
Mitigating Routing Misbehavior in Mobile Ad Hoc Networks

Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker
Department of Computer Science

Stanford University
Stanford, CA 94305 U.S.A

{smarti,giuli,laik,mgbaker}@stanford.edu

ABSTRACT
This paper describes two techniques that improve through-
put in an ad hoc network in the presence of nodes that agree
to forward packets but fail to do so. To mitigate this prob-
lem, we propose categorizing nodes based upon their dynam-
ically measured behavior. We use a watchdog that identifies
misbehaving nodes and a patl~rater that helps routing pro-
tocols avoid these nodes. Through simulation we evaluate
watchdog and pathrater using packet throughput, percent-
age of overhead (routing) transmissions, and the accuracy of
misbehaving node detection. When used together in a net-
work with moderate mobility, the two techniques increase
throughput by 17% in the presence of 40% misbehaving
nodes, while increasing the percentage of overhead transmis-
sions from the standard routing protocol's 9% to 17%. Dur-
ing extreme mobility, watchdog and pathrater can increase
network throughput by 27%, while increasing the overhead
transmissions from the standard routing protocol's 12% to
24%.

1. INTRODUCTION
There will be tremendous growth over the next decade in the
use of wireless communication, from satellite transmission
into many homes to wireless personal area networks. As the
cost of wireless access drops, wireless communications could
replace wired in many settings. One advantage of wireless
is the ability to t ransmit data among users in a common
area while remaining mobile. However, the distance between
participants is limited by the range of transmitters or their
proximity to wireless access points. Ad hoc wireless networks
mitigate this problem by allowing out of range nodes to route
data through intermediate nodes.

Permission to make digital o1" hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit o1" commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servens or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBICOM 2000 Boston MA USA
Copyright ACM 2000 1-58113-197-6/00/08...$5.00

Ad hoc networks have a wide array of military and commer-
cial applications. Ad hoc networks are ideal in situations
where installing an infrastructure is not possible because the
infrastructure is too expensive or too vulnerable, the network
is too transient, or the infrastructure was destroyed. For ex-
ample, nodes may be spread over too large an area for one
base station and a second base station may be too expensive.
An example of a vulnerable infrastructure is a military base
station on a battlefield. Networks for wilderness expeditions
and conferences may be transient if they exist for only a
short period of time before dispersing or moving. Finally, if
network infrastructure has been destroyed due to a disaster,
an ad hoc wireless network could be used to coordinate relief
efforts. Since DARPA's PRNET [13], the area of routing in
ad hoc networks has been an open research topic.

Ad hoc networks maximize total network throughput by us-
ing all available nodes for routing and forwarding. There-
fore, the more nodes that participate in packet routing, the
greater the aggregate bandwidth, the shorter the possible
routing paths, and the smaller the possibility of a network
partition. However, a node may misbehave by agreeing to
forward packets and then failing to do so, because it is over-
loaded, selfish, malicious, or broken. An overloaded node
lacks the CPU cycles, buffer space or available network band-
width to forward packets. A selfish node is unwilling to
spend battery life, CPU cycles, or available network band-
width to forward packets not of direct interest to it, even
though it expects others to forward packets on its behalf. A
malicious node launches a denial of service attack by drop-
ping packets. A broken node might have a software fault
that prevents it from forwarding packets.

Misbehaving nodes can be a significant problem. Our sim-
ulations show that if 10%-40% of the nodes in the network
misbehave, then the average throughput degrades by 16%-
32%. However, the worst case throughput experienced by
any one node may be worse than the average, because nodes
that try to route through a misbehaving node experience
high loss while other nodes experience no loss. Thus, even a
few misbehaving nodes can have a severe impact.

255

http://crossmark.crossref.org/dialog/?doi=10.1145%2F345910.345955&domain=pdf&date_stamp=2000-08-01

One solution to misbehaving nodes is to forward packets only
through nodes tha t share an a priori t rust relationship. A
priori t rust relationships are based on pre-existing relation-
ships built outside of the context of the network (e.g. friend-
ships, companies, and armies). The problems with relying
on a priori t rus t -based forwarding are tha t 1) it requires
key distribution, 2) t rusted nodes may still be overloaded,
3) t rusted nodes may still be broken, 4) t rusted nodes may be
compromised, and 5) untrusted nodes may be well behaved.
I t may not be possible to exchange keys used to authen-
t icate t rusted nodes outside of the ad hoc network before
the conference or disaster tha t requires an ad hoc network.
If keys are not dis t r ibuted ahead of time, then enforcing a
priori t rus t -based forwarding requires a secure channel for
key exchanges within the ad hoc network for authentication.
Even if keys can be exchanged, a t rusted node's security
may be compromised, or a t rusted node may be overloaded
or broken as mentioned above. Finally, although relying on a
priori t rus t -based forwarding reduces the number of misbe-
having nodes, it also excludes untrusted well behaved nodes
whose presence could improve ad hoc network performance.

Another solution to misbehaving nodes is to a t tempt to
forstall or isolate these nodes from within the actual routing
protocol for the network. However, this would add signifi-
cant complexity to protocols whose behavior must be very
well defined. In fact, current versions of mature ad hoc rout-
ing algorithms, including DSR [12], AODV [7], TORA [5l,
DSDV [19], STAR [9], and others [16] only detect if the
receiver's network interface is accepting packets, but they
otherwise assume tha t routing nodes do not misbehave. Al-
though trust ing all nodes to be well behaved increases the
number of nodes available for routing, it also admits misbe-
having nodes to the network.

In this paper we explore a different approach, and install ex-
t r a facilities in the network to to detect and mitigate rout-
ing misbehavior. In this way, we can make only minimal
changes to the underlying routing algorithm. We introduce
two extensions to the Dynamic Source Routing algorithm
(DSR) [12] to mit igate the effects of routing misbehavior:
the watchdog and the pathratcr. The watchdog identifies mis-
behaving nodes, while the pa thra te r avoids routing packets
through these nodes. When a node forwards a packet, the
node's watchdog verifies tha t the next node in the path also
forwards the packet. The watchdog does this by listening
promiscuously to the next node's transmissions. If the next
node does not forward the packet, then it is misbehaving.
The pa thra te r uses this knowledge of misbehaving nodes to
choose the network pa th tha t is most likely to deliver pack-
ets.

Using the ns network simulator [8], we show that the two
techniques increase throughput by 17% in the presence of
up to 40% misbehaving nodes during moderate mobility,
while increasing the rat io of overhead transmissions to da ta
transmissions from the s tandard routing protocol 's 9% to

17%. During extreme mobility, watchdog and pa thra te r can
increase network throughput by 27%, while increasing the
percentage of overhead transmissions from 12% to 24%. We
describe mechanisms to reduce this overhead in Section 6.

The remainder of this paper is organized as follows. Section 2
specifies our assumptions about ad hoc networks and gives
background information about DSR. Section 3 describes the
watchdog and pa thra te r extensions. Section 4 describes the
methodology we use in our simulations and the metrics we
use to evaluate the results. We present these results in Sec-
tion 5. Sections 6 and 7 present related work and future
work, respectively. Finally, Section 8 concludes the paper.

2. ASSUMPTIONS AND BACKGROUND
This section outlines the assumptions we make regarding
the properties of the physical and network layers of ad hoc
networks and includes a brief description of DSR, the routing
protocol we use.

2.1 Definitions
We use the term neighbor to refer to a node tha t is within
wireless transmission range of another node. Likewise, neigh-
borhood refers to all the nodes tha t are within wireless trans-
mission range of a node.

2.2 Physical Layer Characteristics
Throughout this paper we assume bidirectional communi-
cation symmetry on every link between nodes. This means
that if a node B is capable of receiving a message from a
node A at t ime t, then node A could instead have received
a message from node B at t ime L This assumption is often
valid, since many wireless MAC layer protocols, including
IEEE 802.11 and MACAW [2], require bidirectional commu-
nication for reliable transmission. The watchdog mechanism
relies on bidirectional links.

In addition, we assume wireless interfaces tha t suppor t promis-
cuous mode operation. Promiscuous mode means tha t if a
node A is within range of a node B, it can overhear com-
munications to and from B even if those communications
do not directly involve A. Lucent Technologies' WaveLAN
interfaces have this capability. While promiscuous mode is
not appropriate for all ad hoc network scenarios (particu-
larly some mil i tary scenarios) it is useful in other scenarios
for improving routing protocol performance [12].

2.3 Dynamic Source Routing (DSR)
DSR is an on-demand, source routing protocol. Every packet
has a route path consisting of the addresses of nodes tha t
have agreed to par t ic ipate in routing the packet. The pro-
tocol is referred to as "on-demand" because route paths are
discovered at the t ime a source sends a packet to a destina-
tion for which the source has no path.

We divide DSR into two main functions: route discovery

256

0

(c)

O

0 0
@

(b)

O
(a)

0

F i g u r e 1: E x a m p l e of a ROUTE REQUEST. (a) N o d e
S s e n d s o u t a ROUTE REQUEST packe t to f i n d a p a t h
to n o d e D. (b) T h e ROUTE REQUEST is f o r w a r d e d
t h r o u g h o u t t h e n e t w o r k , each n o d e a d d i n g i ts ad-
dres s to t h e packe t . (c) D t h e n s ends back a ROUTE
REPLY to S u s i n g t h e p a t h c o n t a i n e d in one of t he
ROUTE REQUEST packe t t h a t r e a c h e d it . T h e th ick
l ines r e p r e s e n t t h e p a t h t h e ROUTE REPLY takes back
to t h e s ende r .

® ®

F i g u r e 2: W h e n B fo rwards a packe t f r o m S t o w a r d
D t h r o u g h C, A can o v e r h e a r B ' s t r a n s m i s s i o n a n d
can v e r i f y t h a t B has a t t e m p t e d to pass t h e packe t
to C. T h e sol id l ine r e p r e s e n t s t h e i n t e n d e d d i r e c t i o n
of t he packe t s en t by B to C, whi le t h e d a s h e d l ine
i nd i ca t e s t h a t A is w i t h i n t r a n s m i s s i o n r a n g e of B
a n d can o v e r h e a r t he packe t t r a n s f e r .

and route maintenance. Figure 1 illustrates route discovery.
Node S (the source) wishes to communicate with node D (the
destination) but does not know any paths to D. S initiates a
route discovery by broadcasting a ROUTE REQUEST packet to
its neighbors that contains the destination address D. The
neighbors in turn append their own addresses to the ROUTE
REQUEST packet and rebroadcast it. This process continues
until a ROUTE REQUEST packet reaches D. D must now send
back a route reply packet to inform S of the discovered route.
Since the ROUTE REQUEST packet that reaches D contains a
path from S to D, D may choose to use the reverse path to
send back the reply (bidirectional links are required here)
or to initiate a new route discovery back to S. Since there
can be many routes from a source to a destination, a source
may receive multiple route replies from a destination. DSR
caches these routes in a route cache for future use.

The second main function in DSR is route maintenance,
which handles link breaks. A link break occurs when two
nodes on a path are no longer in transmission range. If an
intermediate node detects a link break when forwarding a
packet to the next node in the route path, it sends back a
message to the source notifying it of that link break. The
source must try another path or do a route discovery if it
does not have another path.

3. W A T C H D O G A N D P A T H R A T E R
In this section we present the watchdog and the pathrater
- - tools for detecting and mitigating routing misbehavior.
We also describe the limitations of these methods. Though
we implement these tools on top of DSR, some of our con-
cepts can be generalized to other source routing protocols.
We note those concepts that can be generalized during our
descriptions of the techniques.

3 . 1 W a t c h d o g
The watchdog method detects misbehaving nodes. Figure 2
illustrates how the watchdog works. Suppose there exists
a path from node S to D through intermediate nodes A, B,
and C. Node A cannot transmit all the way to node C, but it
can listen in on node B's traffic. Thus, when A transmits a
packet for B to forward to C, A can often tell if B transmits
the packet. If encryption is not performed separately for
each link, which can be expensive, then A can also tell if B
has tampered with the payload or the header.

2 5 7

® ®
F i g u r e 3: N o d e A d o e s no t h e a r B f o r w a r d p a c k e t
1 t o C~ b e c a u s e B ' s t r a n s m i s s i o n co l l ides at A w i t h
p a c k e t 2 f r o m t h e s o u r c e S.

l ~ l ~ , Z 2 ® @-, ®

F i g u r e 4: N o d e A b e l i e v e s t h a t B has f o r w a r d e d
p a c k e t 1 o n t o C, t h o u g h C n e v e r r e c e i v e d t h e p a c k e t
d u e to a co l l i s ion w i t h p a c k e t 2.

We implement the watchdog by maintaining a buffer of re-
cently sent packets and comparing each overheard packet
with the packet in the buffer to see if there is a match. If
so, the packet in the buffer is removed and forgotten by the
watchdog, since it has been forwarded on. If a packet has
remained in the buffer for longer than a certain t imeout, the
watchdog increments a failure tal ly for the node responsible
for forwarding on the packet. If the tally exceeds a certain
threshold bandwidth, it determines tha t the node is misbe-
having and sends a message to the source notifying it of the
misbehaving node.

The watchdog technique has advantages and weaknesses.
DSR with the watchdog has the advantage that it can de-
tect misbehavior at the forwarding level and not just the link
level. Watchdog's weaknesses are tha t it might not detect a
misbehaving node in the presence of 1) ambiguous collisions,
2) receiver collisions, 3) l imited transmission power, 4) false
misbehavior, 5) collusion, and 6) part ial dropping.

The ambiguous collision problem prevents A from overhear-
ing transmissions from B. As Figure 3 illustrates, a packet
collision can occur at A while it is listening for B to forward
on a packet. A does not know if the collision was caused
by B forwarding on a packet as it should or if B never for-
warded the packet and the collision was caused by other
nodes in A 's neighborhood. Because of this uncertainty, A
should not immediate ly accuse B of misbehaving, but should
instead continue to watch B over a period of time. If A re-
peatedly fails to detect B forwarding on packets, then A can
assume tha t B is misbehaving.

In the receiver collision problem, node A can only tell whether
B sends the packet to C, bu t it cannot tell if C receives it
(Figure 4). If a collision occurs at C when B first forwards
the packet, A only sees B forwarding the packet and as-
sumes tha t C successfully receives it. Thus, B could skip re-
t ransmit t ing the packet and leave A none the wiser. B could
also purposefully cause the t ransmi t ted packet to collide at
C by waiting until C is t ransmit t ing and then forwarding on
the packet. In the first case, a node could be selfish and not
want to waste power with retransmissions. In the la t ter case,

the only reason B would have for taking the actions tha t it
does is because it is malicious. B wastes ba t te ry power and
CPU time, so it is not selfish. An overloaded node would not
engage in this behavior either, since it wastes badly needed
CPU time and bandwidth. Thus, this second case should be
a rare occurrence.

Another problem can occur when nodes falsely report other
nodes as misbehaving. A malicious node could a t t empt to
part i t ion the network by claiming tha t some nodes following
it in the pa th are misbehaving. For instance, node A could
report tha t node B is not forwarding packets when in fact it
is. This will cause S to mark B as misbehaving when A is
the culprit. This behavior, however, will be detected. Since
A is passing messages on to B (as verified by S), then any
acknowledgements from D to S will go through A to S, and S
will wonder why it receives replies from D when supposedly
B dropped packets in the forward direction. In addition, if
A drops acknowledgements to hide them from S, then node
B will detect this misbehavior and will repor t it to D.

Another problem is tha t a misbehaving node tha t can con-
trol its transmission power can circumvent the watchdog. A
node could limit its transmission power such tha t the signal
is strong enough to be overheard by the previous node but
too weak to be received by the t rue recipient. This would
require tha t the misbehaving node know the transmission
power required to reach each of its neighboring nodes. Only
a node with malicious intent would behave in this manner
- - selfish nodes have nothing to gain since ba t te ry power is
wasted and overloaded nodes would not relieve any conges-
tion by doing this.

Multiple nodes in collusion can mount a more sophist icated
attack. For example, B and C from Figure 2 could collude
to cause mischief. In this case, B forwards a packet to C
but does not report to A when C drops the packet. Be-
cause of this l imitation, it may be necessary to disallow two
consecutive untrusted nodes in a rout ing path. In this pa-
per, we only deal with the possibility of nodes acting alone.
The harder problem of colluding nodes is being s tudied by
Johnson at CMU [13].

Finally, a node can circumvent the watchdog by dropping
packets at a lower rate than the watchdog's configured min-
imum misbehavior threshold. Although the watchdog will
not detect this node as misbehaving, this node is forced to
forward at the threshold bandwidth. In this way the watch-
dog serves to enforce this minimum bandwidth.

The watchdog mechanism could be used to some degree to
detect replay at tacks but would require maintaining a great
deal of s ta te information at each node as it monitors its
neighbors to ensure tha t they do not re t ransmit a packet tha t
they have already forwarded. Also, if a collision has taken
place at the receiving node, it would be neccesary and correct
for a node to re t ransmit a packet, which may appear as a

258

replay a t tack to the node acting as its watchdog. Therefore,
detecting replay at tacks would neither be an efficient nor an
effective use of the watchdog mechanism.

For the watchdog to work properly, it must know where a
packet should be in two hops. In our implementation, the
watchdog has this information because DSR is a source rout-
ing protocol. If the watchdog does not have this information
(for instance if it were implemented on top of a hop-by-hop
routing protocol), then a malicious or broken node could
broadcast the packet to a non-existant node and the watch-
dog would have no way of knowing. Because of this limi-
tation, the watchdog works best on top of a source routing
protocol.

3.2 Pathrater
The pathrater , run by each node in the network, combines
knowledge of misbehaving nodes with link reliability da ta to
pick the route most likely to be reliable. Each node main-
tains a rat ing for every other node it knows about in the
network. I t calculates a pa th metric by averaging the node
ratings in the path. We choose this metric because it gives
a comparison of the overall reliability of different paths and
allows pa thra te r to emulate the shortest length pa th algo-
r i thm when no reliabili ty information has been collected, as
explained below. If there are multiple paths to the same
destination, we choose the pa th with the highest metric.
Note that this differs from s tandard DSR, which chooses
the shortest pa th in the route cache. Further note that since
the pa thra te r depends on knowing the exact path a packet
has traversed, it must be implemented on top of a source
routing protocol.

The pa thra ter assigns ratings to nodes according to the fol-
lowing algorithm. When a node in the network becomes
known to the pa thra te r (through route discovery), the path-
rater assigns it a "neutral" rat ing of 0.5. A node always rates
itself with a 1.0. This ensures that when calculating path
rates, if all other nodes are neutral nodes (rather than sus-
pected misbehaving nodes), the pa thra te r picks the shortest
length path. The pa thra te r increments the ratings of nodes
on all actively used paths by 0.01 at periodic intervals of
200 ms. An actively used pa th is one on which the node
has sent a packet within the previous rate increment inter-
val. The maximum value a neutral node can at ta in is 0.8.
We decrement a node 's rat ing by 0.05 when we detect a link
break during packet forwarding and the node becomes un-
reachable. The lower bound rat ing of a "neutral" node is 0.0.
The pa thra te r does not modify the ratings of nodes tha t are
not currently in active use.

We assign a special highly negative value, - 100 in the simu-
lations, to nodes suspected of misbehaving by the watchdog
mechanism. When the pa thra te r calculates the path met-
ric, negative pa th values indicate the existence of one or
more suspected misbehaving nodes in the path. If a node is
marked as misbehaving due to a temporary malfunction or

incorrect accusation it would be preferrable if it were not per-
manently excluded from routing. Therefore nodes tha t have
negative ratings should have their ratings slowly increased
or set back to a non-negative value after a long t imeout.
This is not implemented in our simulations since the cur-
rent simulation period is too short to reset a misbehaving
node's rating. Section 5.3 discusses the effect on throughput
of accusing well-behaving nodes.

When the pa thra ter learns tha t a node on a pa th tha t is in
use misbehaves, and it cannot find a pa th free of misbehaving
nodes, it sends out a ROUTE REQUEST if we have enabled an
extension we call Send Route Request (SRR).

4. METHODOLOGY
In this section we describe our simulator, simulation param-
eters, and measured metrics.

We use a version of Berkeley's Network Simulator (ns) [8]
that includes wireless extensions made by the CMU Monarch
project. We also use a visualization tool from CMU called
ad-hockey [25] to view the results of our simulations and
detect overall t rends in the network. To execute the simu-
lations, we use PCs (450 or 500 MHz Pent ium IIIs with at
least 128 MB of RAM) running Red Hat Linux 6.1.

Our simulations take place in a 670 by 670 meter flat space
filled with a scattering of 50 wireless nodes. The physical
layer and the 802.11 MAC layer we use are included in the
CMU wireless extensions to ns[3].

4.1 Movement and Communication Patterns
The nodes communicate using 10 constant bi t rate (CBR)
node-to-node connections. Four nodes are sources for two
connections each, and two nodes are sources for one connec-
tion each. Eight of the flow destinations receive only one
flow and the ninth destination receives two flows. The com-
munication pa t te rn we use was developed by CMU [3].

In all of our node movement scenarios, the nodes choose
a destination and move in a straight line towards the des-
t ination at a speed uniformly dis t r ibuted between 0 me-
ters/second (m/s) and some maximum speed. This is called
the random waypoint model [3]. We limit the maximum
speed of a node to 20 m/s (10 m / s on average) and we set
the run-t ime of the simulations to 200 seconds. Once the
node reaches its destination, it waits for the pause time be-
fore choosing a random destination and repeat ing the pro-
cess. We use pause times of 0 and 60 seconds. In addit ion
we use two different variations of the initial node placement
and movement patterns. By combining the two pause times
with two movement patterns, we obtain four different mo-
bility scenarios.

4.2 Misbehaving Nodes
Of the 50 nodes in the simulated network, some variable per-
centage of the nodes misbehave. In our simulations, a mis-

259

behaving node is one that agrees to participate in forwarding
packets (it appends its address into ROUTE REQUEST pack-
ets) but then indiscriminately drops all data packets that
are routed through it.

We vary the percentage of the network comprised of misbe-
having nodes from 0% to 40% in 5% increments. While a
network with 40% misbehaving nodes may seem unrealistic,
it is interesting to study the behavior of the algorithms in a
more hostile environment than we hope to encounter in real
life. We use Tcl's [17] built-in pseudo-random number gen-
erator to designate misbehaving nodes randomly. We use
the same seed across the 0% to 40% variation of the mis-
behaving nodes parameter, which means that the group of
misbehaving nodes in the 10% case is a superset of the group
of misbehaving nodes in the 5% case. This ensures that the
obstacles present in lower percentage misbehaving node runs
are also present in higher percentage misbehaving node runs.

4.3 Metrics
We evaluate our extensions using the following three metrics:

Throughput: This is the percentage of sent data pack-
ets actually received by the intended destinations.

Overhead: This is the ratio of routing-related trans-
missions (ROUTE REQUEST, ROUTE REPLY, ROUTE ER-
ROR, and watchdog) to data transmissions in a simu-
lation. A transmission is one node either sending or
forwarding a packet. For example, one packet being
forwarded across 10 nodes would count as 10 trans-
missions. We count transmissions instead of packets
because we want to compare routing-related transmis-
sions to data transmissions, but some routing packets
are more expensive to the network than other packets:
ROUTE REQUEST packets are broadcast to all neighbors
which in turn broadcast to all of their neighbors, caus-
ing a tree of packet transmissions. Unicast ROUTE RE-
PLY, ROUTE ERROR, watchdog, and data packets only
travel along a single path.

Effects of watchdog false positives on network through-
put. False positives occur when the watchdog mecha-
nism reports that a node is misbehaving when in fact
it is not, for reasons discussed in Section 3. We study
the impact of this on throughput.

5. SIMULATION RESULTS
In this section we present the results of our simulations.
We focus on three metrics of evaluation: network through-
put, routing overhead, and the effects of false positives on
throughput.

We test the utility of various combinations of our exten-
sions: watchdog (WD), pathrater (PR), and send (extra)
route request (SRP~). We use the SRR extension to find new

[I Maximum [Minimum

[0 second pause time I 88.6% I 75.2%
60 second pause time 95.0% 73.9%

Table 1: M a x i m u m and m i n i m u m n e t w o r k through-
put obta ined by any s imulat ion at 40~0 m i s b e h a v i n g
nodes w i th all features enabled.

paths when all known paths include a suspected misbehav-
ing node. Each of the following sections includes two graphs
of simulation results for two separate pause times. The first
graph is for a pause time of 0 (the nodes are in constant mo-
tion) and the second is for a pause time of 60 seconds before
and in between node movement. We simulate two different
node mobility patterns using four different pseudo-random
number generator seeds. The seeds determine which nodes
misbehave. We plot the average of the eight simulations.

5.1 Network Throughput
We graph four curves for network throughput: everything
enabled, watchdog and pathrater enabled, only pathrater
enabled, and everything disabled. We choose to graph both
everything enabled and everything enabled except SRR, be-
cause we want to isolate performance gains or problems
caused by extra route requests. Since the pathrater is not
strictly a tool to be used for circumventing misbehaving
nodes, we choose to include the graph where only pathrater
is enabled to determine if it increases network throughput
without any knowledge of suspected misbehaving nodes. We
do not graph watchdog and S t ~ activated without pathrater,
since without pathrater the information about misbehaving
nodes would not be used for routing decisions.

Figure 5 shows the total network throughput, calculated as
the fraction of data packets generated that are received, ver-
sus the fraction of misbehaving nodes in the network for
the combinations of extensions. In the case where the net-
work contains no misbehaving nodes, all four curves achieve
around 95% throughput. After the 0% misbehaving node
case, the graphs diverge.

As expected, the simulations with all three extensions active
perform the best by a considerable margin as misbehaving
nodes are added to the network. The mechanisms increase
the throughput by up to 27% compared to the basic pro-
tocol, maintaining a throughput greater than 80% for both
pause times, even with 40% misbehaving nodes. Table 1
lists the maximum and minumum throuput achieved in any
simulation run at 40% misbehaving nodes with all options
enabled.

When a subset of the extensions is active, performance does
not increase as much over the simulations with no extensions.
Watchdog alone does not affect routing decisions, but it sup-
plies pathrater with extra information to combat misbehav-
ing nodes more effectively. When watchdog is deactivated,

260

Maximum Minimum
0 second pause time 31.3% 18.9%

60 second pause time 23.5% 11.0%

Table 2: M a x i m u m and min imum overhead obta ined
by any simulation at 40% misbehaving nodes with all
features enabled.

. - - _ = .

° I " " ~ ~ ~ _ ~
I o.e
i

~ 0.4

2

0.2

I
0.1

WD.,ON ,PR..ON ,SRR.,ON
,PR,.ON .SRR=.OFF ---x---

WD..OFF.PR=ON ,SRR,.OFF ---~---
t WD=,O FF,PR=OFF,SR R=,O FF ...--B---

0.2 0.3 0.4 0.5
FtacUon of mlsl~hav~g

(a) 0 second pause time

0.8 J

J

i 0.6

"6

0.4

0.2

0

WI~ON .PR=ON ,SRR=ON
WDfON ,PR,-ON .SRR=OFF ---x---
W[~fOFF, PR,.ON .SRR=OFF -- -a"-

0'.1 012 WD=OFF.PR=OFF, ISR R,OFF ---la--
0.3 0.4 0.5

Fraction ol mls~havlng nodes

(b) 60 second pause time

Figure 5: Overall ne twork t h roughpu t as a funct ion
of t h e f r a c t i o n o f m i s b e h a v i n g n o d e s in t h e network.

the source node has no way of detecting the misbehaving
node in its path to the destination, and so its transmission
flow suffers total packet loss. Pathrater alone cannot detect
a path with misbehaving nodes to decrement its rate (see
Section 7).

One effect of the randomness of ns is that nodes may receive
route replies to their route requests in a different order in one
simulation than in another simulation with slightly varied
parameters. This change can result in a node choosing a
path with a misbehaving node in one run, but not choosing
that path in a simulation with more misbehaving nodes in
the network. This may actually result in slight increases in
network throughput when the number of misbehaving nodes
increases. For instance, this is noticeable in the pathrater-
only curve of Figure 5 (b) where the throughput raises from
82% to 84% between 20% and 25% misbehaving nodes.

In both throughput graphs, the everything disabled curve
and the pathrater only curves closely follow each other. From
the graphs we conclude that the pathrater alone does not sig-
nificantly affect performance. In Section 7 we suggest some
improvements to the pathrater that may increase its utility
in the absence of the other extensions.

5.2 Routing Overhead
For routing overhead, we graph four curves: everything on,
pathrater and watchdog on, only watchdog on (watchdog-
only), and everything off. Using the everything off graph as
our basis for comparison, we graph the watchdog-only curve
to find the overhead generated just by the watchdog when it
sends notifications to senders. The watchdog and pathrater
curve shows the overhead added by watchdog and pathrater
but with pathrater's ability to send out extra route requests
disabled. The everything on curve includes the overhead
created by pathrater when sending out extra route requests.

Figure 6 shows the amount of overhead incurred by activat-
ing the different routing extensions. The greatest effect on
routing overhead results from using the SKI{ feature, which
sends out route requests for a destination to which the only
known routes include suspected misbehaving nodes. For 40%
misbehaving nodes in the high mobility scenario, the over-
head rises from 12% to 24% when SRR is activated in the
pathrater. Any route requests generated by SRR will flood
the network with ROUTE REQUEST and ROUTE REPLY pack-
ets, which greatly increase the overhead. Table 2 lists the
maximum and minimum overhead for any of the simulations

261

1

0.8

0.6

I 0.4

0.2

,PR-ON .~;RR-ON
WD~ON ,PR~ON ,SRR~[~F"F ---x---
WO~.ON ,PR~OFF,SRR~OFF -.-~,---
WD.OFF.PR,.OFF.SR R.OFF

" ~ ~ , = _ " , . . ~ . - : . . - : . - . ' = . - : - = . ~ . . . ---::..-=:.. : . . . : :

I
oi~ 0~ 013 0,

Fraction (~ m l ~ node8

(a) 0 second pause t ime

0.5

0.8

0.6

|
~) 0.4

0.2

~ND-ON ,PR-ON ,~;RR-ON
WD,.ON ,PR~ON .SRR~OFF ---x---
WD~ON ,PR-OFF,SRR..OFF -*-~--"
WD-OFF,P R-OFF.SR R,.OFF

o i ' i ' 0 01 0.2 0 3 0.4 0,5
Fraction of misbehavl~ nodes

(b) 60 second pause time

Figure 6: This figure shows routing overhead as a
ratio of routing packet transmissions to data packet
transmissions. This ratio is plotted against the frac-
t ion o f misbehaving nodes.

with all options enabled at 40% misbehaving nodes.

The watchdog mechanism itself only adds a very small amount
of extra overhead as seen by comparing the watchdog-only
graph with the all-disabled graph. Also, the added overhead
is not affected by the increase in misbehaving nodes in the
network. Using both the watchdog and pa thra te r mecha-
nisms increases the throughput of the network by 16% at
40% misbehaving nodes with only 6% addit ional network
overhead (see Figure 6 (a)).

Though the overhead added by these extensions is signif-
icant, especially when pa thra te r sends out route requests
to avoid misbehaving nodes, these extensions still improve
net throughput. Therefore, the main concerns with high
overhead involve issues such as increased ba t te ry usage on
portables and PDAs. Since the largest factor accounting for
the overhead is route requests, the overhead can be signif-
icantly reduced by optimizing the delay between pa thra te r
sending out route requests and incorporating some of the ap-
proaches developed for mit igat ing route requests and broad-
cast storms in general [1, 4, 14].

5 . 3 Effects of False Detection
We compare simulations of the regular watchdog with a
watchdog tha t does not report false positives. Figure 7
shows the network throughput lost by the watchdog incor-
rectly report ing well-behaved nodes. These results show tha t
throughput is not appreciably affected by false positives and
tha t they may even have beneficial side effects, as described
below.

The similarity in throughput can be a t t r ibu ted to a few fac-
tors. First , the nodes incorrectly repor ted as misbehaving
could have moved out of the previous node 's listening range
before forwarding on a packet. If these nodes move out of
range frequently enough to warrant an accusation of misbe-
havior they may be unreliable due to their location, and the
source would be bet ter off routing around them. The fact
tha t more false positives are repor ted in the 0 second pause
t ime simulations as compared to the 60 second pause t ime
simulations, as shown in Table 3, supports this conclusion.
Table 3 shows the average value of false positives repor ted
by the simulation runs for each pause t ime and misbehaving
node percentage.

Another factor tha t may account for the similar throughput
of the watchdog's performance with and without false posi-
tives concerns one of the l imitat ions of the watchdog. As de-
scribed in Section 3, if a collision occurs while the watchdog
is waiting for the next node to forward a packet, it may never
overhear the packet being t ransmit ted . If many collisions oc-
cur over time, the watchdog may incorrectly assume tha t the
next node is misbehaving. However, if a node constantly ex-
periences collisions, it may actually increase throughput to
route packets around areas of high communicat ion density.

262

Percent misbehaving nodes 0% [5% 10% 15% 20% 25% 30% 35% 40%

0 second pause t ime 1 3 1 1 0 2 1 8 2 . 8 9 0 . 3 6 6 . 5 7 5 . 5 6 0 . 8 6 7 . 5 3 1 . 3 5 0 . 8
60 second pause t ime . 57.6 40.8 63.1 35.7 79.5 46.7 21.7 47.2

T a b l e 3: C o m p a r i s o n o f t h e n u m b e r o f fa l se p o s i t i v e s b e t w e e n t h e 0 s e c o n d a n d 60 s e c o n d p a u s e t i m e
s i m u l a t i o n s . A v e r a g e t a k e n f r o m t h e s i m u l a t i o n s w i t h a l l f e a t u r e s e n a b l e d .

.> 0.8

i 0.6
15
8
~ 0.4

~ o.~

0
0

No False Positives i
I Regular Watchdoq ---x---

,. ,
0.1 0 2 0.3 0.4 0.5

Fraction of misbehaving nodes

(a) 0 second pause t ime

~ " 0.8

0.6

"6
8

0.4

,c
~ 0.2

0
0

No False Positives a
, R?gutar Watchdo~ ---x---

I
0.1 0.2 0.3 0.4 0.5

Fraction of misbehaving nodes

(b) 60 second pause t ime

Figure 7: Compar i son o f ne twork throughput be-
t w e e n the regular w a t c h d o g and a watchdog that re-
ports no false posi t ives;

Yet another factor is that increased false positives will result
in more paths including a suspected misbehaving node. The
pa thra ter will then send out more route requests to the des-
tination. This increases the overhead in the network, but it
also provides the sending node with a fresher list of routes
for its route cache.

6. RELATED WORK
To our knowledge, there is no previously published work
on detection of routing misbehavior specific to ad hoc net-
works, although there is relevant work by Smith, Murthy
and Garcia-Luna-Aceves on securing distance vector rout-
ing protocols from Byzantine routing failures [22]. In their
work, they suggest countermeasures to secure routing mes-
sages and routing updates. This work may be applicable to
ad hoc networks in that distance vector routing protocols,
such as DSDV, have been proposed for ad hoc networks.

Zhou and Haas investigate dis t r ibuted certificate authorities
in ad hoc networks using threshold cryptography[27]. Zhou
and Haas take the view tha t no one single node in an ad
hoc network can be t rusted due to low physical security and
low availability. Therefore, using a single node to provide an
important network-wide service, such as a certificate author-
ity, is very risky. Threshold cryptography allows a certificate
anthori ty 's private key to be broken up into shares and dis-
t r ibuted across multiple nodes. To sign a certificate, a subset
of the nodes with private key shares must joint ly collaborate.
Thus, to mount a successful a t tack on the certificate author-
ity, an intruder must compromise multiple nodes.

To further frustrate a t tack a t tempts over time, Zhou and
Haas' scheme uses share refreshing. I t is possible that over
a long period of t ime enough share servers could be compro-
mised to recover the certificate author i ty ' s secret key. Share
refreshing allows uncompromised servers to compute a new
private key periodically from the old private key's shares.
This periodic refreshing means tha t an at tacker must infil-
t ra te a large number of nodes within a short t ime span to
recover the certificate authori ty 's secret key.

Stajano and Anderson [23] elucidate some of the security is-
sues facing ad hoc networks and investigate ad hoc networks
composed of low compute-power nodes such as home ap-
pliances, sensor networks, and PDAs where full public key
cryptography may not be feasible. The authors develop a
system in which a wireless device "imprints" itself on a mas-
ter device, accepting a symmetric encryption key from the
first device that sends it a key. After receiving tha t key, the

263

slave device will not recognize any other device as a master
except the device tha t originally sent it the key. The authors
bring up an interesting denial of service attack: the bat tery
drain attack. A misbehaving node can mount a denial-of-
service a t tack against another node by routing seemingly
legitimate traffic through the node in an a t t empt to wear
down the other node's batteries.

7. FUTURE WORK
This paper presents initial work in detecting misbehaving
nodes and mit igat ing their performance impact in ad hoc
wireless networks. In this section we describe some further
ideas we would like to explore.

We plan on conducting more rigorous tests of the watch-
dog and pa thra te r parameters to determine optimal values
to increase throughput in different situations. Currently we
are experimenting with different watchdog thresholds for de-
ciding when a node is misbehaving. Some of the variables
to optimize for the pa thra te r include the rat ing increment
and decrement amounts, the rate incrementing interval, and
the delay between sending out route requests to decrease the
overhead caused by this feature.

Our simulations use scenarios in which there are no a pri-
ori t rus t relationships, but we expect the performance of
pa thra te r to increase when it can make use of explicitly
t rusted nodes. Trusted node lists are available in some ad
hoc network scenarios, and we would like to analyze the per-
formance of our routing extensions in these scenarios.

Currently the pa thra te r only decrements a node's rating
when another node tries unsuccessfully to send to it or if the
watchdog mechanism is active and determines tha t a node
is misbehaving. Wi thou t the watchdog active, the pa thra ter
cannot detect misbehaving nodes. An obvious enhancement
would be to receive updates from a reliable t ransport layer,
such as TCP, when ACKs fail to be received. This would
allow the pa thra te r to detect bad paths and lower the nodes'
rat ings accordingly.

All the simulations presented in this paper use CBR da ta
sources with no reliabili ty requirements. Our next goal is to
analyze how the rout ing extensions perform with TCP flows
common to most network applications. Our focus would
then change from measuring throughput , or dropped pack-
ets, to measuring the t ime to complete a reliable transmis-
sion, such as an F T P transfer. For these tests the modifi-
cation to pa thra te r described above should improve perfor-
mance significantly in the case where the watchdog is not
active.

Finally, we would like to evaluate the watchdog and pa thra ter
considering latency in addit ion to throughput.

8. CONCLUSION

Ad hoc networks are an increasingly promising area of re-
search with practical applications, but they are vulnerable
in many settings to nodes tha t misbehave when routing pack-
ets. For robust performance in an untrusted environment, it
is necessary to resist such routing misbehavior.

In this paper we analyze two possible extensions to DSR to
mit igate the effects of routing misbehavior in ad hoc net-
works - the watchdog and the pathra ter . We show tha t
the two techniques increase throughput by 17% in a net-
work with moderate mobility, while increasing the rat io of
overhead transmissions to da ta transmissions from the stan-
dard routing protocol 's 9% to 17%. During extreme mobility,
watchdog and pa thra te r can increase network throughput by
27%, while increasing the percentage of overhead transmis-
sions from 12% to 24%.

These results show tha t we can gain the benefits of an in-
creased number of routing nodes while minimizing the effects
of misbehaving nodes. In addi t ion we show tha t this can be
done without a prior/trust or excessive overhead.

9. ACKNOWLEDGEMENTS
We would like to thank Diane Tang, Petros Maniatis, Mema
Roussopoulos, and Ed Swierk for their comments on drafts
of this paper. We would also like to thank Dan Boneh for his
help in early discussions of this work. This work was sup-
ported in par t by a generous gift from N T T Mobile Com-
munications Network, Inc. (NTT DoCoMo). In addition,
Sergio Marti was suppor ted by a National Defense Science
and Engineering Graduate Fellowship.

10.
[11

! 2]

REFERENCES
S. Basagni and et al. A Distance Routing Effect
Algorithm for Mobility (DREAM). In Proceedings of
the Fourth Annual ACM//IEEE International
Conference on Mobile Computing and Networking
(MOBICOM '98), October 1998.

V. Bharghavan, A. Demers, S. Shenker, and L. Zhang.
MACAW: A Medium Access Protocol for Wireless
LANs. In Proceedings of ACM SIGCOMM '9~, August
1994.

[31

[41

J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and
J. Jetcheva. A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Rout ing Protocols. In
Proceedings of the Fourth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MOBICOM '98), October 1998.

R. Castaneda and S. R. Das. Query Localization
Techniques for On-Demand Rout ing Protocols in Ad
Hoc Networks. In Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM '99), August
1999.

264

[5] S. Corson and V. Park. Temporally-Ordered Routing
Algorithm (TORA) Version 1 Functional Specification.
Mobile Ad-hoc Network (MANET} Working Group,
IETF, October 1999.

[6] B. P. Crow, I. K. Widjaja, G. Jeong, and P. T. SakaL
IEEE-802.11 Wireless local Area Networks. IEEE
Communications Magazine, vol. 35, No.9: pages
116-126, September 1997.

[7] S. Dos, C. E. Perkins and E. M. Royer. Ad Hoc On
Demand Distance Vector (AODV) Routing
(Internet-Draft). Mobile Ad-hoc Network (MANET)
Working Group, IETF, October 1999.

[8] K. Fall and K. Varadhan, editors, ns notes and
documentation. The VINT Project, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, July 1999. Available
from http://www-mash, ca. berkeley, edu/ns/.

[9] J.J. Garcia-Luna-Aceves and M. Spohn. Source-Tree
Routing in Wireless Networks. In Proceedings IEEE
ICNP 99: 7th International Conference on Network
Protocols, Toronto, Canada, October 31-November 3,
1999.

[10] J.J. Garcia-Luna-Aceves, Marcelo Spohn, and David
Beyer. Source Tree Adaptive Routing (STAR)
Protocol (Internet-Draft). Mobile Ad hoc Network
(MANET} Working Group, IETF, October 1999.

[11] P. Johansson and T. Larsson. Scenario-Based
Performance Analysis of Routing Protocols for Mobile
Ad-Hoc Networks. In Proceedings of the Fifth Annual
A CM/1EEE International Conference on Mobile
Computing and Networking (MOBICOM '99), August
1999.

[12] D. Johnson, D. A. Maltz, and 3. Broch. The Dynamic
Source Routing Protocol for Mobile Ad Hoe Networks
(Internet-Draft). Mobile Ad-hoc Network (MANET)
Working Group, IETF, October 1999.

D. Johnson. Personal Communication. February 2000.

[13] J. Jubin and J. Tornow. The DARPA Packet Radio
Network Protocols. In Proceedings of the IEEE,
75(1):21-32, 1987.

[14] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing
(LAR) in Mobile Ad Hoc Networks. In Proceedings of
the Fourth Annual A CM/IEEE International
Conference on Mobile Computing and Networking
(MOBICOM '98), October 1998.

[15] Y.-B. Ko and N. H. Vaidya. Geocasting in Mobile Ad
Hoc Networks: Location-Based Multicast Algorithms.
WMCSA '99, New Orleans.

[16] IETF MANET Working Group Internet Drafts.
h t tp ://www. i e t f . org/ids, by. wg/manet, html.

[17] J. K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[18] S. H. Park, A. Ganz, and Z. Ganz. Security protocol
for IEEE 802.11 wireless local area network. Mobile
Networks and Applications. Vol. 3. 1998.

[19] C.E. Perkins and P. Bhagwat. Highly Dynamic
Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers. In Proceedings of the
SIGCOMM '94 Conference on Communications
Architectures, Protocols and Applications, pages
234-244, August 1994.

[20] R. Prakash. Unidirectional Links Prove Costly in
Wireless Ad Hoc Networks. In Proceedings of DIMA CS
Workshop on Mobile Networks and Computers, 1999.

[21] B. Smith and J.J. Garcia-Luna-Aceves. Efficient
Security Mechanisms for the Border Gateway Routing
Protocol. Computer Communications (Elsevier), Vol.
21, No. 3: pp. 203-210, 1998, .

[22] B. Smith, S. Murthy, and J.J. Garcia-Luna-Aceves.
Securing Distance-Vector Routing Protocols. In
Proceedings of Internet Society Symposium on Network
and Distributed System Security, San Diego, CA,
February 1997.

[23] F. Stajano and R. Anderson. The Resurrecting
Duckling: Security Issues for Ad-hoc Wireless
Networks. B. Christianson, B. Crispo, and M. Roe
(Eds.)., Security Protocols, 7th International Workshop
Proceedings, Lecture Notes in Computer Science, 1999.

[24] D. G. Stinson. Cryptography: Theory and Practice.
CRC Press, 1995.

[25] The CMU Monarch Project. The CMU Monarch
Projects Wireless and Mobility Extensions to ns.
h t tp : /] ~ . m o n a r c h . es. emu. edu/cmu-ns, html. Oct.
12, 1999.

[261 C.-K. Toh. Associativity Based Routing For Ad-Hoc
Mobile Networks. Wireless Personal Communications
Journal, Special Issue on Mobile Networking and
Computing Systems, Vol. 4, No. 2, pp.103-139, March
1997.

[27] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE
Network Magazine, vol. 13, no.6, November/December 1999.

2 6 5

