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ABSTRACT 
This paper describes two techniques that  improve through- 
put in an ad hoc network in the presence of nodes that agree 
to forward packets but  fail to do so. To mitigate this prob- 
lem, we propose categorizing nodes based upon their dynam- 
ically measured behavior. We use a watchdog that  identifies 
misbehaving nodes and a patl~rater that  helps routing pro- 
tocols avoid these nodes. Through simulation we evaluate 
watchdog and pathrater using packet throughput, percent- 
age of overhead (routing) transmissions, and the accuracy of 
misbehaving node detection. When used together in a net- 
work with moderate mobility, the two techniques increase 
throughput by 17% in the presence of 40% misbehaving 
nodes, while increasing the percentage of overhead transmis- 
sions from the standard routing protocol's 9% to 17%. Dur- 
ing extreme mobility, watchdog and pathrater can increase 
network throughput by 27%, while increasing the overhead 
transmissions from the standard routing protocol's 12% to 
24%. 

1. INTRODUCTION 
There will be tremendous growth over the next decade in the 
use of wireless communication, from satellite transmission 
into many homes to wireless personal area networks. As the 
cost of wireless access drops, wireless communications could 
replace wired in many settings. One advantage of wireless 
is the ability to t ransmit  data among users in a common 
area while remaining mobile. However, the distance between 
participants is limited by the range of transmitters or their 
proximity to wireless access points. Ad hoc wireless networks 
mitigate this problem by allowing out of range nodes to route 
data through intermediate nodes. 
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Ad hoc networks have a wide array of military and commer- 
cial applications. Ad hoc networks are ideal in situations 
where installing an infrastructure is not possible because the 
infrastructure is too expensive or too vulnerable, the network 
is too transient, or the infrastructure was destroyed. For ex- 
ample, nodes may be spread over too large an area for one 
base station and a second base station may be too expensive. 
An example of a vulnerable infrastructure is a military base 
station on a battlefield. Networks for wilderness expeditions 
and conferences may be transient if they exist for only a 
short period of time before dispersing or moving. Finally, if 
network infrastructure has been destroyed due to a disaster, 
an ad hoc wireless network could be used to coordinate relief 
efforts. Since DARPA's PRNET [13], the area of routing in 
ad hoc networks has been an open research topic. 

Ad hoc networks maximize total network throughput by us- 
ing all available nodes for routing and forwarding. There- 
fore, the more nodes that participate in packet routing, the 
greater the aggregate bandwidth, the shorter the possible 
routing paths, and the smaller the possibility of a network 
partition. However, a node may misbehave by agreeing to 
forward packets and then failing to do so, because it is over- 
loaded, selfish, malicious, or broken. An overloaded node 
lacks the CPU cycles, buffer space or available network band- 
width to forward packets. A selfish node is unwilling to 
spend battery life, CPU cycles, or available network band- 
width to forward packets not of direct interest to it, even 
though it expects others to forward packets on its behalf. A 
malicious node launches a denial of service attack by drop- 
ping packets. A broken node might have a software fault 
that  prevents it from forwarding packets. 

Misbehaving nodes can be a significant problem. Our sim- 
ulations show that if 10%-40% of the nodes in the network 
misbehave, then the average throughput degrades by 16%- 
32%. However, the worst case throughput experienced by 
any one node may be worse than the average, because nodes 
that try to route through a misbehaving node experience 
high loss while other nodes experience no loss. Thus, even a 
few misbehaving nodes can have a severe impact. 
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One solution to misbehaving nodes is to forward packets only 
through nodes tha t  share an a priori t rust  relationship. A 
priori t rust  relationships are based on pre-existing relation- 
ships built  outside of the context of the network (e.g. friend- 
ships, companies, and armies). The problems with relying 
on a priori t rus t -based forwarding are tha t  1) it  requires 
key distribution, 2) t rusted nodes may still be overloaded, 
3) t rusted nodes may still be broken, 4) t rusted nodes may be 
compromised, and 5) untrusted nodes may be well behaved. 
I t  may not be possible to exchange keys used to authen- 
t icate t rusted nodes outside of the ad hoc network before 
the conference or disaster tha t  requires an ad hoc network. 
If keys are not dis t r ibuted ahead of time, then enforcing a 
priori t rus t -based forwarding requires a secure channel for 
key exchanges within the ad hoc network for authentication. 
Even if keys can be exchanged, a t rusted node's security 
may be compromised, or a t rusted node may be overloaded 
or broken as mentioned above. Finally, although relying on a 
priori t rus t -based forwarding reduces the number of misbe- 
having nodes, it  also excludes untrusted well behaved nodes 
whose presence could improve ad hoc network performance. 

Another  solution to misbehaving nodes is to a t tempt  to 
forstall or isolate these nodes from within the actual routing 
protocol for the network. However, this would add signifi- 
cant  complexity to protocols whose behavior must be very 
well defined. In fact, current versions of mature  ad hoc rout- 
ing algorithms, including DSR [12], AODV [7], TORA [5l, 
DSDV [19], STAR [9], and others [16] only detect if the 
receiver's network interface is accepting packets, but  they 
otherwise assume tha t  routing nodes do not misbehave. Al- 
though trust ing all nodes to be well behaved increases the 
number of nodes available for routing, it also admits  misbe- 
having nodes to the  network. 

In this paper  we explore a different approach, and install ex- 
t r a  facilities in the  network to to detect  and mitigate rout- 
ing misbehavior. In this way, we can make only minimal 
changes to the underlying routing algorithm. We introduce 
two extensions to the Dynamic Source Routing algorithm 
(DSR) [12] to mit igate  the effects of routing misbehavior: 
the watchdog and the pathratcr. The watchdog identifies mis- 
behaving nodes, while the pa thra te r  avoids routing packets 
through these nodes. When  a node forwards a packet, the 
node's  watchdog verifies tha t  the next node in the path  also 
forwards the packet. The watchdog does this by listening 
promiscuously to the  next node's  transmissions. If the next 
node does not forward the packet, then it is misbehaving. 
The pa thra te r  uses this knowledge of misbehaving nodes to 
choose the network pa th  tha t  is most likely to deliver pack- 
ets. 

Using the ns network simulator [8], we show that  the two 
techniques increase throughput  by 17% in the presence of 
up to 40% misbehaving nodes during moderate  mobility, 
while increasing the rat io of overhead transmissions to da ta  
transmissions from the s tandard  routing protocol 's  9% to 

17%. During extreme mobility, watchdog and pa thra te r  can 
increase network throughput  by 27%, while increasing the 
percentage of overhead transmissions from 12% to 24%. We 
describe mechanisms to reduce this overhead in Section 6. 

The remainder of this paper is organized as follows. Section 2 
specifies our assumptions about  ad hoc networks and gives 
background information about DSR. Section 3 describes the 
watchdog and pa thra te r  extensions. Section 4 describes the 
methodology we use in our simulations and the metrics we 
use to evaluate the results. We present these results in Sec- 
tion 5. Sections 6 and 7 present related work and future 
work, respectively. Finally, Section 8 concludes the paper.  

2. ASSUMPTIONS AND BACKGROUND 
This section outlines the assumptions we make regarding 
the properties of the physical and network layers of ad hoc 
networks and includes a brief description of DSR, the routing 
protocol we use. 

2.1 Definitions 
We use the term neighbor to refer to a node tha t  is within 
wireless transmission range of another node. Likewise, neigh- 
borhood refers to all the nodes tha t  are within wireless trans- 
mission range of a node. 

2.2 Physical Layer Characteristics 
Throughout this paper  we assume bidirectional communi- 
cation symmetry  on every link between nodes. This means 
that  if a node B is capable of receiving a message from a 
node A at  t ime t, then node A could instead have received 
a message from node B at t ime L This assumption is often 
valid, since many wireless MAC layer protocols, including 
IEEE 802.11 and MACAW [2], require bidirectional commu- 
nication for reliable transmission. The watchdog mechanism 
relies on bidirectional links. 

In addition, we assume wireless interfaces tha t  suppor t  promis- 
cuous mode operation. Promiscuous mode means tha t  if a 
node A is within range of a node B, it can overhear com- 
munications to and from B even if those communications 
do not directly involve A. Lucent Technologies' WaveLAN 
interfaces have this capability. While  promiscuous mode is 
not appropriate  for all ad hoc network scenarios (particu- 
larly some mil i tary scenarios) it is useful in other scenarios 
for improving routing protocol performance [12]. 

2.3 Dynamic Source Routing (DSR) 
DSR is an on-demand, source routing protocol. Every packet 
has a route path  consisting of the addresses of nodes tha t  
have agreed to par t ic ipate  in routing the packet. The pro- 
tocol is referred to as "on-demand" because route paths  are 
discovered at the t ime a source sends a packet to a destina- 
tion for which the source has no path.  

We divide DSR into two main functions: route discovery 
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F i g u r e  1: E x a m p l e  of  a ROUTE REQUEST. (a) N o d e  
S s e n d s  o u t  a ROUTE REQUEST packe t  to  f i n d  a p a t h  
to  n o d e  D. (b)  T h e  ROUTE REQUEST is f o r w a r d e d  
t h r o u g h o u t  t h e  n e t w o r k ,  each  n o d e  a d d i n g  i ts  ad-  
dres s  to  t h e  packe t .  (c) D t h e n  s ends  back  a ROUTE 
REPLY to  S u s i n g  t h e  p a t h  c o n t a i n e d  in  one  of  t he  
ROUTE REQUEST packe t  t h a t  r e a c h e d  it .  T h e  th ick  
l ines  r e p r e s e n t  t h e  p a t h  t h e  ROUTE REPLY takes  back  
to  t h e  s ende r .  

® . . . . .  ® 

F i g u r e  2: W h e n  B fo rwards  a packe t  f r o m  S t o w a r d  
D t h r o u g h  C, A can  o v e r h e a r  B ' s  t r a n s m i s s i o n  a n d  
can v e r i f y  t h a t  B has  a t t e m p t e d  to  pass  t h e  packe t  
to  C. T h e  sol id l ine  r e p r e s e n t s  t h e  i n t e n d e d  d i r e c t i o n  
of  t he  packe t  s en t  by  B to  C, whi le  t h e  d a s h e d  l ine  
i nd i ca t e s  t h a t  A is w i t h i n  t r a n s m i s s i o n  r a n g e  of  B 
a n d  can  o v e r h e a r  t he  packe t  t r a n s f e r .  

and route maintenance. Figure 1 illustrates route discovery. 
Node S (the source) wishes to communicate with node D (the 
destination) but  does not know any paths to D. S initiates a 
route discovery by broadcasting a ROUTE REQUEST packet to 
its neighbors that  contains the destination address D. The 
neighbors in turn  append their own addresses to the ROUTE 
REQUEST packet and rebroadcast it. This process continues 
until a ROUTE REQUEST packet reaches D. D must now send 
back a route reply packet to inform S of the discovered route. 
Since the ROUTE REQUEST packet that  reaches D contains a 
path from S to D, D may choose to use the reverse path to 
send back the reply (bidirectional links are required here) 
or to initiate a new route discovery back to S. Since there 
can be many routes from a source to a destination, a source 
may receive multiple route replies from a destination. DSR 
caches these routes in a route cache for future use. 

The second main function in DSR is route maintenance, 
which handles link breaks. A link break occurs when two 
nodes on a path are no longer in transmission range. If an 
intermediate node detects a link break when forwarding a 
packet to the next node in the route path, it sends back a 
message to the source notifying it of that  link break. The 
source must try another path or do a route discovery if it 
does not have another path. 

3.  W A T C H D O G  A N D  P A T H R A T E R  
In this section we present the watchdog and the pathrater 
- -  tools for detecting and mitigating routing misbehavior. 
We also describe the limitations of these methods. Though 
we implement these tools on top of DSR, some of our con- 
cepts can be generalized to other source routing protocols. 
We note those concepts that can be generalized during our 
descriptions of the techniques. 

3 . 1  W a t c h d o g  
The watchdog method detects misbehaving nodes. Figure 2 
illustrates how the watchdog works. Suppose there exists 
a path from node S to D through intermediate nodes A, B, 
and C. Node A cannot transmit  all the way to node C, but  it 
can listen in on node B's traffic. Thus, when A transmits a 
packet for B to forward to C, A can often tell if B transmits 
the packet. If encryption is not performed separately for 
each link, which can be expensive, then A can also tell if B 
has tampered with the payload or the header. 
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F i g u r e  3: N o d e  A d o e s  no t  h e a r  B f o r w a r d  p a c k e t  
1 t o  C~ b e c a u s e  B ' s  t r a n s m i s s i o n  co l l ides  at  A w i t h  
p a c k e t  2 f r o m  t h e  s o u r c e  S. 
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F i g u r e  4: N o d e  A b e l i e v e s  t h a t  B has  f o r w a r d e d  
p a c k e t  1 o n  t o  C,  t h o u g h  C n e v e r  r e c e i v e d  t h e  p a c k e t  
d u e  to  a co l l i s ion  w i t h  p a c k e t  2. 

We implement the  watchdog by maintaining a buffer of re- 
cently sent packets and comparing each overheard packet 
with the packet in the buffer to see if there is a match. If  
so, the packet in the buffer is removed and forgotten by the 
watchdog, since it has been forwarded on. If a packet has 
remained in the buffer for longer than a certain t imeout,  the 
watchdog increments a failure tal ly for the node responsible 
for forwarding on the packet. If the tally exceeds a certain 
threshold bandwidth,  it  determines tha t  the  node is misbe- 
having and sends a message to the source notifying it of the 
misbehaving node. 

The watchdog technique has advantages and weaknesses. 
DSR with the watchdog has the advantage that  it  can de- 
tect  misbehavior at  the forwarding level and not just  the link 
level. Watchdog's  weaknesses are tha t  it  might not detect a 
misbehaving node in the presence of 1) ambiguous collisions, 
2) receiver collisions, 3) l imited transmission power, 4) false 
misbehavior,  5) collusion, and 6) part ial  dropping. 

The ambiguous collision problem prevents A from overhear- 
ing transmissions from B. As Figure 3 illustrates, a packet 
collision can occur at  A while it  is listening for B to forward 
on a packet. A does not know if the collision was caused 
by B forwarding on a packet as it  should or if B never for- 
warded the packet and the collision was caused by other 
nodes in A 's  neighborhood. Because of this uncertainty, A 
should not  immediate ly  accuse B of misbehaving, but  should 
instead continue to watch B over a period of time. If A re- 
peatedly fails to detect  B forwarding on packets, then A can 
assume tha t  B is misbehaving. 

In the receiver collision problem, node A can only tell whether 
B sends the packet to C, bu t  it  cannot tell if C receives it 
(Figure 4). If a collision occurs at  C when B first forwards 
the packet, A only sees B forwarding the packet and as- 
sumes tha t  C successfully receives it. Thus, B could skip re- 
t ransmit t ing  the packet and leave A none the wiser. B could 
also purposefully cause the t ransmi t ted  packet to collide at  
C by waiting until  C is t ransmit t ing  and then forwarding on 
the packet. In the first case, a node could be selfish and not 
want to waste power with retransmissions. In the la t ter  case, 

the only reason B would have for taking the actions tha t  it  
does is because it is malicious. B wastes ba t te ry  power and 
CPU time, so it is not selfish. An overloaded node would not 
engage in this behavior either, since it wastes badly needed 
CPU time and bandwidth.  Thus, this second case should be 
a rare occurrence. 

Another problem can occur when nodes falsely report  other 
nodes as misbehaving. A malicious node could a t t empt  to 
part i t ion the network by claiming tha t  some nodes following 
it in the pa th  are misbehaving. For instance, node A could 
report  tha t  node B is not forwarding packets when in fact it  
is. This will cause S to mark  B as misbehaving when A is 
the culprit. This behavior, however, will be detected. Since 
A is passing messages on to B (as verified by S), then any 
acknowledgements from D to S will go through A to S, and S 
will wonder why it receives replies from D when supposedly 
B dropped packets in the forward direction. In addition, if 
A drops acknowledgements to hide them from S, then node 
B will detect this misbehavior and will repor t  it  to D. 

Another problem is tha t  a misbehaving node tha t  can con- 
trol its transmission power can circumvent the  watchdog. A 
node could limit its transmission power such tha t  the signal 
is strong enough to be overheard by the previous node but  
too weak to be received by the t rue recipient. This would 
require tha t  the misbehaving node know the transmission 
power required to reach each of its neighboring nodes. Only 
a node with malicious intent would behave in this manner 
- -  selfish nodes have nothing to gain since ba t te ry  power is 
wasted and overloaded nodes would not  relieve any conges- 
tion by doing this. 

Multiple nodes in collusion can mount  a more sophist icated 
attack. For example, B and C from Figure 2 could collude 
to cause mischief. In this case, B forwards a packet to C 
but  does not report  to A when C drops the packet. Be- 
cause of this l imitation, it  may be necessary to disallow two 
consecutive untrusted nodes in a rout ing path.  In this pa- 
per, we only deal with the possibility of nodes acting alone. 
The harder problem of colluding nodes is being s tudied by 
Johnson at CMU [13]. 

Finally, a node can circumvent the  watchdog by dropping 
packets at  a lower rate  than the watchdog's  configured min- 
imum misbehavior threshold. Although the watchdog will 
not detect  this node as misbehaving, this node is forced to 
forward at  the threshold bandwidth.  In this way the watch- 
dog serves to enforce this minimum bandwidth.  

The watchdog mechanism could be used to some degree to 
detect replay at tacks but  would require maintaining a great 
deal of s ta te  information at  each node as it  monitors its 
neighbors to ensure tha t  they do not re t ransmit  a packet tha t  
they have already forwarded. Also, if a collision has taken 
place at  the receiving node, it  would be neccesary and correct 
for a node to re t ransmit  a packet,  which may appear  as a 
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replay a t tack to the node acting as its watchdog. Therefore, 
detecting replay at tacks would neither be an efficient nor an 
effective use of the watchdog mechanism. 

For the watchdog to work properly, it  must  know where a 
packet should be in two hops. In our implementation,  the 
watchdog has this information because DSR is a source rout- 
ing protocol. If the watchdog does not have this information 
(for instance if it  were implemented on top of a hop-by-hop 
routing protocol), then a malicious or broken node could 
broadcast  the packet to a non-existant node and the watch- 
dog would have no way of knowing. Because of this limi- 
tation, the watchdog works best  on top of a source routing 
protocol. 

3.2 Pathrater 
The pathrater ,  run by each node in the network, combines 
knowledge of misbehaving nodes with link reliability da ta  to 
pick the route most likely to be reliable. Each node main- 
tains a rat ing for every other node it knows about  in the 
network. I t  calculates a pa th  metric by averaging the node 
ratings in the path.  We choose this metric because it gives 
a comparison of the overall reliability of different paths and 
allows pa thra te r  to emulate the shortest length pa th  algo- 
r i thm when no reliabili ty information has been collected, as 
explained below. If there are multiple paths  to the same 
destination, we choose the pa th  with the highest metric. 
Note that  this differs from s tandard  DSR, which chooses 
the shortest pa th  in the route cache. Further note that  since 
the pa thra te r  depends on knowing the exact path  a packet 
has traversed, it  must  be implemented on top of a source 
routing protocol. 

The pa thra ter  assigns ratings to nodes according to the fol- 
lowing algorithm. When a node in the network becomes 
known to the pa thra te r  (through route discovery), the path-  
rater  assigns it a "neutral" rat ing of 0.5. A node always rates 
itself with a 1.0. This ensures that  when calculating path  
rates, if all other nodes are neutral  nodes (rather than sus- 
pected misbehaving nodes), the pa thra te r  picks the shortest 
length path.  The pa thra te r  increments the ratings of nodes 
on all actively used paths  by 0.01 at  periodic intervals of 
200 ms. An actively used pa th  is one on which the node 
has sent a packet within the previous rate  increment inter- 
val. The maximum value a neutral  node can at ta in  is 0.8. 
We decrement a node 's  rat ing by 0.05 when we detect a link 
break during packet forwarding and the node becomes un- 
reachable. The lower bound rat ing of a "neutral" node is 0.0. 
The pa thra te r  does not modify the ratings of nodes tha t  are 
not currently in active use. 

We assign a special highly negative value, - 100  in the simu- 
lations, to nodes suspected of misbehaving by the watchdog 
mechanism. When the pa thra te r  calculates the path  met-  
ric, negative pa th  values indicate the existence of one or 
more suspected misbehaving nodes in the path.  If a node is 
marked as misbehaving due to a temporary  malfunction or 

incorrect accusation it would be preferrable if it  were not per- 
manently excluded from routing. Therefore nodes tha t  have 
negative ratings should have their ratings slowly increased 
or set back to a non-negative value after a long t imeout.  
This is not implemented in our simulations since the cur- 
rent simulation period is too short  to reset a misbehaving 
node's rating. Section 5.3 discusses the effect on throughput  
of accusing well-behaving nodes. 

When the pa thra ter  learns tha t  a node on a pa th  tha t  is in 
use misbehaves, and it cannot find a pa th  free of misbehaving 
nodes, it  sends out a ROUTE REQUEST if we have enabled an 
extension we call Send Route Request (SRR). 

4. METHODOLOGY 
In this section we describe our simulator,  simulation param- 
eters, and measured metrics. 

We use a version of Berkeley's Network Simulator (ns) [8] 
that  includes wireless extensions made by the CMU Monarch 
project. We also use a visualization tool from CMU called 
ad-hockey [25] to view the results of our simulations and 
detect overall t rends in the network. To execute the simu- 
lations, we use PCs (450 or 500 MHz Pent ium IIIs with at 
least 128 MB of RAM) running Red Hat  Linux 6.1. 

Our simulations take place in a 670 by 670 meter  flat space 
filled with a scattering of 50 wireless nodes. The physical 
layer and the 802.11 MAC layer we use are included in the 
CMU wireless extensions to ns[3]. 

4.1 Movement and Communication Patterns 
The nodes communicate using 10 constant bi t  rate (CBR) 
node-to-node connections. Four nodes are sources for two 
connections each, and two nodes are sources for one connec- 
tion each. Eight of the flow destinations receive only one 
flow and the ninth destination receives two flows. The com- 
munication pa t te rn  we use was developed by CMU [3]. 

In all of our node movement scenarios, the nodes choose 
a destination and move in a straight line towards the des- 
t ination at  a speed uniformly dis t r ibuted between 0 me- 
ters/second (m/s)  and some maximum speed. This is called 
the random waypoint model [3]. We limit the maximum 
speed of a node to 20 m/s  (10 m / s  on average) and we set 
the run-t ime of the simulations to 200 seconds. Once the 
node reaches its destination, it  waits for the pause time be- 
fore choosing a random destination and repeat ing the pro- 
cess. We use pause times of 0 and 60 seconds. In addit ion 
we use two different variations of the initial node placement 
and movement patterns.  By combining the two pause times 
with two movement patterns,  we obtain four different mo- 
bility scenarios. 

4.2 Misbehaving Nodes 
Of the 50 nodes in the simulated network, some variable per- 
centage of the nodes misbehave. In our simulations, a mis- 
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behaving node is one that  agrees to participate in forwarding 
packets (it appends its address into ROUTE REQUEST pack- 
ets) but then indiscriminately drops all data packets that 
are routed through it. 

We vary the percentage of the network comprised of misbe- 
having nodes from 0% to 40% in 5% increments. While a 
network with 40% misbehaving nodes may seem unrealistic, 
it is interesting to study the behavior of the algorithms in a 
more hostile environment than we hope to encounter in real 
life. We use Tcl's [17] built-in pseudo-random number gen- 
erator to designate misbehaving nodes randomly. We use 
the same seed across the 0% to 40% variation of the mis- 
behaving nodes parameter, which means that  the group of 
misbehaving nodes in the 10% case is a superset of the group 
of misbehaving nodes in the 5% case. This ensures that  the 
obstacles present in lower percentage misbehaving node runs 
are also present in higher percentage misbehaving node runs. 

4.3 Metrics 
We evaluate our extensions using the following three metrics: 

Throughput:  This is the percentage of sent data pack- 
ets actually received by the intended destinations. 

Overhead: This is the ratio of routing-related trans- 
missions (ROUTE REQUEST, ROUTE REPLY, ROUTE ER- 
ROR, and watchdog) to data transmissions in a simu- 
lation. A transmission is one node either sending or 
forwarding a packet. For example, one packet being 
forwarded across 10 nodes would count as 10 trans- 
missions. We count transmissions instead of packets 
because we want to compare routing-related transmis- 
sions to data transmissions, but  some routing packets 
are more expensive to the network than other packets: 
ROUTE REQUEST packets are broadcast to all neighbors 
which in turn broadcast to all of their neighbors, caus- 
ing a tree of packet transmissions. Unicast ROUTE RE- 
PLY, ROUTE ERROR, watchdog, and data packets only 
travel along a single path. 

Effects of watchdog false positives on network through- 
put. False positives occur when the watchdog mecha- 
nism reports that  a node is misbehaving when in fact 
it is not, for reasons discussed in Section 3. We study 
the impact of this on throughput. 

5. SIMULATION RESULTS 
In this section we present the results of our simulations. 
We focus on three metrics of evaluation: network through- 
put, routing overhead, and the effects of false positives on 
throughput.  

We test the utility of various combinations of our exten- 
sions: watchdog (WD), pathrater (PR), and send (extra) 
route request (SRP~). We use the SRR extension to find new 

[ I Maximum [ Minimum 

[ 0 second pause time I 88.6% I 75.2% 
60 second pause time 95.0% 73.9% 

Table 1: M a x i m u m  and m i n i m u m  n e t w o r k  through-  
put obta ined by any s imulat ion  at 40~0 m i s b e h a v i n g  
nodes  w i th  all features  enabled.  

paths when all known paths include a suspected misbehav- 
ing node. Each of the following sections includes two graphs 
of simulation results for two separate pause times. The first 
graph is for a pause time of 0 (the nodes are in constant mo- 
tion) and the second is for a pause time of 60 seconds before 
and in between node movement. We simulate two different 
node mobility patterns using four different pseudo-random 
number generator seeds. The seeds determine which nodes 
misbehave. We plot the average of the eight simulations. 

5.1 Network Throughput 
We graph four curves for network throughput:  everything 
enabled, watchdog and pathrater enabled, only pathrater 
enabled, and everything disabled. We choose to graph both 
everything enabled and everything enabled except SRR, be- 
cause we want to isolate performance gains or problems 
caused by extra route requests. Since the pathrater is not 
strictly a tool to be used for circumventing misbehaving 
nodes, we choose to include the graph where only pathrater 
is enabled to determine if it increases network throughput 
without any knowledge of suspected misbehaving nodes. We 
do not graph watchdog and S t ~  activated without pathrater, 
since without pathrater the information about misbehaving 
nodes would not be used for routing decisions. 

Figure 5 shows the total network throughput,  calculated as 
the fraction of data packets generated that  are received, ver- 
sus the fraction of misbehaving nodes in the network for 
the combinations of extensions. In the case where the net- 
work contains no misbehaving nodes, all four curves achieve 
around 95% throughput. After the 0% misbehaving node 
case, the graphs diverge. 

As expected, the simulations with all three extensions active 
perform the best by a considerable margin as misbehaving 
nodes are added to the network. The mechanisms increase 
the throughput by up to 27% compared to the basic pro- 
tocol, maintaining a throughput greater than 80% for both 
pause times, even with 40% misbehaving nodes. Table 1 
lists the maximum and minumum throuput  achieved in any 
simulation run at 40% misbehaving nodes with all options 
enabled. 

When a subset of the extensions is active, performance does 
not increase as much over the simulations with no extensions. 
Watchdog alone does not affect routing decisions, but it sup- 
plies pathrater with extra information to combat misbehav- 
ing nodes more effectively. When watchdog is deactivated, 
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Maximum Minimum 
0 second pause time 31.3% 18.9% 

60 second pause time 23.5% 11.0% 

Table 2: M a x i m u m  and min imum overhead  obta ined 
by any simulation at 40% misbehaving  nodes with all 
features enabled.  
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Figure  5: Overall  ne twork  t h roughpu t  as a funct ion 
of  t h e  f r a c t i o n  o f  m i s b e h a v i n g  n o d e s  in  t h e  network.  

the source node has no way of detecting the misbehaving 
node in its path to the destination, and so its transmission 
flow suffers total packet loss. Pathrater alone cannot detect 
a path with misbehaving nodes to decrement its rate (see 
Section 7). 

One effect of the randomness of ns is that nodes may receive 
route replies to their route requests in a different order in one 
simulation than in another simulation with slightly varied 
parameters. This change can result in a node choosing a 
path with a misbehaving node in one run, but not choosing 
that path in a simulation with more misbehaving nodes in 
the network. This may actually result in slight increases in 
network throughput when the number of misbehaving nodes 
increases. For instance, this is noticeable in the pathrater- 
only curve of Figure 5 (b) where the throughput raises from 
82% to 84% between 20% and 25% misbehaving nodes. 

In both throughput graphs, the everything disabled curve 
and the pathrater only curves closely follow each other. From 
the graphs we conclude that the pathrater alone does not sig- 
nificantly affect performance. In Section 7 we suggest some 
improvements to the pathrater that may increase its utility 
in the absence of the other extensions. 

5.2 Routing Overhead 
For routing overhead, we graph four curves: everything on, 
pathrater and watchdog on, only watchdog on (watchdog- 
only), and everything off. Using the everything off graph as 
our basis for comparison, we graph the watchdog-only curve 
to find the overhead generated just by the watchdog when it 
sends notifications to senders. The watchdog and pathrater 
curve shows the overhead added by watchdog and pathrater 
but with pathrater's ability to send out extra route requests 
disabled. The everything on curve includes the overhead 
created by pathrater when sending out extra route requests. 

Figure 6 shows the amount of overhead incurred by activat- 
ing the different routing extensions. The greatest effect on 
routing overhead results from using the SKI{ feature, which 
sends out route requests for a destination to which the only 
known routes include suspected misbehaving nodes. For 40% 
misbehaving nodes in the high mobility scenario, the over- 
head rises from 12% to 24% when SRR is activated in the 
pathrater. Any route requests generated by SRR will flood 
the network with ROUTE REQUEST and ROUTE REPLY pack- 
ets, which greatly increase the overhead. Table 2 lists the 
maximum and minimum overhead for any of the simulations 
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Figure 6: This  figure shows routing overhead as a 
ratio of  routing packet transmissions to  data packet 
transmissions.  This  ratio is plotted against the  frac- 
t ion o f  misbehaving  nodes.  

with all options enabled at 40% misbehaving nodes. 

The watchdog mechanism itself only adds a very small amount  
of extra  overhead as seen by comparing the watchdog-only 
graph with the all-disabled graph. Also, the added overhead 
is not affected by the increase in misbehaving nodes in the 
network. Using both the watchdog and pa thra te r  mecha- 
nisms increases the throughput  of the network by 16% at 
40% misbehaving nodes with only 6% addit ional  network 
overhead (see Figure 6 (a)). 

Though the overhead added by these extensions is signif- 
icant, especially when pa thra te r  sends out  route requests 
to avoid misbehaving nodes, these extensions still improve 
net throughput.  Therefore, the main concerns with high 
overhead involve issues such as increased ba t te ry  usage on 
portables and PDAs. Since the largest factor accounting for 
the overhead is route requests, the overhead can be signif- 
icantly reduced by optimizing the delay between pa thra te r  
sending out route requests and incorporating some of the ap- 
proaches developed for mit igat ing route requests and broad- 
cast storms in general [1, 4, 14]. 

5 . 3  Effects of False Detection 
We compare simulations of the  regular watchdog with a 
watchdog tha t  does not report  false positives. Figure 7 
shows the network throughput  lost by the watchdog incor- 
rectly report ing well-behaved nodes. These results show tha t  
throughput  is not appreciably affected by false positives and 
tha t  they may even have beneficial side effects, as described 
below. 

The similarity in throughput  can be a t t r ibu ted  to a few fac- 
tors. First ,  the nodes incorrectly repor ted as misbehaving 
could have moved out of the previous node 's  listening range 
before forwarding on a packet. If these nodes move out of 
range frequently enough to warrant  an accusation of misbe- 
havior they may be unreliable due to their  location, and the 
source would be bet ter  off routing around them. The fact 
tha t  more false positives are repor ted  in the  0 second pause 
t ime simulations as compared to the  60 second pause t ime 
simulations, as shown in Table 3, supports  this conclusion. 
Table 3 shows the average value of false positives repor ted 
by the simulation runs for each pause t ime and misbehaving 
node percentage. 

Another factor tha t  may account for the similar throughput  
of the watchdog's performance with and without  false posi- 
tives concerns one of the l imitat ions of the watchdog. As de- 
scribed in Section 3, if a collision occurs while the watchdog 
is waiting for the next node to forward a packet,  it  may never 
overhear the packet being t ransmit ted .  If many collisions oc- 
cur over time, the watchdog may incorrectly assume tha t  the 
next node is misbehaving. However, if a node constantly ex- 
periences collisions, it  may actually increase throughput  to 
route packets around areas of high communicat ion density. 
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Percent misbehaving nodes 0% [ 5% 10% 15% 20% 25% 30% 35% 40% 

0 second pause t ime 1 3 1 1 0 2 1 8 2 . 8 9 0 . 3 6 6 . 5 7 5 . 5 6 0 . 8 6 7 . 5 3 1 . 3 5 0 . 8  
60 second pause t ime . 57.6 40.8 63.1 35.7 79.5 46.7 21.7 47.2 

T a b l e  3: C o m p a r i s o n  o f  t h e  n u m b e r  o f  fa l se  p o s i t i v e s  b e t w e e n  t h e  0 s e c o n d  a n d  60 s e c o n d  p a u s e  t i m e  
s i m u l a t i o n s .  A v e r a g e  t a k e n  f r o m  t h e  s i m u l a t i o n s  w i t h  a l l  f e a t u r e s  e n a b l e d .  
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Figure  7: Compar i son  o f  ne twork  throughput  be- 
t w e e n  the  regular w a t c h d o g  and a watchdog  that  re- 
ports  no false posi t ives;  

Yet another factor is that  increased false positives will result 
in more paths  including a suspected misbehaving node. The 
pa thra ter  will then send out more route requests to the des- 
tination. This increases the overhead in the network, but  it  
also provides the sending node with a fresher list of routes 
for its route cache. 

6. RELATED WORK 
To our knowledge, there is no previously published work 
on detection of routing misbehavior specific to ad hoc net- 
works, although there is relevant work by Smith,  Murthy 
and Garcia-Luna-Aceves on securing distance vector rout- 
ing protocols from Byzantine routing failures [22]. In their 
work, they suggest countermeasures to secure routing mes- 
sages and routing updates.  This work may be applicable to 
ad hoc networks in that  distance vector routing protocols, 
such as DSDV, have been proposed for ad hoc networks. 

Zhou and Haas investigate dis t r ibuted certificate authorities 
in ad hoc networks using threshold cryptography[27]. Zhou 
and Haas take the view tha t  no one single node in an ad 
hoc network can be t rusted due to low physical security and 
low availability. Therefore, using a single node to provide an 
important  network-wide service, such as a certificate author- 
ity, is very risky. Threshold cryptography allows a certificate 
anthori ty 's  private key to be broken up into shares and dis- 
t r ibuted across multiple nodes. To sign a certificate, a subset 
of the nodes with private key shares must  joint ly collaborate. 
Thus, to mount a successful a t tack on the certificate author- 
ity, an intruder must compromise multiple nodes. 

To further frustrate a t tack a t tempts  over time, Zhou and 
Haas'  scheme uses share refreshing. I t  is possible that  over 
a long period of t ime enough share servers could be compro- 
mised to recover the certificate author i ty ' s  secret key. Share 
refreshing allows uncompromised servers to compute a new 
private key periodically from the old private key's shares. 
This periodic refreshing means tha t  an at tacker must infil- 
t ra te  a large number of nodes within a short  t ime span to 
recover the certificate authori ty 's  secret key. 

Stajano and Anderson [23] elucidate some of the security is- 
sues facing ad hoc networks and investigate ad hoc networks 
composed of low compute-power nodes such as home ap- 
pliances, sensor networks, and PDAs where full public key 
cryptography may not be feasible. The authors develop a 
system in which a wireless device "imprints" itself on a mas- 
ter device, accepting a symmetric encryption key from the 
first device that  sends it a key. After receiving tha t  key, the 
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slave device will not recognize any other device as a master 
except the  device tha t  originally sent it the key. The authors 
bring up an interesting denial of service attack: the bat tery  
drain attack. A misbehaving node can mount a denial-of- 
service a t tack against another node by routing seemingly 
legitimate traffic through the node in an a t t empt  to wear 
down the other node's  batteries.  

7. FUTURE WORK 
This paper  presents initial work in detecting misbehaving 
nodes and mit igat ing their performance impact  in ad hoc 
wireless networks. In this section we describe some further 
ideas we would like to explore. 

We plan on conducting more rigorous tests of the watch- 
dog and pa thra te r  parameters  to determine optimal values 
to increase throughput  in different situations. Currently we 
are experimenting with different watchdog thresholds for de- 
ciding when a node is misbehaving. Some of the variables 
to optimize for the  pa thra te r  include the rat ing increment 
and decrement amounts,  the rate  incrementing interval, and 
the delay between sending out route requests to decrease the 
overhead caused by this feature. 

Our simulations use scenarios in which there are no a pri- 
ori t rus t  relationships, but  we expect the performance of 
pa thra te r  to increase when it can make use of explicitly 
t rusted nodes. Trusted node lists are available in some ad 
hoc network scenarios, and we would like to analyze the per- 
formance of our routing extensions in these scenarios. 

Currently the  pa thra te r  only decrements a node's rating 
when another node tries unsuccessfully to send to it or if the 
watchdog mechanism is active and determines tha t  a node 
is misbehaving. Wi thou t  the watchdog active, the pa thra ter  
cannot detect  misbehaving nodes. An obvious enhancement 
would be to receive updates  from a reliable t ransport  layer, 
such as TCP, when ACKs fail to be received. This would 
allow the pa thra te r  to detect  bad  paths  and lower the nodes' 
rat ings accordingly. 

All the simulations presented in this paper  use CBR da ta  
sources with no reliabili ty requirements. Our next goal is to 
analyze how the rout ing extensions perform with TCP flows 
common to most network applications. Our focus would 
then change from measuring throughput ,  or dropped pack- 
ets, to measuring the t ime to complete a reliable transmis- 
sion, such as an F T P  transfer. For these tests the modifi- 
cation to pa thra te r  described above should improve perfor- 
mance significantly in the case where the watchdog is not 
active. 

Finally, we would like to evaluate the watchdog and pa thra ter  
considering latency in addit ion to throughput.  

8. CONCLUSION 

Ad hoc networks are an increasingly promising area of re- 
search with practical applications, but  they are vulnerable 
in many settings to nodes tha t  misbehave when routing pack- 
ets. For robust  performance in an untrusted environment,  it  
is necessary to resist such routing misbehavior.  

In this paper  we analyze two possible extensions to DSR to 
mit igate the effects of routing misbehavior in ad hoc net- 
works - the watchdog and the pathra ter .  We show tha t  
the two techniques increase throughput  by 17% in a net- 
work with moderate  mobility, while increasing the rat io of 
overhead transmissions to da ta  transmissions from the stan- 
dard routing protocol 's  9% to 17%. During extreme mobility, 
watchdog and pa thra te r  can increase network throughput  by 
27%, while increasing the percentage of overhead transmis- 
sions from 12% to 24%. 

These results show tha t  we can gain the benefits of an in- 
creased number of routing nodes while minimizing the effects 
of misbehaving nodes. In addi t ion we show tha t  this can be 
done without a prior/trust or excessive overhead. 
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