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ABSTRACT

Entity Matching (EM) refers to the problem of determining whether

two different data representations refer to the same real-world en-

tity. It has been a long-standing interest of the data management

community and many efforts have been paid in creating bench-

mark tasks as well as in developing advanced matching techniques.

However, existing benchmark tasks for EM are limited to the case

where the two data collections of entities are structured tables with

the same schema. Meanwhile, the data collections for matching

could be structured, semi-structured, or unstructured in real-world

scenarios of data science. In this paper, we come up with a new

research problem – Generalized Entity Matching to satisfy this

requirement and create a benchmark Machamp for it. Machamp
consists of seven tasks having diverse characteristics and thus pro-

vides good coverage of use cases in real applications. We summarize

existing EM benchmark tasks for structured tables and conduct a

series of processing and cleaning efforts to transform them into

matching tasks between tables with different structures. Based on

that, we further conduct comprehensive profiling of the proposed

benchmark tasks and evaluate popular entity matching approaches

on them. With the help of Machamp, it is the first time that re-

searchers can evaluate EM techniques between data collections

with different structures.
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1 INTRODUCTION

Given two collections of entity records, the goal of Entity Matching

(EM) is to identify pairs of records that refer to the same real-world

entity. Entity Matching is also known as Entity Resolution, Record

Linkage, or Entity De-duplication. As a fundamental problem in data

integration, EM has a wide range of applications from data cleaning,

knowledge base construction to entity clustering and search [3, 7,

16, 19, 25]. More recently, machine learning techniques, particularly

deep learning with pre-trained language models [2, 9, 9, 16, 18, 21],

achieved the state-of-the-art (SOTA) matching quality among EM

tasks.
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Although significant progress has been made, existing EM so-

lutions impose several assumptions that limit them to be applied

to more practical scenarios. First, they typically assume that the

entity records are stored in a structured format such as relational

tables. In real scenarios, however, entities can be represented in

a diverse set of data formats. For example, job postings in recruit

platforms are stored in semi-structured JSON and product reviews

in e-commerce websites are stored in plain-text documents. A direct

application of existing methods would require flattening the nested

attributes which can lead to a potential loss of important structural

information such as the list of job categories attached to the job

posting. Second, EM solutions assume the two entity collections to

have identical or aligned schema so that they can compute attribute-

wise similarity scores as matching features [9, 16, 21]. To Impose

this assumption, we need a potentially expensive schema matching

in the pre-processing step [1], which is even not applicable when

matching data of heterogeneous format, e.g. matching product meta-

information stored in tabular format with their textual descriptions.

Finally, traditional EM tasks seek for finding pairs of entities that

are identical. However, real applications might require searching

for entity pairs satisfying a general binary relation such as whether

two items are relevant to each other.

Example 1.1. We illustrate the aforementioned new requirements

of EM with a real scenario from job targeting platforms such as

indeed.com in Figure 1. A common task that these platforms need

to perform is to find job postings representing jobs of the same level
in the same domain. By doing so, they can support downstream

applications such as diversifying job search results or inviting can-

didates to apply (I2A). The job postings naturally come in a variety

of formats as companies can upload plain text/PDF (upper-right)

or use a template to create the job posting attribute-by-attribute

(upper-left). Some datasets are in structural format (bottom) as they

are collected by information extraction tools of the platform. Be-

cause of the different data types, unifying their data schema is not

possible.

The task is challenging as it requires the matching model to

perform accurate text matching such as comparing “conduct child

care program” with “experience working with young children” or

“30-39 hours per week” with “full-time” as well as understanding

the document structure. For example, the model needs to learn that

the phrase “part-time” in the textual document should be matched

against the “Job-Type” JSON attribute.

In this work, as our first step, we formally define the problem

of Generalized Entity Matching (GEM) given the above desiderata.

GEM extends the classic EM problem setting by allowing matching

entity records of relational, semi-structural, or textual types. Be-

sides, we also allow the matching relation to be a general binary

relation customizable to a range of application needs. With the
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{ Title: “Full-Time Child Care Aide”,
  Job_Type: “Full-time”,
  Salary: { min: “$9.50/hour”,  
            max: “$10.00/hour” },
  Experience: “1 year (Preferred)”,
  Company: <name_of_company>,
  General_Function: “The aide is responsible to the head    
    teacher / Preschool Associate Director for excellence 
    in the Preschool program ...”,
  Qualifications: 
    [“Minimum of 18 years old”, “High School Diploma”, 
     “Be able to lift a minimum of 25 pounds”, ...],
  Performance_Objectives:
    [“Conduct the child care program ...”, 
     “Provide mission based, fun, age-appropriate,  
      Safe, meaningful activities ...”, ...] }

Job Description:
“<college_name> is accepting applications to 
develop an applicant pool of qualified candidates 
for part-time, non-permanent Child Care Aide II 
for Head Start/Early Childhood Education and 
Assistance Program/Early Head Start 
(HS/ECEAP/EHS) sites.

... the part-time Child Care Aide 2 assists with 
the implementation of the educational curriculum 
that meets Head Start Performance Standards ...  
Implementation and tracking of individual child 
goals and learning opportunities, inclusive of 
children with disabilities... This role requires 
previous experience with early childhood 
education.”

Title Education Experience Responsibilities Benefits Hours per week

Child Care 
Assistant

High 
School, CDA 
or higher

Experience 
working with 
young children

To secure the safety of 
children through ongoing 
supervision ...

Health insurance, 
Dental, Vision, 
Paid time off ...

30-39

Semi-Structural: Textual:

Relational:

Figure 1: Real-world matching scenario from the job targeting applications. Job postings come in heterogeneous data format. Matching jobs

of the same level and domain require both language and structural understanding of the entity records.

extended problem formulation, GEM covers an even wider range of

applications including matching JSON data, text matching [5, 31],

or data-driven fact checking [13].

Next, to facilitate the development of matching models for ad-

dressing such generalized matching tasks, we createMachamp, a
benchmark for evaluating models for GEM.Machamp consists of 7

real-world datasets covering various cases of interests in matching

data of different types. We obtain the benchmark datasets by adapt-

ing and transforming existing EM datasets for structured data. By

doing so,Machamp not only leverages the already existing ground

truth labels, but also covers application scenarios with different

training set sizes, positive label ratios, and schema complexity etc.

We further conduct a profiling analysis by considering pairwise

textual and structural similarity metrics to help understand their

difficulties for existing EM solutions that primarily rely on global or

attribute-wise similarity as features. The profiling results indicate

that existing EM solutions based on similarity measures cannot

perform well on all Machamp tasks.

To the best of our knowledge, Machamp is the first benchmark

for training and evaluating entity matching models for heteroge-

neous data. We publish the Machamp datasets at https://github.

com/megagonlabs/machamp
1
.

Our initial experiment on 7 popular learning-based EM solutions

confirms the need for developing new matching techniques for

GEM. Classic machine learning methods such as Random Forest
and SVM did not perform well in general. Deep learning-based

models based on pre-trained language models such as BERT [6] so

far achieved the best results, but still they fail to reach a moderate

F1 score of 70% in 3/7 of the Machamp datasets.

1
Will be available soon

Contributions. In summary, this paper makes the following

contributions:

• We come up with the new research problem Generalized Entity

Matching (GEM) based on the requirement of real world applica-

tions which can capture matching data of different types such as

structured, semi-structured, or textual data.

• We releaseMachamp, the first benchmark for GEM, for develop-

ing and evaluating novel matching solutions. By adapting and

transforming existing EM datasets,Machamp takes advantage of

the existing ground truth and covers a wide variety of real-world

matching scenarios.

• We conduct a profiling analysis with the help of pairwise sim-

ilarity measures on the benchmark datasets. The result of the

analysis shows the difficulty of all tasks based on both textual

and structural similarity.

• We conduct an extensive set of experiments on 7 popular EM

methods including classical machine learning and deep learning

approaches based on pre-trained language models. Confirming

the profiling analysis, our initial results show that there is indeed

significant room for improvement as existing methods fail to

achieve a moderate level (i.e., 80% average F1 score) of matching

quality in some hard tasks.

The rest of the paper is organized as follows. We define the

GEM problem and task categorization in Section 2. We present

the Machamp benchmark in Section 3. Section 4 and 5 present the

experiment results and findings on existing EM solutions. Finally,

we discuss related work in Section 6 and conclude in Section 7.

https://github.com/megagonlabs/machamp
https://github.com/megagonlabs/machamp
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2 TASKS DEFINITIONS

In this section, we start by defining the GEM problem, i.e. the

generalized version of the Entity Matching. Next, we introduce

6 categories of practical scenarios that the Machamp benchmark

covers. We also briefly introduce the benchmark datasets for classic

EM from whichMachamp is constructed.

2.1 Problem Formulation

Given two tables of entities 𝐸𝐴 and 𝐸𝐵 , the Entity Matching (EM)

problem aims at identifying all pairs of entity records ⟨𝑒𝑎, 𝑒𝑏⟩ for
𝑒𝑎 ∈ 𝐸𝐴 , 𝑒𝑏 ∈ 𝐸𝐵 that refer to the same real-world entity. The

tables 𝐸𝐴 and 𝐸𝐵 are called the left and right tables respectively for

convenience. In the classic setting [2, 16, 18, 21] of EM, it typically

assumes that they are two relational tables having the same schema.

Namely, there exists a relation 𝑅(attr1, . . . , attr𝑛) with 𝑛 attributes

such that all records in 𝐸𝐴 and 𝐸𝐵 are elements of 𝑅. We refer to

this case structured data matching with homogeneous schema.

To generalized the classic setting to more practical application

scenarios, we extend the definition as follows. We assume two base

data types of number and string2. An entity record 𝑒 is a named tuple

(i.e., a key-value collection) with a set of attributes {attr1, . . . , attr𝑛}
where attr𝑖 is the attribute name and 𝑒.attr𝑖 denotes the attribute
value. Each value 𝑒.attr𝑖 can be of either the base type or an entity

record itself. In other words, we allow 𝑒 to be semi-structured data

with nesting attributes such as JSON. We define an entity table

(or table for short) to be a set 𝐸 of entity records. When an entity

table 𝐸 contains an element with nested records, we call 𝐸 a semi-

structured table. Table 𝐸 is structured (or relational) otherwise.

When 𝑛 = 1 and the only attribute 𝑒.attr1 is of the string type,

we call the record 𝑒 an unstructured (or textual) record and 𝐸 an

unstructured table. Two entity tables are homogeneous if all the

records share the same structure of attributes with respect to the

attribute nesting. They are heterogeneous otherwise. Following the

above discussion, we can then formally define the GEM problem:

Problem 1 (GEM). Given two structured, semi-structured, or un-
structured entity tables 𝐸𝐴 and 𝐸𝐵 with homogeneous or heteroge-
neous schema, compute all record pairs ⟨𝑒𝑎, 𝑒𝑏⟩ for 𝑒𝑎 ∈ 𝐸𝐴 , 𝑒𝑏 ∈ 𝐸𝐵
where 𝑒𝑎 and 𝑒𝑏 refer to the same real-world entity.

In our benchmark, we assume that within a structured and un-

structured table, all records share the same schema; while in a

semi-structured table, the schema of records can be different due

to the inherited characteristics of semi-structured data.

Thematching task. A standard entity matching pipeline consists

of two major steps: blocking and matching [16]. The goal of the

blocking step is to prune pairs of entity records that are unlikely

matches to avoid performing a full quadratic-size set of pairwise

comparisons. The matching step follows the blocking step to per-

form the actual pairwise comparison. In this paper, we focus our

benchmarking effort on the matching step because the recent devel-

opment of matching techniques often relies on datasets for training

machine learning-based models [9, 18, 21]. As such, it is tremen-

dously important to get access to high-quality training and testing

data for GEM. Our goal is to provide the first benchmark for this

purpose. Formally, given two entity tables (𝐸𝐴, 𝐸𝐵), a GEM dataset

2
We also include the list type but we omit it for sake of space.

𝐷 consists of a subset of record pairs from 𝐸𝐴 × 𝐸𝐵 . Every pair

⟨𝑒𝑎, 𝑒𝑏⟩ ∈ 𝐷 is associated with a ground truth label 𝑦 ∈ {0, 1}
indicating whether ⟨𝑒𝑎, 𝑒𝑏⟩ is a true match or not. The dataset 𝐷

is typically split into the training, validation, and test sets for the

model development and evaluation purpose. Given a dataset 𝐷 , the

goal is to train a matching model𝑀 such that for every pair ⟨𝑒𝑎, 𝑒𝑏⟩,
𝑀 (𝑒𝑎, 𝑒𝑏 ) = 1 if 𝑒𝑎 and 𝑒𝑏 are real match or 0 otherwise.

2.2 Application scenarios

Based on the above discussion, compared with the classic EM prob-

lem, GEM covers a wider spectrum of matching scenarios and

provides more flexibility. By allowing different data formats with

homogeneous or heterogeneous schema, GEM can support a variety

of matching tasks with practical applications. Next, we describe 6

such instantiations of GEM with the specific applications that they

support.

Structured vs. Structured The most popular setting of classic

EM is when both tables are structured and have homogeneous

schema. Classic EM has a wide range of applications from data

integration [29] to knowledge base construction [12, 30]. GEM

further supports matching two structured tables with heteroge-
neous schema. By relaxing this constraint, we no longer require the

schema alignment step before matching.

Semi-structured vs. Semi-structured In this scenario, both ta-

bles are semi-structured. This case is very popular in nowadays

application as many data collections are organized in JSON format.

Due to the characteristics of semi-structured data, the schema of

two semi-structured tables is not exactly the same in most cases.

Even within the same table, the schema of two records might also

be different since if an attribute in a semi-structured record is miss-

ing, it will omit that attribute instead of having a NULL value as

structured data did. Therefore, this task is naturally heterogeneous

in terms of data schema.

Semi-structured vs. Structured In this scenario, one of the ta-

bles is structured and another table is semi-structured. In real-world

applications, some data collections are stored in CSV format while

others are in JSON format. To conduct entity matching between

them, it requires not only to learn the semantic similarity between

their textual content but also being aware of the structural infor-

mation.

Structured vs. Unstructured In this scenario, one of the tables

is structured and another table consists of free text. The matching

task will identify whether the description stated in the text is related

to an entity in the structured table. A typical application of this

task is claim verification [13] (a.k.a. fact check, fact verification)

over text data based on the fact provided in the structured table.

Semi-structured vs. Unstructured This setting is similar to the

above one. The differencewill be that the structured table is replaced

with a semi-structured one.

Unstructured vs. Unstructured This setting corresponds to the

text matching task commonly appears in natural language pro-

cessing (NLP) where both tables consist of free texts. There have

already been many existing benchmark tasks in related research

problems such as natural language inference [31] and paraphrase

identification [5]. Researchers can directly utilize such resources
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in the NLP field to evaluate newly proposed techniques for this

problem. Therefore, here we will not include it in our benchmark.

2.3 Data Collection and Processing

In this paper, we build our benchmark tasks by leveraging the

existing resources for EM over structured datasets. By doing so, we

can take advantage of the ground truth labels created in them and

avoid expensive human labeling. As they are originally proposed for

matching relational data, we conduct necessary transformations to

construct equivalent semi-structured or unstructured tables without

changing the meaning of the records. Specifically, the resources

we rely on to create our benchmark tasks include the Magellan

repository [16]
3
, Deep Matcher datasets [21] 4, and the Web Data

Commons collection (WDC) [27]
5
. In the rest of the paper, we will

call the two tables in a task left/right table when describing the

dataset/task if there is no ambiguity. Details of the resources are

summarized as following:

First we introduce two resources from the Magellan repository.

They consist of several smaller datasets. The schema of tables in

different datasets is also different. Each dataset is stored in a CSV-

like format, but many attributes are either missing or obviously

unstructured (e.g. long review texts). The labeled pairs in each

dataset are not split into training/validation/test sets. More details

of them are introduced in Appendix A.

Book This series of tasks aims at matching books from different

websites. There are 5 datasets where the entities are books with the

information such as title, author, publication, price, etc. The original

data sources are from the websites Amazon, Barnes & Noble, and

Goodreads.

Movie This series of tasks aims at identifying entity pairs that

refer to the same movie. There are 5 datasets where the entities

are basic information of movies as well as the review comments.

The original data sources are from the websites Rotten Tomatoes,

IMDB, TMD, Amazon, and Roger Ebert.

The following two resources are from theDeepMatcher datasets.
Different from the above ones, they have been well cleaned and

formatted. Besides, the pairs have been split into train, validation,

and test sets ahead of time.

Restaurant The original dataset contains restaurant data from

Fodors and Zagat. It consists of two tables of the same schema

{name, addr, city, phone, type, class}. The goal is to find the enti-

ties from different websites that refer to the same restaurant. The

number of pairs in the train/validation/test sets is 567, 190, and 189,

respectively.

Citation This task is from the ER Benchmark [17], which is also

used in Deep Matcher datasets. The goal of the original task is to

match bibliographic entities from different websites. There are two

datasets for this task: DBLP-ACM and DBLP-Google Scholar. For

DBLP-ACM, the number of pairs in the train/validation/test sets is

17223, 5742, and 5742, respectively. For DBLP-Google Scholar, the

number of pairs in the train/validation/test sets is 7417, 2473, and

2473, respectively. For both datasets, the schema of both tables is

{title, authors, venue, year}.
3
https://sites.google.com/site/anhaidgroup/useful-stuff/data

4
http://pages.cs.wisc.edu/ãnhai/data1/deepmatcher_data

5
http://webdatacommons.org/largescaleproductcorpus/v2/index.html

Finally, we also look at the WDC datasets that are designed for

large-scale product matching.

Products The original datasets consist of product records from

multiple e-commerce websites. The objective is to decide whether

two entities refer to the same product. There are four categories of

tasks, namely Computer, Watch, Camera, and Shoe. The tables in

all datasets share the same schema where there are four attributes:

title, description, brand, and specTable. Among them, the specTable
attribute consists of a series of key-value pairs and is somewhat

semi-structured. Meanwhile, the dataset is very sparse as the at-

tributes Brand, and SpecTable are missing in most records.

3 THE Machamp BENCHMARK

To facilitate development matching solutions for GEM, we construct

the Machamp benchmark consisting of 7 datasets for training and

testing matching models. In this section, we first introduce the 7

datasets then present our analysis highlighting their hardness for

existing EM solutions.

3.1 Overview

We show a summary ofMachamp tasks in Table 1. Each task con-

sists of two collections of entity records of possibly different formats

(i.e., relational, semi-structured, or textual). We denote the two col-

lections by the left and right tables respectively. When they are

of the same type, they can have a homogeneous or heterogeneous

schema. Table 1 also summarizes the sizes and numbers of attributes

for each collection. For semi-structured data (row 2-4), we report

the number of attributes as the average number of leaf elements

in their JSON format. The numbers of attributes for structural or

textual data are constants.

We provide the training, validation, and test set for each dataset

for model training and evaluation. The size of the training set

varies from a low 567 to over 17k covering both the low- and

high-resourced settings in practice. Similar to previous EM tasks, a

GEM model should be trained on the training set, tune its hyper-

parameters on the validation set (e.g., selecting the best performing

epoch), and report the precision, recall, and F1 scores on the test

sets.

As discussed above, in this paper we will propose benchmark

tasks for all but the last matching scenario (Unstructured vs. Un-

structured). Since there have been many benchmark tasks for Struc-

tured vs. Structured with homogeneous schema, we will also omit

it and only prepare for the case with heterogeneous schema. Be-

sides, we also add an additional task for Semi-structured vs. Semi-

structured where we force the two tables to be “homogeneous”.

This is realized by filling the missing attributes with NULL values

and ensure that all records have the same structure.

3.2 Benchmark datasets

The benchmark consists of the following 7 datasets. Examples of

the datasets are shown in Figure 2. When we name the datasets,

we use “Rel” to denote whether the dataset contains a structured

table, “Semi” to denote whether the dataset has a semi-structured

(JSON) collection, or “Text” if the dataset has textual data. We

omit the repetitive token when the two tables are of the same type.

We use “HOME” or “HETER” to denote whether the schema is
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Table 1: Dataset statistics.

Left Table Right Table Labeled Ground Truth

#row #attr #row #attr Train Valid Test % positive

Rel-HETER 534 6.00 332 7.00 567 190 189 11.63%

Semi-HOMO 2,616 8.65 64,263 7.34 17,223 5,742 5,742 18.63%

Semi-HETER 22,133 12.28 23,264 12.03 1,240 414 414 38.20%

Semi-Rel 29,180 8.00 32,823 13.81 1,309 437 437 41.64%

Semi-Text-w 9,234 10.00 9,234 1.00 5,540 1,848 1,846 11.80%

Semi-Text-c 20,897 10.00 20,897 1.00 12,538 4,180 4,179 14.07%

Rel-Text 2,616 1.00 2,295 6.00 7,417 2,473 2,473 17.96%

homogeneous or heterogeneous. In the proposed datasets, tables

with structured data are in CSV format; tables with semi-structured

tables are in JSON format; while those with unstructured data are

in text format.

Rel-HETER. This dataset is derived from the Restaurant task

from Deep Matcher datasets. To convert the task into a case of

heterogeneous schema, wemodify the left table by combining “addr”

and “city” into a single “address” attribute as well as combining

“type” and “class” into a single “category” attribute. Tomake the task

more difficult to distinguish the power of different approaches, we

drop the “name” attribute from the right table. Finally, the schema

of the left table is {name, address, phone, category}; while that of
the right table is {addr, city, phone, type, class}.
Semi-HOMO. We construct the second dataset from the DBLP-

Scholar dataset from the Citation task. As entities in the original

dataset are in uniform relational tuples, we convert it into a task

of matching semi-structured data with a homogeneous schema.

That is, we directly transform the structured records into semi-

structured ones with key-value pairs. The only difference is that

the authors attribute in the semi-structured record is a list generated

by splitting the corresponding attribute into a list of names. We

expect a matching solution to leverage the additional structural

information to achieve improved matching quality.

Semi-HETER. We construct this task with semi-structured tables

by combining 5 datasets in Book from the Magellan repository. The

5 original datasets have different data sources thus naturally have

different schemas. We group co-related attributes into nested tu-

ples. For example, the attributes publication_date, edition, publisher,
isbn13 are grouped under a JSON key publication_info; while the
attributes paperback_price, hardcover_price, nookbook_price, and
audiobook_price are grouped under a JSON key prices. For each
record, we remove all attributes with NULL value tomake the schema

more flexible. Thus as discussed before in Section 2.2, the left and

right tables in this task are naturally heterogeneous.

Semi-Rel. We follow a similar approach to construct the Semi-Rel

task by merging 5 datasets in Movie from the Magellan repository.

For the left table, we make it as a structured table with unified

schema { id, title, director, actors, year, rating, information }. In
the original datasets, the attributes other than the first 6 ones men-

tioned here are merged as a string and regarded as information. For
the right table, we treat it similarly as above in Semi-HETER. For

example, we grouped related attributes such as {rotten_tomatoes,

audience_rating, reviews(list)} into nested attributes, e.g., ratings.

Semi-Text-w/c. The goal of these two datasets is to match text

with semi-structured data.We obtain 2 datasets from theWDC prod-

uct matching dataset. The records contain rich product information

including both the textual product title and product specifications

in nested JSON format. To generate a meaningful matching task, we

make the left table semi-structured and the right table unstructured

in the following way: For the left table, we simply keep only the

specTable attribute of the original record, which consists of a series

of key-value pairs, as a semi-structured record. For the right table,

we concatenate the texts in title and description (if it is not empty)

attributes of the original record as a piece of unstructured text. To

reach this goal, we only use the entity pairs where the specTable
attribute is not empty in the original dataset. As the number of

such pairs is limited in Camera and Shoe tasks in WDC, we only

create two tasks Semi-Text-w and Semi-Text-c here, which are

corresponding to the Watch and Computer sub-categories in the

WDC dataset respectively.

Rel-Text. We construct a dataset for matching text and relational

data by extending the DBLP-ACM dataset from the Citation task.

The original dataset is a paper matching dataset similar to DBLP-

Scholar above. Instead of matching relational tuples, we replace

the record in the left table (DBLP) with the abstract of the paper it

refers to (or the first paragraph if the abstract is missing), which

can be regarded as a high-level summary of the paper. Then the

task becomes a challenging matching task of matching the paper

information (title, authors, venue, etc.) in the right table with paper

abstracts in the left table. Notice that here the meaning of matching

is also changed: it is no longer “refer to the same real-world entity”,

but more generalized to “entities with similar semantics”.

For tasks Semi-HOMO, Semi-Rel, and Semi-Text-w/c, the schema

of different records might be different due to the inherited charac-

teristics of semi-structured data. The detailed schema of all tasks

can be found in Appendix B.

3.3 Task Profiling

Next, we define the profiling dimensions to analyze the proposed

tasks. To illustrate the characteristics that differentiate them from

existing EM benchmark tasks, we focus on pairwise similarity anal-

ysis where we compute similarity scores between pairs of entity

records or attributes. We would like to understand whether existing

approaches using popular similarity metrics can easily achieve high

matching accuracy on the new tasks. We follow the intuition that

a feature is significant if it can easily separate the positive and nega-
tive classes. Given a pairwise similarity function, we measure this

separability by computing the gap between the average pairwise
similarity scores computed on the positive class and that on the

negative class respectively. Intuitively, a large gap indicates that it

is more likely for a similarity-based matching solution to achieve

high accuracy for matching. Since aligned schema is not available

in most tasks of GEM, we cannot directly compute attribute-wise

similarity. Instead, we consider two metrics by aggregating the

similarity scores: textual and structural similarity. In other words,

we will regard them as the two profiling dimensions.

For the textual similarity, we employ Jaccard and Cosine sim-

ilarity with TF-IDF, which are widely used matching features in

both rule-based [3] and learning-based EM solutions [9, 16, 21], as
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{
 "title": 
   "A First Course in Database Systems", 
 "series": "GOAL Series", 
 "pages": 528,
 "authors": ["Jeffrey Ullman", 
             "Jennifer D. Widom"],
 "publication_info": {
   "publication_date": "10/28/2001",  
   "edition": 2, 
   "publisher": "Prentice Hall",
   "isbn13": ...}
}

Semi-HETER dataset, Right Table

“Global information systems have the potential of providing decision makers 
with timely spatial information about earth systems. This information will 
come from diverse sources, including field monitoring, remotely sensed 

imagery, and environmental models ..."

Text-Rel dataset, Left Table

title director actors year rating information

Psycho Alfred 
Hitchcock

Anthony Perkins, 
Janet Leigh, 
Vera Miles, ...

1960,8.6 RatingCount : 
379,998 ; 
ReviewCount : 
976 ...

A Phoenix secretary 
steals $40,000 from her 
employer's client, ...

Rel-Semi dataset, Left Table

Figure 2: Examples of Machamp dataset instances.

similarity functions. To this end, we first concatenate all attribute

values into a single string for each entity. Then for a pair of enti-

ties, we compute the similarity score as the similarity of the two

flattened strings.

Algorithm 1: StructuralSimilarity

Input: The first entity 𝑒𝑎 with attributes 𝐴1 . . . 𝐴𝑛 ; the

seccond entity 𝑒𝑏 with attributes 𝐵1 . . . 𝐵𝑚 ; a string

similarity function sim
Variables : similarity scores of elements – scores
Output: aggregated similarity score

1 if 𝑛 =𝑚 = 1 then

2 return sim(𝑒𝑎 .𝐴1, 𝑒𝑏 .𝐵1);
3 else

/* Identify shared attributes */

4 𝐴shared ← {𝐴1, . . . , 𝐴𝑛} ∩ {𝐵1, . . . , 𝐵𝑚};
5 scores← {};
6 for all shared attributes 𝐴 ∈ 𝐴shared do

/* Recursion */

7 scores←
scores ∪ {StructuralSimilarity(𝑒𝑎 .𝐴, 𝑒𝑏 .𝐴, sim)};

/* Flatten the remaining attributes */

8 str𝑎 ← flatten({𝑒𝑎 .𝐴|𝐴 ∈ {𝐴1, . . . , 𝐴𝑛} \𝐴shared}) ;
9 str𝑏 ← flatten({𝑒𝑏 .𝐴|𝐴 ∈ {𝐵1, . . . , 𝐵𝑚} \𝐴shared}) ;

/* Similarity of the two flattened strings */

10 scores← scores ∪ sim(str𝑎, str𝑏 );
11 return avg(scores);

For structural similarity, since the schema cannot be easily aligned

in most tasks, we are not able to directly compute attribute-wise

similarity. Thus we proposed an algorithm to compute and aggre-

gate the similarity score recursively. The detailed process is shown

in Algorithm 1. When both entities are unstructured (with only one

attribute), it directly returns the textual similarity (line: 2). Other-

wise, it will identify the shared attributes between two records (line:

4) and compute the structural similarity recursively: For attributes

unique to each record, we flatten those attributes (line: 8-9) and

compute a single score of the two flatten strings (line: 10). Finally,

we aggregate all scores as the final results (line: 11) by averaging it

over all pairs of attributes(including that between flatten strings

computed in line 10). Note that the structural similarity computed

by Algorithm 1 de-generates to textual similarity when one side of

the table is unstructured, or there is no common attribute between

the two tables.

The analysis results are shown in Table 2. As expected, the Rel-

HETER and Semi-HOMO tasks have the largest average gaps be-

tween the positive and the negative class across the 4 similarity

metrics. That means they are relatively easy tasks. This is reason-

able because there is a relatively large overlap in their schema.

We conjuncture that existing EM methods are likely to achieve

good results in these two tasks. The Rel-Text task has the smallest

average similarity gaps. The reason might be that there is likely

a consistent large content gap between an article abstract and a

relational record. Therefore, its summary results in consistently

low similarity scores. The small similarity gap also indicates the

difficulty of this task where existing EM solutions over structured

tables might fail to achieve a moderate F1 score.

Note that the similarity gaps for textual similarity are larger

than those for structural similarity (row 1-3). This can be counter-

intuitive at the first glance but is reasonable here because the pieces

of useful matching information spread across multiple attributes.

We conjuncture that in such cases, matching methods based on

the entire record as context will perform better than those based

on local attribute-wise similarity. As a result, it calls for new tech-

niques that can capture structural similarity to better solve the

GEM problem.

4 EXPERIMENT SETUP

Next, we summarize the methods that we evaluated on Machamp
and the settings of our experiments.

4.1 Methods Evaluated

To the best of our knowledge, there are no previously proposed

EM techniques that can be directly applied to the GEM settings

proposed in this paper. Therefore, we extend some well-known

entity matching methods for structured tables to evaluate the tasks

here. The results of such approaches could show the difficulty of

proposed tasks and also set a lower bound of performance for more

sophisticated matching methods proposed in the future.
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Table 2: Statistics and similarity scores on the benchmark datasets. Textual similarity is computed by flattening the both records. Structural

similarity is computed recursively over the shared structure of the two records. We report the average similarity scores on both the positive

and the negative class and their differences. A larger gap indicates that the task is more likely to be solved EM solutions relying on similarity

scores as model features.

Left Table Right Table Textual Cosine Textual Jaccard Structual Cosine Structural Jaccard

#char #token #char #token neg pos diff neg pos diff neg pos diff neg pos diff

Rel-HETER 79.21 14.35 14.35 11.33 .0737 .6995 .6258 .1226 .5954 .4727 .0728 .3035 .2307 .0828 .2999 .2171

Semi-HOMO 108.68 13.96 13.96 16.02 .1703 .6300 .4597 .1613 .5411 .3798 .1464 .5470 .4006 .1246 .5116 .3870

Semi-HETER 305.04 43.65 43.65 23.85 .2974 .6065 .3092 .1750 .3839 .2090 .2593 .4976 .2383 .1535 .3657 .2122

Semi-Rel 355.64 51.94 51.94 70.74 .0241 .0286 .0045 .0255 .0305 .0050 .0241 .0286 .0045 .0255 .0305 .0050

Semi-Text-w 239.13 27.88 27.88 101.59 .0962 .1340 .0378 .0393 .0406 .0014 .0962 .1340 .0378 .0393 .0406 .0014

Semi-Text-c 584.59 62.56 62.56 49.76 .1204 .2493 .1289 .0777 .1143 .0366 .1204 .2493 .1289 .0777 .1143 .0366

Rel-Text 866.44 127.70 127.70 21.00 .0232 .0241 .0009 .0307 .0307 .0000 .0232 .0241 .0009 .0307 .0307 .0000

Table 3: Main results (P: Precision; R: Recall; F: 𝐹1 Score) of 7 popular learning-based EM methods. Classic machine learning methods such

as Random Forest and SVM do not perform well in general. Deep learning methods such as Transformer, SentenceBERT, and Ditto based on

pre-trained language models achieve the best results so far.

SVM Random Forest DeepER Deep Matcher Transformer SentenceBERT Ditto
P R F P R F P R F P R F P R F P R F P R F

Rel-HETER 1.00 0.697 0.821 1.00 0.546 0.706 1.00 0.773 0.872 1.00 0.879 0.936 0.955 0.955 0.955 0.667 0.727 0.696 1.00 1.00 1.00

Semi-HOMO 0.604 0.473 0.53 0.917 0.630 0.747 0.894 0.858 0.875 0.890 0.832 0.861 0.938 0.939 0.938 0.856 0.893 0.874 0.947 0.916 0.931

Semi-HETER 0.839 0.164 0.274 1.00 0.151 0.262 0.617 0.182 0.282 0.358 0.245 0.291 0.907 0.308 0.460 1.00 0.535 0.697 0.846 0.484 0.616

Semi-Rel 0.556 0.978 0.709 0.579 1.00 0.733 0.49 0.392 0.436 0.509 0.641 0.567 0.873 0.94 0.905 0.478 0.77 0.59 0.958 0.869 0.911

Semi-Text-c 0.579 0.537 0.557 0.902 0.508 0.650 0.756 0.289 0.418 0.766 0.311 0.442 0.89 0.883 0.886 0.851 0.751 0.798 0.822 0.813 0.818

Semi-Text-w 0.567 0.545 0.556 0.71 0.441 0.505 0.759 0.261 0.388 0.802 0.291 0.427 0.648 0.652 0.665 0.523 0.483 0.502 0.636 0.663 0.649

Rel-Text 0.49 0.392 0.436 0.603 0.26 0.363 0.727 0.416 0.529 0.784 0.404 0.534 0.616 0.646 0.631 0.372 0.295 0.329 0.656 0.601 0.627

Supported Vector Machine (SVM) andRandom Forest are two

traditional machine learning techniques. They are widely used in

text classification tasks before. They can be applied to the entity

matching task by employing the bag of words representation for

each training instance with bi-gram and tri-gram as the features.

DeepER [9] employs the bi-directional Long Short Term Memory

(LSTM) model to tackle the problem of entity matching. It first

encodes each entity with an LSTM network and then fusion the

representation of two entities to predict the match/unmatch result.

Deep Matcher [21] is an entity matching framework that uses

Siamese RNN networks as the basic structure to aggregate the

attribute values and then align the aggregated representations of

the attributes. It proposes four matching models and the Hybrid
one shows the best overall performance in the original paper.

Transformer [2] utilizes Transformer based models as the encoder

for entity matching. It first transforms two entities into a sequence

with special tags inserted before each attribute and concatenates the

sequences of two entities as the input for the Transformer model.

Ditto [18] combines the pre-trained LMs with data augmentation

techniques for entity matching. It can benefit from the inherited

power of pre-trained LM and rely on the data augmentation tech-

niques to address the problem of insufficient training instances.

Therefore, it achieves state-of-the-art performance in most bench-

mark tasks of entity matching.

SentenceBERT [28] proposes a siamese architecture for pre-trained

LMs for the task of sentence matching. It first encodes two sen-

tences with the same encoder separately and then concatenates

the two representations and a vector generated from element-wise

operation between them as the output for prediction. It could also

be applied to the task of entity matching.

4.2 Serialization

As existing approaches are designed for entity matching over struc-

tured data with homogeneous schema, we need proper serialization

to evaluate them on the tasks proposed here. The goal of serializa-

tion is to turn the original structured/semi-structured data into a

token sequence that can be meaningfully ingested by each approach

above while keeping as much structural information as possible. To

achieve this goal, we extend the serialization method proposed in

Ditto [18] and propose a reasonable way as follows. How to develop

new techniques for serialization and matching is out of the scope

of this paper.

For structured tables, a data entry with 𝑛 attributes can be de-

noted as 𝑒 = {attr𝑖 , val𝑖 }𝑖∈[1,𝑛] , where attr𝑖 is the attribute name

and val𝑖 is the attribute value of the 𝑖-th attribute, respectively.

Then the serialization is denoted as

serialize(e): [COL] attr1 [VAL] val1 . . . [COL] attr𝑛 [VAL] val𝑛 ,

where [COL] and [VAL] are two special tags indicating the start

of attribute names and values respectively. To serialize a pair of

entities ⟨𝑒, 𝑒 ′⟩, we concatenate them with a special token [SEP]. For
example, given the entity in the structured table shown in Figure 2,

we serialize it as:

[COL] title [VAL] Alfred Hitchcock [COL] actors [VAL]
Anthony Perkins, Janet Leigh... [COL] year [VAL]

1960,8.6 [COL] rating [VAL] RatingCount : 379,998 ; ...
[COL] information [VAL] A Phoenix secretary steals ...
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The semi-structured table can be serialized in a similar way. The

only differences lie in: (i) for nested attributes, we recursively add

the [COL] and [VAL] tags along with attribute names and values

in each level of nests; (ii) for attributes whose content is a list, we

concatenate the elements in the list into one string separated by

commas. Given the semi-structured entity in Figure 2, we serialize

it as:

[COL] title [VAL] A First Course in Database Systems
[COL] series [VAL] GOAL Series [COL] pages [VAL] 528
[COL] authors [VAL] Jeffrey Ullman, Jennifer D. Widom
[COL] publication_info [VAL] [COL] publication_date

[VAL] 10/28/2001 [COL] edition [VAL] 2 [COL] publisher
[VAL] Prentice Hall [COL] isbn13 [VAL] ....

For pre-trained LM-based approach, we further insert the token

[CLS], which is the special token necessary for BERT to encode the

sequence pair into a feature vector which will be fed into the fully

connected layers for classification, into the front of the sequence.

[CLS] serialize(e) [SEP] serialize(e’) [SEP]

Moreover, we further customize the input sequence for different

approaches as following:

• For Random Forest and SVM, we concatenate the two token

sequences separated by a special tag [ENTITY] into one input
sequence to the model.

• As Deep Matcher only accepts input with the same schema

on two tables, we just make the schema of both tables as hav-

ing only one attribute which is the token sequence generated

above.

• Following the settings in [2], we remove the special tag

[COL] along with the attribute name and only keep the

values as the input of Transformer.

4.3 Environment and Settings

All the experiments are conducted on a p3.8xlarge AWS EC2 ma-

chine with 4 V100 GPUs (1 GPU per run). The pre-trained LMs are

from the Transformers library [32] and here we use BERT [6] as

the basic encoder for the three pre-trained LM-based approaches

Transformer, Ditto, and SentenceBERT. We use the base uncased

variant of each model in all our experiments. To accelerate the

training and prediction speed, we apply the half-precision floating-

point (fp16) optimization. We implement Random Forest and SVM
using the Scikit-learn library and re-implement DeepER using the

PyTorch platform. For other baseline methods Deep Matcher, Ditto,
Transformer and SentenceBERT, we obtain the source code from

the original open-sourced repositories.

We use Adam [15] as the optimizer for training and fix the batch

size to be 16. We tune the hyper-parameters by doing a grid search

and select the one with the best performance. Specifically, the learn-

ing rate is selected from {10
−5
, 3.0×10−5, 5.0×10−5}. The maximum

sequence length for pre-trained LM-based methods is selected from

{128, 256, 384, 512}; For the Deep Matcher approach, we use the
default setting of its Hybrid model; The number of training epochs

is selected from {5, 10, 20, 30, 40}. We use the 𝐹1 score as the main

evaluation metric and also report the values of precision and recall.

For each run of experiments, we select the epoch with the highest

𝐹1 on the validation set and report results on the test set.

5 RESULTS AND ANALYSIS

The results of evaluating existing approaches on the newly proposed

benchmark tasks are shown in Table 3. The observations from such

results are as follows.

Firstly, the results on different tasks are consistent with the diffi-

culty of tasks profiled in Section 3 in most cases. Generally speaking,

the results of Rel-HETER and Semi-HOMO have been already very

promising even by extending existing solutions. For example, the

results of Ditto on Rel-HETER can reach a 1.0 in 𝐹1 score, which

is equivalent to that on the original task for homogeneous tables.

Meanwhile, those for tasks Semi-HETER, Semi-Text-w, and Rel-

Text are relatively low as the best approaches only achieved less

than 0.7 in 𝐹1 score. Such differences might be caused by the differ-

ent complexity in the schema of data and textual similarity among

positive and negative pairs. More efforts are required to investi-

gate the relationship between such factors and the performance to

devise more effective approaches.

Secondly, the overall performance of pre-trained LM-based ap-

proaches is better than other ones. Among all 7 tasks,Ditto achieved
the best performance in 2 tasks; SentenceBERT in 1 task, while

Transformer in the remaining 4 tasks. The overall performances of

Ditto and Transformer are close with each other and much better

than the other approaches. The reason might be due to the superior

ability of pre-trained LM in learning contextual word embedding, i.e.

understanding the semantics of tokens and discern homonyms and

synonyms. Moreover, pre-trained LMs are also robust to structural

heterogeneity as they learn to pay attention to proper segments of

two records when making matching decisions. Therefore, it might

be a promising starting point to utilize pre-trained LMs to address

the problem of generalized entity matching.

Thirdly, the Random Forest and SVM approaches have the worst

performance in most cases. The main reason might be that as it just

treats the problem in the same way as text classification and uses

bag-of-words features, it fails to learn neither the structural infor-

mation nor the matching between tokens or attributes. Of course,

the performance of Random Forest and SVM could be further im-

proved via extensive efforts in feature engineering. Nevertheless,

that is out of the scope of this paper.

Finally, since some datasets are derived from original sources

that are matching tasks between structured tables, we also make a

comparison between the results here and the ones reported in the

original paper. Tasks Rel-HETER and Semi-HOMO are from Deep
Matcher [21]. In task Rel-HETER, the results of Deep Matcher and
Ditto are both 1 in the original task; while here the result of Deep
Matcher is 0.936. This is reasonable as less information is provided

in our task than in the original one. In task Semi-HOMO, the results

of Deep Matcher and Ditto are 0.947 and 0.956 respectively in the

original task; while here the results are 0.861 and 0.931, respectively.

The gap between them is not large because although the data be-

comes semi-structured in our task, the structure is not so complex

and the two tables are homogeneous. For tasks Semi-HETER and

Semi-Rel, the datasets here are generated by combining several

similar tasks from the Magellan repository. The results on each

original datasets are at least 0.9 using simple traditional machine

learning approaches; while here the results drop significantly since

both the structures of tables and the statistical information of the
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dataset significantly changes. Therefore, they can be regarded as

brand new tasks and it is meaningless to consider the results on

original tasks. Similarly, the available attributes or contents of Semi-

Text-c, Semi-Text-w, and Rel-Text are also very different from

those in the corresponding original tasks. Therefore, they should

also be regarded as brand new tasks created by us.

From the above discussions, we can further make the following

conclusions: (i) The coverage ofMachamp is sufficient to include

different matching scenarios as well as various levels of difficulty;

and (ii) there is still room for improving the performance on some

difficult tasks like Semi-HETER, Semi-Rel, and Rel-Text by de-

vising more advanced techniques to learn structural information

rather than just inserting special tags in the process of serialization

as we did here to extend existing solutions.

6 RELATEDWORK

6.1 Benchmark Tasks for Entity Matching

Many previous studies have provided entity matching benchmark

tasks that are publicly available. The Cora CitationMatching dataset
6

consisted of citations that might refer to the same paper. The Leipzig

DB Group Datasets [17] provided data collections of bibliography

and products that are from different websites
7
. Dude [8] devel-

oped a toolkit for entity matching along with 3 small datasets. The

Magellan project [16] provided several groups of entity matching

tasks covering applications like restaurants, books, products, etc.

The Web Data Commons collection (WDC) [27] focused on large-

scale entity matching and proposed four e-commerce related tasks.

Primpeli et al. [26] systematically profiled existing benchmark tasks

for entity matching and create rich features for them. They focus

on profiling existing tasks instead of creating new ones. The re-

cently proposed Alaska benchmark [4] aimed at evaluating data

integration tasks in a unified manner, which also includes the en-

tity matching task. Meduri et al. [20] proposed the benchmark for

entity matching with active learning, which targeted a different

problem from our work. All above benchmark tasks are designed

for entity matching between relational datasets. Meanwhile, our

newly proposed GEM benchmark aims at a broader scope of tasks

where the tables on both sides can be structured, semi-structured,

or unstructured. We are aware that Deep Matcher [21] proposes
matching tasks with different data types, including structural, tex-

tual, and dirty. The textual tasks in the context of Deep Matcher
are the same as the unstructured vs. unstructured case mentioned

in Section 2. While the dirty tasks switch the contents of different

attributes, they still require both tables to be relational and have the

same schema. We relax both restrictions in the problem definition

of GEM.

6.2 Entity Matching

There is a long line of studies about Entity Matching (EM) in the

database and data mining community. As surveyed in [23], there are

two basic steps of EM: blocking and matching. The blocking step

aims at reducing the number of potential comparisons by clustering

potentially matching entities into the same blocks to retain real

6
https://people.cs.umass.edu/m̃ccallum/data/cora-refs.tar.gz

7
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_

for_entity_resolution

matches as many as possible. The matching step performs pairwise

comparisons within each block to identify matched entities.

Many previous studies aimed at developing effective matching

strategies, including rule-based and machine learning-based ap-

proaches [3]. Recently deep learning methods have been widely

adopted in Entity Matching and achieve very promising results.

DeepER [9] first employed the Recurrent Neural Network (RNN)

models to perform entity matching. Deep Matcher [21] combined

the Siamese RNN model with alignment techniques to further

improve the performance. Kasai et al. [14] developed the active

learning method to deal with the situation where the number of

training instances for entity matching is insufficient. MPM [11]

proposed attribute comparison methods to improve the similarity

measurement in the matching process. Seq2SeqMatcher [22] and
HierMatcher [10] improved the performance of matching between

heterogeneous data sources by applying additional alignment layers.

However, they cannot be applied to more general scenarios such as

when at least one table consists of semi-structured or unstructured

data. Some recent studies [2, 18, 24] further adopted the pre-trained

language models such as BERT for entity matching. Brunner et

al. [2] utilized the Transformer architecture as encoder and formu-

lated the entity matching problem as sequence pair classification.

SentenceBERT [28] proposed a Siamese Transformer framework

for text matching tasks, which can also be utilized in the entity

matching task. Peeters et al. [24] applied the BERT model in the

application of products matching. Our previous study Ditto [18]

integrated the pre-trained language models with data augmentation

techniques and achieved the state-of-the-art performance.

7 CONCLUSION

Entity Matching has been a popular task in many real-world appli-

cations. In this paper, we generalize the research problem of entity

matching based on real application scenarios by allowing the two

tables of entities to be structured, semi-structured, or unstructured.

To facilitate evaluating this new problem, we create a benchmark

Machamp with 7 new tasks. This is realized by transforming the

tasks of existing benchmarks for EM between homogeneous struc-

tured records into those between tables with diverse structures. We

also reported detailed profiling results on these tasks and conducted

an extensive set of experiments by adapting popular entity match-

ing approaches for structured data. From the evaluation results,

we can see that the difficulty of the proposed tasks is consistent

with those of our profiling efforts. Besides, there is significant room

for improvement for the performance of existing approaches by

devising advanced techniques that jointly learn the text semantics

and structural information. We believe that our efforts in bench-

marking will facilitate future research of entity matching for data

of different structures by helping them develop and evaluate novel

matching techniques.
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A SCHEMA OF ORIGINAL DATASETS IN

MAGELLAN

The schema of each dataset in Book and Movie is detailed as

Table 4 and 5, respectively. Here the column “row” means the row

number of the list of datasets in the Magellan repository
8
.

Table 4: Statistics of Book Datasets

Row # Pairs Left Table Right Table

15 374 id, title, authors, pubyear,

pubmonth, pubday, edi-

tion, publisher, isbn13, lan-

guage, series, pages

Same as left

16 396 ID, Title, Description,

ISBN, ISBN13, Page Count,

First Author, Second Au-

thor, Third Author, Rating,

Number of Ratings, Num-

ber of Reviews, Publisher,

Publish Date, Format,

Language, FileName

ID, Title, Author1, Au-

thor2, Author3, Publisher,

ISBN13, PublicationDate,

Pages, Product dimen-

sions, Sales rank, Ratings

count, Rating value, Pa-

perback price, Hardcover

price, Nookbook price,

Audiobook price

18 450 ID, Title, Price, Author,

ISBN13, Publisher, Publica-

tion_Date, Pages, Dimen-

sions

ID, Title, Used Price, New

Price, Author, ISBN10,

ISBN13, Publisher, Pub-

lication_Date, Pages,

Dimensions

20 450 ID, Title, Author, Price,

Edition, ASIN, ISBN_13,

ISBN_10, Paperback,

Series, Publisher_dummy,

Publisher, Publica-

tion_Date, Sold_by,

Language, Product Di-

mensions, Shipping

Weight

ID, Title, Author, Hard-

cover, Paperback,

NOOK_Book, Audio-

book, ISBN_13_DUMMY,

ISBN_13, Series, Pub-

lisher, Publication_Date,

Sales_rank, Pages, Prod-

uct_dimensions

22 398 ID, Title, Author ,ISBN,

Publisher, PublicationDate,

Pages, price, ProductType

ID, title, authors, cover,

pages, publisher, language,

ISBN-10, ISBN13, price

B DETAILED SCHEMA OF ALL TASKS

The schema of all tasks proposed in this paper are summarized as

Table 6. Note that for semi-structured data, the meaning of schema

here is all the attributes that are possible to appear in a record. If

the value of an attribute is missing, the corresponding attribute will

not appear in the record.

Among them, the terms “Varies” means that records in the cor-

responding table have different schema based on different sources

they are from. It happens in the tasks originated from the Book

andMovie datasets in the Magellan repository as we create them

by merging several different tasks. Besides, as we use both Watch

and Computer sub-categories fromWDC, the specTable of them are

8
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Table 5: Statistics of Movie Datasets

Row # Pairs Left Table Right Table

3 600 Id, Name, Year, Release

Date, Director, Creator,

Actors, Cast, Language,

Country, Duration, Rat-

ingValue, RatingCount,

ReviewCount, Genre, Film-

ing Locations, Description

Id, Name, YearRange, Re-

leaseDate, Director, Cre-

ator, Cast, Duration, Rat-

ingValue, ContentRating,

Genre, Url, Description

4 400 ID, name, year, director,

writers, actors

Same as left

5 399 ID, Title, Year, Rating,

Director, Creators, Cast,

Genre, Duration, Con-

tentRating, Summary

Same as left

6 412 id, title, time, director, year,

star, cost

id, title, time, direc-

tor, year, star1, star2,

star3, star4, star5, star6,

rotten_tomatoes, audi-

ence_rating, review1,

review2, review3, review4,

review5

19 373 id, movie_name, year,

directors, actors,

critic_rating, genre,

pg_rating, duration

id, movie_name, year,

directors, actors,

movie_rating, genre,

duration

Table 6: The schema of all tasks

Left Table Right Table

Rel-HETER name, address, phone, category addr, city, phone,

type, class

Semi-HETER id, title, authors, venue, year Same as left

Semi-HOMO Varies Varies

Semi-Rel

id, title, director, actors,

year, rating, information

Varies

Semi-Text-w/c Varies N/A

Rel-Text N/A id, title, authors,

venue, year

also different. Specifically, the schema of records in the left table of

Semi-HETER:

• Book1: id, title, authors, pubyear, pubmonth, pubday, edition,

publisher, isbn13, language, series, pages

• Book2: ID, Title, Description, ISBN, ISBN13, Page Count, First

Author, Second Author, Third Author, Rating, Number of Ratings,

Number of Reviews, Publisher, Publish Date, Format, Language,

FileName

• Book3: ID, Title, Price, Author, ISBN13, Publisher, Publication_Date,

Pages, Dimensions

• Book4: ID, Title, Author, Price, Edition, ASIN, ISBN_13, ISBN_10,

Paperback, Series, Publisher_dummy, Publisher, Publication_Date,

Sold_by, Language, Product Dimensions, Shipping Weight

• Book5: ID, Title, Author ,ISBN, Publisher, PublicationDate, Pages,

price, ProductType

The schema of records right tables in Semi-HETER:

• Book1: id, title, authors(list), publication_info: [publication_date,

edition, publisher, isbn13], language, series, pages

• Book2: id, title, authors(list), publication_info:[publication_date,

publisher, isbn13], pages, product_dimensions, sales_rank, rat-

ings_count, rating_value, price:[paperback_price, hardcover_price,

nookbook_price, audiobook_price]

• Book3: id, title, author(list), price:[used_price, new_price], publi-

cation_info:[isbn10, isbn13, publisher, publication_date], pages,

dimensions

• Book4: id, title, author(list), price:[hardcover, paperback, nook_book,

audiobook], publication_info:[isbn_13_dummy, isbn_13, publisher,

publication_date], series, sales_rank, pages, product_dimensions

• Book5: id, title, authors(list), cover, pages, publisher, language,

isbn:[isbn_10. isbn13], price

The schema of records in right tables in Semi-Rel:

• Movie1: id, name, year_range, release_date, director, creator, cast,

duration, rating:[rating_value, content_rating], genre, url, de-

scription

• Movie2: id, name, year, director, writers(list), actors(list)

• Movie3: id, title, year, director, creators, cast, genre, duration,

rating:[rating, content_rating], summary

• Movie4: id, title, time, director, year, stars(list), rating:[rotten_tomatoes,

audience_rating, reviews(list)]

• Movie5: id, movie_name, year, directors, actors, movie_rating,

genre, duration

The schema of records in left table in Semi-Text:

• Watch: category, Merk, Product, Uitvoering, EAN, SKU, Tweakers

ID

• Computer: Binding, Catalog Number List, Ean, Label, Manufac-

turer, Mpn, Part Number, Release Date, Studio, Upc, Color, Item

Dimensions, Model, Package Dimensions, Product Group, Pub-

lisher, Size, Upc List
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