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Abstract

Real-world graphs are dynamic and evolve over time. Data quality in evolving graphs

is essential to downstream decision making and fact checking. This work studies the

discovery of Temporal Graph Functional Dependencies (TGFDs), a recently defined

class of data quality rules for enforcing consistency over evolving graphs [4]. TGFDs

impose topological and attribute dependency constraints over a period of time. We

define minimality and support for TGFDs and formalize the TGFD discovery problem.

Defining TGFDs manually is a laborious task and requires domain expertise. Hence,

we introduce TGFDMiner, a sequential algorithm that discovers minimal and frequent

TGFDs. We define various optimizations for TGFDMiner that improve runtime effi-

ciency by pruning redundant candidates. Using real-world and synthetic data, we

experimentally evaluate the efficiency, effectiveness, scalability of TGFDMiner, and

the utility of TGFDs.
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Chapter 1

Introduction

Databases have traditionally stored data using relational tables, where each table

represents an entity, each row represent an instance of an entity, and each column

represents an attribute of an entity. However, relational data lacks modeling for

relationships between entities. In contrast, graphs are a non-relational form of data

storage that treat relationships between entities as data itself. Graph data has become

increasing popular driven by the desire to model social networks and knowledge graphs

such as DBpedia [19], Yago [21], Wikidata [24], and IMDB [1].

Knowledge graphs and social networks are highly dynamic and subject to frequent

changes. These changes can be useful or erroneous. We analyzed dynamic real-world

knowledge graphs such as DBpedia and IMDB and profiled the changes that occurred

in these graphs over time. In DBpedia, we found an average of 8 inconsistencies per

entity instance. In IMDB, which has monthly data for 26 months, information about

an entity instance remained consistent for an average period of 5 months. This shows
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the existence of consistencies and inconsistencies in evolving graphs.

The use of functional dependencies (FDs) to enforce data quality in relational

data has been studied extensively [8, 9, 17, 18]. FDs have also been extended to

include temporal constraints [2]. Since these FDs are defined over relational data,

they cannot impose topological constraints. Recent works have also defined graph

dependencies [14, 10, 16, 20], i.e. FDs over graphs, which incorporate topological

constraints and attribute value constraints. However, graph dependencies have only

been defined over static graphs and do not consider temporal graphs, i.e. graphs

that change over time. Association rules have also been recently defined to capture

topological changes in temporal graphs [22]. However, these rules do not enforce any

attribute values constraints. Temporal graph functional dependencies, or TGFDs,

have been recently defined to enforce consistency in temporal graphs [4] by imposing

topological, attribute value, and temporal constraints.

There are many real world examples that highlight the need for temporal con-

straints in graph dependencies. For example, (i) a U.S. president can only hold office

for up to 8 years, (ii) whereas U.S. governors are required to be residents of their

respective states and also to have held the U.S. citizenship for a minimum of 5 years.

Similar examples exist in many domains, but they cannot be captured by any existing

graph dependencies [14, 16, 20].

Example 1: A hospital database stores timely data about patients, medications,

and symptoms. This data can be modelled as a graph by representing instances of

entities such as patients, medications, and symptoms as vertices and representing all

relationships between these vertices as a edges. For example, Figure 1.1(b) depicts

various timestamped graphs that comprise a temporal graph GT for hospital data. At

2
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Figure 1.1: Graph pattern and temporal graph.

each timestamp, we see various instances of entities such as patient, medication and

symptom.

A graph pattern is a graph that matches a set of subgraphs in a temporal graph

via pattern matching or subgraph isomorphism. In Figure 1.1(a), we define a graph

pattern Q1 to represent the relationship between entities patient, symptom, and

medication. In Figure 1.1(b), we see various subgraphs in the temporal graph GT

that match pattern Q1.

In order to enforce consistency in the matches of a graph pattern, we need to

define a functional dependency (FD) and specify a time interval such that for all

pairs of matches of a graph pattern that are within a time interval, the FD must

hold. An FD X → Y is a relationship between two sets of attributes X and Y ,

where Y is considered to be functionally dependent on X if for all instances of X, the

value of X uniquely determines the value of Y . For example, to enforce consistency

in the matches of Q1, we would define an FD {patient, symptom} → medication

and specify a time interval of 3 to 6 hours such that FD {patient, symptom} →

medication must hold for all pairs of matches of Q1 that have a temporal distance

3
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between 3 to 6 hours. In Figure 1.1(b), we see that matches for patient Mary are

consistent because she takes the medication Ibuprofen at 9AM, 12PM, and 3PM, i.e.

every 3 to 6 hours, to treat her inflammation. However, the data for patient Bob is

not consistent because at 4PM, Bob takes morphine which creates an inconsistency

with his previous dosage of Tylenol 3 hours ago at 1PM. □

Enforcing consistency via dependencies containing topological, attribute value,

and temporal constraints is critical to maintaining data quality in temporal graphs.

However, defining these dependencies manually is not feasible because real-world tem-

poral graphs are large and highly dynamic. For example, DBpedia contains roughly

5M vertices and nearly 15M edges. Other real-world temporal graphs such as IMDB

are updated weekly, making it very onerous to keep dependencies up-to-date. Fur-

thermore, defining dependencies over a dataset also requires domain expertise. To

make TGFDs useful, we propose TGFDMiner, a sequential algorithm for discovering

TGFDs over temporal graphs. Discovering TGFDs is challenging when compared to

existing dependencies because: (a) unlike relational dependencies, TGFDs need to

enforce topological constraints, and (b) unlike graph dependencies, TGFDs need to

enforce temporal constraints.

1.1 Contributions

1. We define metrics for TGFD discovery such as minimality and support, and also

introduce and formalize the TGFD discovery problem.

2. We present TGFDMiner, a sequential algorithm that discovers a set of frequent

and minimal TGFDs.

4
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3. We also describe four optimizations for TGFDMiner that use axioms to effi-

ciently prune redundant candidates. In our evaluation, we show that our four

optimizations achieve an average decrease in runtime of 19.4%.

4. Finally, we evaluate TGFDMiner on large, real-world and synthetic, temporal

graphs to show that our algorithm is scalable and efficient. For instance, we

evaluate scalability by varying graph size, and compare against an existing

graph dependency mining algorithm as a baseline. Our evaluation shows that

TGFDMiner achieves a comparable runtime. We also present examples of real-

world TGFDs discovered from IMDB.

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce a list of preliminary

concepts that readers need to be familiar with to understand our work. In Chapter

3, we aim to help readers contextualize the role of our work with respect to related

works. In Chapter 4, we introduce and formalize the TGFD discovery problem, as

well as define metrics such minimality and support with respect to TGFD discovery.

In Chapter 5, we describe our TGFD discovery algorithm, TGFDMiner, for finding

minimal and frequent TGFDs, and we also describe various optimization for improving

the performance of our algorithm. In Chapter 6, we present results from the evaluation

of our algorithm on real-world and synthetic datasets. In Chapter 7, we provide some

concluding remarks for this thesis and present directions for future work.

5



Chapter 2

Preliminaries

We introduce preliminary definitions for temporal graphs and temporal graph func-

tional dependencies (TGFDs).

2.1 Temporal Graphs

A temporal graph GT , as defined in [4], consists of T snapshots of directed graph Gt,

where t ∈ [1, T ], denoted by GT = {G1, ..., GT}. A directed graphGt = (Vt, Et, Lt, FAt)

consists of (i) a vertex set Vt, (ii) an edge set Et, (iii) a label Lt(v) for each v ∈ Vt,

(iv) a label Lt(e) for each e ∈ Et, and (v) for each vertex v, FAt(v) is a tuple

(A1,t = a1, ..., An,t = an), where ai is a constant value of an attribute Ai of vertex v

at time t.

Example 2: Figure 1.1b illustrates a temporal graph GT consisting of several times-

tamped snapshots. Each snapshot Gt consists of: (a) vertices that represent instances

6
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of entities such as patients, medications, and symptoms, and (b) edges, where each

edge represent the relationship between two entity instances, (c) vertex labels such

as patient, medication, symptom, (d) edge labels takes, has, and treatment which

specify that a patient x takes medication y to treat symptom z, and (e) constant

values such as “Bob” and “Mary” for attribute patient.name, “migraine” and “in-

flammation” for attribute symptom.name, “Tylenol” and “ibuprofen” for attribute

medication.brand name. □

2.2 Graph Pattern

A graph pattern Q[x̄] = (VQ, EQ, LQ, µ), as defined in [4, 16], is a directed, connected

graph consisting of (i) a vertex set VQ, (ii) and edge set (EQ), (iii) a label L(v) for

each v ∈ VQ, (iv) a label L(e) for each e ∈ EQ, and (v) a bijective function µ which

maps each v ∈ VQ to a variable in x ∈ x̄, i.e. µ(v) = x. We use, interchangeably, the

notation Q[x̄] and Q, and µ(v) and x, when it is clear based on the context.

Example 3: Figure 1.1a illustrates a graph pattern Q1, or Q1[x̄], with a set of

variables x̄ = [x, y, z], where µ maps x to patient, y to medication, and z to

symptom. The edge labels takes, has, and treatment specify that a patient x takes

medication y to treat symptom z. □

7
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2.3 Temporal Graph Pattern Matching

A match ht(x̄), as defined in [4], between a snapshot Gt of GT and a pattern Q is

a subgraph G′
t = (V ′

t , E
′
t, L

′
t, F

′
At
) that is isomorphic to Q. We denote a match in

vectorized form ht(x̄), for ht(x) for all x ∈ x̄. That is, ht is a bijective function from

VQ to V ′
t such that:

(i) for each v ∈ VQ, LQ(v) = L′
t(ht(v)), and

(ii) for each e = (v, v′) ∈ EQ, there exists an edge e′ = (ht(v), ht(v
′)) in G′

t such

that LQ(e) = L′
t(ht(e

′)).

If vertex label LQ(v) (resp. edge label LQ(e)) is a wildcard ‘ ’, then ht(v) (resp.

ht(e)) can match any vertex label (resp. edge label) in Gt.

2.4 Functional Dependency (FD)

In relational data, a functional dependency X → Y is defined over attributes within

a table. An FD X → Y specifies a relationship between two sets of attributes X and

Y , where Y is considered to be functionally dependent on X if for all instances of X,

the value of X uniquely determines the value of Y .

In the context of temporal graphs, an FD X → Y is defined over all pairs of

matches (hi(x̄), hj(x̄)) that lie within a time interval (see semantics in subsection

2.5.2). For all pairs (hi(x̄), hj(x̄)) within a time interval, Y is considered to be func-

tionally dependent on X if for all instances of X in each pair, the value of X uniquely

determines the value of Y .

8
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2.5 Temporal Graph Functional Dependency (TGFD)

TGFDs have been recently introduced by [4] as a graph data dependency to enforce

the following constraints on temporal graphs:

• Topological constraint : imposed by a graph pattern Q[x̄].

• Attribute value constraint : imposed by an attribute dependency X → Y .

• Temporal constraint : imposed by time interval ∆, such that dependencyX → Y

is expected to hold over all pairs of matches ofQ[x̄] that lie within a time interval

∆.

In this section, we describe the syntax and semantics of TGFDs. We also describe

axioms that are relevant to the discovery of TGFDs.

2.5.1 Syntax

A TGFD σ is a triple (Q[x̄],∆, X → Y ), as defined in [4], that consists of:

• a graph pattern Q[x̄];

• a time interval ∆ = (p, q), with p ≤ q, where p represents the lower time bound

and q represents the upper time bound;

• a dependency X → Y , where X and Y are two (possibly empty) set of literals

in x̄.

9
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Both X and Y are sets of literals, and each literal in a set can be one of two forms:

(a) constant literal, denoted as x.A = c, or (b) variable literal, denoted as x.A = y.B.

For both constant and variable literals, x and y are variables in x̄, i.e. x, y ∈ x̄, A

and B are attributes, and c is a constant value.

For simplicity, TGFDMiner will only consider, without loss of generality, TGFDs

in a normal form, i.e. TGFDs with a dependency X → l, where l is a single literal.

Example 4: In Figure 1.1b, to enforce consistency in Bob’s matches, we would need

to enforce a topological constraint, an attribute value constraint, and a dependency

constraint. A topological constraint can be enforced using graph pattern Q1 from

Figure 1.1a. An attribute value constraint can be enforced via a dependency X1 → l1,

where X1 = {x.name, z.name} and l1 = y.brand name. A temporal constraint can be

enforced by specifying a time interval ∆1 = (3, 6 hours). In summary, we would need

to define a TGFD σ1 = (Q1,∆1, X1 → l1) to enforce consistency in Bob’s matches.

□

2.5.2 Semantics

The semantics of a TGFD, as defined in [4], state that a given a set of pairs of

matches that satisfies a topological constraint specified by a graph pattern Q[x̄] and

a temporal constraint specified by a time interval ∆, we enforce an attribute value

constraint specified via a dependency X → Y over all pairs of matches that are within

an interval ∆.

A TGFD σ = (Q[x̄],∆, X → Y ) specifies an interval of time ∆ in which a

topological constraint Q and attribute dependency X → Y must hold. We denote

10
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(hi(x̄), hj(x̄)) to be a pair of matches of Q in Gi and Gj respectively, where i ≤ j and

i, j ∈ [1, T ]. A match (hi(x̄), hj(x̄)) satisfies a constant literal x.A = c if both v =

hi(x) and v′ = hj(x) contain attribute A, such that v.A = v′.A = c and |j − i| ∈ ∆.

Similarly, a match (hi(x̄), hj(x̄)) satisfies a variable literal x.A = y.B if v = hi(x)

contains attribute A and v′ = hj(y) contains attribute B such that v.A = v′.B and

|j − i| ∈ ∆.

Temporal graph GT satisfies σ, denoted by GT |= σ, if all pairs of matches

(hi(x̄), hj(x̄)) of Q in GT , with |j − i| ∈ ∆, satisfy σ, denoted by (hi(x̄), hj(x̄)) |= σ.

A pair of matches (hi(x̄), hj(x̄)) satisfies σ, denoted by (hi(x̄), hj(x̄)) |= σ, whenever

(hi(x̄), hj(x̄)) |= X implies (hi(x̄), hj(x̄)) |= Y .

Lastly, a temporal graph GT satisfies a set of TGFDs Σ, denoted by GT |= Σ, if for

each σ ∈ Σ, GT |= σ.

Example 5: In Figure 1.1b, to enforce consistency in Bob’s matches, we would

need to enforce a dependency X1 → l1 consisting of X1 = {x.name, z.name} and

l1 = y.brand name, over all pairs of Bob’s matches shown in Figure 1.1b, that lie

within the time interval ∆1 = (3, 6 hours). □

2.5.3 Axioms

We present a list of axioms for TGFDs, defined by [4], that will be used as a basis for

optimizations during TGFD discovery.

Axiom 1: (Literal Augmentation)[4] If σ′ = (Q[x̄],∆, X ′ → Y ), σ = (Q[x̄],∆, X →

Y ), and X ′ ⊆ X, then σ′ |= σ. □

11
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According Armstrong’s axiom of augmentation for relational FDs, an FD X → Y

can be inferred by another FD X ′ → Y if X is a superset of X ′. Similarly, we prune all

candidate TGFDs σ = (Q[x̄],∆, X → Y ) if there exists an already discovered TGFD

σ′ = (Q[x̄],∆, X ′ → Y ), such that X is a superset of X ′.

Axiom 2: (Pattern Augmentation)[4] If σ′ = (Q′[x̄′],∆, X → Y ), and σ = (Q[x̄],∆, X →

Y ), Q′ ⊆ Q, then σ′ |= σ. □

We prune all candidate TGFDs σ = (Q[x̄],∆, X → Y ) if there exists an already

discovered TGFD σ′ = (Q′[x̄′],∆, X → Y ), such that Q is a superset of Q′.

Axiom 3: (Interval Containment)[4] If σ = (Q[x̄],∆, X → Y ), and σ′ = (Q[x̄],∆′, X →

Y ), ∆′ ⊆ ∆, then σ |= σ′. □

We prune all candidate TGFDs σ′ = (Q[x̄],∆′, X → Y ) if there exists an already

discovered TGFD σ = (Q[x̄],∆, X → Y ), such that ∆ is a superset of ∆′.

In summary, we have described various concepts in this section that are impor-

tant to understanding TGFD discovery. We have described temporal graphs, graph

patterns, matching graph patterns to temporal graphs, TGFD syntax and semantics,

and also axioms relevant to TGFD discovery.

12



Chapter 3

Related Work

We summarize a list of work related to functional dependencies over relational data

and graphs, association rules for graphs, and also the discovery of various aforemen-

tioned rules and dependencies.

3.1 Dependencies

In this section, we describe functional dependencies and their various extensions and

address their similarities and differences to TGFDs.

3.1.1 Functional Dependencies (FDs)

Traditional FDs are fundamental to the study of databases and have been studied

extensively within the context of data quality rules [8, 9, 17, 18]. Over the years, FDs

have been extended as conditional functional dependencies (CFDs) [11], and denial

13
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constraints [5]. FDs have been extended with temporal constraints in the form of

temporal functional dependencies (TFDs) [2]. FDs have also been extended to graph

data in the form of graph functional dependencies (GFDs) [16]. However, there does

not exist a class of functional dependencies that is defined over temporal graphs and

also includes temporal constraints.

3.1.2 Keys for graphs

Keys are a special case of traditional FDs. Graph keys, or GKeys, have been defined to

uniquely identify entities in graphs [10]. Ontological graph keys, or OGKs, have also

been defined to extend GKeys with ontological subgraph matching between entity

labels and an external ontology. However, both GKeys and OGKs are defined over

static graphs and do not consider temporal graphs.

3.1.3 Dependencies for graphs

Traditional FDs were extended to graphs in the form of graph functional dependencies

(GFDs) [16]. GFDs enforce topological constraints and attribute dependencies over

static graphs. A GFD consists of a graph pattern Q[x̄] and an attribute dependency

X → l, where Q[x̄] imposes a topological constraint and X → l imposes a depen-

dency constraint on all attributes found in matches of Q[x̄]. Recently, graph entity

dependencies (GEDs) [14] were defined to subsume GFDs and GKeys by supporting

literal equality of an id literal between keys of two matches of a graph pattern. Nu-

meric graph dependencies (NGDs) [13] have been defined to extend GFDs with linear

14
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arithmetic expressions and comparison predicates. However, none of the aforemen-

tioned graph dependencies consider temporal graphs. TGFDs extend GFDs to impose

temporal constraints over temporal graphs.

3.1.4 Temporal constraints over FDs

Temporal constraints over traditional FDs have been defined in the form of temporal

functional dependencies, or TFDs [2]. TFDs are defined over relational tables where

every tuple has a timestamp attribute. A TFD is of the form X ∧ ∆ → Y and

it enforces the dependency X → Y over all pairs of tuples where the difference

between timestamps is within ∆. However, TFDs only enforce temporal constraints

over relational data and do not consider graphs. In contrast, TGFDs enforce temporal

constraints over temporal graphs.

3.2 Association Rules (ARs)

In this section, we describe traditional association rules (ARs) and their various ex-

tensions. For each rule, we compare the similarities and differences of each to TGFDs.

3.2.1 Traditional ARs

ARs have different semantics than FDs. An AR, as defined in [3], is an implication

of the form X ⇒ Y , that holds over a set of tuples or a relational table, where the

antecedent X and the consequent Y are a set of literals. X ⇒ Y is said to hold over a
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set of tuples if a certain percentage of tuples that contain X also contain Y . However,

ARs, as defined by [3], do not consider temporal constraints or graph data.

3.2.2 Rules for evolving topology in graphs

Works such as GERM[7] and EvoMine[23] have defined evolution rules that describe

topological changes in evolving graphs. These topological changes include edge inser-

tions and deletions and also edge and vertex relabelling. However, these rules do not

enforce any constraints over attributes, which are an important feature of real-world

knowledge graphs.

3.2.3 ARs for graphs

ARs have been extended to static graphs in the form of graph pattern association

rules (GPARs)[15]. GPARs use a graph pattern as the antecedent and single con-

necting edge as the consequent. GPARs do not consider attribute value constraints,

temporal graphs, or temporal constraints. Recently, graph temporal association

rules (GTARs)[22] were defined to enforce temporal constraints over temporal graphs.

GTARs use general graph patterns as the antecedent and consequent. As a tempo-

ral constraint, GTARs specify that a match of the consequent pattern must occur

within an interval of time following the match of the antecedent pattern. GTARs

subsume GPARs and evolution rules as special cases. Even though GTARs impose

temporal constraints over graphs, GTARs are ARs and their semantics are different

from TGFDs.
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3.3 Discovery Algorithms

Our discovery algorithm is closely related to the GFD discovery algorithm [12]. The

GFD discovery algorithm generates graph patterns with up to k edges, such that

k ≥ 2 and k is a user input integer. Following the generation of each new pattern, the

algorithm defines attribute value constraints by generating functional dependencies

over the attributes in the pattern. Thus, GFD discovery performs pattern gener-

ation and dependency generation in an interleaved manner. Similarly, TGFDMiner

also interleaves pattern generation and dependency generation. However, unlike the

GFD discovery algorithm, TGFDMiner further interleaves dependency generation and

identifies time intervals where the dependency is expected to hold.

In summary, we have provided a brief overview of related work, their shortcomings,

and their differences to our work. We have described how our work is unique and

how it addresses the shortcomings of related work.
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Chapter 4

Discovery Metrics

In this chapter, we define minimality and support with respect to TGFDs. We also

introduce and formalize the TGFD discovery problem.

4.1 Minimality

We are interested in discovering TGFDs that are non-trivial and simplified. A sim-

plified TGFD has the smallest possible graph pattern and dependency and cannot be

implied by any other TGFD.

Non-trivial. A TGFD σ = (Q[x̄],∆, X → l) is considered trivial if X is false or if

l ∈ X.

Simplified. A TGFD σ1 = (Q1[x̄],∆1, X1 → l1) simplifies another TGFD σ2 =

(Q2[x̄],∆2, X2 → l2), denoted by σ1 ⪯ σ2, if there exists an isomorphism function

f from Q1 to a subgraph of Q2, i.e. Q1 ⊆ Q2, such that (1) f(ṽ1) = ṽ2, where ṽi
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denotes the interest vertex of Qi; (2) f(X1) ⊆ X2 and f(l1) = l2; and (3) ∆1 ⊆ ∆2

and ∄∆′ ⊂ ∆1 where σ
′ = (Q1,∆

′, X1 → l1) |= GT . A TGFD σ is considered simplified

if GT |= σ and there exists no TGFD σ′ such that GT |= σ′ and σ′ ⪯ σ. Simplified

TGFDs are an extension of reduced GFDs [12].

Example 6: In Figure 1.1, a TGFD σ′ = (Q′
1,∆, X → l), where Q′ is derived from

Q by removing the treatment edge, would simplify the TGFD σ = (Q1,∆, X → l),

i.e. σ′ ⪯ σ. □

Minimal. A TGFD σ is considered minimal, if it is both non-trivial and simplified.

Given a temporal graph GT and TGFD set Σ, we can say Σ is minimal if there does

not exist any redundant TGFD σ′ ∈ Σ, such that removing σ′ from Σ creates a new

set Σ′ that is no longer equivalent to Σ.

4.2 Support

Support measures for dependencies over static graphs consider the frequency of in-

dividual pattern matches [16]. However, the temporal aspect of TGFDs requires us

to consider the frequency of all pairs of matches that exists in GT and lie within a

time interval ∆. In this section, we define support for TGFDs and prove that TGFD

support is not monotonic.

4.2.1 TGFD Support

To measure the support of a TGFD σ = (Q,∆, X → l), we consider all pairs of

matches of Q that lie within ∆. We consider a pair of matches (hi(x̄), hj(x̄)) to be
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an occurrence of σ in GT if (hi(x̄), hj(x̄)) |= σ. The set of all occurrences of σ in GT

is denoted by O(σ, GT ). TGFD support, as defined in Equation 4.2.1, measures the

ratio of the number of actual occurrences of σ in GT to the number of all possible

occurrences of σ in GT . |S| is the number of unique entity instances i.e. the number

of unique matches of X among all matches of Q. For each entity instance,
(|T |+1

2

)
counts the number of all possible occurrences of that entity instance that could exist

in GT . A TGFD σ is considered frequent if for some threshold θ, supp(σ, GT ) ≥ θ.

supp(σ,GT ) =
|O(σ,GT )|
|S|

(|T |+1
2

) (4.2.1)

4.2.2 Anti-monotonic

Similar to the support measures defined for GFDs and GTARs, TGFD support is also

anti-monotonic.

Lemma 1: For TGFDs σ1, σ2, temporal graph GT , if σ1 ⪯ σ2, then supp(σ1, GT ) ≥

supp(σ2, GT ). □

Proof Sketch. We need to show that if σ1 ⪯ σ2, then |O(σ1, GT )| ≥ |O(σ2, GT )|.

For fixed ∆, any occurrence (hti(x̄), htj(x̄)) of σ2 is also an occurrence of σ1, i.e.,

O(σ2, GT ) ⊆ O(σ1, GT ). Therefore, |O(σ1, GT )| ≥ |O(σ2, GT )|, and TGFD support is

anti-monotonic.
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4.3 Problem Definition

The TGFD discovery problem involves searching a temporal graph GT for frequent

graph patterns Q[x̄], defining minimal functional dependencies X → l over attributes

associated with each Q[x̄], and finding the largest interval of time ∆ where X → l

holds over all pairs of matches of Q[x̄]. We limit the size of graph patterns using

an integer k as an upper-bound, i.e. a pattern can have at most k edges. We

discover k-bounded graph patterns because pattern matching is expensive and larger

patterns tend to be less frequent and harder to interpret [12]. We also seek to define

dependencies with the smallest number of literals that hold over the largest interval

of time. We formalize the problem of TGFD discovery as follows.

Given a temporal graph GT , a pattern-size upper-bound k ≥ 2, and a support

threshold θ, we compute a set Σ of k-bounded, minimal TGFDs such that GT |= Σ

and ∀σ ∈ Σ, supp(σ, GT ) ≥ θ.

In summary, we have defined minimality and support for TGFDs and also used

those definitions to introduce and formalize the TGFD discovery problem. In the next

chapter, we present a solution to the TGFD discovery problem.
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Chapter 5

TGFD Discovery Algorithm

In this chapter, we present TGFDMiner, a sequential algorithm for discovering a set

Σ of minimal and frequent TGFDs in a temporal graph GT . First, we provide an

overview of the TGFDMiner architecture, followed by a detailed description of the

various modules that comprise TGFDMiner. We also provide a list of optimizations

that contribute to the efficiency of our discovery algorithm.

5.1 Overview

TGFDMiner, as shown in Algorithm 1 and illustrated in Figure 5.1, is a sequential

algorithm that discover minimal and frequent TGFDs. Given a temporal graph GT ,

the Statistics module in TGFDMiner identifies a set of vertices, edges, and attributes in

GT that are ranked in decreasing order of frequency. In the spirit of GFD discovery[12],

TGFDMiner also interleaves pattern generation and dependency generation. Pattern
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generation is performed by the PattGen module. PattGen uses the set of frequent

vertices and edges from the Statistics module to generate candidate graph patterns

with up to k edges.

For each candidate graph pattern Q[x̄], the pattern matching module, PattMatch,

find matches of Q[x̄] across temporal graph GT . If Q[x̄] is determined to be frequent

in GT , i.e., supp(Q, GT ) ≥ θ, then Q[x̄] is considered for dependency generation.

Dependency generation is performed by the DependGen module. Given a pattern

Q[x̄], DependGen retrieves from the Statistics module a set of attributes that are (a)

associated with vertex labels in Q[x̄] and also (b) either frequent or of user interest,

in order to generate candidate dependencies of the form X → l for Q[x̄].

Finally, for each candidate dependency, the delta discovery module, DeltaDisc,

finds an interval of time ∆ during which X → l holds over occurrences of Q[x̄] and

defines a candidate TGFD σ = (Q[x̄],∆, X → Y ). If σ is determined to be frequent,

i.e. supp(σ, GT ) ≥ θ, and minimal, then we add TGFD σ to a set Σ of minimal and

frequent TGFDs.

Algorithm 1: TGFDMiner(GT , k, θ)

1 Σ := ∅; T = ∅;
2 R,Γ := Statistics(GT ); /* Frequent vertices, edges, and attributes */
3 Σ := PattGen(T );
4 return Σ

5.2 Candidate Forest

TGFDMiner uses an auxiliary data structure to track candidate patterns and their
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Figure 5.1: TGFDMiner architecture.

respective dependencies. TGFDMiner maintains a forest T of TGFD candidate trees.

Each candidate tree T (Q) = (VT , ET ) has the following properties:

(a) A set of candidate nodes VT , where each node v ∈ VT at level i of tree T , is a

pair (Q′, d), where Q[x̄] has i edges, and d is a forest of attribute trees.

(b) A set of edges ET , where each edge e ∈ ET connects a parent node v = (Q′′, d)

with a child node v′ = (Q′, d′) such that Q′′ ⊂ Q′ and ṽQ′′ = ṽQ′ .

(c) The root of tree T is a pair (Q, ∅), where Q consists of one vertex and zero

edges.

(d) A tree T rooted at pattern Q is denoted by T (Q).

(e) The height of T is at most k + 1, i.e. T has at most k + 1 levels.

Example 7: Figure 5.2 illustrates a forest T which consists of two candidate trees.

One tree T (Q0) is rooted at graph pattern Q0, where Q0 consists of single vertex x
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with label LQ0(x) = patient. □

Example 8: Figure 5.3 illustrates a candidate node (Q3, d), where Q3 is a graph

pattern that consists of i edges, and d is represented by a forest of attribute trees

generated for Q3. □

5.3 Pattern Generation

Algorithm 2: PattGen(i)

1 Init(T , RV ); /* Initialize T with frequent single-vertex patterns */
2 Σ := ∅; i := 1;
3 while i ≤ k do
4 Σi := ∅;
5 for (Q′, d) ∈ Ti−1 do
6 for e ∈ RE ∧ e /∈ EQ′ do
7 Q := Q′ ∪ e;
8 if ¬iso(Q, T ) ∧ ¬HasPrunedSubgraph(Q, T ) then
9 Ti += Q;

10 MQ := PattMatch(Q);
11 if supp(Q, GT ) ≤ θ ∧ i ≥ 2 then
12 Σi := Σi ∪ DependGen(MQ)

13 Σ := Σ ∪ Σi; i += 1;

14 return Σ

Algorithm 3: HasPrunedSubgraph(Q, T )

1 for Q′ ∈ T do
2 if supp(Q′, GT ) ≥ θ ∧Q′ ⊂ Q then
3 return true

4 return false

Pattern generation in TGFDMiner is performed by the PattGen module (see Algo-

rithm 2). PattGen uses the most frequent vertices and edges to generate general graph
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Figure 5.2: Pattern Generation (PattGen).

patterns with i edges, where 0 ≤ i ≤ k. PattGen also calculates the support of each

pattern and prunes patterns that are not frequent. PattGen stores each generated

pattern in a node in a candidate tree.

PattGen initializes a tree T (Q0) with root node (Q0, ∅), by generating a single-

vertex graph pattern Q0. All single vertex patterns are created using the set RV of

frequent vertices discovered by the Statistics module.

At each level i of a candidate tree, where 0 < i ≤ k, PattGen expands a tree Ti(Q0)

by creating a new candidate node v′ = (Q′, d′), such that:

(i) Q′ extends existing pattern Q by adding of a frequent edge e ∈ RE to Q.

(ii) Q′ is not isomorphic to any existing pattern Q in forest T , i.e. ¬iso(Q, T ).

(iii) There does not exist a pruned pattern Q in forest T such that Q ⊂ Q′ (described
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in Algorithm 3, reference in Algorithm 2 line 8, see its use in Section 5.7.3).

(iv) Q is frequent in GT , i.e. supp(Q,GT ) ≥ θ.

Example 9: In Figure 5.2, PattGen creates a new candidate node for pattern Q3, such

that Q3 adds an edge e = (x,w) to a pattern Q2 in existing candidate node (Q2, d).

Although this example only depicts patterns that are directed acyclic graphs, our

algorithm has no such limitation and is capable of generating general graph patterns.

□

For each candidate node (Q′, d′), PattGen keeps track of the following:

(a) All candidate nodes (Q, d) where Q ⊂ Q′ (see its use in Section 5.7.4).

(b) A candidate node (Q, d), where Q ⊂ Q′, and ṽQ′ = ṽQ (see its use in Section

5.7.1).

In summary, after successfully generating a pattern Q[x̄] with up to k edges,

PattGen calls PattMatch to find a set MT of all matches of Q[x̄] in temporal graph GT .

PattGen uses MT to calculate the support of Q[x̄] in GT , denoted by supp(Q[x̄], GT ).

If Q[x̄] is frequent, i.e. supp(Q[x̄], GT ) ≥ θ, PattGen passes Q[x̄] to the dependency

generation module.

5.4 Pattern Matching

Pattern matching is performed by the PattMatch module. Given a graph pattern Q[x̄]

from PattGen, PattMatch finds all matches of Q[x̄] in temporal graph GT . PattGen
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outputs a set MT of all matches of Q[x̄] in GT . We define MT = {M1, ...,MT} as

a sequence of set of matches Mt with t ∈ [1, T ], such that each set Mt is a set of

matches of Q[x̄] in Gt.

PattMatch performs localised subgraph isomorphism by searching for pattern matches

within a rQ-neighbourhood of every instance of interest vertex ṽ in GT . We define

rQ to be the longest shortest path from ṽ to any vertex v ∈ Q. PattMatch performs

matching in two different modes:

(i) High−memory mode loads all T snapshots of GT into memory and achieves

a faster runtime in pattern matching. However, high-memory mode is only

applicable for a small T .

(ii) Low −memory mode, in contrast to high-memory mode, only loads the first

snapshot G1 into memory and applies changes to this snapshot in order to gen-

erate all subsequent snapshot Gt, where 1 < t ≤ T . Instead of applying all

necessary changes to create subsequent snapshots, this approach only applies

changes that are relevant to a given pattern Q[x̄]. As expected, low-memory

mode uses less memory during execution when compared to high-memory mode.

However, low-memory mode has a slower runtime due to the overhead of ap-

plying changes to each snapshot Gt.

In summary, PattMatch outputs a setMT of matches of a pattern Q[x̄] in temporal

graph GT . PattMatch also includes various modes of matching to allow TGFDMiner

to run in both high and low memory environments.
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5.5 Dependency Generation

Algorithm 4: DependGen(Q[x̄])

1 d := ∅; ΣQ = ∅;n := |Γ| − 1;
2 for x.A ∈ Γ do

3 for A ∈
(
Γ−{x.A}

n

)
do

4 if IsMinimal(Q,A, {x.A}) then
5 d(x.A) := d(x.A) ∪ A;
6 ΣQ := ΣQ ∪ DeltaDisc(X → l,MQ);

7 return ΣQ

Algorithm 5: IsMinimal(Q,A, {x.A})
1 for σ′ = (Q′, X ′ → l′,∆) ∈ Σ do
2 if Q′ ⊆ Q ∧ x.A ∈ l then
3 isMinimal := false;
4 for y.B ∈ X ′ do
5 if y.B /∈ A then
6 isMinimal := true;

7 if ¬isMinimal then
8 return false;

9 return true;

Dependency generation is performed by the DependGen module (see Algorithm 4).

The Statistics module records a set Γ of attributes that are either frequent or of user

interest, and are associated with vertex labels in Q[x̄]. Using set Γ from Statistics,

DependGen generates all possible sets of attributes for candidate dependencies over

Q[x̄]. DependGen is a deterministic algorithm because it considers all possible set of

attributes.

To generate candidate dependencies, DependGen maintains a forest d = (Vd, Ed)

of attribute trees. Each attribute tree is generated using attributes from set Γ. An

attribute tree d = (Vd, Ed) has the following characteristics:

29



M.Sc. Thesis – L. Noronha McMaster University – Computer Science

Figure 5.3: Dependency Generation (DependGen).

(a) A tree d(x.A) is rooted at attribute x.A, where A ∈ Γ and x ∈ x̄. We simply

refer to the root node as x.A.

(b) A node v ∈ Vd stores an attribute y.B, where B ∈ Γ and y ∈ x̄. We simply

refer to non-root nodes as y.B.

(c) An edge e ∈ Ed, where e = (v, v′), such that node v stores attribute y.B, and

node v′ stores attribute z.C, i.e. v = y.B and v′ = z.C.

(d) A path from the root node x.A to a leaf node y.B has a height of |x̄| because

each node v in the path maps to exactly one variable x ∈ x̄.

(e) A path from a leaf node y.B to the root node x.A represents a set of attributes

D, where each attribute in D is of the form y.B. The set D can be further

divided into two sets {x.A} and A, where A = D − {x.A}.
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(f) Sets A and {x.A} can be used to construct a candidate dependency X → l,

such that every attribute y.B in X maps to exactly one attribute y.B ∈ A, and

attribute x.A in l maps to the lone attribute x.A in set {x.A}.

(g) Every path from a leaf node y.B to the root node x.A represents a minimal

dependency X → l over Q[x̄], such that there does not exist a general TGFD

σ′ = (Q′,∆, X ′ → l) ∈ Σ such that Q′ ⊂ Q, every attribute y.B in X is also in

A, and l is a literal with x.A (see Algorithm 5, called from line 4 in Algorithm

4).

Example 10: Figure 5.3 shows an attribute tree d(z.brand name) rooted at attribute

z.brand name. Figure 5.3 also shows a highlighted path that begins with root node

z.brand name and ends with leaf node w.name. This path can be used to define

sets A′′′ = {y.associated with, x.name, w.name} and {z.brand name}. Sets A′′′ and

{z.brand name} can in turn be used to construct candidate dependencies of the form

X → l, where:

(a) X and l consist of constant literals, i.e. X = {y.associated with = c1, x.name

= c2, w.name= c3} and l = {z.brand name = c3}; and

(b) X and l consist of variable literals, i.e. X = {y.associated with= y′.associated with,

x.name= x′.name, w.name= w′.name} and l = {z.brand name= z′.brand name}.

□

In summary, DependGen generates attributes for a minimal dependency X → l

over frequent pattern Q[x̄]. After successfully generating attributes for a minimal
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Figure 5.4: Delta Discovery (DeltaDisc).

dependency X → l, we perform delta discovery to find a time interval ∆ where

X → l holds over the matches of Q[x̄].

5.6 Delta Discovery

Algorithm 6: DeltaDisc(X → l,MQ)

1 S := FindEntities(A, {x.A},MQ);
2 ΣS := ∅; ΣC := ∅;
3 for (ht(A), s) ∈ S do
4 σcst := DiscoverConstantTGFDs(ht(A), s);
5 ΣS := ΣS ∪ σcst;
6 if supp(σcst, GT ) ≥ θ ∧ IsMinimal(σcst) then
7 ΣC := ΣC ∪ σcst;

8 ΣG := DiscoverGeneralTGFDs(ΣS);
9 ΣX→l := ΣC ∪ ΣG;

10 return ΣX→l

Delta discovery is performed by the DeltaDisc module in TGFDMiner. DeltaDisc
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receives attribute sets A and {x.A} from DependGen to define constant and variable

literals for sets X and l, respectively, for candidate dependencies of the form X → l.

For a candidate dependency X → l defined over pattern Q[x̄], DeltaDisc attempts to

discover a time interval ∆ where X → l holds over the matches of Q[x̄].

The DeltaDisc module consists of the following submodules:

(i) Entity discovery (FindEntities)

(ii) Constant TGFD discovery (DiscoverConstantTGFDs)

(iii) General TGFD discovery (DiscoverGeneralTGFDs)

5.6.1 Entity Discovery

Algorithm 7: FindEntities(A, {x.A},MQ)

1 S := ∅;
2 for ht(x̄) ∈ MQ do
3 if A ∈ ht(x̄) ∧ {x.A} ∈ ht(x̄) then
4 sc(t) += 1;
5 S := S ∪ (ht(A), s);

6 return S

Entity discovery is performed by the FindEntities submodule (see Algorithm 7)

in DeltaDisc. Entity discovery search matches of pattern Q[x̄] to find unique sets of

constant values for attributes in A. We refer to a unique set of constant values for

A as an entity instance ht(A). For every ht(A), we track the value of x.A over time.

Constant values discovered for attributes in A and {x.A} by FindEntities are used by

the DiscoverConstantTGFDs module to define constant literals.
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Given a set MT containing matches of Q[x̄] in GT , FindEntities identifies all entity

instances in MT . We define an entity instance as a unique match of Q[x̄] in MT

that contains all attributes in A. We denote an entity instance as ht(A). FindEntities

also search the unique matches of MT for all possible constant values associated with

attribute x.A. For each entity instance, we use a vector s to record every constant

value c associated with x.A in MT . Each entry s(c) stores a vector of size T , such

that each entry st(c) records the number of matches of x.A = c at timestamp t in

MT . An entity instance ht(A) and its respective list s of constant values associated

with x.A are stored as a pair (ht(A), s), and the set of all such pairs is denoted as S.

The DiscoverConstantTGFDs uses set S to define constant literals of the form X → l

for candidate TGFDs.

Example 11: For example, in Figure 5.4a, we see matches of pattern Q3 across

GT . In Figure 5.4b, we see examples of entity instances, i.e. unique matches in MT

that contain all attributes in A, and for each entity instance, we also see its asso-

ciated list of matched values for attribute x.A. We can define a set S, where the

first pair (ht(A′′′)1, s) consists of entity instance ht(A′′′)1 = {y.associated with =

“migraine”∧x.name = “Bob”∧w.name = “Alice”} and vector s, which consist of two

vectors s(“Tylenol”) = [1, 0, 1, 0, 1, 0, 0, 0, 0] and s(“Morphine”) = [0, 0, 0, 0, 0, 0, 0, 0, 1].

□

In summary, FindEntities computes a set S of pairs (ht(A), s), where ht(A) is a

unique match of Q[x̄] that contains all attributes in A, and s is a vector that tracks

all possible values of x.A over time. DiscoverConstantTGFDs uses S to define constant

literals and build dependencies for candidate TGFDs.
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5.6.2 Constant TGFD discovery

Algorithm 8: DiscoverConstantTGFDs(ht(A), s)

1 l := max(s);
2 if ∃∆ s.t. (hti(x̄), htj(x̄)) |= X ∧ (hti(x̄), htj(x̄)) |= l then
3 σcst := (Q,X → l,∆); /* Candidate constant TGFD */
4 return σcst ;

Algorithm 9: IsMinimal(σcst)

1 for σ′ = (Q′, X ′ → l′,∆) ∈ Σ do
2 if Q′ ⊆ Qcst ∧X ′ ⊆ Xcst ∧ l′ ∈ lcst then
3 return false;

4 return true;

The discovery of constant TGFDs, i.e. TGFDs with dependencies that consist of

only constant literals, is performed by the the DiscoverConstantTGFDs submodule

(see Algorithm 8) in DeltaDisc. DiscoverConstantTGFDs attempts to define a TGFD

for every entity instance ht(A) discovered by FindEntities.

Given a set S, DiscoverConstantTGFDs attempts to discover a time interval ∆ for

graph pattern Q[x̄] and a dependency X → l which consists of only constant literals,

such that X = ht(A), l is x.A = c, and c is the most frequent constant value in s.

For each pair (ht(A), s) ∈ S, DiscoverConstantTGFDs finds a constant value c in

s, such that the sum of all values in s(c) is greater than the sum of all values in any

other vector s(c′) (see line 1 in Algorithm 8). Next, for the dependency X → l with

X = ht(A), l is x.A = c, DiscoverConstantTGFDs find the largest time interval ∆

where all pairs (hi(x̄), hj(x̄)) of matches in MT satisfy X → l, i.e. (hi(x̄), hj(x̄))

|= X and (hti(x̄), htj(x̄)) |= l when |i − j| ∈ ∆. If such a ∆ exists, we define a

candidate constant TGFD σcst = (Q,X → l,∆).
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Given a candidate constant TGFD σcst, we consider σcst to be frequent if supp(σcst, GT ) ≥

θ. If there does not exist a TGFD σ′ ∈ Σ such that σ′ ⪯ σcst, we consider σcst to be

minimal. If σcst is minimal and frequent (see line 5 in Algorithm 6), we add σcst to

the set Σ of minimal and frequent TGFDs.

Example 12: In Figure 5.4b, given the entity instance ht(A′′′)1 = {y.associated with

= “migraine”, x.name = “Bob”, w.name = “Alice”}, and the most frequent vector

s(“Tylenol”) = [1, 0, 1, 0, 1, 0, 0, 0, 0], we define a candidate TGFD σ1 = (Q3,∆, X1 →

l1) which consists entirely of constant literals, such that X1 = {y.associated with

= “migraine” ∧ x.name = “Bob” ∧ w.name = “Alice”} and l1 = {z.brand name =

“Tylenol}”. To enforce dependency X1 → l1 over the set of matches in In Figure

5.4a, we can compute an interval ∆1 = (3, 6 hours), which excludes any pairs of

matches of Q3 where z.brand name = “Morphine”. For the constant TGFD σ1 :=

(Q,X1 → l1,∆1), we denote the support as supp(σ1,GT ) =
3

2·(92)
= 3

18
.

Similarly, for pair (ht(A′′′)2, s) with the entity instance ht(A′′′)2 = {y.associated with

= “inflammation”, x.name= “Mary”, w.name= “John”} and single vector s(“Advil”),

we can define another constant TGFD σ2 := (Q,X2 → l2,∆2), whereX2 = {y.associated with

= “inflammation” ∧ x.name = “Mary” ∧ w.name = “John”} and l2 = {z.brand name

= “Advil”}, ∆2 = (3, 12 hours), and supp(σ2, GT ) =
6

2·(92)
= 6

18
. □

In summary, for each entity instance discovered by FindEntities, we discover a

candidate constant TGFD σcst by defining a dependency X → l consisting of constant

literals over graph pattern Q[x̄], finding a time interval ∆ where X → l holds, and

adding σcst to Σ if frequent and minimal. In the next section, we describe how the

set ΣS of all candidate constant TGFDs can be used to discover a broader type of

TGFDs, i.e. general TGFDs.
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5.6.3 General TGFD discovery

Algorithm 10: DiscoverGeneralTGFDs(ΣS)

1 Σg := ∅;
2 ∆G = intersections(ΣS)
3 for ∆g ∈ ∆G do
4 Candidate general TGFD σg := (Q,Xg → lg,∆g);
5 if supp(σg, GT ) ≥ θ then
6 Σg += σg;

7 return Σg

The discovery of general TGFDs, i.e. TGFDs with dependencies that consist of only

variable literals, is performed by the DiscoverGeneralTGFDs submodule (see Algorithm

10) in DeltaDisc. DiscoverGeneralTGFDs discover TGFDs for the entity type defined

by attribute sets A and {x.A}. DiscoverGeneralTGFDs uses the attribute sets A and

{x.A} to define a dependency Xg → lg which consists of only variable literals, i.e.

literals of the form x.A = x′.A.

Given a set ΣS of all candidate constant TGFDs, we define a set ∆S of time

intervals, which consists every time interval ∆ found in ΣS. Using set ∆S of time

intervals, we compute a set ∆G of non-overlapping time intervals, such that each

time interval ∆g ∈ ∆G intersects with a maximum number of time intervals in ∆S

(see line 2 in Algorithm 10). For each ∆g ∈ ∆G, DiscoverGeneralTGFDs defines a

candidate general TGFD σg = (Q[x̄], ∆g, Xg → lg). If a candidate general TGFD σg is

determined to be frequent, i.e. supp(σg, GT ) ≥ θ, we add σg to the set Σ of minimal

and frequent TGFDs.

Example 13: Given two constant TGFDs σ1 and σ2 from Example 12 with intervals

of ∆1 and ∆2, respectively, we can define a general TGFD σg := (Q,Xg → lg,∆g),

37



M.Sc. Thesis – L. Noronha McMaster University – Computer Science

such that Xg = {yi.associated with = yj.associated with ∧ xi.name = xj.name ∧

w.name = wj.name}, lg = {zi.brand name = zj.brand name}, ∆g = ∆1 ∩∆2 = (3, 6)∩

(3, 12) = (3, 6), and supp(σg, GT ) =
6

2·(92)
= 6

18
. □

5.7 Optimizations

In this section, we present four optimization that improve the efficiency of TGFDMiner

by pruning redundant candidates.

5.7.1 Opt-1: Reuse matches.

This optimization involves storing matches of the interest vertices of each graph pat-

tern Qi consisting of i edges. To find matches for a larger pattern Qi+1, such that

Qi ⊂ Qi+1, we perform pattern matching in the neighbourhood of all matches of the

interest vertices of pattern Qi. This approach allows us to decrease pattern matching

time by reducing the search space in GT .

During PattGen level i = 0, we generate single-vertex patterns Q0, where the

only vertex in Q0 is also designated as an interest vertex ṽ0. For each pattern Q0,

PattMatch store a list of matched instances of ṽ0 in GT in the respective candidate

node. At each subsequent level i > 0, for each i-sized pattern Qi, PattGen designates

a vertex v ∈ VQ as the interest vertex, denoted as ṽQi
, such that a path rQi

from ṽQi

to any another vertex v ∈ VQ is the longest shortest path between all vertices in Q.

Given a pattern Qi, if there exists a pattern Q′ with interest vertex ṽQ′ , such that Q′

⊂ Qi and ṽQ′ = ṽQi
, we re-use the list of matched instances of ṽQ′ stored in candidate
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node of Q′ and perform subgraph isomorphism in the rQi
-neighbourhood of each ṽQ′

instance to find matches of Qi. We prune all matches of ṽQ′ that do not contain any

matches of Qi and store the pruned list of matches in the candidate node of Qi. If

there does not exist a pattern Q′, we locate all instances of ṽ in GT , perform subgraph

isomorphism in the rQi
-neighbourhood of each ṽ instance to find matches of Qi, and

store all relevant instances of ṽ as a list in the candidate node for Qi.

5.7.2 Opt-2: Incremental matching.

In a temporal graph GT , a snapshot Gj can be derived from a previous snapshot Gi,

where i < j, via a list of changes such as updates, insertions, and deletions to vertices,

edges, and attributes [4]. Given a list of changes that occur between consecutive Gi

and Gj, the incremental matching approach allows us to reduce pattern matching

time by only recomputing matches that are affected by this list of changes. This

optimization works best when the number of changes between consecutive snapshots

is small. For a small number of changes, only a few matches will be recomputed.

However, for a large number of changes, each match might be recomputed several

times, which offsets the benefits of this optimization.

If a match hi(x̄) from Gi is updated in Gj, we add an updated match hj(x̄) to

MT . If a new match hj(x̄) is inserted in Gj, we add a new match hj(x̄) to MT . If

a match hi(x̄) from Gi is deleted in Gj, we do not add anything to MT . If there is

no change to hi(x̄) in Gj, we assume the match persists and add an identical match

hj(x̄) to MT , where hj(x̄) = hi(x̄). For a temporal graph GT with a small number of

changes between snapshots, this optimization can decrease pattern matching time.
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5.7.3 Opt-3: Support pruning.

Based on the anti-monotonic property of TGFD support, during PattGen, we prune

any redundant candidate pattern Qi, if there is an existing pattern Q′, such that Q′

⊂ Qi, ṽQ′ = ṽQi
, and supp(Q′, GT ) < θ. This approach allows us to decrease runtime

by avoiding pattern matching for patterns with low support.

5.7.4 Opt-4: Minimality pruning.

This optimization decreases runtime by allowing TGFDMiner to prune candidate

TGFDs that are not minimal. During DependGen and DeltaDisc, TGFDMiner uses

Axioms 1, 2, and 3 to prune a redundant candidate TGFD σ′ = (Q′,∆′, X ′ → l′) if

there is an existing TGFD σ ∈ Σ, such that σ = (Q,∆, X → l), Q ⊆ Q′, X ⊆ X ′,

l = l′, and ∆ ⊆ ∆′ (see Algorithms 5 and 9). This approach does not cause a loss

of TGFDs because our axioms ensure that only non-minimal candidate TGFDs, i.e.

TGFDs that can be inferred by minimal TGFDs, are pruned during discovery.

In summary, we have introduced TGFDMiner, its modules, and its optimizations.

In the next chapter, we evaluate the efficiency and scalability of TGFDMiner and

compare its performance to a baseline to show its effectiveness. We also present

examples of real-world TGFDs discovered from IMDB.
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Chapter 6

Experiments

In this chapter, we evaluate the performance of TGFDMiner for varying parameters,

and compare against an existing baseline. We also evaluate the benefits of our opti-

mizations and present examples of real-world TGFDs.

6.1 Setup

We implemented TGFDMiner using JDK 15 and conducted our experiments on a

cluster of four Red Hat Enterprise Linux servers, where three servers use Intel Xeon

E5-2670 2.60Ghz with 8 to 12 cores and 128GB RAM, and one server which uses Intel

Xeon E7-4870 2.40Ghz CPU with 16 cores and 256GB RAM.
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6.2 Datasets

We evaluate TGFDMiner using two real-world graphs DBpedia and IMDB, and one

synthetically generated graph.

1. DBpedia [19]: is a real-world knowledge graph that consists of three semi-annual

snapshots from 2015 to 2016. Each snapshot contains an roughly 5M vertices

with 422 vertex labels (e.g. soccer club, album, country, film) and 14M edges

with 45K edge labels (e.g. team, occupation, starring).

2. IMDB [1]: consists of 26 monthly snapshots from October 2014 to December

2017. Each snapshot contains roughly 700K vertices with 6 vertex labels (e.g.

actor, actress, director, movie, genre, country) and 1M edges with 5 edge labels

(e.g. actor of, actress of, director of, genre of, country of origin).

3. Synthetic: social network, generated using a synthetic graph generator named

gMark [6], consists of 21 snapshots, where each snapshot consists of roughly

2.7M vertices with 12 vertex labels (e.g. person, message, comment, city) and

3.5M edges with 22 edge labels (e.g. knows, replyof, islocatedin).

6.3 Results for varying parameters

In this section, we present evaluation results of TGFDMiner for varying parameters.

By default, we set θ = 0.05, |Γ| = 20, k = 3, and T = 3. For each dataset, by default,

we use the graph size |G| = (|V |, |E|) specified in the previous section.
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Figure 6.1: Vary |G| (DBpedia).

6.3.1 Varying |G|

To evaluate the effect of varying |G|, we use a variety of uniformly increasing graph

sizes (|V |, |E|) of DBpedia: (0.9,2), (1.6,4), (2.2,6), (2.8,8), (3.3,10), (3.8,12), (4.3,14).

In Figure 6.1, TGFDMiner runtime increases as |G| increases, as expected. Our results

show that TGFDMiner is scalable because it completes in under 81 minutes for 3

DBpedia snapshots of size (4.3M, 14M).

6.3.2 Varying |T |

Since IMDB has many snapshots, we use IMDB to evaluate the effect of varying |T |.

Figure 6.2 shows TGFDMiner runtime increasing steadily for larger |T | over IMDB. For

|T | > 21, the runtime increase less steadily because the memory usage of TGFDMiner
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Figure 6.2: Vary |T | (IMDB).

approaches the server’s full RAM capacity.

6.3.3 Varying k

DBpedia has many vertex and edge labels which can be used to build large graph

patterns. Hence, we use DBpedia to evaluate the effect of varying k. At larger k,

larger and more complex pattern candidates are matched and larger dependencies

are considered, causing a steep increase in runtime when performing PattMatch and

DeltaDisc. For example, in Figure 6.3, this steep increase is most noticeable between

k = 4 and k = 5, where the runtime increases by 70%. At k = 6, TGFDMiner was

terminated after 38000 minutes.

44



M.Sc. Thesis – L. Noronha McMaster University – Computer Science

Figure 6.3: Vary k (DBpedia).

6.3.4 Varying θ

We use DBpedia and IMDB to evalulate the effect of varying θ. TGFDMiner runtime

decreases as θ increases because at larger θ, more candidate patterns are pruned than

at lower θ, which in turn eliminates more candidate dependency and delta discovery.

Most patterns discovered by TGFDMiner in DBpedia have a pattern support below

0.1. Accordingly, when we studied the effects of varying θ over DBpedia in Figure 6.4,

we noticed a nearly 50% decrease in runtime when θ was increased from 0.03 to 0.09.

Similarly, in IMDB, most patterns discovered by TGFDMiner had a pattern support

below 0.15, which is evident in the 83% increase in runtime in Figure 6.5 when θ is

decreased from 0.15 to 0.12.
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Figure 6.4: Vary θ (DBpedia).

Figure 6.5: Vary θ (IMDB).
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Figure 6.6: Vary |Γ| (DBpedia).

6.3.5 Varying |Γ|

Since DBpedia has a large number of attributes, we use DBpedia to evaluate the effect

of varying |Γ|. Γ contains a set of attributes that are ranked in order of decreasing

frequency. In Figure 6.6, we notice TGFDMiner runtime increases steadily for 10 ≤

|Γ| ≤ 40 because the most frequent attributes in Γ are chosen first. For |Γ| > 50,

there increase in runtime is slower as less frequent attributes in Γ are chosen. Overall,

a larger |Γ| has a higher runtime because more candidate dependencies are generated

during DependGen, which in turn results in more candidate TGFDs being processed

during DeltaDisc.
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Figure 6.7: Varying |G|. GFDMiner vs. TGFDMiner comparison (DBpedia).

6.4 Comparative Performance

In this section, we vary parameters |G| and k and compare the evaluation results of

TGFDMiner against results from an existing baseline algorithm. We use GFDMiner as

a baseline algorithm.

6.4.1 Comparison with GFDs (Varying |G|)

Since GFDMiner only runs on static graphs, we ran GFDMiner separately on each

snapshot of DBpedia. In Figure 6.7, for DBpedia graphs of sizes (0.9,2), (1.6,4), (2.2,6),

(2.8,8), (3.3,10), (3.8,12), (4.3,14), TGFDMiner is slower than GFDMiner discovery by

133%, 122%, 105%, 94%, 115%, and 110% respectively. On average, TGFDMiner
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(|V |, |E|) avg. # of GFDs discovered per snapshot # of TGFDs discovered in GT

(0.9,2) 1040 2059
(1.6,4) 1572 2160
(2.2,6) 1904 2374
(2.8,8) 2219 2611
(3.3,10) 2378 2692
(3.8,12) 2621 2745
(4.3,14) 2755 2559

Table 6.1: Comparing outputs of GFDMiner and TGFDMiner in Experiment 6.4.1

is slower than GFDMiner by 113% due to the additional cost of performing pair-

wise comparison of matches across snapshots in DeltaDisc. The number of TGFDs

and GFDs discovered by TGFDMiner and GFDMiner, respectively, is comparable (see

Table 6.1).

6.4.2 Comparison with GFDs (Varying k)

Synthetic has many vertex and edge labels which can be used to build large graph

patterns. Hence, we use Synthetic to evaluate the effect of varying k. As seen in Figure

6.8, the performance of TGFDMiner over Synthetic is comparable to GFDMiner when k

is varied. However, TGFDMiner is slightly faster than GFDMiner because TGFDMiner

only runs DiscoverConstantTGFDs once over all snapshots, whereas GFDMiner needs

to discover GFDs for each snapshot separately. The number of TGFDs and GFDs

discovered by TGFDMiner and GFDMiner, respectively, is comparable. TGFDMiner

discovered 256 TGFDs across all snapshots, whereas GFDMiner discovered an average

of 282 GFDs in each snapshot.
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Figure 6.8: Varying k. GFDMiner vs. TGFDMiner comparison (DBpedia).

6.5 Benefits of optimizations

In Figure 6.9, we vary |G| and compare the effect of each of our optimizations against

a naive implementation of TGFDMiner. For this experiment, we use the DBpedia

dataset, which has a large number of changes between consecutive snapshots. How-

ever, since Opt-2 works best when there are a small number of changes between

consecutive snapshots, we use Low −memory mode and applying changes to 0.001%

of the vertices and edges in the current snapshot to create the next snapshot. We

apply insertions, deletions, and updates to vertices, edges, and attributes. In com-

parison to naive, TGFDMiner, Opt-1, Opt-2, Opt-3, and Opt-4 achieve a a decrease

in runtime of 7.24%, 8.26%, 43.00%, and 19.04% respectively. Table 6.2 shows the

number of output TGFDs, |Σ| for each optimization and the naive implementation.
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Figure 6.9: Benefits of optimizations (DBpedia).

We observe that only Opt-4 causes a decrease in |Σ| because only Opt-4 prunes non-

minimal TGFDs. Opt-4 achieves the second highest decrease in runtime by pruning

non-minimal candidate TGFDs from being processed by DependGen and DeltaDisc.

In comparison, Opt-1 and Opt-2 have a slightly lower runtime than the naive imple-

mentation because they improve the efficiency of pattern matching. However, Opt-3

achieves the highest decrease in runtime by preventing previously matched low fre-

quency graph patterns from being expanded by PattGen and matched by PattMatch.

6.6 Case Study

We present the following real-world TGFDs discovered over IMDB, with patterns il-

lustrated in Figure 6.10.
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Optimizations
(|V |, |E|)

(0.9, 2) (1.6, 4) (2.2, 6) (2.8, 8) (3.3, 10) (3.8, 12) (4.3, 12)
Opt-1 26863 5888 6960 10564 12411 7947 11590
Opt-2 26863 5888 6960 10564 12411 7947 11590
Opt-3 26863 5888 6960 10564 12411 7947 11590
Opt-4 4639 3243 3397 3806 3818 3534 3137
Naive 26863 5888 6960 10564 12411 7947 11590

Table 6.2: Comparing |Σ| of all optimizations in Experiment 6.5
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Figure 6.10: Case Study
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TGFD1: σ5 = (Q5, (6, 8 months){movie.name ∧ genre.name} → actor.name) acts as

a time-constrained key which specifies that for an interval of 6 to 8 months, a movie’s

name and genre can uniquely determine its actor.

TGFD2: σ6 = (Q5, (9, 9 months){movie.language of ∧ actor.name} → genre.name)

specifies that an actor working in a specific movie-language industry acts in movies

belonging to the same genre every 9 months.

TGFD3: σ7 = (Q6, (6, 6 months){actor.name ∧ actress.name} → movie.language of)

specifies that an actor working with a specific actress will act in the same movie-

language industry every 6 months.

TGFD4: σ8 = (Q7, (6, 6 months){actor.name ∧ director.name} → movie.language of)

specifies that an actor working with a specific director will act in the same movie-

language industry every 6 months.

In summary, we have evaluated TGFDMiner on large-scale real-world and synthetic

graphs to show that TGFDMiner is an efficient and scalable algorithm for discovering

TGFDs, and that our optimizations for TGFDMiner are effective. We have also shown

that the performance of TGFDMiner is comparable to an existing baseline algorithm.

We have also presented various real-world TGFDs from real-world dataset IMDB. In

the next chapter, we conclude this thesis and provide directions for future work.
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Chapter 7

Conclusion and Future Work

We have formalized the TGFD discovery problem, defined minimality and support for

TGFDs, and presented an efficient and effective sequential algorithm, TGFDMiner, that

discovers minimal and frequent TGFDs. We have also described various optimizations

to improve the runtime efficiency of TGFDMiner by pruning redundant patterns and

redundant TGFD candidates. Our evaluations, performed over real and synthetic

large graph datasets, show that our optimizations are effective, and TGFDMiner is

scalable, efficient, and discovers interesting TGFDs.

7.1 Future work

As future work, we intend to:

1. Discover a wider variety of constant TGFDs. For instance, currently, if there

exist two candidate TGFDs σ = (Q,X → l.A = c,∆) and σ′ = (Q,X → l.A =
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c′,∆′), where supp(σ, GT ) > supp(σ′, GT ) > θ, TGFDMiner will only add σ to Σ.

We plan to allow future iterations of TGFDMiner to discover constant TGFDs

σ′ that do not have maximum frequency, but still satisfy TGFD support.

2. Explore approximate TGFDs, as opposed to exact TGFDs. Currently, our algo-

rithm discovers exact TGFDs, which are TGFDs that do not allow any violations

of the satisfiability definition of TGFDs. In contrast to exact TGFDs, approxi-

mate TGFDs allow a small number of violations.

3. Discover richer TGFDs by allowing a dependency X → Y to contain both

constant and variable literals simultaneously. Currently, for any TGFD with

dependency X → Y discovered by TGFDMiner, all literals in X and Y must be

only constant or only variable.

4. Develop a parallel algorithm for TGFD discovery to reduce pattern matching

time and thereby perform discovery on even larger graphs.

5. During our evaluation of TGFDMiner over DBpedia, we noticed many TGFDs

were lost over time due to type migration in vertices. For example, in DBpedia,

vertices labelled as settlement would often be re-labelled as village or city over

time due to population changes. By incorporating semantic knowledge and

ontologies into TGFDMiner, we could reduce the loss of valuable TGFDs over

time.
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