
Binary Code based Hash Embedding for Web-scale Applications

Bencheng Yan∗, Pengjie Wang∗, Jinquan Liu, Wei Lin, Kuang-Chih Lee, Jian Xu and Bo Zheng†
Alibaba Group

{bencheng.ybc,pengjie.wpj,vjinquan.ljq,kuang-chih.lee,xiyu.xj,bozheng}@alibaba-inc.com,lwsaviola@163.com

ABSTRACT
Nowadays, deep learning models are widely adopted in web-scale
applications such as recommender systems, and online advertising.
In these applications, embedding learning of categorical features is
crucial to the success of deep learning models. In these models, a
standard method is that each categorical feature value is assigned
a unique embedding vector which can be learned and optimized.
Although this method can well capture the characteristics of the
categorical features and promise good performance, it can incur
a huge memory cost to store the embedding table, especially for
those web-scale applications. Such a hugememory cost significantly
holds back the effectiveness and usability of EDRMs. In this paper,
we propose a binary code based hash embedding method which
allows the size of the embedding table to be reduced in arbitrary
scale without compromising too much performance. Experimental
evaluation results show that one can still achieve 99% performance
even if the embedding table size is reduced 1000× smaller than the
original one with our proposed method.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Embedding Learning, Web-scale Application, Hash Embedding

1 INTRODUCTION
Embedding learning for categorical features plays an important
role in embedding-based deep recommendation models (EDRMs)
[3, 7, 23]. A standard method, often referred to as full embedding, for
embedding learning is to learn the representation of each feature
value [19]. Specifically, let 𝐹 be a categorical feature and |𝐹 | be its
vocabulary size, each feature value 𝑓𝑖 ∈ 𝐹 is assigned an embedding
index 𝑘𝑖 so that the 𝑘𝑖 -th row of the embedding table𝑊 ∈ R𝑁×𝐷

is the embedding vector of 𝑓𝑖 , where 𝑁 = |𝐹 | in the full embedding
method and 𝐷 is the embedding dimensionality (see Fig 1 (a)).

However, such full embedding learning suffers from severe mem-
ory cost problems. Actually, the memory cost of the embedding

∗ These authors contributed equally to this work and are co-first authors.
† Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482065

Figure 1: Comparisons of different embedding methods.
Step 1, 2, and 3 refer to feature hashing, embedding index
generation, and embedding generation respectively.

table is 𝑂 (|𝐹 |𝐷) which grows linearly with |𝐹 |. For web-scale ap-
plications, one may need to store a huge embedding table since
the vocabulary size may be millions or even billions. For example,
suppose |𝐹 | = 500 million and 𝐷 = 256, the corresponding mem-
ory cost will be 475GB. In practice, such a huge cost becomes a
bottleneck in deploying EDRMs in memory-sensitive scenarios.

Therefore, it is crucial to reduce the size of the embedding table
[2, 19]. In this paper, we highlight two challenges: (1) Challenge
one: Flexibility. The memory constraint varies with different sce-
narios (from distributed servers to mobile devices). The embedding
reduction methods need to be flexible enough to meet different
memory requirements. Especially for mobile devices, a tiny EDRM
is needed to meet the limited memory requirement. (2) Challenge
two: Performance Retention. Since a big model usually has a bet-
ter capacity and hence a better performance, embedding reduction
may bring a performance gap due to the fewer parameters used in
the reduced model. Hence, how to keep high performance when
the memory size is reduced is a big challenge, especially for the
memory-sensitive scenarios (e.g., in mobile devices).

In general, there are two directions to reduce the embedding table
size, i.e., reducing the size of each embedding vector and reducing
the number (i.e., 𝑁) of the embedding vectors in an embedding
table. The embedding table size of the former methods (e.g., product
quantization [5, 9], K-D method [2, 11, 13, 15, 20], and AutoDim [6,
10, 16, 17, 28, 29]) is still linearly increased with |𝐹 |, failing to tackle
the memory problem caused by a large vocabulary size in web-scale
applications [19]. Hence these methods are not considered in our
paper. For the latter methods, they typically apply a mod-based
hash embedding to reduce 𝑁 . The key idea of them is to apply
modulo operation on the unique Hash ID of each feature value, i.e.,
focusing on Step 2 in Fig 1 (b). For example, Hash embedding [24]

ar
X

iv
:2

10
9.

02
47

1v
1

 [
cs

.I
R

]
 2

4
A

ug
 2

02
1

https://doi.org/10.1145/3459637.3482065

Table 1: Comparison about embedding methods.

Full Hash MH Q-R Ours
Flexibility Bad Good Good Fair Good

Performance Retention Good Bad Fair Good Good

takes the remainder of the Hash ID divided by𝑀 as the embedding
index, reducing the embedding size from 𝑂 (|𝐹 |𝐷) to 𝑂 (𝑀𝐷). The
problem of this method is that different feature values may have
the same embedding index and hence the same embedding vector,
leading to poor performance. Multi-Hash (MH) [22] adopts multiple
embedding indices for one feature value, reducing the collision
rate among feature values. But different feature values may still be
indistinguishable especially for a tinymodel, failing to the challenge
two. Q-R trick [19] uses both the remainder and the quotient as
embedding indices to identify a feature value. However, Q-R trick
fails to the challenge one since its minimal reduced size is related
to

√︁
|𝐹 | rather than any scales. Although the generalized Q-R tries

to address this problem, it needs a lot of effort to design the divisor
[19]. The comparisons are summarized in Table 1.

In this paper, unlike the existing methods which adopt a modulo
(collision) operation, we bring the idea of binary code (e.g., the
binary code of integer 13 is 11012) which is unique for different
Hash ID and propose a binary code based hash embedding method
to tackle this reduction problem (see Fig 1 (c)). Specifically, we
first binarize the Hash ID into a binary code. Then, to address the
challenge one, we propose a code block strategy and reduce the
embedding table size by adjusting the code block length flexibly.
To address the challenge two, the generated embedding index is
designed to be unique for different feature values at any reduction
ratios. The uniqueness at any reducing ratios allows EDRMs to
distinguish different feature values, leading to a good performance
even for a tiny model. Furthermore, Step 2 of our method is a
deterministic and non-parametric process and can be computed on-
the-fly. This property is friendly for EDRMs both on the convenient
application and handling new (out-of-vocabulary) feature values.

We also note that we are aware of some recent works using
similar terms such as learning binary embedding [8, 14, 26]. We
want to point out that they are in totally different contexts. In these
works, binary refers to that each element in an embedding vector is
a binary number for a fast similar embedding search. While in our
work, binary refers to binarize the integer ID into a binary code.

To summarize, themain contributions are listed as follows: (1)We
propose binary code based hash embedding, a simple but effective
embedding method, to reduce the embedding table size and keep
a high performance at the same time. (2) A code block strategy is
presented to adjust the embedding table size flexibly and a lossless
embedding index generation process is elaborately designed to
allow the model to distinguish different feature values and achieve
better performance. (3) Experimental results on large-scale real-
world datasets show that with the help of the proposed method, the
model size can be 1000× smaller than the original model, and keep
99% performance as the original model achieves at the same time.

2 BINARY CODE BASED HASH EMBEDDING
In this section, we introduce the framework (see Fig 2) of our meth-
ods. In general, we also adopt three steps as introduced in Fig 1.

Figure 2: The framework of the proposed method.
2.1 Feature Hashing
In practice, the raw categorical feature values may be represented as
various types, such as String and Integer values. To handle different
types of categorical feature values, in practice, a feature hashing
[19, 22, 24] is firstly applied to map these raw feature values into
a uniformed integer number, called Hash ID (see Fig 2). Formally,
the feature hashing process can be expressed as ℎ𝑖 = H(𝑓𝑖) where
H refers to a hash function (e.g., Murmur Hash [25]) and ℎ𝑖 is an
integer number, called the Hash ID of 𝑓𝑖 . In practice, the output
length ofH is always a large value (e.g., ℎ𝑖 is a 64-bits integer) to
make the collision among ℎ𝑖 as small as possible. In this case, ℎ𝑖
can be basically taken as a unique ID for different 𝑓𝑖 [12, 24].

2.2 Embedding Index Generation
In this section, we introduce the embedding index generation pro-
cess including binarization, code block strategy, and decimalization.

2.2.1 Binarization. After Step 1, each feature value 𝑓𝑖 is mapped
to ℎ𝑖 , which is basically regarded as a non-collision mapping due to
the large output space [12, 24]. Then the binary code 𝑏𝑖 ∈ {0, 1}𝑆
(where 𝑆 refers the binary code length) of 𝑓𝑖 can be generated by
transforming this unique ℎ𝑖 to a binary form (e.g., the binary code
of integer 13 is 11012). Note 𝑏𝑖 is also unique for different 𝑓𝑖 .

2.2.2 Code Block Strategy. To allow the model can flexibly reduce
memory, we propose a novel strategy called code block strategy.
Generally speaking, the code block strategy divides each 0-1 value
in 𝑏𝑖 to different blocks. Then, the ordered 0-1 values (i.e., 0-1 code)
in each block can represent 𝐾 = 2𝑛 unique integers where 𝑛 is the
number of 0-1 values in this block (see Step 2.2 in Fig 2).

If we take the decimal form of 0-1 code in each block as an
embedding index and map each index to an embedding table𝑊 ∈
R𝐾×𝐷 , the size of the embedding table can be flexibly adjusted
by 𝑛. For example, when 𝑛 = 1 (i.e., the number of 0-1 values in
each block is 2), the embedding table size is 𝑂 (2𝐷). When all 0-1
values in 𝑏𝑖 are arranged into one block, the embedding table size
is 𝑂 (|𝐹 |𝐷) (i.e., full embedding). In other words, by controlling the
value of 𝑛, we can adjust the embedding table size to meet various
scenarios (from distributed services to mobile devices).

Formally, we define 𝐵𝑖 = [𝐵𝑖,0;𝐵𝑖,1; ...;𝐵𝑖,𝑚 ; ...] as the sequential
code blocks produced by a code block strategy on 𝑏𝑖 , and |𝐵𝑖 | refers
to the number of blocks. Then the𝑚-th code block 𝐵𝑖,𝑚 ∈ {0, 1}𝑛
can be represented as

𝐵𝑖,𝑚 = Order({𝑏𝑖, 𝑗 |𝐴𝑙𝑙𝑜𝑐 (𝑏𝑖, 𝑗) =𝑚}) (1)

Figure 3: Code block strategy examples. The binary code𝑏𝑖 =
100100110101100111000011. The 0-1 values plotted with the
same color in each case are divided into the same block.

where the function Alloc is the allocation function which allocates
each 0-1 value to different blocks. Order is a function which gives
an order for the 0-1 value in each block and generates a 0-1 code for
each code block. Here we give two code block strategies (including
Succession and Skip) as examples to show how it works (other
possible strategies can also be allowed).
Succession. As shown in Fig 3 (a), the succession strategy puts the
𝑡 successive 0-1 values in a binary code into the same block. The
Order function keeps 0-1 values in the same relative position in 𝑏𝑖 .
Note if the number of the last 0-1 values in 𝑏𝑖 is less than 𝑡 , all of
the left values are divided into a new code block.
Skip. As shown in Fig 3 (b), if the number of interval values of two
0-1 values in a binary code is 𝑡 , they will be divided into the same
block. The Order function is the same as that in Succession.

Note given one of the above code block strategies, we can obtain
a unique sequence of code blocks 𝐵𝑖 for the binary code 𝑏𝑖 . This
property guarantees the process of code block strategy is lossless.

2.2.3 Decimalization. The embedding index of each block can be
obtained by decimalizing 𝐵𝑖,𝑚 (e.g., 𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑖𝑧𝑒 (11012) = 13), i.e.,
𝑘𝑖,𝑚 = 𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑖𝑧𝑒 (𝐵𝑖,𝑚) where 𝑘𝑖,𝑚 is the embedding index of
𝐵𝑖,𝑚 .

2.3 Embedding Generation
When obtaining multiple indices for 𝑓𝑖 , to get its embedding, two
steps are proposed, i.e., embedding lookup and embedding fusion.

2.3.1 Embedding Lookup. As introduced above, each code block
𝐵𝑖,𝑚 in 𝐵𝑖 can obtain an embedding index 𝑘𝑖,𝑚 . The number of
blocks is |𝐵𝑖 |, leading to a total of |𝐵𝑖 | embedding indices. Then
we can map each embedding index into an embedding vector, i.e.,
𝑒𝑖,𝑚 = E(𝑊𝑚, 𝑘𝑖,𝑚) where𝑊𝑚 is a embedding table, 𝑒𝑖,𝑚 refers
to the embedding of 𝐵𝑖,𝑚 and E is a embedding lookup function
which usually returns the 𝑘𝑖,𝑚-th row of𝑊𝑚 . In practice, keeping
|𝐵𝑖 | embedding tables for different 𝐵𝑖,𝑚 may also cost a lot memory
consumption. Therefore, it is common to keep a single embedding
table and share this table among all 𝐵𝑖,𝑚 [22].

2.3.2 Embedding Fusion. To generate the final embedding vector
𝑥𝑖 of 𝑓𝑖 , an embedding fusion function 𝑔 is applied,

𝑥𝑖 = 𝑔(𝑒𝑖,0, 𝑒𝑖,1, 𝑒𝑖,2, ..., 𝑒𝑖, |𝐵𝑖 |−1) (2)

The design of the fusion function can be various, such as pooling,
LSTM, concatenation and so on. In this paper, by default, we adopt
sum pooling as the fusion function (others can also considered).

2.4 Discussion
2.4.1 Desiderata. There are several key desiderata of our method,
which EDRMs can be benefited. (1) Determinacy. The indices

generation is a deterministic and non-parametric process. It is com-
puted on the fly, making it simple to practical implementations and
friendly to new feature values. (2) Flexibility. The size of embed-
ding table𝑊 ∈ R𝐾×𝐷 is mainly determined by 𝑛 (i.e., the number
of 0-1 values in each code block). It means the memory reduction
ratio can be flexibly adjusted from 2/|𝐹 | to 1 (assuming adopting
embedding table sharing strategy). This benefits EDRMs can be de-
veloped on memory insensitive scenarios to sensitive scenarios. (3)
Uniqueness.Nomatter what the reduction ratio is, 𝐵𝑖 is unique for
each feature value. This enables the model to distinguish different
feature values and further improve the model performance.

2.4.2 Sub-collision Problem. We should point out although 𝐵𝑖 is
unique, there may exist sub-collision among two feature values (e.g.,
𝐵𝑖 ≠ 𝐵 𝑗 but 𝐵𝑖,1 = 𝐵 𝑗,1), called sub-collision problem. Actually, it
is an open problem which exists in most mod-based hash methods
[19, 22, 24]. We leave it as one of the future work. In practice, a
hash function (e.g., Murmur hash [25]) which can randomly map
values to a large space is used to relieve this problem.

2.4.3 The Relation with Existing Methods. Here, we discuss the re-
lation between ours and other methods. (1) Full Embedding. Both
of full embedding and ours can distinguish different feature values.
Besides, our method has the ability to reduce memory flexibly. (2)
Hash Embedding. It is a simplified form of ours, where the code
block strategy is Succession, and only the first top 𝑡 0-1 values are
used as the embedding index. (3)Multi-Hash Embedding. Both
of them create multiple embedding indices. But our method goes
further, i.e., keeping a uniqueness constraint for these indices. (4)
Q-R Trick. Q-R trick is a special case of our method. When we
utilize Succession and the block number is set to 2. The first top 𝑡
0-1 code and the left 0-1 code can be taken as the quotient and the
remainder in Q-R trick respectively.

3 EXPERIMENTS
Datasets. (1) Alibaba is an industrial dataset which is obtained
from Taobao. There are a total 4 billion samples, 100 million users.
(2) Amazon 1 is collected from the Electronics category on Amazon.
There are total 1,292,954 samples, 1,157,633 users. (3) MovieLens 2

is a reviews dataset and is collected from the MovieLens web site.
There are total 1,000,209 samples, 6,040 users.
Baselines. (1) Full Embedding (Full) is a standard embedding learn-
ing method. (2) Hash Embedding (Hash)[24] applies the modulo
operation on the Hash ID to obtain an embedding index. (3) Multi-
Hash Embedding (MH) [22] applies multiple hash functions to the
feature value to obtain multiple indices. (4) Q-R Trick (Q-R) [19]
take both the remainder and the quotient as indices.
Training Details. All methods have the same EDRM architecture.
The embedding dimensionality is also set the same for all methods.
The methods (i.e., MH, Q-R trick, and ours) employ embedding table
sharing strategy in different indices for memory reduction purpose
and take sum pooling as the fusion function. For MH, we use 2 hash
functions as suggested by authors [22]. For our method, the code
block strategy is Succession. We use the Adagrad optimizer with a
learning rate of 0.005. The batch size is 1024 for all datasets.

1https://www.amazon.com/
2https://grouplens.org/datasets/movielens/

Table 2: The results for CTR tasks.

Dataset Alibaba Amazon MovieLens
Reduction Ratio 0.1% 0.75% 1.5% 5% 37.5% 0.1% 0.75% 1.5% 5% 37.5% 0.1% 0.75% 1.5% 5% 37.5%

Full 70.57 70.57 70.57 70.57 70.57 68.56 68.56 68.56 68.56 68.56 80.23 80.23 80.23 80.23 80.23
Hash 69.06 69.35 69.63 69.86 70.24 64.66 66.27 66.66 67.32 67.67 73.62 75.50 76.42 77.68 79.12
MH 69.45 69.66 69.73 70.00 70.28 66.15 67.53 67.58 67.79 68.03 74.97 78.06 78.23 78.85 79.85
Q-R 69.47 69.58 69.82 70.10 70.28 66.67 67.43 67.62 67.73 68.17 75.92 78.05 78.30 78.90 79.78
BH 69.90 69.95 70.02 70.26 70.38 67.59 67.73 67.83 67.92 68.38 78.20 78.38 78.54 79.14 80.02

Table 3: The results of memory size when all the methods
archive 99 % performance as the full embedding method
achieves in AUC score.

Full Hash Q-R MH BH
Model size (G) 843.2 44.1 13.0 12.5 0.8

Top 3
User ID 288.94 10.16 3.11 2.88 0.15
Item ID 242.71 11.07 3.01 2.95 0.16
Query ID 165.24 11.07 3.17 3.15 0.16

(a) Test AUC in different epochs (b) Test loss in different epochs

Figure 4: Convergence of different methods.

3.1 Click-Through Rate (CTR) Prediction Task
We conduct experiments on CTR prediction tasks and compare
the performance with different memory reduction ratios of the
full embedding. AUC (%) [4] score is reported as the metric. Note
0.1% absolute AUC gain is regarded as significant for the CTR task
[3, 21, 30]. Results are shown in Table 2. BH refers to our method.
Comparison with Mod-based Hash Embedding Methods. In
general, BH performs best on all cases, and the gain gap between
BH and baselines is increased for a smaller model. For example,
compared with Q-R on MovieLens, BH can achieve 0.24% gains
when the reduction ratio is 37.5 %. While when the ratio becomes
0.1 %, the gain gap is increased to 2.28 %. It indicates that due to the
nice properties of BH (see Section 2.4.1), BH can better represent
each categorical feature value, especially for a tiny model.
Comparison with the Full Embedding. We can observe that:
(1) Since the full embedding method contains significant parame-
ters, it gets better performance. (2) In most cases, BH can obtain
competitive performance with the full embedding method.

3.2 Memory Reduction Comparison
In this section, we conduct experiments to evaluate the model size
of all methods when achieving similar performance. Specifically,
we take the dataset Alibaba as an example due to its closeness
with the web-scale application. Then we report the model size of
different embedding methods when they achieve 99% performance
as the full embedding method achieves in AUC score. Besides, to
further evaluate the reduction ratio, we also report the size of the
embedding table of the top 3 largest for eachmethod. The results are
shown in Table 3. Some observations are summarized as follows: (1)

Table 4: The results of different code block strategies.

Succession Skip Q-R
Alibaba 69.90 69.87 69.47
Amazon 67.59 67.60 66.67

MovieLens 78.20 78.25 75.92

Compared with other embeddingmethods, when all of them archive
similar scores, BH can cost the smallest memory size. (2) Compared
with the full embedding method, BH can adopt an extremely tiny
model (i.e., 1000× smaller) to achieve 99 % performance. Such a
small model with high performance is urgently needed to develop
EDRMs on a memory-sensitive scenarios (e.g., mobile devices).

3.3 The Effect of the Code Block Strategy
In this section, we evaluate the performance of the proposed two
code block strategies, i.e., Succession and Skip. To have a fair com-
parison, we keep the same reduction ratio for these two strategies.
Table 4 shows the results. Notewe also provide the best performance
(Q-R) among baselines for comparison. We can observe that Suc-
cession and Skip achieve similar performance overall datasets, and
perform better than the best baselines. It indicates the uniqueness
of code block strategy is helpful to improve the embedding perfor-
mance no matter what kind of code block strategies we choose.

3.4 Analysis of Convergence
We conduct experiments to analyze the convergence of different
models. Specifically, we keep the same reduction ratio for all meth-
ods and report the AUC and the loss value of these methods on
test data of MovieLens within 100 epochs (similar conclusions can
be found in other datasets). As shown in Fig 4, we can find: (1)
Compared the AUC and loss curves of mod-based hash embedding
methods, BH converges faster than that of other baselines. Further-
more, BH can achieve a higher AUC score and a lower loss value.
It demonstrates the effectiveness of our method when reducing
EDRMs into a small-scale size. (2) Due to more parameters adopted
in full embedding, it archives the best performance. But, BH can also
achieve competitive performance compared with full embedding.

4 CONCLUSION
In this paper, to tackle the memory problem in embedding learning,
we propose a binary code based hash embedding. A binary code
is firstly generated to guarantee a unique index code. Then a code
block strategy is designed to flexibly reduce the embedding table
size. Finally, the feature embedding vector is obtained by combining
the embedding vectors from different code blocks. Experimental
results show that even if the model size is 1000× smaller, we can still
obtain the 99% performance by binary code based hash embedding.

REFERENCES
[1] John Anderson, Qingqing Huang, Walid Krichene, Steffen Rendle, and Li

Zhang. 2020. Superbloom: Bloom filter meets Transformer. arXiv preprint
arXiv:2002.04723 (2020).

[2] Ting Chen, Martin Renqiang Min, and Yizhou Sun. 2018. Learning k-way d-
dimensional discrete codes for compact embedding representations. ICML (2018).

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[4] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[5] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744–755.

[6] Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James
Zou. 2019. Mixed dimension embeddings with application to memory-efficient
recommendation systems. arXiv preprint arXiv:1909.11810 (2019).

[7] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[8] Weixiang Hong, Junsong Yuan, and Sreyasee Das Bhattacharjee. 2017. Fried
binary embedding for high-dimensional visual features. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2749–2757.

[9] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[10] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large
scale recommendation models. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2387–2397.

[11] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin,
Lichan Hong, and Ed H Chi. 2020. Learning Multi-granular Quantized Em-
beddings for Large-Vocab Categorical Features in Recommender Systems. In
Companion Proceedings of the Web Conference 2020. 562–566.

[12] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting
Chen, Lichan Hong, and Ed H Chi. 2020. Deep Hash Embedding for Large-Vocab
Categorical Feature Representations. arXiv preprint arXiv:2010.10784 (2020).

[13] Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets.
2019. Tensorized embedding layers for efficient model compression. arXiv
preprint arXiv:1901.10787 (2019).

[14] Brian Kulis and Trevor Darrell. 2009. Learning to Hash with Binary Reconstruc-
tive Embeddings.. In NIPS, Vol. 22. Citeseer, 1042–1050.

[15] Chaozhuo Li, Lei Zheng, SenzhangWang, Feiran Huang, Philip S Yu, and Zhoujun
Li. 2019. Multi-Hot Compact Network Embedding. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 459–468.

[16] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang. 2020.
Automated Embedding Size Search in Deep Recommender Systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2307–2316.

[17] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable
Embedding Sizes for Recommender Systems. arXiv preprint arXiv:2101.07577
(2021).

[18] Joan Serra and Alexandros Karatzoglou. 2017. Getting deep recommenders fit:
Bloom embeddings for sparse binary input/output networks. In Proceedings of
the Eleventh ACM Conference on Recommender Systems. 279–287.

[19] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.
Compositional embeddings using complementary partitions for memory-efficient
recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 165–175.

[20] Raphael Shu and Hideki Nakayama. 2017. Compressing word embeddings via
deep compositional code learning. arXiv preprint arXiv:1711.01068 (2017).

[21] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[22] Dan Tito Svenstrup, Jonas Hansen, and Ole Winther. 2017. Hash embeddings for
efficient word representations. Advances in neural information processing systems
30 (2017), 4928–4936.

[23] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[24] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th annual international conference on machine learning. 1113–1120.

[25] Fumito Yamaguchi and Hiroaki Nishi. 2013. Hardware-based hash functions for
network applications. In 2013 19th IEEE International Conference on Networks
(ICON). IEEE, 1–6.

[26] Xinyang Yi, Constantine Caramanis, and Eric Price. 2015. Binary embedding:
Fundamental limits and fast algorithm. In International Conference on Machine
Learning. PMLR, 2162–2170.

[27] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay
Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
et al. 2020. Model Size Reduction Using Frequency Based Double Hashing for
Recommender Systems. In Fourteenth ACM Conference on Recommender Systems.
521–526.

[28] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2020. Memory-efficient Embedding for Recom-
mendations. arXiv preprint arXiv:2006.14827 (2020).

[29] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and
Jiliang Tang. 2020. AutoEmb: Automated Embedding Dimensionality Search in
Streaming Recommendations. arXiv preprint arXiv:2002.11252 (2020).

[30] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 1059–1068.

	Abstract
	1 Introduction
	2 Binary Code based Hash Embedding
	2.1 Feature Hashing
	2.2 Embedding Index Generation
	2.3 Embedding Generation
	2.4 Discussion

	3 Experiments
	3.1 Click-Through Rate (CTR) Prediction Task
	3.2 Memory Reduction Comparison
	3.3 The Effect of the Code Block Strategy
	3.4 Analysis of Convergence

	4 Conclusion
	References

