of location in different
measures: location frequency (i.e., how frequently a user visits a place) and location similarity (how similar a
place is to the user’s workplace). Based on our results, location frequency is associated to break availability of
office workers.
Our results show that users tend to have longer breaks at locations where they visit less frequently. These

locations may be the places where they have lunch breaks. Our preliminary results show that participants have
longer breaks when they are in lunch/snack breaks. The model output supports this finding. Similarly, when they
have just arrived at a location, they tend to have longer breaks. To the best of our knowledge, this is the first work
that uses location parameters in terms of duration, frequency and similarity metrics for predicting the availability
of office workers. Previous studies suggest that location-based notifications should be used for increasing user’s
receptivity [13]. Our work contributes to this area of work, providing researchers and practitioners with more
insights about the factors linked to location and users’ receptivity.

7.3 Physical Activity
The activity of users (i.e., whether the user is still or moving) affects the break availability as found in the previous
studies [22, 30, 33, 34, 36]. Our results are in line with these findings. We have found that users are more likely to
have a break when they are already moving. When they are not moving, the tendency of not taking a break is
higher. Similarly, our results show that the time spent in action has a significant effect on the availability for a
rest break. When the users are about to start the activity, the possibility of taking longer rest breaks is higher
compared to the periods when they are about to finish their activity. The longer the time they spend in an activity,
the less likely they will take a rest break.

7.4 Ringer Mode
In the pre-experiment questionnaire, the participants stated that they keep their mobile phones in different ringer
modes in different contexts as in [8]. More specifically, none of the participants keeps their phones in sound
mode while in a meeting or in a prayer break. A change of the ringer mode of a phone is an indicator of a change
in context. The person may be attending a meeting or going for a break during which she/he does not want
to be interrupted. Considering such situations, we recorded the duration of each ringer mode status from the
sensor data we collected. We extracted the ringer mode used by the participants most of the time and logged the
changes with respect to that ringer mode.
Different from previous work, we kept a variable for ringer mode change in addition to original ringer mode

values, and investigated its effect. We hypothesised that a change in the ringer mode affects users’ context and
implicitly their availability. Our results show that ringer mode and ringer mode change are supplementary
parameters for identifying break availability complementary to location, time, and activity. According to our
results, users do not tend to take a break when the ringer mode is in silent-or-vibrate mode and when there is a
change in ringer mode. Since most of the users keep their mobile phones in sound mode, the change may mean
that they do not want to be interrupted. Hence, ringer mode change to vibrate or silent might be interpreted as a
potential indicator of unavailability. The results presented in Fig. 6 support this finding. Note that the number of
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changes from sound to silent and the number of changes from sound to vibrate are higher in the “cannot take a
break” and “less than 5-min” categories.

7.5 Application Usage
Previous work showed that an increase in application usage may be an indicator for an available moment to take
a break or responsiveness [14, 28]. According to our results, the models based on application usage variables are
characterised by worse performance with respect to the others. In other words, application usage does not seem
linked to break availability in this study. This may be due to cultural or environmental factors. Since we collected
our dataset in office environments during working hours, employees may not be able to use their mobile phones
even when they are available for a break. In addition, other factors that have not been included in the study, such
as application type, might explain this result. A notification might have arrived while users are taking notes
on their mobile phones during a meeting. In such situations, application type or category may become a more
important feature than application usage. One of the previous studies [44] had found similar results showing the
importance of application type on interruptibility.

7.6 Individual-level Models, Data Sparsity and the “Cold-start Problem”
We compared GLMM with random forest classifier, which is commonly used as a machine learning algorithm
at the basis of intelligent notification mechanisms (e.g., [53, 61]) and also with a baseline classifier. Previous
studies had a higher number of data points than ours (e.g., minimum 127 for an individual in [61]) and this might
have led to a better performance for individual models. The positive performance trend of the random forest
models also suggest that they could result in a better performance compared to GLMM if the study has lasted
longer. Our results show that GLMM may be preferable compared to individual random forest models when
sufficient data is not available. GLMM is an appropriate choice in the presence of data sparsity. It also incorporates
both individual and general-level mean. Hence, when there is a new user with an insufficient number of data
points, the general-level mean might be used for that user at first until the amount of data is sufficient to fit an
individual-level mean. GLMM is an effective method, which does not violate any statistical assumption of having
repeated-measures data. It has been widely used in numerous recent studies especially in botany or biology
domain [19, 27]. Its main limitation is its linearity. In the case of abundant data, other methods such as deep
learning algorithms or ensemble methods could be applied on the data. Collecting human data in experiments is
compelling specifically for researchers because of the challenges in recruiting participants or participants opting
out from the experiment etc. Our solution might be one of the solutions for those challenging situations. We
believe that this brings a solution to the cold-start problem stated in [61].

GLMM can be used in the cold-start period, then, when sufficient data is accumulated, individual models can
supersede them. As Wozniak, Grana and Corchado [58] stated in their paper: “Referring to classification problems,
Wolpert’s theorem [57] has a specific lecture: there is not a single classifier modeling approach which is optimal for all
pattern recognition tasks, since each has its own domain of competence”. Each problem has different characteristics
and it is almost impossible to find a general solution, however, we offer a novel solution: implementing GLMM
at the first stages of modelling, then based on the performance, switching to another classifier such as random
forest or deep learning methods. For instance, recommendation systems also make use of switching algorithms
such as in the study of [6]. Hence, such an approach can be used in our domain as well. As a future step in our
research agenda, we plan to explore this approach using a larger dataset, possibly with a different population.

7.7 Break Types vs. Break Availability
Our data showed that certain types of breaks have different characteristics in terms of duration. Lunch/snack
breaks last more than 15 minutes, whereas social or coffee/tea breaks last approximately 10-15 minutes. Users
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marked themselves “not available” when they are in the middle of working or meeting. Therefore, it is possible
to infer the type of activity and how this is related to the predictability of users’ availability. However, the
use of break types for prediction was not successful with GLMM due to the limited sample size and similar
characteristics of certain break types. It is worth noting that our results are also in line with a recent study of
receptivity for health interventions [9].

8 IMPLICATIONS
In this article, we have presented a hybrid model for the prediction of break availability of office workers, based
on both individual and population-level data. Personalised models have been increasingly used in ubiquitous
computing. Their drawback is that they require a large amount of individual data for training. This might be
difficult, especially when an application is initially installed or at the beginning of a study. Our results show
that using a hybrid model that addresses both within- and between-subjects’ factors, is an effective method for
modelling unbalanced and sparse data. Besides, we have shown that we obtained significant results thanks to the
repeated-measures nature of the dataset without any violation of statistical assumptions such as the independence
of data points, having a Gaussian distribution.

This study also provides researchers and practitioners with general insights for the design of mobile intervention
systems, especially for those targeting workplace settings. In particular, this work has extensively analysed and
discussed the factors that should be considered in the design of such applications. We have shown that some
contextual information is particularly informative, namely features related to user locations or activities, such as
the time spent in action and the frequency of visits to a given location.

9 LIMITATIONS AND FUTURE WORK
One limitation of the current work is the lack of accurate location tracking. Since we were not able to detect exact
locations, we clustered the locations of Wi-Fi access points. Even though we have tested several threshold values
for location clustering, the results presented in this study might depend on the characteristics of the signals of
Wi-Fi access points used by the participants of our study. In the wild, the first option is that several methods with
different threshold values might be used to generate a collective output for prediction. In the second option, the
method can be used with the default threshold. In the third option, users may be asked to label their important
locations and they could be employed in the method.
In this study, we only considered application usage in terms of duration. Other features, such as application

category and inter-event time between usage sessions might be included in future work. Moreover, in this study
we only considered data from mobile sensors for predicting the availability of rest breaks. Other information
coming from wearable sensors, including physiological sensors, might be used in order to improve the accuracy
of the prediction. The response time (the time between the notification sent to users and the response submitted)
was not included in this study. This aspect is part of our future research agenda.

Another main limitation of the study is related to the composition of the population of the study. Since we
recruited participants based on convenience sampling, we were able to recruit only participants who commonly
work in the same city. More in general, the data was collected among participants of a single country, hence,
there may be cultural characteristics that impact the results of our study. Having said that, we stress the fact that
the contribution of this work is methodological and can apply to populations with different backgrounds.
Besides, the size of the dataset is limited, even though it is worth noting that GLMM can handle a limited

number of data points. Indeed, we were able to collect a small number of data points for some users. The main
reason for not being able to collect a high number of data points could be associated with the burden of replying to
six ESM messages in a day. For this reason, the participants with a relatively low threshold of 25% of response rate
were included in the study. Similarly, since the pilot phase of the experiment required significant manual effort,
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we could not recruit more than five participants. They labelled their locations for each day of the experiment.
This might have been particularly burdensome for the participants of the pilot phase. Nevertheless, we made
an effort to choose pilot participants who work in different locations (e.g., in a private company, in academia)
in order to develop a more robust clustering for locations. Compliance could be improved with a better design,
which reduces the burden for participants. The performance results for both the GLMM and individual classifiers
could also be indeed improved with a higher number of data points.

Because of its sparsity, our dataset did not contain a sufficient number of data points for different activity types
(e.g., driving, walking); hence, we had to classify activities into two categories: “still” and “moving”. The effects
of different activity types on break availability could be investigated separately with a larger amount of data.
In fact, this is directly related to the pilot participants’ data as we discussed above. If we had a higher number
of participants in the pilot phase, we would have been able to train our activity classifier with other activity
types as well. In addition, the sampling rate for the older phones which do not support the “significant motion
sensor” could have been increased. However, the choice of selection of the sampling rate was done taking into
consideration the capacity of the phones. Since we were not able to collect a higher amount of data, this might be
considered as a limitation of our analysis.

Finally, we point out that in our approach, we went through a series of pre-processing steps, such as location
clustering and the application of activity recognition algorithms for identifying users’ physical activity. This
was necessary due to data sparsity. In general, from a practical point of view, to apply the proposed method in
the same way we did, it is necessary to derive user locations and calculate the similarity or frequencies of the
locations. On the other hand, the results in Table 8 show that time variables are statistically significant, whereas
the higher p value of location frequency (LF) suggests that it may not be as critical as the other variables. The
results shown in the figures in Appendix B demonstrate that the models built without location variables perform
well compared to the models built with them. Due to potential security and privacy concerns, users might not be
willing to share their location information with third party applications. Mobile phone usage over time, however,
is less affected by privacy issues. KDE models with time information performed well even with a lower amount
of data in the training set. As a consequence, although it is necessary to collect location information, the model
performance is not highly dependent on the location variables as seen in the results.

10 CONCLUSION
In this study we have presented a method for addressing the issues related to the availability of a limited amount
of personal data for building individual predictive behavioural model through mobile sensing. In particular, the
approach can be considered a solution to the “cold-start problem”, i.e., the negative impact of the lack of data
about an individual (for example, when a new application is installed or at the beginning of a study) on the
performance of machine learning classifiers.
We have discussed a specific case study, i.e., the prediction of the availability of office workers to take rest

breaks using data collected through mobile sensing. In particular, we have developed a novel hybrid model, which
relies on data from individuals and the general population. We have compared the results of our model and found
that GLMM is able to provide more accurate results than an individual random forest model, typically adopted in
previous studies.
We have also discussed which context information is informative for the prediction of rest break availability.

Specifically, location, time, activity and ringer mode status are associated with users’ availability. This result is
very important for designing effective positive behaviour intervention for the wellbeing of employees. Finally,
we believe that the contribution of this study is methodological in nature: even if the results we presented might
be specific to the population taken into consideration, the methodology is of general applicability and can be
adopted for applications in different situations, involving users from different backgrounds.
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A NOTIFICATION DELIVERY ALGORITHM

Algorithm 1: Notification delivery algorithm.
delete one hour from the beginning and the end of work day of users;
set 𝑑 (day number) = 1;
set 𝑛 (notification number) = 1;
while not end of user set do

while 𝑑 ≤ 10 do
import calendar events of user for day;
calculate empty slots by extracting calendar events from user’s work day;
check empty slots for day (𝑒𝑑 );
if 𝑒𝑑 = ∅ then

skip day;
increase 𝑑 ;

while 𝑛 ≤ 6 do
check preferred time slots of user collected in the questionnaire (𝑝) ;
if 𝑝 = ∅ then

continue;
else

if 𝑛 > 2 then
continue;

else
pick a random hour (𝑟 ) from 𝑝;
delete 𝑟 from 𝑒𝑑 ;
if 𝑟 ∈ 𝑒 then

continue;
else

go back checking 𝑝 step;

select 𝑟 from 𝑒;
set notification time as selected random hour;
delete one hour before and after selected notification time from 𝑒𝑑 ;
increase 𝑛;

increase 𝑑 ;
continue with next user;
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B COLD-START EVALUATION WITHOUT LOCATION VARIABLES
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