
Capsule Graph Neural Networks with EM Routing
Yu Lei and Jing Zhang

∗

jzhang@njust.edu.cn

School of Computer Science and Engineering, Nanjing University of Science and Technology

Nanjing, Jiangsu, China

ABSTRACT
To effectively classify graph instances, graph neural networks need

to have the capability to capture the part-whole relationship exist-

ing in a graph. A capsule is a group of neurons representing compli-

cated properties of entities, which has shown its advantages in tra-

ditional convolutional neural networks. This paper proposed novel

Capsule Graph Neural Networks that use the EM routing mecha-

nism (CapsGNNEM) to generate high-quality graph embeddings.

Experimental results on a number of real-world graph datasets

demonstrate that the proposed CapsGNNEM outperforms nine

state-of-the-art models in graph classification tasks.
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1 INTRODUCTION
Recent years have witnessed the increasing attention to Graph Neu-

ral Networks (GNNs) [3, 10, 17, 20], which have demonstrated re-

markable advantages inmany tasks performing on graph-structured

data, such as node classification [6, 10, 15, 27], graph classifica-

tion [1, 11], and link prediction [14, 24]. GNNs are generalized

from traditional deep-learning models like CNNs and RNNs (han-

dling grid or linear-structured data such as images and sequences),

which can take graph-structured instances as their input. Many

real-world data like social networks exhibit complicated graph struc-

tures. GNNs can be directly applied to the original graph structures,

learning more effective representation.

This paper focuses on graph convolutional neural networks

(GCNs), which employ convolutional operations for more general

graph-structured data. The construction of GCNs can be categorized

into spectral approaches and spatial approaches [12]. The common
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principle of both spectral and spatial convolutions is to recursively

update node embeddings by aggregating information from topolog-

ical neighbors, which can capture the local structure of nodes. The

learned embeddings of nodes can be used in various tasks such as

node classification and link prediction. To classify a whole graph

instance, we need further to learn a graph embedding (a higher-

level embedding compared with the node embedding), which is

achieved by pooling methods [2, 5, 23, 25]. However, most exist-

ing graph pooling methods have two weaknesses: 1) The pooling

operation may map different graphs or nodes into the same embed-

ding, resulting in the model being incapable to capture meaningful

information. 2) The pooling methods only consider the topology

of the graph but ignore the part-whole relationships. For example,

a molecule has a hydroxyl on its left and right sides, respectively.

If they are not linked with each other, they will be clustered into

different groups. However, because they have the same chemical

properties they should be in the same group.

To solve the above issues, a group of neurons in the networks,

namely capsule, was introduced, which encodes the activate prob-

ability of an entity as well as reserves the detailed properties of

the entity such as position, direction, connection, and so on. Cap-

sule neural networks have shown their effectiveness in modeling

part-whole relationship on images [7, 8, 16]. It solves the viewpoint-

invariant problem by transformation matrices. Capsule networks

employ a routing mechanism to generate high-level capsules by

the voting of low-level capsules. Compared with pooling methods

that only reserve activated features, a routing mechanism preserves

all information from low-level capsules and routes it to the closest

high-level capsules. The most popular routing mechanism is dy-
namic routing by agreement [16], which uses the length of a capsule

to represent its degree of salience. Capsule and dynamic routing

have been introduced in GNNs. CapsGNN [26] stacks the node

features extracted by GCNs to build capsules and uses dynamic

routing and attention mechanisms to generate high-level graph

capsules as well as class capsules [26]. GCAPS-CNN [21] uses cap-

sules to capture the highly informative output in a small vector in

place of a scaler output currently employed in GCNs. The capsule is

consists of higher-order statistical moments, which is permutation-

ally invariant and can be computed via fast matrix multiplication.

Another routing mechanism representing a capsule as matrices

is matrix capsule with EM routing [8]. Using matrices instead of

vectors to represent capsules can reduce the size of conversion ma-

trices between capsules. For example, converting a 3 × 3 matrix to

a 3 × 6 matrix requires a 3 × 6 conversion matrix, while in dynamic

routing converting a 9-dimensional vector to an 18-dimensional

matrix requires a 9 × 18 conversion matrix. Besides, the probability

of an entity in EM routing is represented by a parameter 𝑎 (instead

of a vector in dynamic routing), which avoids using the squashing

function to ensure that the length of the vector is in a feasible range.
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To the best of our knowledge, the matrix capsules with EM

routing have never been introduced into GNNs. In this paper, we

propose novel Capsule Graph Neural Networks with EM routing

(CapsGNNEM), which uses node features extracted from GCN to

generate high-quality graph embeddings by EM routing. Experimen-

tal results on a number of real-world graph datasets demonstrate the

advantages of the proposed CapsGNNEM in graph classification.

2 PRELIMINARIES
We first formulate graph classification and then briefly introduce

graph neural networks and capsule neural networks.

Graph Classification. A graph is represented by 𝐺 = (𝑉 ,𝑋,𝐴),
where 𝑉 = {𝑣1, 𝑣2, 𝑣3, · · · , 𝑣𝑁 } is a set of 𝑁 nodes, 𝑋 ∈ R𝑁×𝐶 is

the feature matrix for nodes with feature channels 𝐶 , and 𝐴 ∈
{0, 1}𝑁×𝑁 is the adjacency matrix. If there is an edge from 𝑣𝑖 to

𝑣 𝑗 , then we have 𝐴𝑖 𝑗 = 1, otherwise, 𝐴𝑖 𝑗 = 0. Given a set of la-

beled graphs 𝐷 = {(𝐺0, 𝑦0), (𝐺1, 𝑦1), (𝐺2, 𝑦2), · · · }, we aim to learn

a graph embedding 𝑔(𝐺) ∈ R𝑘 for each graph, which encodes its at-

tributes and structural information. Then, the graph representation

(embeddings) can be used for graph classification.

Graph Neural Networks. Graph neural networks usually follow a

neighborhood aggregation fashion to learn a node representation by

applying a neighbor aggregation function to the representations of

its neighbor nodes after propagation. More specifically, a neighbor

aggregation function for the 𝑖-th node has the form:

ℎ
(𝑙+1)
𝑖

= 𝑓 (ℎ (𝑙)
𝑖

, {ℎ (𝑙)𝑣 |𝑣 ∈ N (𝑣)}), (1)

where N(𝑣) is a set of neighbors of node 𝑖 and ℎ (𝑙)
𝑖

is the represen-

tation of node 𝑖 at layer 𝑙 . In each layer, the representation of every

node is updated by the neighbor aggregation function. In graph

classification, we need the representation of a whole graph, which

usually can be obtained by simply summing up or averaging all

the node embeddings on the graph. It obviously cannot capture the

structural information of graphs. In capsule neural networks, graph

embeddings are calculated by a hierarchical stack of capsules. The

lowest-level capsules are the matrix presentation of nodes.

Capsule Neural Networks. A capsule is a group of neurons whose

outputs represent different properties of an entity such as pose,

deformation, texture, etc [7]. Routing algorithms are critical to the

formation of different levels of capsules. In dynamic routing by
agreement, the activation ∈ ([0, 1) of a capsule is represented by

its revised length after being calculated by a squashing function.

The squashing function ensures that a short vector shrinks to a

length slightly greater than 0 and a long vector shrinks to a length

slightly less than 1, defined as 𝑣 𝑗 =
∥𝑠 𝑗 ∥2

1+∥𝑠 𝑗 ∥2
𝑠 𝑗

∥𝑠 𝑗 ∥ , where 𝑠 𝑗 and 𝑣 𝑗 are
the capsules before and after squashing, respectively. Accordingly,

EM routing defines a special value as the activation value of a

capsule, representing the certainty of an entity [8], which is of better

interpretability than using the capsule length as its activation value.

(The details of EM routing are in Section 3.3). Since the higher-level

capsules are obtained through the voting mechanism by the lower-

level capsules, the hierarchical capsules can model the relationship

between the part and whole.
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Figure 1: Architecture of the Proposed GapsGNNEM

3 THE PROPOSED METHOD
This section presents the proposed CapsGNNEM in details.

3.1 Network Architecture
Figure 1 shows the architecture of our GapsGNNEM. It consists of

three key components: Primary Capsule Layer, Capsule Convolu-
tional Layer, and Readout Layer. In the first component, it uses GCN

to extract different receptive-field node features to form the primary

capsules and uses adjacency to form the initial activations. In the

second component, the EM routing is applied to obtain high-level

graph capsules. Finally, in the third component, the capsule with

the best activation representing the most significant embeddings is

chosen to make predictions by a multilayer perceptron (MLP).

3.2 Primary Capsule Layer
The goal of the primary capsule layer is to generate a capsule for

each node on a graph. The features of a node are initialized with

its original features. For those non-attribute graphs, we can choose

Local Degree Profile [4] as the node attributes. The same as articles

[21, 26], our method uses the GCN model (the commonest GNNs)

[10] to aggregate information from a node’s local neighborhood at

a lower layer. The aggregation function at layer 𝑙 + 1 is as follows:

𝑋 (𝑙+1) = 𝑓 (𝐷̃−1/2𝐴̃𝐷̃−1/2𝑋 (𝑙)Θ), (2)

where 𝑓 is a nonlinear activation function, 𝐴̃ = 𝐴 + 𝐼𝑁 and 𝐷̃𝑖 𝑗 =∑
𝑗 𝐴̃𝑖 𝑗 , 𝑋

(𝑙) ∈ R𝑁×𝑑 represents the 𝑑-dimensional features for

all 𝑁 nodes at layer 𝑙 (particularly, 𝑋 (0) = 𝑋 ), and Θ ∈ R𝑑×𝑑′ is
a matrix of filter parameters that shrinks the dimension of node

features from 𝑑 to 𝑑 ′. As mentioned in the introduction, the matrix

representation for a node is more efficient than vector representa-

tion. Thus, we stack the node features from different GCN layers

to generate a matrix representation of features, which is consists

of different receptive-field information. For example, if we have

𝑘 (≥ 3) GCN layers, the initial capsule for node 𝑖 is a 𝑘 × 𝑑 ′ matrix

[𝑋 (1)
𝑖:

;𝑋
(2)
𝑖:

; · · · ;𝑋 (𝑘)
𝑖:
]. The EM routing also requires an activation

value. The bigger the degree of a node, the more central and impor-

tant it is. Therefore, for node 𝑖 , we intuitively choose its degree as

the initial activation value, i.e., 𝑎𝑖 =
𝐷𝑖∑
𝑗 𝐷 𝑗

, where 𝐷𝑖 is its degree.

3.3 Capsule Convolutional Layer
After obtaining primary capsules and their initial activation values,

the capsule convolutional layer decides how to assign lower-level

active capsules to higher-level capsules. This process can be viewed



as clustering (solved by an EM algorithm). Each higher-level capsule

corresponds to a cluster center and each lower-level active capsule

corresponds to a data point (or a fraction of a data point if the

capsule is partially activated). First, it captures the part-whole rela-

tionship for each lower-level capsule 𝑐
(𝑙)
𝑖

and higher-level capsule

𝑐
(𝑙+1)
𝑗

. This relationship is measured by a transformation matrix,

which is called voting in EM routing and defined as follows:

𝑉
(𝑙)
𝑖 𝑗

= 𝑐
(𝑙)
𝑖

𝑇
(𝑙)
𝑖 𝑗

, (3)

where 𝑉
(𝑙)
𝑖 𝑗
∈ R𝑘×𝑑′ represents the voting result from capsule 𝑖

at layer 𝑙 for some capsule 𝑗 at layer 𝑙 + 1, 𝑐 (𝑙)
𝑖

represents capsule

𝑖 at layer 𝑙 , and 𝑇
(𝑙)
𝑖 𝑗

is a transformation matrix. We use a sim-

plified Gaussian Mixture Model (GMM) to generate higher-level

capsules. That is, a higher-level capsule can be viewed as a center

of multiple lower-level capsules. The simplified Gaussian distribu-

tion N(𝒙 ; 𝝁, Σ) has a diagonal covariance matrix 𝑑𝑖𝑎𝑔(𝝈2). In this

settings, the posterior probability of a voting 𝑉𝑖 𝑗 belonging to the

𝑗-th Gaussian (i.e., capsule 𝑗 at the higher level) is

𝑅𝑖 𝑗 =
𝑎 𝑗N(𝑉𝑖 𝑗 ; 𝝁 𝑗 , 𝑑𝑖𝑎𝑔(𝝈2

𝑗
))∑

𝑗 𝑎 𝑗N(𝑉𝑖 𝑗 ; 𝝁 𝑗 , 𝑑𝑖𝑎𝑔(𝝈2

𝑗
))
, (4)

where activation 𝑎 𝑗 for capsule 𝑗 is a mixture coefficient of GMM

and𝑉𝑖 𝑗 is treated as a 𝑘 ∗𝑑 ′-dimentional vector. Because lower-level

capsules vote for a higher-level capsule 𝑗 the contribution coeffient

𝑟𝑖 𝑗 of capsule 𝑖 when calculating cluster center (capsule) 𝑗 should

consider its activation value 𝑎𝑖 as follows:

𝑟𝑖 𝑗 =
𝑎𝑖𝑅𝑖 𝑗∑
𝑖 𝑎𝑖𝑅𝑖 𝑗

. (5)

Then, the parameters of the 𝑗-th Gaussian (parameter 𝝁 𝑗 is capsule

𝑗 ) can be updated in an EM procedure as follows:

𝝁 𝑗 =
∑︁
𝑖

𝑟𝑖 𝑗𝑉𝑖 𝑗 , (6)

(𝜎ℎ𝑗 )
2 =

∑︁
𝑖

𝑟𝑖 𝑗 (𝑉ℎ
𝑖 𝑗 − 𝜇

ℎ
𝑗 )

2, (7)

where the superscript ℎ represents the ℎ-th component of a vector.

Following article [8], the activation value for each capsule 𝑗 is

calculated as follows:

𝑐𝑜𝑠𝑡ℎ𝑗 =
∑︁
𝑖

−𝑟𝑖 𝑗 ln(𝑝ℎ𝑖 | 𝑗 ) =
∑︁
𝑖

𝑟𝑖 𝑗 (ln(𝜎ℎ𝑗 ) + 1/2 + ln(2𝜋)/2),

𝑎 𝑗 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐

(
𝜆

(
𝛽𝑎 − 𝛽𝑢

∑︁
𝑖

𝑟𝑖 𝑗 −
∑︁
ℎ

𝑐𝑜𝑠𝑡ℎ𝑗

))
, (8)

where 𝑝𝑖 | 𝑗 is the probability of 𝑉𝑖 𝑗 given capsule 𝑗 (i.e., 𝑝𝑖 | 𝑗 =

N(𝑉𝑖 𝑗 ; 𝝁 𝑗 , 𝑑𝑖𝑎𝑔(𝝈2

𝑗
))), 𝑐𝑜𝑠𝑡 𝑗 represents the entropy of capsule 𝑗 ,

𝑟𝑖 𝑗 is the amount of votes assigned to capsule 𝑗 , 𝛽𝑎 and 𝛽𝑢 are

the learned parameters, and 𝜆 is a hyper-parameter used to adjust

the range of values to be better for the logistic function. Thus, 𝑎 𝑗
represents the activation for capsule 𝑗 in the higher layer.

Finally, we summarize the whole EM routing in Algorithm 1.

Algorithm 1 EM routing algorithm returns activation values and

capsules in layer 𝑙 + 1 given activation values and capsules in layer

𝑙 . 𝛽𝑢 and 𝛽𝑎 are learned parameters and parameter 𝜆 is fixed.

1: procedure EM routing(𝑎𝑖𝑛, 𝑋 )

2: 𝑅 ← 1/|Ω𝑙+1 |,𝑉 ← VOTING(𝑋 ) ⊲ Ω𝑙 stands for a set of

capsules at layer 𝑙

3: while 𝑡 ≤ 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do
4: 𝑎𝑜𝑢𝑡 , 𝝁,𝝈 ← M-STEP(𝑎𝑖𝑛, 𝑅,𝑉 )
5: 𝑅 ← E-STEP(𝝁,𝝈 , 𝑎𝑜𝑢𝑡 ,𝑉 )
6: Return 𝑎𝑜𝑢𝑡 , 𝝁

1: function VOTING(𝑋 )

2: ∀𝑖 ∈ Ω𝑙 ,∀𝑗 ∈ Ω𝑙+1 : calculate 𝑉𝑖 𝑗 by Eq. (3), where 𝑐𝑖 = 𝑋𝑖
3: Return 𝑉

1: functionM-STEP(𝑎𝑖𝑛, 𝑅,𝑉 , 𝑗 )

2: ∀𝑖 ∈ Ω𝑙 : calculate 𝑟𝑖 𝑗 by Eq. (5)

3: ∀𝑗 ∈ Ω𝑙+1 : calculate 𝝁, 𝝈 𝑗 , and 𝑎
𝑜𝑢𝑡
𝑗

by Eqs. (6), (7), and (8)

4: Return 𝑎𝑜𝑢𝑡 , 𝝁, and 𝝈 𝑗

1: function E-STEP(𝑎𝑜𝑢𝑡 ,𝑉 , 𝝁,𝝈 )
2: ∀𝑗 ∈ Ω𝑙+1 : calculate 𝑅𝑖 𝑗 by Eq. (4), where 𝑎 𝑗 = 𝑎𝑜𝑢𝑡

3: Return 𝑅

3.4 Readout Layer
The CNN-based capsule networks with EM routing [8] directly use

the activation value of the last layer to optimize with the spread
loss function, which is very sensitive to hyper-parameter settings.

Instead, we choose the capsule on the last layer with the best acti-

vation, which represents the most significant embedding. Then, we

calculate the probability of each class using a fully connected layer

and optimized it by the cross-entropy loss function. This will bring

some robustness to our model when adjusting hyper-parameters.

4 EXPERIMENTS
In this section, we evaluate the performance of CapsGNNEMagainst

a number of state-of-the-art graph classification methods.

4.1 Methods in Comparison
We compared the proposed CapsGNNEM with three categories of

existing methods.

The first category is called kernel-based methods, including the

Weisfeiler-Lehman subtree kernel (WL) [18], the graphlet count

kernel (GK) [19], the deep graph kernel (DGK) [22], and anonymous

walk embeddings (AWE) [9], which learn graph representation

based on the substructs defined by the kernel methods.

The second category is calledGNN-based methods. This category

includes several methods. We selected five state-of-the-art GNN-

based methods used in the experiments. GCN [10] is one of the most

influential models on graph neural networks. PATCHY-SAN (PSCN)

[13] selects a sequence of nodes and generates node representation

by a receptive field, then uses CNN for graph classification. Deep

Graph CNN (DGCNN) [25] first uses a sorted pooling method to

replace global pooling based on the node feature extracted by GNN,

then uses CNN and MLP for classification.

The last category is called capsule-based methods. We included

two capsule-based methods GCAPS-CNN [21] and CapsGNN [26]



Table 1: Comparison against nine state-of-the-art models on seven datasets in terms of accuracy (in percent)

Algorithm MUTAG NCI1 PROTEINS D&D COLLAB IMDB − B IMDB −M
WL [18] 82.50 ± 0.36 82.19 ± 0.18 74.68 ± 0.49 79.78 ± 0.36 79.02 ± 1.77 73.40 ± 4.63 49.33 ± 4.75
GK [19] 81.58 ± 2.11 62.49 ± 0.27 71.67 ± 0.55 78.45 ± 0.26 72.84 ± 0.28 65.87 ± 0.98 43.89 ± 0.38
DGK [22] 87.44 ± 2.72 80.31 ± 0.46 75.68 ± 0.54 73.50 ± 1.01 73.09 ± 0.25 66.96 ± 0.56 44.55 ± 0.52
AWE [9] 87.87 ± 9.76 78.18 ± 3.02 73.28 ± 2.64 71.51 ± 4.02 73.93 ± 1.94 74.45 ± 5.83 50.45 ± 3.61
GCN [10] 87.20 ± 5.11 74.95 ± 0.64 75.65 ± 3.24 79.12 ± 3.07 81.72 ± 1.64 73.30 ± 5.29 49.37 ± 2.21
PSCN [13] 88.95 ± 4.37 76.34 ± 1.68 75.00 ± 2.51 76.27 ± 2.64 72.60 ± 2.15 71.00 ± 2.29 45.23 ± 2.84
DGCNN [25] 85.83 ± 1.66 74.44 ± 0.47 75.54 ± 0.94 79.37 ± 0.94 73.76 ± 0.49 70.03 ± 0.86 47.83 ± 0.85
GCAPS-CNN [21] 84.12 ± 3.19 82.72 ± 2.38 76.40 ± 4.17 77.62 ± 4.99 77.71 ± 2.51 71.69 ± 3.40 48.50 ± 4.10
CapsGNN [26] 86.67 ± 6.88 78.35 ± 1.55 76.28 ± 3.63 75.38 ± 4.17 79.62 ± 0.91 73.10 ± 4.83 50.27 ± 2.65
Ours (CapsGNNEM) 90.51 ± 2.33 75.03 ± 0.98 77.41 ± 1.12 81.51 ± 4.31 75.23 ± 1.47 75.40 ± 3.25 50.87 ± 3.25

in comparison. GCAPS-CNN uses higher-order statistical moments

that are permutationally invariant to generate a capsule for each

node, then computes covariance to deal with graph classification.

CapsGNN generates capsules from multi-scale node embeddings

extracted by GCN, then uses dynamic routing to generate graph

embeddings for graph classification.

4.2 Experimental Settings
Seven real-world datasets were used in the experiments, whichwere

derived from important application areas of graph classification,

including four biological graph datasets (MUTAG, NCI1, PROTEINS,

and D&D ) and three social network datasets (COLLAB, IMDB-B,

and IMDB-M). The same hyper-parameter settings of CapsGNNEM

were used for all datasets. For the primary capsule layer, we used 4

GCN layers to extract node features. The dimension of each node

feature was set to 16. Thus, the dimension of a capsule after stacking

is 4 × 16. For the capsule convolutional layer, the number of output

capsules is 3 times that of the following layer. The number of output

capsules in the last layer is equal to the number of target classes. The

number of iterations in the EM routing is set to 2 and the 𝜆 is set to

0.1. We applied 10-fold cross-validation to evaluate the performance.

For each evaluation process, the original instances were randomly

partitioned into a training set and a test set. Then, we performed

10-fold cross-validation on the training set. In each cross-validation

process, one fold of the training set was used to adjust and evaluate

the performance of the trained model and the remainder was used

to train a model. We selected the model with the best validation

accuracy as a representative. The instances in the test set were

predicted against the representative and the performance in terms

of accuracywas evaluated. The above process was repeated 10 times,

the average results and their standard deviations were reported.

4.3 Experimental Results
Table 1 lists the comparison results on the seven datasets in terms of

accuracy. For each dataset, the average accuracy of the best model

is in bold. Overall, our proposed CapGNNEM outperforms the

other state-of-the-art methods on the datasets MUTAG, PROTEINS,

D&D, IMDB-B, and IMDB-M. CapGNNEMwins on five out of seven

datasets, which suggests that CapsGNNEM has the best overall per-

formance. On three biological datasets (MUTAG, PROTEINS, and

D&D), compared with two capsule-based methods (GCAPS-CNN

and CapsGNN), CapsGNNEM improves the classification accuracy

by margins of 3.84%, 1.01% and 3.89%, respectively. The reason is

that CapsGNNEM represents node features in form of capsules that

can capture information of graphs from different aspects instead of

only one embedding used in other GNN-based approaches. This is

helpful to retain the properties of a graph when generating graph

capsules. Besides, the capsule can capture the same properties and

ignore the difference in their substruct, which is more important in

biological datasets. These results also consistent with the property

of EM routing, as it focuses more on extracting properties from

child capsules by voting and routing. However, the social network

datasets do not have node attributes. Therefore, applying routing

to all child capsules leads to a loss of structural information in

the graph. Therefore, even if CapsGNNEM has a higher average

performance than other methods on IMDB-B and IMDB-M, com-

paring with the second-best methods, its margins of exceeding

(0.95 on IMDB-B and 0.42 on IMDB-M) are still smaller than those

obtained from biological datasets. Nonetheless, CapsGNNEM still

demonstrates its strong capability to capture graph properties and

part-whole relationships.

5 CONCLUSION AND FUTUREWORK
This paper proposes a novel CapsGNNEM model for graph classifi-

cation, which combines capsule structures and graph convolutional

networks. The capsules with EM routing not only can capture the

properties and part-whole relations of graphs from GCN-extracted

node features but also reduce the complexity of networks. Experi-

mental results on a number of datasets have confirmed the advan-

tages of the proposed model.

At present, the capsule convolution layer only performs global

convolutions, which does not make good use of the structural infor-

mation of the graph. In the future, we will construct a kind of local

convolutions, where a cluster of capsules with a strong structural

relationship is computed together. Moreover, since the model can

represent hierarchical structures of capsules, the readout layer can

extract hierarchical features as its input.
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