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ABSTRACT
Traditional oversampling methods are generally employed to han-
dle class imbalance in datasets. This oversampling approach is
independent of the classifier; thus, it does not offer an end-to-end
solution. To overcome this, we propose a three-player adversarial
game-based end-to-end method, where a domain-constraints mix-
ture of generators, a discriminator, and a multi-class classifier are
used. Rather than adversarial minority oversampling, we propose
an adversarial oversampling (AO) and a data-space oversampling
(DO) approach. In AO, the generator updates by fooling both the
classifier and discriminator, however, in DO, it updates by favoring
the classifier and fooling the discriminator. While updating the clas-
sifier, it considers both the real and synthetically generated samples
in AO. But, in DO, it favors the real samples and fools the subset
class-specific generated samples. To mitigate the biases of a classi-
fier towards the majority class, minority samples are over-sampled
at a fractional rate. Such implementation is shown to provide more
robust classification boundaries. The effectiveness of our proposed
method has been validated with high-dimensional, highly imbal-
anced and large-scale multi-class tabular datasets. The results as
measured by average class specific accuracy (ACSA) clearly indicate
that the proposed method provides better classification accuracy
(improvement in the range of 0.7% to 49.27%) as compared to the
baseline classifier.

CCS CONCEPTS
• Imbalance Classification → adversarial approach; • Com-
puting methodologies → generative adversarial networks.
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1 INTRODUCTION
Traditional machine learning (ML) algorithms perform well in com-
paratively balanced datasets. However, in real-world problems such
as fraud detection, fault detection, medical diagnosis, and dense
object detection [13], all the classes do not usually have an equal
number of samples. In such cases, ML algorithms try to search
for the best decision boundaries. However, minority classes may
face challenges resultant from their low frequencies, which could
lead to misleading decision boundaries. Unless a cost-sensitive clas-
sification approach is followed, ML approaches do not handle a
skewed data distribution well and bias their choices to the overall
accuracy of the classifier, which in turn favours majority classes.
Moreover, a further challenge exists when minority samples are
drawn from a biased subset of the class distribution, which causes
unrepresentative sampling. The complexity increases when dealing
with multi-class imbalanced classification problems. A class can be
considered as a majority with respect to some other class, while
a minority or well-balanced one in contrast with the remaining
classes.

Methods devised by the ML community to deal with class imbal-
ance problem can be divided into two broad types, namely data-level
and algorithm-level methods. In the latter methods, cost-sensitive
learning is utilized where the classifiers are penalized more heavily
for miss-classifying the minority class more than the majority class.
In data-level methods (oversampling and undersampling [9]), data
may be re-sampled randomly from the original data, or maybe sam-
pled synthetically by generating synthetic samples. These methods
can be applied in the data pre-processing stage, which provides
them more flexibility than algorithm-level methods [11].
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In recent times, generative adversarial networks (GANs) [5] have
been widely used in handling imbalance problems due to their data
generation capabilities [3, 13]. In GANs, two networks, namely
generator and discriminator, contest with each other in an adver-
sarial game. The generator takes lower-dimensional latent space to
generate a realistic complex data distribution. The discriminator
discriminates between real and generated samples. The efficacy of
generated synthetic samples to handle imbalance problems in the
tabular dataset was introduced by class-conditional GANs method
[3]. Due to majority class dominance, class-conditional GANs are
known to suffer from mode collapse problems. Therefore, gener-
ative adversarial minority oversampling (GAMO) [13] was intro-
duced to tackle mode collapse by considering domain constraints
convex generators. The generators generate the minority class near
decision boundaries, which are difficult for classifiers to classify.

Usually, cross-entropy (CE) loss-based networks perform bet-
ter than the least square (LS)-based ones in classification tasks
[4]. However, the GAMO classifier is based on the least square (LS)
method, where the CE based approach does not improve enough the
classification performance than the baseline due to the generators
were not updated through complement cross-entropy loss (CCE)
[2] in GAMO. Therefore, we propose two adversarial oversampling
methods that cover all the possible combinations of the game be-
tween classifier, generator and discriminator. The contributions of
this paper are as follows:

• Our proposed method is based on a three-player network:
domain constraints class conditionals mixture of generators
(𝐺), a discriminator (𝐷) and a classifier (𝑄). Unlike the adver-
sarial minority oversampling method, utilized in benchmark
three players network called GAMO, we propose an adversar-
ial oversampling (AO) and a data-space oversampling (DO)
approach.

• In AO, the 𝐺 is updated by fooling 𝑄 and 𝐷 simultaneously.
That means, 𝐺 will enforce to generate the samples within
class distribution to fool the classifiers (𝑄). Both 𝑄 and 𝐷 ,
simultaneously enforce generators to generate more promi-
nent class samples near decision boundaries. 𝑄 will be up-
dated through oversampling of class distributions to mitigate
majority class distributions.

• In DO, the𝐺 is updated by fooling only 𝐷 but in favour of𝑄 ,
whereas, 𝑄 is updated by favouring of real samples and fool-
ing of subset class-specific generated samples. That means,
class specific subset samples are generated by𝐺 to give more
robust classification boundaries. In ablations studies, we ob-
served that each fractions of data space oversampling can
improve the classification performance.

2 PROBLEM FORMULATION
Let us assume the joint distribution of training set (𝑋,𝑌 ) of which
𝑁𝑡 training samples are independent and identically distributed
(i.i.d) over 𝐶 classes. The 𝑘-th training sample, (xk, yk) represents
the attribute information (xk ∈ Rd) and class information (yk ∈
RC). The total number of samples can be presented as 𝑁 =

∑𝐶
𝑙=𝑐

𝑝𝑙 ,
where, 𝑝𝑙 is the size of 𝑙-th class. In real situations, distributed class
(𝑝𝑘 ) is not uniform. In general, the imbalance class variances are
represented as {𝑝1, 𝑝2, ..., 𝑝𝑐 , ..., 𝑝𝐶 } where 𝑝𝐶 is the largest class,

which can be 50 times bigger than the smallest class i.e. 𝑝𝐶 ≥ 50∗𝑝1.
The objective is to design a (𝑄) that can estimate the 𝑄 (𝑥∗

𝑘
) = 𝑦 ∈

𝑦𝑘 but designing such 𝑄 (.) to estimate the underlying distribution
of training data under imbalance settings is difficult.

3 ADVERSARIAL OVER-SAMPLING
We have proposed generative model-based two oversampling ap-
proaches, namely, adversarial oversampling (AO) and data space
oversampling (DO), where samples generated by G support to im-
prove the performance of Q. In AO, our domain constraints class-
conditional generators𝐺 will generate samples at different localities
of the data-space by obtaining gradients from 𝐷 and 𝑄 by fooling
both 𝐷 and 𝑄 simultaneously. The gradients of 𝑄 are updated
through real data and adversary over-sampled data to balance the
decision boundaries of 𝑄 . Like the basic GAN [5], 𝐷 is updated to
maximize the probability of assigning the real data and samples
generated from𝐺 . In DO, the gradients of𝐺 are updated by fooling
𝐷 and favouring𝑄 simultaneously. However,𝑄 is updated through
the real samples and generated class conditionals samples to fool𝑄 .
In DO, the 𝐷 is updated similarly as in AO. To mitigate the imbal-
ance impact at 𝑄 , data-space, over-sampled at a different fractional
rate, is defined to observe the impact of classification performance.

3.1 Mixture of generators
When no constraint is considered at individual class generators’
outputs, the major class intervenes into minor classes domain even
if the noise samples are taken from different Gaussian distributions
[3, 13]. In GAMO, class-specific real data is considered at the gen-
erators, which confirms the generators’ ability to generate minor
classes at minor-class distributions. Instead of generating real like
data, the class conditional generators are used to generate latent
vectors which select the instances (samples) of a specific class of
real distributions. This ensured that all generated samples remained
within minor-class distributions. Similar to GAMO, our generator is
also designed to generate samples to retain all the class distributions.
Both methods are based on adversarial over-samplings, therefore,
we need to design a mixture of all class-conditional generators.
Our mixture of generators consist of one module: class-specific
weight instance (CWI) as shown in Fig. 1, which takes Gaussian
normal distribution latent variable (𝑧) to map 𝑑-dimensional real
value (0, 1). It is obtained by using softmax activation of the last
layer. The output of CWI unit is 𝑔(𝑧 |𝑘) ∈ R𝑑 since 𝑔(𝑧 |𝑘) ≥ 0 and
(𝑔(𝑧 |𝑘))𝑇 ∗ 1 = 1. Thus, CWI will select an instance of 𝑋𝑘 class-
data. The 𝑘-th class conditional generator’s output is obtained by
considering the average weight of 𝑘-th real data distribution, which
can be expressed as:

𝐺 (𝑧 |𝑘) = (𝑔(𝑧 |𝑘))𝑇 𝜏𝑘 , 𝜏𝑘 ⊂ 𝑋 (1)

where, 𝜏𝑘 is denoting all the samples of 𝑘-th class belonging to 𝑋 .
Finally, the adversarial game playing between three players leads

to the following optimisation problem:

min
𝐺,𝑄

max
𝐷

𝐿{𝐴𝑂/𝐷𝑂 } (𝐺, 𝐷,𝑄) (2)

where, 𝐿𝐴𝑂 = 𝐿𝐺
𝐴𝑂

+ 𝐿𝐷
𝐴𝑂

+ 𝐿
𝑄

𝐴𝑂

and 𝐿𝐷𝑂 = 𝐿𝐺
𝐷𝑂

+ 𝐿𝐷
𝐷𝑂

+ 𝐿
𝑄

𝐷𝑂
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Figure 1: The mixture of generators takes class conditionals
real data(𝜏𝑘 ∈ 𝑋 ) as well as class-embedded(𝐶) noise prior(𝑧).
CWI block selects class specific real instance through Q and
D. Selection criteria is based on two strategies: AO and DO

where,

𝐿𝐺𝐴𝑂 = E𝐺 (𝑧 |𝑖)∼𝑝𝑔
𝑖
(𝑠 (1 − 𝐷 (𝐺 (𝑧 |𝑖))))+

E𝐺 (𝑧 |𝑖)∼𝑝𝑔
𝑖
(𝑙𝑜𝑔(1 −𝑄 (𝐺 (𝑧 |𝑖))))

= ... +𝐶𝐶𝐸 (𝑝𝑖 , 𝑄 (𝐺 (𝑧 |𝑖))) (3)

𝐿𝐷𝐴𝑂 = E𝑥∼𝑝𝑟
𝑘
(𝑠 (𝐷 (𝑥)) + E𝐺 (𝑧 |𝑘)∼𝑝𝑔

𝑘
(𝑠 (1 − 𝐷 (𝐺 (𝑧 |𝑘)))) (4)

𝐿
𝑄

𝐴𝑂
= E𝑥∼𝑝𝑟

𝑘
(𝑙𝑜𝑔(𝑄 (𝑥)) + E𝐺 (𝑧 | 𝑗)∼𝑝𝑔

𝑗
(𝑙𝑜𝑔(𝑄 (𝐺 (𝑧 | 𝑗)))) (5)

Similarly,

𝐿𝐺𝐷𝑂 =E𝐺 (𝑧 |𝑖)∼𝑝𝑔
𝑖
(𝑠 (1 − 𝐷 (𝐺 (𝑧 |𝑖))))+

E𝐺 (𝑧 |𝑖)∼𝑝𝑔
𝑖
(𝑙𝑜𝑔(𝑄 (𝐺 (𝑧 |𝑖)))) (6)

𝐿𝐷𝐷𝑂 =E𝑥∼𝑝𝑟
𝑘
(𝑠 (𝐷 (𝑥)) + E𝐺 (𝑧 |𝑘)∼𝑝𝑔

𝑘
(𝑠 (1 − 𝐷 (𝐺 (𝑧 |𝑘)))) (7)

𝐿
𝑄

𝐷𝑂
=E𝑥∼𝑝𝑟

𝑘
(𝑙𝑜𝑔(𝑄 (𝑥)) + E𝐺 (𝑧 |𝑘)∼𝑝𝑔

𝑘
(𝑙𝑜𝑔(1 −𝑄 (𝐺 (𝑧 |𝑘))))

=... +𝐶𝐶𝐸 (𝑝𝑘 , 𝑄 (𝐺 (𝑧 |𝑘))) (8)

where, 𝑙𝑜𝑔 term is associated with CE loss. The 𝑝𝑟
𝑘
and 𝑝𝑔

𝑘
belong

to the real and generated distribution for 𝑘-th class. In addition,
the 𝑝𝑔

𝑖
and 𝑝

𝑔

𝑗
belong to the generated samples that drawn from

balanced distribution and inverse of real distributions respectively.
The operator function 𝑠 (.) selects different GANs. The operator

(𝑠) is defined as 𝑠 (𝑥) = 𝑙𝑜𝑔𝑥 for vanilla GANs [5] and 𝑠 (𝑥) = 𝑥

for Wasserstein GANs (WGANs) [6]. Due to the stability nature of
GANs game, we have used 1-gradient penalty (gp) based WGANs
for validating both the methods.

4 EXPERIMENTAL VALIDATIONS
Six different numerical multi-class datasets are taken from UCI
machine learning repository [12] and KAGGLE competition 1 for
validating the proposed methods. The detailed description of the
datasets is given in Table1. The multi-class datasets are chosen
based on three main key factors, such as high-dimensions (Secom
andWafer), high imbalance ratio (IR) (Secom, Credit and Yeast), and
large-scale (credit-card). For handling the missing data, we have
used the KNN imputation technique. Secom is the only case study
1https://www.kaggle.com/c/GiveMeSomeCredit

Table 1: Detail of datasets (𝑅𝑑 : Data-dimensions, 𝐼𝑅: Imbal-
ance ratio, 𝐶: number of classes)

Datasets 𝑅𝑑 # Samples (𝑁 ) 𝐼𝑅 𝐶

Secom 590 1567 1463:104 (14.07) 2
Prima 8 768 500:268 (1.87) 2
Haberman 3 306 225:81 (2.78) 2
Wafer 152 7164 6402:762 (8.40) 2
Credit 10 150000 139974:10026 (13.96) 2
Yeast 8 1484 463:5 (92.6) 10

that has missing values in each attribute, which are filled up by
setting 2-nearest neighboring values. We measure the performance
of the baseline classifier (𝑄) by two indices: Average Class Specific
Accuracy (ACSA) and Geometric Mean (GM) [13].

To make the experimental studies more reliable, we divided the
datasets randomly so that 70% were used for training and 30% were
used for testing. Thus, for the Secom dataset, the training and test-
ing samples are {1023, 73} and {440, 31} respectively. Similarly, for
Prima dataset, class distributions are {401, 213} and {99, 55} respec-
tively. In our case studies, in all the datasets exceptWafer, the minor
class present in training samples are more than the minor class
present in testing samples. However, in real-life scenarios, the test-
ing samples may be more than training samples. Thus, the Wafer
dataset is a good candidate which falls under this category with the
training and testing samples being {97, 903} and {665, 5499} respec-
tively. Besides two-class classification problems, we have chosen
a ten-class dataset (Yeast dataset) for checking the superiority of
the proposed method. In the Yeast dataset, the train-test ratio is
(50 − 50%), where the data are shuffled randomly.

4.1 Existing methods
We have compared the proposed oversampling approaches with
two types of oversampling methods that exist in the literature, such
as the two-stages method and the one-stage method. Some popular
two-stages methods are SMOTE [1], Borderline-SMOTE (B-SMOTE)
[7], and ADSYN [8] where these methods are applied to balance
the dataset. Same configurations for different parameters as recom-
mended by each corresponding author [1] [7] [8] are maintained
here. Thus, we have considered the five nearest neighboring points
to create the synthetic samples except for the Yeast dataset, in which
the minor classes are too low to follow the baseline recommenda-
tions. Hence, we have taken the minimum nearest neighboring
points which support the above methods. Recently developed one
stage method like GAMO [13] is also considered for comparison.
We have also compared with the complementary objective training
(COT) [2] to validate the effectiveness of the proposed methods.

4.2 Simulation results and Discussions
Table2 describes the classification performance for the different
datasets using the ACSA and GM values [13]. Here, ACSA [10,
13, 14] can be defined as 𝐴𝐶𝑆𝐴 = 0.5(𝑡𝑝/𝑁𝑝 + 𝑡𝑛/𝑁𝑛), where 𝑁𝑝

and 𝑁𝑛 are the numbers of positive and negative samples, while
𝑡𝑝 and 𝑡𝑛 are the numbers of true positive and true negative. For
fairer comparison with existing methods, we have used a testing
set after each epoch of training. A similar approach has also been
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Table 2: Classification performance on Experimental datasets

Datasets Q RO+Q COT SMOTE+Q B-SMOTE+Q ADASYN+Q GAMO AO DO
ACSA GM ACSA GM ACSA GM ACSA GM ACSA GM ACSA GM ACSA GM ACSA GM ACSA GM

Secom 57.06 42.82 58.99 43.69 60.51 49.57 55.57 42.15 55.08 35.42 59.12 46.47 61.17 56.90 65.82 65.36 68.84 65.73
Prima 76.89 76.49 73.09 73.09 76.55 76.53 74.10 71.94 76.82 75.34 76.20 75.16 70.10 68.78 77.42 77.00 77.46 77.45
Haberman 65.00 60.91 70.00 69.48 68.84 67.93 69.61 69.48 70.38 70.20 69.61 69.48 58.62 50.46 60.00 58.38 70.38 70.20
Wafer 98.82 98.81 97.82 97.81 97.81 97.80 95.30 95.22 88.07 87.27 95.65 95.57 98.78 98.77 98.99 98.99 99.44 99.44
Credit 50.61 11.51 50.04 3.08 51.84 19.83 50.00 00.48 50.00 00.00 50.00 0.84 61.46 61.36 61.65 62.19 75.55 75.54
Yeast 61.67 00.00 60.20 00.00 57.17 00.00 57.27 45.52 55.85 43.37 NA NA 57.52 00.00 51.29 00.00 62.81 53.77
Note: best outcome for each metric in bold. NA-Not Applicable

followed for GAMO. Since our experimental studies are based on
tabular datasets, we have used 3-layered multi-layer perceptron
(MLP) models for 𝐷,𝐺 and 4-layered MLP model for 𝑄 . All the
methods are trained on 100 epochs.

The simulation results listed in Table2 indicates that our DO ap-
proach is the best suitable candidate while dealing with all the key
factors. For better understanding of DO at different over-sampling
frequency rate (𝑓𝑠 =

𝑝1
𝑝𝐶

), we have illustrated the performance
on Secom dataset in Fig. 2. Besides DO, our other proposed ap-
proach i.e. AO out-performs the baseline 𝑄 while considering high-
dimensional and highly-imbalance datasets like Secom, Wafer and
Credit dataset. The AO also outperformed GAMO in almost all
cases except for the Yeast dataset. This shows that AO with CE
loss is a better option than the GAMO’s minority oversampling
with LS loss. When we considered classical random oversampling
technique (𝑅𝑂 +𝑄) (that is independent of the baseline classifier),
it does not guarantee performance improvement in the baseline
classifier. Rather, it declines baseline performance in some cases as
over-fitting the model parameters, which occurs due to the gener-
ation of samples in regions which may not be helpful to 𝑄 . Thus,
SMOTE, B-SMOTE and ADSYN, are not good options all the time.
It is also observed from Table 2 that COT is not a suitable option
for handling imbalanced classification problem. Thus, for handling
highly imbalanced and high-dimensional big datasets, the proposed
DO-based single-stage method is performing better than not only
the two-stage classical oversampling methods but also the recently
developed single-stage variants.

Figure 2: Performance of 𝑄 at different sampling frequency
rate

5 CONCLUSION AND FUTUREWORK
This paper is based on the adversarial game between G, D and Q
to handle imbalanced datasets. From the experimental results on
various numerical datasets, it is observed that the proposed DO

approach outperforms AO as well as alternative methods. The pro-
posed DO methods can be applied on high-dimensional, high-IR,
large scale datasets spanning over binary-class to multi-class im-
balance problems. For better understanding the effectiveness of the
proposed DO method, we will be experimenting on image dataset
in the near future, where deep neural network will be applied.
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