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On β-Plurality Points in Spatial Voting Games
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Let V be a set of n points in Rd , called voters. A point p ∈ Rd is a plurality point for V when the following

holds: For every q ∈ Rd , the number of voters closer to p than to q is at least the number of voters closer to q
than to p. Thus, in a vote where eachv ∈ V votes for the nearest proposal (and voters for which the proposals

are at equal distance abstain), proposal p will not lose against any alternative proposal q. For most voter sets,

a plurality point does not exist. We therefore introduce the concept of β-plurality points, which are defined

similarly to regular plurality points, except that the distance of each voter to p (but not to q) is scaled by a

factor β , for some constant 0 < β � 1. We investigate the existence and computation of β-plurality points

and obtain the following results.

• Define β∗
d
� sup{β : any finite multiset V in Rd admits a β-plurality point}. We prove that β∗2 =

√
3/2,

and that 1/
√
d � β∗

d
�
√

3/2 for all d � 3.

• Define β (p,V ) � sup{β : p is a β-plurality point for V }. Given a voter set V in R2, we provide an

algorithm that runs in O (n logn) time and computes a point p such that β (p,V ) � β∗2 . Moreover, for

d � 2, we can compute a point p with β (p,V ) � 1/
√
d in O (n) time.

• Define β (V ) � sup{β : V admits a β-plurality point}. We present an algorithm that, given a voter set

V in Rd , computes an ((1 − ε ) · β (V ))-plurality point in time O ( n2

ε3d−2 · log n
εd−1 · log2 1

ε ).
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1 INTRODUCTION

Background. Voting theory is concerned with mechanisms to combine preferences of individual
voters into a collective decision. A desirable property of such a collective decision is that it is sta-
ble, in the sense that no alternative is preferred by more voters. In spatial voting games [5, 10],
this is formalized as follows; see Figure 1(i) for an example in a political context. The space of all
possible decisions is modeled as Rd and every voter is represented by a point in Rd , where the
dimensions represent different aspects of the decision and the point representing a voter corre-
sponds to the ideal decision for that voter. A voter v now prefers a proposed decision p ∈ Rd over
some alternative proposal q ∈ Rd when v is closer to p than to q. Thus, a point p ∈ Rd repre-
sents a stable decision for a given finite set V of voters if, for any alternative q ∈ Rd , we have
|{v ∈ V : |vp | < |vq |}| � |{v ∈ V : |vq | < |vp |}|. Such a point p is called a plurality point.1

For d = 1, a plurality point always exists, since in R1 a median of V is a plurality point. This
is not true in higher dimensions, however. Define a median hyperplane for a set V of voters to be
a hyperplane h such that both open half-spaces defined by h contain fewer than |V |/2 voters. For
d � 2 a plurality point in Rd exists if and only if all median hyperplanes for V meet in a common
point; see Figure 1(ii). This condition is known as generalized Plott symmetry conditions [12, 24];
see also the papers by Wu et al. [29] and de Berg et al. [4], who present algorithms to determine
the existence of a plurality point for a given set of voters.

It is very unlikely that voters are distributed in such a way that all median hyperplanes have
a common intersection. (Indeed, if this happens, then a slightest generic perturbation of a single
voter destroys the existence of the plurality point.) It is unsatisfactory for the model to be unable
to provide a solution in most cases, and so we may want to find a point that is close to being a
plurality point. One way to formalize this is to consider the center of the yolk (or plurality ball)
ofV , where the yolk [14, 18, 22, 23] is the smallest ball intersecting every median hyperplane ofV .
We introduce β-plurality points as an alternative way to relax the requirements for a plurality
point, and study several combinatorial and algorithmic questions regarding β-plurality points.

β-Plurality points: definition and main questions. Let V be a multiset2 of n voters in Rd in arbi-
trary, possibly coinciding, positions. In the traditional setting a proposed pointp ∈ Rd wins a voter
v ∈ V against an alternative q if |pv | < |qv |. We relax this by fixing a parameter β with 0 < β � 1
and letting p win v against q if β · |pv | < |qv |. Thus, we give an advantage to the initial proposal p
by scaling distances to p by a factor β � 1. We now define

V [p �β q] � {v ∈ V : β · |pv | < |qv |} and V [p ≺β q] � {v ∈ V : β · |pv | > |qv |}

to be the multisets of voters won by p over q and lost by p against q, respectively. Finally, we say
that a point p ∈ Rd is a β-plurality point for V when

���V [p �β q]
��� �

���V [p ≺β q]
��� , for any point q ∈ Rd .

1One can also require p to be strictly more popular than any alternative q. This is sometimes called a strong plurality point,

in contrast to the weak plurality points that we consider.
2Even though we allow V to be a multiset, we sometimes refer to it as a “set” to ease the reading. When the fact that V is

a multiset requires special treatment, we explicitly address this.
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Fig. 1. (i) The U.S. presidential candidates 2016 modelled in the spatial voting model, according to The Polit-

ical Compass (https://politicalcompass.org/uselection2016). Note that the points representing voters are not

shown. (ii) The point set satisfies the generalized Plott symmetry conditions and therefore admits a plurality

point.

Observe that β-plurality is monotone in the sense that if p is a β-plurality point then p is also a
β ′-plurality point for all β ′ < β .

The spatial voting model was popularised by Black [5] and Down [10] in the 1950s. Stokes [27]
criticized its simplicity and was the first to highlight the importance of taking non-spatial
aspects into consideration. The reasoning is that voters may evaluate a candidate not only on
their policies—their position in the policy space—but also take their so-called valence into ac-
count: charisma, competence, or other desirable qualities in the public’s mind [13]. A candidate
can also increase her valence by a stronger party support [28] or campaign spending [19]. Several
models have been proposed to bring the spatial model closer to a more realistic voting approach;
see References [16, 17, 25] as examples. A common model is the multiplicative model, introduced
by Hollard and Rossignol [20], which is closely related to the concept of a β-plurality point.
The multiplicative model augments the existing spatial utility function by scaling the candidate’s
valence by a multiplicative factor. Note that in the two-player game considered in this article the
multiplicative model is the same as our β-plurality model. From a computational point of view very
little is known about the multiplicative model. We are only aware of a result by Chung [8], who
studied the problem of positioning a new candidate in an existing space of voters and candidates,
so that the valence required to win at least a given number of voters is minimized.

One reason for introducing β-plurality was that a set V of voters in Rd , for d � 2, generally
does not admit a plurality point. This immediately raises the question: Is it true that, for β small
enough, any set V admits a β-plurality point? If so, then we want to know the largest β such that
any voter set V admits a β-plurality point, that is, we wish to determine

β∗d � sup{β : any finite multiset V in Rd admits a β-plurality point}.

Note that β∗1 = 1, since any setV in R1 admits a plurality point and 1-plurality is equivalent to the
traditional notion of plurality.

After studying this combinatorial problem in Section 2, we turn our attention to the following
algorithmic question: given a voter set V , find a point p that is a β-plurality point for the largest
possible value β . In other words, if we define

β (V ) � sup{β : V admits a β-plurality point}
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and

β (p,V ) � sup{β : p is a β-plurality point for V },
then we want to find a point p such that β (p,V ) = β (V ).

Results. In Section 2, we prove that β∗
d

�
√

3/2 for all d � 2. To this end, we first show that β∗
d

is

non-increasing ind , and then we exhibit a voter setV inR2 such that β (V ) �
√

3/2. To prove lower

bounds on on β∗
d

, we show that, for any given V in R2, a point p exists such that β (p,V ) �
√

3/2,

thus proving that β∗2 =
√

3/2. Furthermore, we show how to construct such a point p in O (n logn)
time. Moreover, for d � 2, we prove the existence of—and show how to construct in O (n) time—a

point p such that β (p,V ) � 1/
√
d , which means that β∗

d
� 1/
√
d .3

In Section 3, we study the problem of computing, for a given voter set V of n points in Rd , a
β-plurality point for the largest possible β . (Here, we assumed to be a fixed constant.) While such a
point can be found in polynomial time, the resulting running time is quite high. We therefore focus
our attention on finding an approximately optimal point p, that is, a point p such that β (p,V ) �
(1 − ε ) · β (V ). We show that such a point can be computed in O ( n2

ε3d−2 · log n
εd−1 · log2 1

ε
) time.

Notation. We denote the open ball of radius ρ centered at a point q ∈ Rd by B (q, ρ) and, for a
point p ∈ Rd and a voter v , we define Dβ (p,v ) � B (v, β · |pv |). Observe that p wins v against a
competitor q if and only if q is strictly outside Dβ (p,v ), while q wins v if and only if q is strictly
inside Dβ (p,v ). Hence, V [p ≺β q] = {v ∈ V : q ∈ Dβ (p,v )}. We define Dβ (p) � {Dβ (p,v ) :
v ∈ V }—here we assume V is clear from the context—and let A (Dβ (p)) denote the arrangement
induced by Dβ (p). The competitor point q that wins the most voters against p will thus lie in
the cell of A (Dβ (p)) of the greatest depth or, more precisely, the cell contained in the maximum
number of disks Dβ (p,v ).

2 BOUNDS ON β∗
d

In this section, we will prove bounds on β∗
d

, the supremum of all β such that any finite setV ⊂ Rd

admits a β-plurality point. We start with an observation that allows us to apply bounds on β∗
d

to
those on β∗

d ′ for d ′ > d . Let conv(V ) denote the convex hull of V .

Observation 2.1. Let V be a finite multiset of voters in Rd .

(i) Suppose a point p ∈ Rd is not a β-plurality point forV . Then there is a point q ∈ conv(V ) such

that
���V [p �β q]

��� <
���V [p ≺β q]

���.
(ii) For any p ′ � conv(V ), there is a point p ∈ conv(V ) with β (p,V ) > β (p ′,V ).

(iii) For any d ′ > d , we have β∗
d ′ � β∗

d
.

Proof. Note that for every point r � conv(V ) there is a point r ′ ∈ conv(V ) that lies strictly
closer to all voters in V , namely, the point r ′ ∈ ∂conv(V ) closest to r . This immediately implies
part (i): if p is beaten by some point q � conv(V ) then p is certainly beaten by a point q′ ∈ conv(V )
that lies strictly closer to all voters in V than q. It also immediately implies part (ii), because if a
point p lies strictly closer to all voters in V than a point p ′, then β (p,V ) > β (p ′,V ).

To prove part (iii), let V ∈ Rd be a voter set such that β (V ) = β∗
d

. Now embed V into Rd ′ , say
in the flat xd+1 = · · · = xd ′ = 0, obtaining a set V ′. Then β (V ′) = β (V ) by parts (i) and (ii). Hence,
β∗

d ′ � β (V ′) = β (V ) = β∗
d

. �

3Very recently, Filtser and Filtser [15] improved these results for d � 4 by proving that β ∗
d

� 1
2

√
1
2 +
√

3 − 1
2

√
4
√

3 − 3 ≈
0.557 for any d � 4.
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Fig. 2. (i) The set V = {v1,v2,v3} of voters and the point p used in the proof of Lemma 2.2. (ii) The ellipse E
is tangent to the Voronoi cellV (v3).

We can now prove an upper bound on β∗
d

.

Lemma 2.2. β∗
d

�
√

3/2, for d � 2.

Proof. By Observation 2.1(iii), it suffices to prove the lemma for d = 2. To this end let V =
{v1,v2,v3} consist of three voters that form an equilateral triangle Δ of side length 2 in R2; see
Figure 2(i).

Let p denote the center of Δ. We will first argue that β (p,V ) =
√

3/2. Note that |pvi | = 2/
√

3 for

all three votersvi . Hence, for β =
√

3/2, the open balls Dβ (vi ,p) are pairwise disjoint and touching
at the mid-points of the edges of Δ. Therefore any competitor q either wins one voter and loses the
remaining two, or wins no voter and loses at least one. The former happens when q lies inside one
of the three balls Dβ (vi ,p); the latter happens when q does not lie inside any of the balls, because

in that case q can be on the boundary of at most two of the balls. Thus, for β =
√

3/2, the point p

always wins more voters than q does. However, for β >
√

3/2, any two balls Dβ (vi ,p), Dβ (vj ,p)
intersect and so a point q located in such a pairwise intersection wins two voters and beats p. We

conclude that β (p,V ) =
√

3/2, as claimed.

The lemma now follows if we can show that β (p ′,V ) �
√

3/2 for any p ′ � p. Let Vor(V ) be
the Voronoi diagram of V , and letV (vi ) be the closed Voronoi cell of vi , as shown in Figure 2(ii).
Assume without loss of generality that p ′ lies in V (v3). Let E be the ellipse with foci v1 and v2

that passes through p. Thus,

E �
{
z ∈ R2 : |zv1 | + |zv2 | = 4/

√
3
}
.

Note that E is tangent toV (v3) at the pointp. Hence, any pointp ′ � p inV (v3) has |p ′v1 |+ |p ′v2 | >
4/
√

3. This implies that for β �
√

3/2, we have β · |p ′v1 | + β · |p ′v2 | > 2, and so the disks Dβ (p ′,v1)

and Dβ (p ′,v2) intersect. It follows that for β �
√

3/2 there is a competitor q that wins two voters

against p ′, which implies β (p ′,V ) cannot be larger than
√

3/2 and thus finishes the proof of the
lemma. �

We now prove lower bounds on β∗
d

. We first prove that β∗
d

� 1/
√
d for any d � 2, and then we

improve the lower bound to
√

3/2 for d = 2. The latter bound is tight by Lemma 2.2.

Let V be a finite multiset of n voters in Rd . We call a hyperplane h balanced with respect to V ,
if both open half-spaces defined by h contain at most n/2 voters from V . Note the difference with
median hyperplanes, which are required to have fewer than n/2 voters in both open half-spaces.
Clearly, for any 1 � i � d there is a balanced hyperplane orthogonal to the xi -axis, namely, the
hyperplane xi = mi , where mi is a median in the multiset of all xi -coordinates of the voters in V .
(In fact, for any direction �u there is a balanced hyperplane orthogonal to �u.)

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 24. Publication date: July 2021.
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Fig. 3. The cone C+3 used in the proof of Lemma 2.3.

Lemma 2.3. Let d � 2. For any finite multiset V of voters in Rd there exists a point p ∈ Rd such

that β (p,V ) = 1/
√
d . Moreover, such a point p can be computed in O (n) time.

Proof. LetH � {h1, . . . ,hd } be a set of balanced hyperplanes with respect toV such that hi is
orthogonal to the xi -axis, and assume without loss of generality that hi is the hyperplane xi = 0.

We will prove that the point p located at the origin is a β-plurality point for V for any β < 1/
√
d ,

thus showing that β (p,V ) � 1/
√
d .

Let q = (q1, . . . ,qd ) be any competitor of p. We can assume without loss of generality that
max1�i�d |qi | = qd > 0. Thus, q lies in the closed cone C+

d
defined as

C+d �
{

(x1, . . . ,xd ) ∈ Rd : xd � |x j | for all j � d
}
.

Note thatC+
d

is bounded by portions of the 2(d − 1) hyperplanes xd = ±x j with j � d ; see Figure 3.

Because hd : xd = 0 is a balanced hyperplane, the open halfspace h+
d

: xd > 0 contains at most

n/2 voters, which implies that the closed halfspace cl(h−
d

) : xd � 0 contains at least n/2 voters.

Hence, it suffices to argue that for any β < 1/
√
d the point p wins all the voters in cl(h−

d
) against q.

Claim. For any voter v ∈ cl(h−
d

) with |pv | > |qv |, sin (∠qpv ) � 1/
√
d with equality if and only if

q lies on an edge of C+
d

and v lies on the orthogonal projection of this edge onto hd .

Proof. Consider a voter v ∈ cl(h−
d

) with |pv | > |qv |. If v lies strictly below hd , then there is a
pointv ′ ∈ hd with ∠qpv ′ < ∠qpv , namely, the orthogonal projection ofv ontohd . Since |pv | > |qv |,
we have ∠qpv < π/2, and so ∠qpv ′ < ∠qpv implies that sin(∠qpv ′) < sin(∠qpv ). Hence, it suffices
to prove the claim for v ∈ hd .

First, we prove that sin(∠qpv ) = 1/
√
d if q lies on an edge e of C+

d
and v lies on the orthogonal

projection e of e onto hd . Assume without loss of generality that e is the edge ofC+
d

defined by the
intersection of the d − 1 hyperplanes xd = x j , so that q1 = · · · = qd−1 = qd . Since ∠qpv is the same
for anyv ∈ e , we may assume thatv is the orthogonal projection of q tohd , which means |qv | = qd .
We then have

sin (∠qpv ) =
|qv |
|pq | =

qd√
q2

1 + · · · + q2
d

=
1
√
d
.
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Fig. 4. The partition used in the proof of Lemma 2.4. The region H = cl(S3 ∪ S4 ∪ S5) is indicated in grey.

Now assume the condition for equality does not hold. Let ρ be the ray starting atp and containingq,
and let ρ be its orthogonal projection onto hd . We have two cases: v ∈ ρ but q is not contained in
an edge of C+

d
, or v � ρ.

In the former case, we may, as before, assume thatv is the projection of q onto hd . Since q ∈ C+
d

,

we have qd � |qj | for all j. Moreover, since q does not lie on an edge ofC+
d

, we have qd > |qj∗ | for at

least one j∗. Thus, |pq | =
√
q2

1 + . . . + q
2
d
<
√
d · q2

d
=
√
d · |qv |, and sin (∠qpv ) = |qv |/|pq | > 1/

√
d .

In the latter case, let � be the line containing p and v , and let v ′ be the point on � closest to q.
Then |qv | � |qv ′| > |qq |, where q is the projection of q onto hd . Since we assumed |pv | > |qv | we
have ∠qpv < π/2, which implies that v ′ and v lie to the same side of p. Hence, ∠qpv = ∠qpv ′, and
we have

sin (∠qpv ) =
|qv ′|
|pq | >

|qq |
|pq | �

1
√
d
. �

Observe that p trivially wins every voter with |pv | � |qv |. For the voters v ∈ cl(h−
d

) with
|pv | > |qv | we can use the Law of Sines and the claim above to derive that

β · |pv | < 1
√
d
· |pv | = 1

√
d
· |qv | · sin (∠pqv )

sin (∠qpv )
� |qv | · sin (∠pqv ) � |qv | .

Hence, p wins every voter in cl(h−
d

). This proves the first part of the lemma, since cl(h−
d

) contains
at least n/2 voters, as already remarked.

Computing the point p is trivial once we have the balanced hyperplanes hi , which can be found
in O (n) time by computing a median xi -coordinate for each 1 � i � d . �

A tight bound in the plane. In R2, we can improve the above bound: for any voter set V in

the plane, we can find a point p with β (p,V ) �
√

3/2. By Lemma 2.2, this bound is tight. The
improvement is based on the following lemma.

Lemma 2.4. Let V be a multiset of n voters in R2, let �1, �2, �3 be a triple of concurrent balanced

lines such that the smaller angle between any two of them is π
3 , and let p be the common intersection

of �1, �2, �3. Then β (p,V ) �
√

3/2.
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Fig. 5. (i) The balanced line μ (θ ). (ii) If p23 is to the left of the directed line �1 (0), then p13 (0) is to the right

of �2 (0).

Proof. Let q be a competitor of p. The three lines �1, �2, �3 partition the plane into six equal-
sized sectors, which we number S1 through S6 in a clockwise fashion, so that q lies in the closure
of S1; see Figure 4. LetH be the closure of S3∪S4∪S5. It is a closed halfspace bounded by a balanced
line, so it contains at least half the voters.

Using an analysis similar to that in the proof of Lemma 2.3, we can show that p does not lose
any voter v ∈ H . Indeed, using the Law of Sines, we obtain

√
3

2
· |pv | =

√
3

2
· sin ∠pqv

sin ∠qpv
· |qv | � |qv |, since ∠qpv � π/3,

which shows that p is a β-plurality point for any β <
√

3/2. Hence, β (p,V ) �
√

3/2. �

The main question is whether a triple of concurrent lines as in Lemma 2.4 always exists. The
next lemma shows that this is indeed the case. The lemma—in fact, a stronger version, stating that
any two opposite cones defined by the three concurrent lines contain the same number of points—
has been proved for even n by Dumitrescu et al. [11]. Our proof of Lemma 2.5 is similar to their
proof. We give it because we also need it for odd n, and because we will need an understanding
of the proof to describe our algorithm for computing the concurrent triple in the lemma. Our
algorithm will run inO (n logn) time, a significant improvement over theO (n4/3 log1+ε n) running
time obtained (for the case of even n) by Dumitrescu et al. [11].

Lemma 2.5. For any multiset V of n voters in R2, there exists a triple of concurrent balanced lines

(�1, �2, �3) such that the smaller angle between any two of them is π
3 .

Proof. Define the orientation of a line to be the counterclockwise angle it makes with the pos-
itive y-axis. Recall that for any given orientation θ there exists at least one balanced line with
orientation θ . When n is odd this line is unique: it passes through the median of the voter set V
whenV is projected orthogonally onto a line orthogonal to the lines of orientation θ . In the rest of
the proof it will be convenient to have a unique balanced line for any orientation θ . To achieve this
when n is even, we simply delete an arbitrary voter from V . (If there are other voters at the same
location, then these voters are not deleted.) This is allowed because when |V | is even, a balanced
line for V \ {v} is also a balanced line for V .

Now let μ be the function that maps an angle value θ to the unique balanced line μ (θ ); see Fig-
ure 5(i). Note that μ is continuous for 0 � θ < π . Let �1 (θ ) � μ (θ ), and �2 (θ ) � μ (θ + π

3 ), and

�3 (θ ) � μ (θ + 2π
3 ). For i � j, let pi j (θ ) � �i (θ ) ∩ �j (θ ) be the intersection point between �i (θ )

and �j (θ ). If p23 (0) ∈ �1 (0), then the lines �1 (0), �2 (0), �3 (0) are concurrent and we are done. Oth-
erwise, consider the situation at θ = 0 and imagine �1 (0) and �2 (0) to be directed in the positive
y-direction, as in Figure 5(ii). Clearly, if p23 (0) is to the left of the directed line �1 (0), then p13 (0)
is to the right of the directed line �2 (0), and vice versa. Now increase θ from 0 to π/3, and note
that �1 (π/3) = �2 (0) and p23 (π/3) = p13 (0). Hence, p23 (θ ) lies to a different side of the directed
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Fig. 6. The edge sets E1, E2, and E3 of Lmed, the median level in A (V ∗).

line �1 (θ ) for θ = 0 than it does for θ = π/3. Since both �1 (θ ) and p23 (θ ) vary continuously
with θ , this implies that, for some θ̄ ∈ (0,π/3), the point p23 (θ̄ ) crosses the line �1 (θ̄ ), and so the
lines �1 (θ̄ ), �2 (θ̄ ), �3 (θ̄ ) are concurrent. �

The previous two lemmas show that any voter setV in R2 admits a point p such that β (p,V ) �√
3/2. We now show that we can compute such a point in O (n logn) time, namely, we show how

to compute a triple as in Lemma 2.5 in O (n logn) time. We follow the definitions and notation
from the proof of that lemma. We will assume that n is odd, which, as argued, is without loss of
generality.

To find a concurrent triple of balanced lines, we first compute the lines �1 (0), �2 (0), �3 (0) in
O (n) time. If they are concurrent, then we are done. Otherwise, there is a θ̄ ∈ (0,π/3) such that
�1 (θ̄ ), �2 (θ̄ ), �3 (θ̄ ) are concurrent. To find this value θ̄ , we dualize the voter setV , using the standard
duality transform that maps a point (a,b) to the non-vertical line y = ax − b and vice versa. Let
v∗ denote the dual line of the voter v , and let V ∗ � {v∗ : v ∈ V }. Note that for θ ∈ (0,π/3) the
lines �1 (θ ), �2 (θ ), �3 (θ ) are all non-vertical; therefore, their duals �∗i (θ ) are well-defined.

Consider the arrangement A (V ∗) defined by the duals of the voters. For θ � 0, define slope(θ )
to be the slope of the lines with orientation θ . Then μ∗ (θ ), the dual of μ (θ ), is the intersection point
of the vertical line x = slope(θ ) with Lmed, the median level inA (V ∗). (The median level ofA (V ∗)
is the set of points q such that there are fewer than n/2 lines below q and fewer than n/2 lines
above q; this is well defined, since we assume n is odd. The median level forms an x-monotone
polygonal curve along the edges of A (V ∗).) Observe that the duals �∗1 (θ ), �∗2 (θ ), �∗3 (θ ) all lie on

Lmed. For θ ∈ (0,π/3), the x-coordinate of �∗1 (θ ) lies in (−∞,−1/
√

3), the x-coordinate of �∗2 (θ ) lies

in (−1/
√

3, 1/
√

3), and the x-coordinate of �∗3 (θ ) lies in (1/
√

3,∞). We split Lmed into three pieces
corresponding to these ranges of the x-coordinate. Let E1, E2, and E3 denote the sets of edges
forming the parts of Lmed in the first, second, and third range, respectively, where edges crossing

the vertical lines x = −1/
√

3 and x = 1/
√

3 are split; see Figure 6. Thus, for any θ ∈ (0,π/3) and
for i ∈ {1, 2, 3}, the point �∗i (θ ) lies on an edge in Ei .

Recall that we want to find a value θ̄ ∈ (0,π/3) such that �1 (θ̄ ), �2 (θ̄ ), �3 (θ̄ ) are concurrent. For

−∞ < x < 1/
√

3, let θx be such that slope(θx ) = x , and for i ∈ {1, 2, 3} define pi (x ) := �∗i (θx ).

We are thus looking for a value x̄ ∈ (−∞, 1/
√

3) such that the three points p1 (x̄ ),p2 (x̄ ),p3 (x̄ ) are
collinear.

One way to find x̄ would be to first explicitly compute Lmed; then we can increase x , start-
ing at x = −∞, and see how the points pi (x ) move over Ei , until we reach a value x̄ such that
p1 (x̄ ),p2 (x̄ ),p3 (x̄ ) are collinear. Since the best-known bounds on the complexity of the median
level is O (n4/3) [9], we will proceed differently, as follows.

(1) Use the recursive algorithm described below to find an interval Ī ⊆ (−∞, 1/
√

3) contain-
ing a value x̄ with the desired property—namely, that the points p1 (x̄ ), p2 (x̄ ), and p3 (x̄ ) are
collinear—and such that, for any i ∈ {1, 2, 3}, the point pi (x ) lies on the same edge of Ei for
all x ∈ Ī .
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(2) Find a value x̄ ∈ Ī such that p1 (x̄ ), p2 (x̄ ), and p3 (x̄ ) are collinear. Since for i = 1, 2, 3 each
pi (x ) lies on a fixed edge ei of Lmed for all x ∈ Ī after Step 1, this can be done in O (1) time.
Indeed, if we go back to primal space, we are given three (not necessarily distinct) voters
v1,v2,v3 (namely, the primals of the lines containing e1, e2, and e3) and a range (θ ,θ ′) of
angles (corresponding to the x-range Ī ), such that the line �i (θ̄ ) passes through vi for any
θ̄ ∈ (θ ,θ ′). We then only have to compute an orientation θ̄ ∈ (θ ,θ ′) such that the lines �i (θ̄ )
meet in a common point—such an orientation θ̄ is guaranteed to exist by our construction
of Ī .

We now explain the recursive algorithm used in Step 1. In a generic call, we are given three
trapezoids Δ1,Δ2,Δ3 that are each bounded by two non-vertical edges and two vertical edges (one
of which may degenerate into a point). Let Ii be the x-range of Δi , for i ∈ {1, 2, 3}; note that this
is well-defined, since Δi is a trapezoid delimited by two vertical edges. The trapezoids Δ1,Δ2,Δ3

will have the following properties.

(P1) Trapezoid Δ1 lies inside the vertical slab (−∞,−1/
√

3) × (−∞,∞), trapezoid Δ2 lies in-

side the vertical slab (−1/
√

3, 1/
√

3) × (−∞,∞), and trapezoid Δ3 lies inside the vertical

slab (1/
√

3,∞) × (−∞,∞). Moreover, the x-ranges I1, I2, I3 correspond to each other in the

following sense. Recall that an x-range I ⊂ (−∞,−1/
√

3) in the dual plane corresponds to an
angular interval (ϕ,ϕ ′) in the primal plane. We denote by I ⊕ θ the x-range corresponding
to the angular interval (ϕ +θ ,ϕ ′ +θ ). The x-ranges I1, I2, I3 will be such that I2 = I1 ⊕ π

3 and

I3 = I1 ⊕ 2π
3 .

(P2) For any i ∈ {1, 2, 3}, the part of the median level Lmed inside the vertical slab Ii × (−∞,∞)
lies entirely inside Δi . Together with the property (P1) this implies that for any x ∈ I1, we
have that pi (x ) ∈ Δi , for i ∈ {1, 2, 3}.

(P3) Let xleft and xright be such that I1 = (xleft,xright). Then, we have: If p1 (xleft) lies above the
line through p2 (xleft) and p3 (xleft), then p1 (xright) lies below the line through p2 (xright) and
p3 (xright), and vice versa. This guarantees that there exists a value x̄ ∈ I1 with the desired

property and, hence, that I1 contains the interval Ī we are looking for.

In a recursive call, we are also given for each Δi the setsV ∗i ⊆ V ∗ of lines intersecting the interior
of Δi , as well as n−i , the number of lines from V ∗ passing completely below Δi .

Initially, Δ1 is the unbounded trapezoid4 (−∞,−1/
√

3) × (−∞,∞). Similarly, we initially have

Δ2 = (−1/
√

3, 1/
√

3) × (−∞,∞) and Δ3 = (1/
√

3,∞) × (−∞,∞). Furthermore,V ∗i = V
∗ and n−i = 0

for i = 1, 2, 3.
The recursion ends when the interior of each Δi is intersected by a single edge of Lmed; we then

have Ī := I1. The recursive call for a given triple Δ1,Δ2,Δ3 starts by shrinking Δ1 to a trapezoid
Δ′1—thus zooming in on the value x̄—as follows. (We assume |V ∗1 | > 1, otherwise the shrinking
of Δ1 can be skipped.)

(i) Set r := 2 and construct a (1/r )-cutting for the lines in V ∗1 , clipped to within Δ1. In

other words, construct a partition Ξ of Δ1 into O (r 2) = O (1) smaller trapezoids—see

4Since xleft = −∞ for this initial trapezoid Δ1, the points pi (xleft) are not well defined. Recall, however, that in the primal

plane the point on Lmed “at x = −∞” corresponds to the vertical balanced line �1 (0). Hence, we can derive the relative

position of p1 (−∞) with respect to the line through p2 (−∞) and p3 (−∞), from the relative position of the intersection

point �2 (0) ∩ �3 (0) with respect to �1 (0).
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Fig. 7. The trapezoid Δ1 (depicted in black) and the cutting Ξ (depicted in grey).

Figure 7—such that the interior of each trapezoid τ ∈ Ξ is intersected by at most n1/2 lines
from V ∗1 , where n1 := |V ∗1 |. Computing Ξ can be done in O (n1) time [6].

(ii) Compute the intersections of Lmed with the edges of each trapezoid τ ∈ Ξ in O (n1 logn1)
time, as follows.
• Consider a non-vertical edge e of τ . First, compute the level of pleft, the left endpoint of e .

This can be done by counting the number of lines from V ∗1 below pleft and adding n−1
to this number. Next, intersect e with all lines of V ∗1 and sort the intersections along e ,
distinguishing lines that cross e “from above” and “from below.” Finally, walk along e ,
starting from pleft towards the right, increasing and decreasing the level according to the
type of the intersection we encounter. All intersection points that lie on Lmed can thus
be reported. (For simplicity, we ignore the case where e partially or fully overlaps Lmed.
This can either be handled by a simple modification of the procedure, or we can avoid
the situation altogether by modifying the cutting such that no edge e of the cutting is
contained in an input line.)
• For a vertical edge e ofτ , we proceed similarly: first compute the level of the lower endpoint

of e , and then walk upward along e until we reach an intersection point at the median level,
or the upper endpoint of e .

(iii) The previous step gives us all intersection points of Lmed with the edges of trapezoids in Ξ.
Let X = {ξ1, . . . ξ |X | } be the sorted set of all x-coordinates of these intersection points, as
illustrated in Figure 7. Note that |X | = O (n1). We perform a binary search on X to find two
consecutive x-coordinates, ξi and ξi+1, such that the interval (ξi , ξi+1) contains a value x̄
with the desired property. Each step in the binary search can be done inO (n1+n2+n3) time,
as follows.
Assume without loss of generality that p1 (xleft) lies above the line through p2 (xleft) and
p3 (xleft), and that p1 (xright) lies below the line through p2 (xright) and p3 (xright). Suppose that
during the binary search we arrive at some ξ j ∈ X , and we want to decide if we want to
proceed to the left or to the right of ξ j . To do so, we first compute the points p1 (ξ j ), p2 (ξ j ),
and p3 (ξ j ). Point p1 (ξ j ) can be computed in O (n1) time, as follows: first compute all inter-
sections of the vertical line x = ξ j with the lines in V ∗1 , and then find the intersection point
whose y-coordinate has the appropriate rank, taking into account that there are n−1 lines
from V ∗ \ V ∗1 fully below Δ1. The points p2 (ξ j ) and p3 (ξ j ) can be computed in the same
way—this takes O (n2) and O (n3) time, respectively—after determining their x-coordinates

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 24. Publication date: July 2021.



24:12 B. Aronov et al.

in O (1) time. (These x-coordinate are slope(θξ j
+ π/3) and slope(θξ j

+ 2π/3), respectively.)
After computing p1 (ξ j ), p2 (ξ j ), and p3 (ξ j ), we can make our decision: We proceed to the left
if p1 (ξ j ) lies below the line through p2 (ξ j ) and p3 (ξ j ), and we proceed to the right if p1 (ξ j )
lies above that line. (In the fortunate situation that p1 (ξ j ),p2 (ξ j ),p3 (ξ j ) are collinear, we can
take x̄ � ξ j , and we are done.)
Since each step in the binary search takesO (n1 +n2 +n3) time, the total binary search takes
O ((n1 + n2 + n3) logn1) time. Sorting the set X before the binary search only increases this
by a constant factor.

(iv) Finally, we take the two x-coordinates ξi , ξi+1 computed in the previous step, and find the
points where Lmed crosses the vertical lines x = ξi and x = ξi+1. Between x = ξi and
x = ξi+1, we know that Lmed lies inside a single trapezoid τ ∈ Ξ. We then intersect τ with
the slab (ξi , ξi+1) × (−∞,∞), to obtain the trapezoid Δ′1. (If, for example, we would have
(ξi , ξi+1) = (ξ3, ξ4) in Figure 7, then Δ′1 is the grey trapezoid.) Note that the number of lines
crossing Δ′1 is at most n1/2 and that the x-range I ′1 of Δ′1 satisfies property (P3).

After shrinking Δ1 in this manner, we proceed as follows. We first clip Δ2 so that its x-range
corresponds to I1 ⊕ π

3 , and then we shrink the clipped trapezoid Δ2 to a new trapezoid Δ′2 in the

same way as we shrunk Δ1 to Δ′1. Thus, Δ′2 is crossed by at most n2/2 lines and I ′2 ⊕
−π
3 satisfies

property (P3), where I ′2 is the x-range of Δ′2. Next, we clip the x-range of Δ3 to I ′2 ⊕
π
3 , and then

we apply the shrinking procedure to Δ3 to obtain a new trapezoid Δ′3. Finally, we clip Δ′1 and Δ′2
so that their x-ranges correspond to I ′3 ⊕

−2π
3 and I ′3 ⊕

−π
3 , respectively. We then recurse on the

triple Δ′1,Δ
′
2,Δ

′
3, passing along the appropriate sets V ∗i and updating the counts n−i .

The total time spent in all three shrinking steps is O ((n1 + n2 + n3) log(n1 + n2 + n3)), and each
ni halves at every level in the recursion. Hence, the total time for Step 1 on page 9 isO (n logn). As
already mentioned, Step 2 takes only constant time. We can conclude that we can find a collinear
triple p1 (x̄ ),p2 (x̄ ),p3 (x̄ ) in O (n logn) time. In the primal this corresponds to a triple of collinear
concurrent lines as in Lemma 2.4, so we obtain the following theorem.

Theorem 2.6.
(i) We have β∗2 =

√
3/2. Moreover, for any multiset V of n voters in R2, we can compute a point p

with β (p,V ) �
√

3/2 in O (n logn) time.

(ii) For d � 3, we have 1/
√
d � β∗

d
�
√

3/2. Moreover, for any multiset V of n voters in Rd with

d � 2, we can compute a point p with β (p,V ) � 1/
√
d in O (n) time.

3 FINDING A POINT THAT MAXIMIZES β (P ,V )

We know from Theorem 2.6 that, for any multiset V of n voters in Rd , we can compute a point p

with β (p,V ) ≥ 1/
√
d (even with β (p,V ) ≥

√
3/2, in the plane). However, a given voter multiset V

may admit a β-plurality point for larger values of β—possibly even for β = 1. In this section, we
study the problem of computing a point p that maximizes β (p,V ), that is, a point p with β (p,V ) =
β (V ), in the Real-RAM model.

3.1 An Exact Algorithm

Below, we sketch an exact algorithm to compute β (V ) together with a point p such that β (p,V ) =
β (V ). Our goal is to show that, for constant d , this can be done in polynomial time. We do not
make a special effort to optimize the exponent in the running time; it may be possible to speed up
the algorithm, but it seems clear that it will remain impractical, because of the asymptotic running
time, and also because of algebraic issues.
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Note that we can efficiently check whether a true plurality point exists (i.e., β = 1 can be
achieved) in time O (n logn) by an algorithm of De Berg et al. [4], and if so, identify this point.
Therefore, hereafter β = 1 is used as a sentinel value, and our algorithm proceeds on the assump-
tion that β (p,V ) < 1 for any point p.

For a voter v ∈ V , a candidate p ∈ Rd , and an alternative candidate q ∈ Rd , define fv (p,q) �
min( |qv |/|pv |, 1) when p � v , and define fv (p,q) � 1 otherwise. Observe that for fv (p,q) < 1, we
have

• q wins voter v over p if and only if β > fv (p,q),
• q and p have a tie over voter v if and only if β = fv (p,q), and
• p wins voter v over q if and only if β < fv (p,q).

For fv (p,q) = 1, this is not quite true: When p = q = v , we always have a tie, and when |pv | < |qv |,
then p wins v even when β = fv (p,q) = 1. When p = q there is a tie for all voters, so the final
conclusion (namely, that |V [p �β q]| � |V [p ≺β q]|) is still correct. The fact that we incorrectly
conclude that there is a tie when |pv | < |qv | and β = fv (p,q) = 1 does not present a problem either,
since we assume β (p,V ) < 1. Hence, we can pretend that checking if β > fv (p,q), or β = fv (p,q),
or β < fv (p,q) tells us whether q wins v , or there is a tie, or p wins v , respectively.

Hereafter, we identify fv : R2d → R with its graph {(p,q, fv (p,q))} ⊂ R2d+1, which is a d-
dimensional surface. Let f +v be the set of points lying above this graph, and f −v be the set of points
lying below it. Thus, f +v is precisely the set of combinations of (p,q, β ) whereq winsv overp, while
fv is the set where p ties with q, and f −v is the set where q loses v to p. Consider the arrangement
A � A (F ) defined by the set of surfaces F � { fv : v ∈ V }. Each face C in A is a maximal
connected set of points with the property that all points of C are contained in, lie below, or lie
above, the same subset of surfaces of F . (Note that we consider faces of all dimensions, not just
full-dimensional cells.) Thus, for all (p,q, β ) ∈ C , exactly one of the following holds: |V [p �β q]| <
|V [p ≺β q]|, or |V [p �β q]| = |V [p ≺β q]|, or |V [p �β q]| > |V [p ≺β q]|. Let L be the union of

all faces C of A (F ) such that |V [p �β q]| < |V [p ≺β q]|, that is, such that p loses against q for all

(p,q, β ) in C . We can construct A and L in time O (n2d+1) using standard machinery, as A is an
arrangement of degree-4 semi-algebraic surfaces of constant description complexity [2, 3]. We are
interested in the set

W � {(p, β ) :
���V [p �β q]

��� �
���V [p ≺β q]

��� for any competitor q } ⊂ Rd+1.

What is the relationship betweenW and L? A point (p, β ) is inW precisely when, for every choice
of q ∈ Rd , p wins at least as many voters as q (for the given β). In other words,

W = {(p, β ) | there is no q such that (p,q, β ) ∈ L}.

That is,W is the complement of the projection of L to the space Rd+1 representing the pairs (p, β ).
The most straightforward way to implement the projection would involve constructing semi-
algebraic formulas describing individual faces and invoking quantifier elimination on the resulting
formulas [2]. Below, we outline a more obviously polynomial-time alternative.

Construct the vertical decomposition vd(A) of A, which is a refinement of A into pieces (“sub-
faces” τ ), each bounded by at most 2(2d + 1) surfaces of constant degree and therefore of constant
complexity; see Appendix A. A vertical decomposition is specified by ordering the coordinates—
we put the coordinates corresponding to q last. Since vd(A) is a refinement of A, the set L is the
union of subfaces τ of vd(A) fully contained in L. Since A is an arrangement of n well-behaved

surfaces in 2d + 1 � 5 dimensions, the complexity of vd(A) is O (n2(2d+1)−4+ε ) = O (n4d−2+ε ), for
any ε > 0 [21]. In particular, L comprises � � O (n4d−2+ε ) subfaces.
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Since each τ ⊂ L is a subface of the vertical decomposition vd(A) in which the last d coordi-
nates correspond to q, the projection τ ′ of τ to Rd+1 is easy obtain (see Appendix A) in constant
time; indeed it can be obtained by discarding the constraints on these last d coordinates from
the description of τ . Thus, in time O (�), we can construct the family of all the projections of the
� subfaces of L, each a constant-complexity semi-algebraic object in Rd+1. We now construct the
arrangementA′ of the resulting collection and its vertical decomposition vd(A′). The complexity

of vd(A′) is either O (�d+1+ε ) or O (�2(d+1)−4+ε ) = O (�2d−2+ε ), depending on whether d + 1 � 4
or not, respectively [21]. Each subface in vd(A′) is either fully contained in the projection of L
or fully disjoint from it. Collecting all of the latter subfaces, we obtain a representation ofW as a

union of at most O (�O (d ) ) = O (nO (d2 ) ) constant-complexity semi-algebraic objects.
Now if (p, β ) ∈ W is the point with the highest value of β , then β (V ) = β (p,V ) = β . It can

be found by enumerating all the subfaces of vd(A′) contained in the closure of W—we take the
closure, because V (p, β ) is defined as a supremum—and identifying their topmost point or points.
Since each face has constant complexity, this can be done inO (1) time per subface.5 This completes

our description of an O (nO (d2 ) )-time algorithm to compute the best β that can be achieved for a
given set of voters V , and the candidate p (or the set of candidates) that achieve this value. The
above algorithm shows that the problem can be solved efficiently for constant d . However, to the
best of our knowledge, no polynomial time algorithm is known for the case when d is considered
a variable.

3.2 An Approximation Algorithm

Since computing β (V ) exactly appears expensive, we now turn our attention to approximation
algorithms. In particular, given a voter setV in Rd and an ε ∈ (0, 1/2], we wish to compute a point
p such that β (p,V ) � (1 − ε ) · β (V ).

Our approximation algorithm works in two steps. In the first step, we compute a set P of
O (n/ε2d−1 log(1/ε )) candidates. P may not contain the true optimal point p, but we will ensure
that P contains a point p such that β (p,V ) � (1 − ε/2) · β (V ). In the second step, we approximate
β (p ′,V ) for each p ′ ∈ P , to find an approximately best candidate.

Constructing the candidate set P . To construct the candidate set P , we will generate, for each
voter vi ∈ V , a set Pi of O (1/ε2d−1 log(1/ε )) candidate points. Our final set P of candidates will be
the union of the sets P1, . . . , Pn . Next, we describe how to construct Pi .

PartitionRd into a set C ofO (1/εd−1) simplicial cones with apex atvi and opening angle ε/(2
√
d ),

so that for every pair of points u and u ′ in the same cone we have ∠uviu
′ � ε/(2

√
d ). We assume

for simplicity (and can easily guarantee) that no voter in V lies on the boundary of any of the
cones, except for vi itself and any voters coinciding with vi . Let C (vi ) denote the set of all cones
in C whose interior contains at least one voter. For each cone C ∈ C (vi ), we generate a candidate
set Gi (C ) as explained next, and then we set Pi �

⋃
C ∈C (vi ) Gi (C ) ∪ {vi }.

Let dC be the distance fromvi to the nearest other voter (not coinciding withvi ) inC . Let Ai (C )
be the closed spherical shell defined by the two spheres of radii ε ·dC and dC/ε aroundvi , as shown
in Figure 8(i). The open ball of radius ε ·dC is denoted byAin

i (C ), and the complement of the closed
ball of radius dC/ε is denoted by Aout

i (C ). Let Gi (C ) be the vertices in an exponential grid defined
by a collection of spheres centered at vi , and the extreme rays of the cones in C; see Figure 8(ii).
The spheres have radii (1 + ε/4)i · ε · dC , for 0 � i � log(1+ε/4) (1/ε

2) = O ((1/ε ) log(1/ε )). Observe

5Once again, the projection to the β coordinate is particularly easy to obtain if, when constructing vd(A′), we set the

coordinate corresponding to β first.
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Fig. 8. (i) The closed spherical shell Ai (C ) defined by the two balls of radii ε ·dC and dC/ε aroundvi . (ii) The

exponential gridGi (C ). The grid is defined by a collection of spheres centered atvi , plus extreme rays of the

cones with apex atvi . The spheres have radii (1+ε/4)i ·ε ·dC for 0 � i � log(1+ε/4) (1/ε2) = O ((1/ε ) log(1/ε )),

and the interior angle of a cone is ε/2
√
d .

that Gi (C ) contains not only points in C , but in the entire spherical shell Ai (C ). The set Gi (C )
consists of O (1/εd log(1/ε )) points, and it has the following property:

Let p be any point in the spherical shell Ai (C ), and let p ′ be a corner of the grid cell
containing p and nearest to p. Then, |p ′p | � ε · |pvi |. (∗)

To prove the property, let q be the point on the line containing pvi , on the same side ofvi as p, such
that |qvi | = |p ′vi |. From the construction of the exponential grid, we have |pq | � ε

4 · |pvi |. Since
p ′ and q lie in the same cone ∠p ′viq � ε

2
√

d
and, consequently, |p ′q | � ε

2 · |qvi | � (1+ ε
4 ) · ε

2 · |pvi |.
The property is now immediate, since |pp ′ | � |pq | + |qp ′| < ε · |pvi |.

As mentioned above, Pi �
⋃

C ∈C (vi ) Gi (C ) ∪ {vi }, and the final candidate set P is defined as

P �
⋃

vi ∈V Pi . Computing the sets Pi is easy: for each of the O (1/εd−1) cones C ∈ C (vi ), de-
termine the nearest neighbor of vi in C in O (n) time by brute force, and then generate Gi (C ) in

O ((1/ε (d−1) ) log(1/ε )) time. (It is not hard to speed up the nearest-neighbor computation using
appropriate data structures, but this will not improve the final running time in Theorem 3.4.) We
obtain the following lemma.

Lemma 3.1. The candidate set P has sizeO (n/ε2d−1 log(1/ε )) and can be constructed inO (n2/εd−1+

n/ε2d−1 log(1/ε )) time.

The next lemma is crucial to show that P is a good candidate set.

Lemma 3.2. For any point p ∈ Rd , there exists a point p ′ ∈ P with the following property: for any

voter vj ∈ V , we have that |p ′vj | � (1 + 2ε ) · |pvj |.

Proof. Let vi be a voter nearest to p. We will argue that the set Pi contains a point p ′ with the
desired property. We distinguish three cases.

Case I: There is a coneC ∈ C (vi ) such that p lies in the spherical shell Ai (C ). In this case, we pick p ′

to be a point of Gi (C ) nearest to p, that is, p ′ is a corner nearest to p of the grid cell containing p.
By property (∗), we have

|p ′vj | � |p ′p | + |pvj | � ε · |pvi | + |pvj | � (1 + ε ) · |pvj |,
where the last inequality follows from the fact that vi is a voter nearest to p.
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Fig. 9. Illustration for Case III.

Case II: Point p lies in Ain
i (C ) for all C ∈ C (vi ). In this case, we pick p ′ � vi . Clearly |p ′vj | = 0 �

(1 + ε ) · |pvj | for j = i . For j � i , we argue as follows. Let C ∈ C (vi ) be the cone containing vj .

Since we are in Case II, we know that p ∈ Ain
i (C ), and so

|p ′vj | � |p ′p | + |pvj | � εdC + |pvj | � ε |p ′vj | + |pvj |. (1)

Moreover, we have

|pvj | � |p ′vj | − |pp ′| � |p ′vj | − εdC � |p ′vj |/2, (2)

where the last step uses that ε � 1/2 and dC � |p ′vj |. Combining (1) and (2), we obtain |p ′vj | �
(1 + 2ε ) · |pvj |.

Case III: Cases I and II do not apply. In this case there is at least one coneC such that p ∈ Aout
i (C ). Of

all such cones, let C∗ be the one whose associated distance dC∗ is maximized. Let p ′′ be the point
on the segment pvi at distance dC/ε fromvi . Without loss of generality, we will assume that p and
vi only differ in the xd coordinate; see Figure 9(i).

We will prove that the point p ′ of Gi (C∗) nearest to p ′′ (refer to Figure 9(i)) has the desired
property. Consider a voter vj . We distinguish three cases.

• When i = j, then we have

|p ′vi | � |p ′p ′′| + |p ′′vi | � (1 + ε ) |p ′′vi | � (1 + ε ) |pvi |,

where the second inequality follows from (∗).
• When vj lies in a cone C such that p ∈ Ain

i (C ), then we can use the same argument as in
Case II to show that |p ′vj | � (1 + 2ε ) · |pvj |.
• In the remaining casevj lies in a coneC such that p ∈ Aout

i (C ). Letvk be a voter inC nearest
to vi . Since |vivk | = dC , |pvi | � dC/ε , and |pvk | � |pvi |, we can deduce that ∠pvivk �
π/2−ε/2, as illustrated in Figure 9(ii). Furthermore, sincevk andvj belong to the same cone

C the angle ∠vkvivj is bounded by ε/2
√
d � ε/2 according to the construction. Putting the

two angle bounds together, we conclude that ∠pvivj � π
2 − ε . Now consider the triangle

defined by p,vi and vj . From the Law of Sines, we obtain

|vivj |
sin ∠vipvj

=
|pvj |

sin ∠pvivj
, or |vivj | = |pvj | ·

sin ∠vipvj

sin ∠pvivj
�
|pvj |
cos ε

� (1 + ε ) · |pvj |,
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for ε < 1/2. Since p ′′ lies on the line between p and vi , we have

|p ′′vj | � max{|pvj |, |vivj |} � (1 + ε ) · |pvj |.

Finally, we get the claimed bound by noting that |p ′p ′′ | � ε · |p ′vi | (from (*)),

|p ′vj | � |p ′p ′′| + |p ′′vj | � ε · |p ′vi | + (1 + ε ) · |pvj | � (1 + 2ε ) · |pvj |. �

An approximate decision algorithm. Given a point p, two positive real values ε and β and the
voter multiset V , we say that an algorithm Alg is an ε-approximate decision algorithm if

• Alg answers yes if p is a β-plurality point, and
• Alg answers no if p is not a (1 − ε )β-plurality point.

In the remaining cases, where (1 − ε )β < β (p,V ) < β , Alg may answer yes or no.

Next, we propose an ε-approximate decision algorithm Alg. The algorithm will use the so-called
Balanced Box-Decomposition (BBD) tree introduced by Arya and Mount [1]. BBD trees are
hierarchical space-decomposition trees such that each node μ represents a region in Rd , denoted
by region(μ ), which is ad-dimensional axis-aligned box or the difference of two such boxes. A BBD
tree for a set P of n points in Rd can be built inO (n logn) time usingO (n) space. It supports (1+ε )-
approximate range counting queries with convex query ranges in O (logn + ε1−d ) time [1]. In our
algorithm all query ranges will be balls, hence a (1 + ε )-approximate range-counting query for a
d-dimensional ball s (v, r ) with center atv and radius r returns an integer I such that |P ∩s (v, r ) | �
I � |P ∩ s (v, (1 + ε )r ) |.

Our ε-approximate decision algorithm Alg works as follows.

(1) Construct a setQ ofO (n/εd−1) potential candidates competing againstp, as follows. LetQ (v )
be a set ofO (1/εd−1) points distributed uniformly on the boundary of the ball s (v, (1− ε/2) ·
β · |pv |), such that the distance between any point on the boundary and its nearest neighbor
in Q (v ) is at most ε

4
√

d
· |pv | � ε

4 · β · |pv |, as illustrated in Figure 10. In the last step, we use

the fact that β � 1/
√
d , according to Lemma 2.3. Set Q � Q (v1) ∪ · · · ∪Q (vn ).

(2) Build a BBD tree T on Q . Add a counter c (μ ) to each node μ in T , initialized to zero.
(3) For each voter v ∈ V perform a (1 + ε/4)-approximate range-counting query with s (v, (1 −

ε/4) · β · |pv |) in T . We modify the search in T slightly as follows. If an internal node μ ∈ T
is visited and expanded during the search, then for every non-expanded child μ ′ of μ with
region(μ ′) entirely contained in s (v, (1+ε/4) (1−ε/4) ·β · |pv |)) ⊂ s (v, β · |pv |), we increment
the counter c (μ ′). Similarly, if a leaf is visited, then the counter is incremented if the point
stored in the leaf lies within s (v, (1 − ε/4) · β · |pv |).

(4) For a leaf μ in T , let M (μ ) be the set of nodes in T on the path from the root to μ, and let
C (μ ) =

∑
μ′ ∈M (μ ) c (μ ′). Compute C (μ ) for all leaves μ in T by a pre-order traversal of T ,

and set C � maxμ C (μ ).
(5) If C � n/2, then return yes, otherwise no.

To prove correctness of the algorithm, we define, for a given γ > 0, a fuzzy ball sγ (v, r ) to be
any set such that s (v, r ) ⊆ sγ (v, r ) ⊆ s (v, (1 + γ )r ). Thus, if q ∈ s (v, r ), then q ∈ sγ (v, r ), if
q � s (v, (1 + γ )r ), then q � sγ (v, r ), and otherwise q may or may not be inside in sγ (v, r ). We now
observe that for each votervi ∈ V there is a fuzzy ball sε/4 (vi , (1−ε/4) ·β · |pvi |) such that the value
C (μ ) for a leaf μ storing a point q is the depth of q in the arrangement, denoted byAε/4 (V , 1−ε/4),
of the fuzzy balls sε/4 (v1, (1 − ε/4) · β · |pv1 |), . . . , sε/4 (vn , (1 − ε/4) · β · |pv |).

Lemma 3.3. Algorithm Alg ε-approximately decides if p is a β-plurality point in time

O ( n
εd−1 log n

εd−1 ).
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Fig. 10. Illustrating the three balls of different radius used in the correctness proof of Lemma 3.3.

Proof. We start by analyzing the running time of the algorithm. Constructing the set of
points in Q can be done in time linear in |Q |, while building the BBD-tree T requires
O ((n/εd−1) log(n/εd−1)) time [1, Lemma 1]. Next, the algorithm performs n approximate range
queries, each requiring O (log n

εd−1 +
1

εd−1 ) time [1, Theorem 2]). Note that the small modification

we made to the query algorithm to update the counters does not increase the asymptotic running
time. Finally, the traversal of T to computeC takes time linear in the size of T , which isO (n/εd−1).

It remains to prove that Alg is correct.

• If p is a plurality point, then there can be no point q ∈ Rd having depth greater than n/2 in
the arrangement of the balls s (v1, β · |pv |), . . . , s (vn , β · |pv |). Since sε/4 (v, (1−ε/4) ·β · |pv |) ⊂
s (v, β · |pv |), for all v , Alg could not have found a point with depth greater than n/2, and
hence, must return yes.
• If p is not a (1−ε )β-plurality point, then there exists a point q with depth greater than n/2 in

the arrangementA (V , 1−ε ) of the balls s (v1, (1−ε ) ·β · |pv |), . . . , s (vn , (1−ε ) ·β · |pv |). Let q′

be the point inQ nearest to q. We claim that for any ball s (v, (1− ε ) · β · |pv |) that contains q,
its expanded version s (v, (1 − ε/4) · β · |pv |) contains q′. Of course, if s (v, (1 − ε ) · β · |pv |)
containsq′, then we are done. Otherwise, let x be the point whereqq′ intersects the boundary
of s (v, (1 − ε ) · β · |pv |); see Figure 10. Note that q′ must also be the point in Q nearest to x .
Let x ′ be the point on the boundary of s (v, (1 − ε/2) · β · |pv |) nearest to x , and let q′′ be a
point in Q on the boundary of s (v, (1 − ε/2) · β · |pv |). By construction, we have

|xx ′| = ε

4
· β · |pv | and |x ′q′′| � ε

4
· β · |pv |,

and, by the triangle inequality, we obtain

|xq′| � |xq′′| � |xx ′| + |x ′q′′ | � ε

2
· β · |pv |.

This implies that s (v, (1 − ε/4) · β · |pv |) ⊆ sε/4 (v, (1 − ε/4) · β · |pv |) must contain q′.
Consequently, if q has depth at least n/2 in A (V , 1 − ε ) then q′ has depth at least n/2 in the
arrangement Aε/4 (V , (1 − ε/4)), and hence, the algorithm will return no. �
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The algorithm. Now, we have the tools required to approximate β (V ). First, generate the set P
of O ( n

ε2d−1 log 1
ε

) candidate points (Lemma 3.1). For each candidate point p ∈ P , perform a binary

search for an approximate β∗ (p) in the interval [1/
√
d, 1], until the remaining search interval has

length at most ε/2 · 1/
√
d . For each p and β∗, (ε/2)-approximately decide if p is a β∗-plurality point

in V using Alg (Lemma 3.3). Return the largest β∗ and the corresponding point p on which the
algorithm says yes.

Theorem 3.4. Given a multisetV of voters inRd , a ((1−ε ) ·β (V ))-plurality point can be computed

in O ( n2

ε3d−2 · log n
εd−1 · log2 1

ε
).

4 CONCLUDING REMARKS

We proved that any finite set of voters in Rd admits a β-plurality point for β = 1/
√
d and that

some sets require β =
√

3/2. For d = 2, we managed to close the gap by showing that β∗2 =
√

3/2.
One of the main open problems is to close the gap for d > 2. Recall that recently the bounds for
d � 4 have been improved—see footnote 3 in the Introduction—but there is still a small gap left
between the upper and lower bound. We also presented an approximation algorithm that finds, for
a givenV , a (1 − ε ) · β (V )-plurality point. The algorithm runs in O∗ (n2/ε3d−2) time. Another open
problem is whether a subquadratic approximation algorithm exists, and to prove lower bounds
on the time to compute β (V ) or β (p,V ) exactly. Finally, it will be interesting to study β-plurality
points in other metrics, for instance in the personalized L1-metric [4] for d > 2 or in the L1-metric
for d � 2.

APPENDIX

A A PRIMER ON VERTICAL DECOMPOSITIONS

We follow the notation and terminology of References [7, 26]. A vertical decomposition is, roughly,
any partition of space into finitely many so-called cylindrical cells (see below for a definition);
it need not be a topological complex. A vertical decomposition of an arrangement is a refinement
of an arrangement into cylindrical cells,6 where refinement means that each cylindrical cell is a
subset of a face in the arrangement. We define cylindrical cells recursively. To simplify the notation,
any inequality limit in our definitions can be omitted, i.e., replaced by a ±∞, as appropriate. For
example, when we talk about an open interval (a,b), i.e., the set of numbers x with a < x < b, we
include the possibilities of the unbounded intervals (−∞,b), (a,+∞), and (−∞,+∞).

A one-dimensional cylindrical cell is either a singleton or an open interval (a,b). So a one-
dimensional vertical decomposition is a decomposition of R into a finite number of singletons
and intervals.

We now define a cylindrical cell τ in R2. Its projection τ ′ to the x1-axis is a cylindrical cell in R.
The cell τ must have one of the following two forms:

• {(x1, f2 (x1)) | x1 ∈ τ ′}, where f2 : τ ′ → R is a continuous total function, or
• {(x1,x2) | x1 ∈ τ ′, f2 (x1) < x2 < д2 (x1)}, where f2,д2 : τ ′ → R are two continuous total

functions, with the property that f2 (x1) < д2 (x1) for all x1 ∈ τ ′.
If τ ′ is a singleton, then the former defines a vertex and the latter an (open) vertical segment.
If τ ′ is an interval, then the former defines an open monotone arc (a portion of the graph of the
function f2) and the latter an open pseudo-trapezoid delimited by two (possibly degenerate) vertical

6The specific decomposition depends on the algorithm used to construct it and on the ordering of the coordinates. In the

computational- and combinatorial-geometry literature, one often speaks of “the vertical decomposition of the arrangement”

in the sense of “the vertical decomposition obtained by applying the algorithm, say, of Chazelle et al. [7] or of Koltun [21],

to the given arrangement.”
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segments on left and right and by the two disjoint function graphs below and above. (Recall that
any of the limits may be omitted. For example,R2 is a legal cell in a trivial two-dimensional vertical
decomposition consisting only of itself, where all the limits have been “replaced by infinities.”)

A cylindrical cell τ ⊂ Rd is defined recursively. Its projection τ ′ is a cylindrical cell in Rd−1.
Moreover, τ must have one of the following forms:

• {(x ′, fd (x1, . . . ,xd−1)) | x ′ ∈ τ ′}, where fd : τ ′ → R is a continuous total function, or
• {(x ′,xd ) | x ′ ∈ τ ′, fd (x ′) < xd < дd (x ′)}, where fd ,дd : τ ′ → R are two continuous total

functions, with the property that fd (x ′) < дd (x ′) for all x ′ ∈ τ ′.
A cylindrical cell is fully specified by giving its dimension and the sequence of functions fi or

pairs of functions fi ,дi , as appropriate. In particular, the projection of the cell in a k-dimensional
decomposition to its first k ′ < k coordinates can be obtained by retaining the inequalities in the
first k ′ coordinates and discarding the remaining ones.
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