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ABSTRACT

Transformer-based languagemodels significantly advanced the state-

of-the-art in many linguistic tasks. As this revolution continues,

the ability to explain model predictions has become a major area of

interest for the NLP community. In this work, we present Gradient

Self-Attention Maps (Grad-SAM) - a novel gradient-based method

that analyzes self-attention units and identifies the input elements

that explain the model’s prediction the best. Extensive evaluations

on various benchmarks show that Grad-SAM obtains significant

improvements over state-of-the-art alternatives.
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1 INTRODUCTION

Deep contextualized language models have significantly advanced

the state-of-the-art in various linguistic tasks such as question an-

swering [54], coreference resolution [28], and other NLP bench-

marks [50, 51]. These models provide an efficient way to learn

representations in a fully self-supervised manner from text cor-

pora, solely using co-occurrence statistics. Empirically, deep con-

textualized language models that rely on the Transformer architec-

ture [47], were shown to achieve state-of-the-art results, when are

finetuned on supervised tasks [6, 13, 19, 38, 40].

Unlike traditional feature-based machine learning models that

assign and optimizeweights to interpretable explicit features, Trans-

former based architectures such as BERT [21] rely on a stack of

multi-head self-attention layers, composed of hundreds of millions

of parameters. These models are much more complex and compu-

tational heavier than models that learn non-contextualized repre-

sentations [2, 4, 7, 9–11, 14, 33, 37].

At inference, Transformers-based models compute pairwise in-

teractions of the resulting vector representations, making it partic-

ularly challenging to explain which part of the input contributed to

the final prediction. Recently, significant efforts were put towards

interpreting thesemodels,mostly by applyingwhite-box analysis [23,

49]. In this case, the goal is to probe themodels’ performance through

lower-level components in the neural model.

Nonetheless, a central line of works attempted to study the types

of linguistic knowledge encoded in such deep language models.

Recent studies discovered that the BERT model [22] was shown

to rely on surface structures (word, order, specific sequences, or

co-occurrences) during pre-training [18, 41]. However, how and

where exactly this information is stored, as well as retrieved dur-

ing inference time, is still an open question that yet to be explored.

Gradient-based methods [45] yield decent ad-hoc explanations

for predictions by highlighting which parts of the input correspond

with the model’s predictions. Moreover, recent works [1, 43, 52]

showed that the input’s sequence gradients have a high correlation

with importance scores provided by human annotators, providing

better interpretations than the scores produced by the raw token

attentions. They observed that gradient-based ranking of attention

scores better explains the model prediction than their magnitudes.
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In this paper, we propose Gradient Self-Attention Maps (Grad-

SAM) - a novel gradient-based interpretation method that probes

BERT’s predictions.We demonstrate the effectiveness of Grad-SAM

as a ranking machinery that identifies the input elements that con-

tribute to the model prediction the most.We present both quantita-

tive and qualitative results, indicating that Grad-SAM significantly

outperforms state-of-the-art alternatives.

2 RELATED WORK

Recent methods for explaining predictions made by deep learning

models considered explanations computed through convolutional

layers [3, 12, 35, 36, 42], and attention based architectures [5, 8, 13,

18, 23–25, 32, 39, 46, 46, 49, 52].While the authors in [26] argue that

attention scores sometimes does not interpret model predictions

faithfully, otherworks show that attention scores do offer plausible

andmeaningful interpretations that are often sufficient and correct

[39, 48, 52].

Recently, a framework attempting to rationalize predictions named

FRESH [27] was proposed. FRESH equips BERT predictions with

faithfulness by construction – their goal was to focus on extracting

rationales by introducing an additional extractor model trained to

predict snippets. Then, a classifier is trained over the snippets and

is expected to output faithful explanations.

In parallel, several methodswere suggested to producemodel in-

terpretations via gradients [49]. The vast majority of these works

utilized the gradients of the prediction w.r.t. the input for comput-

ing the importance of each token in the input sequence. In some

scenarios, gradient-based approaches were shown to provide more

faithful explanations than attention-based methods [15]. This fam-

ily of gradient-based explainability methods have been applied [16,

17, 30], yet in a task-specificmanner, to different downstream tasks.

Unlike the aforementioned works, our proposedGrad-SAMmethod

integrates the information fromattention scores togetherwith their

gradients in a finetuned BERT model. Furthermore, Grad-SAM is

generic (not task-specific) in the sense it relies on the analysis of a

given finetuned model only, and does not require the training an

additional extractor network (in contrast to FRESH). Yet, our evalu-

ation shows that Grad-SAM provides more faithful rationales than

the ones produced by FRESH, across multiple linguistic tasks. Fi-

nally, it is worth noting that Grad-SAM, in its essence and purpose,

differs from [42] by several aspects: First, it focuses on the NLP do-

main. Second, it operates on a completely different architecture

(BERT). Third, it analyzes self-attention units from multiple lay-

ers in the model and not just the last one. Lastly, Grad-SAM treats

negative gradient differently (Sec. 3).

3 GRADIENT SELF-ATTENTION MAPS

We begin by defining the problem setup and several notations. Then,

we describe and explain Grad-SAM in detail. While our focus is on

providing explanations for BERT, Grad-SAM is applicable for any

architecture based on self-attention (SA) units [47].

Let T = {C8 }#T
8=1 be a vocabulary of supported tokens. Let Ω be a

set containing all sentences of length# that can be composed from

T (shorter sentences are padded by a reserved token [PAD]), where

each sentence starts and ends with the special tokens [CLS] and

[SEP], respectively. BERT [22] is a parametric function B : Ω →

R
= that receives a sequence (sentence) of # tokens G = (G8 )#8=1

(G8 ∈ T ) and outputs a =-dimensional vector of scores BG := B (G).
In general, BERT is optimized via a two-phase process: In the pre-

training phase, BERT is optimized w.r.t. to the Masked Language

Model task together with the Next Sentence Prediction task. In the

second phase, BERT is finetuned w.r.t. a specific downstream task

e.g., multiclass/binary classification, or a regression task. Hence,

= stands for the number of classes/output dimension and changes

w.r.t. the specific downstream task at hand.

B is implemented as a cascade of ! encoder layers. Given a sen-

tence G ∈ Ω, each token G8 in the sentence is mapped to a 3-

dimensional vector (embedding) to form a matrix * 0
G ∈ R3×# . In

practice, this embedding is a summation of the token, positional,

and segment embeddings. Then, * 0
G is passed through a stack of !

encoder layers. The ;-th encoder layer (1 ≤ ; ≤ !) receives the in-

termediate representations * ;−1
G ∈ R3×# (produced by the (; − 1)-

th layer), and outputs the new representations * ;
G . Finally, D

!
[CLS]

(the first column in * !
G , which corresponds to the [CLS] token) is

used as input to a subsequent fully connected layer that outputs

BG .

Each encoder layer employs" SA heads that are applied in par-

allel to * ;−1
G , producing" different attention matrices

�;<
G = softmax

(

(, ;<
@ * ;−1

G )), ;<
:

* ;−1
G√

30

)

, (1)

where, ;<
@ ,, ;<

:
∈ R30×3 , are the query and key mappings, and

1 ≤ < ≤ " . Each entry [�;<
G ]8 9 quantifies the amount of attention

G8 receives by G 9 , according to the attention head< in the layer ; .

Then, the encoder output * ;
G is obtained by a subsequent set of

operations that involves the " attention matrices and value map-

pings as detailed in [47]. We refer to [22] for a detailed description

of BERT.

Our goal is to explain the predictions made by BERT. To this

end, we propose to utilize the attentionmatrices�;<
G together with

their gradients in order to produce a ranking over the tokens in G

s.t. tokens that affect the model prediction the most, are ranked

higher.

Given a sentence G ∈ Ω and a finetuned BERT model B , we com-

pute the the prediction BG ∈ R= . In this work, our focus is on clas-

sification tasks. Specifically, for binary classification, = = 1, and

we set BG as the logit score. However, for multiclass classification,

= > 1 (depending on the number of distinct classes) we focus on

a specific entry in BG which is associated with the ground truth

class to be explained. For the sake of brevity, from here onwards,

BG represents the logit score in binary classification, or the logit

score associated with the ground truth class BG (in the case of mul-

ticlass classification) and disambiguation should be clear from the

context.

Our goal is to quantify the importance of each token G8 ∈ G w.r.t.

B . In other words, we wish to identify tokens in G that contribute

to B the most, hence explaining the prediction made by the model.

To this end, we propose the following explanatory scheme: First,

we pass G through BERT to compute BG . Then, the importance of



the token G8 w.r.t. the prediction BG is computed by:

AG8 =
1

!"#

!
∑

;=1

"
∑

<=1

#
∑

9=1

[� ;<
G ]8 9 , (2)

with

� ;<
G = �;<

G ◦ ReLU(�;<
G ), (3)

where �;<
G := mBG

m�;<
G

are the element-wise gradients of BG w.r.t. to

�;<
G , and ◦ stands for the Hadamard product. Eq. 2 scores the im-

portance of each token G8 ∈ G w.r.t. BG , enabling ranking the tokens

in G according to their importance. Higher values of AG8 indicate

higher importance of G8 , hence a better explanation of the predic-

tion score BG . In practice, for G8 ∈ {[CLS], [SEP], [PAD]}, we set

AG8 = −∞, as these tokens cannot provide for good explanations.

The motivation behind Eqs. 2 and 3 is as follows: We are willing

to identify tokens in G for which 1) High attention is received from

other tokens in G (information from the attention activations), and

2) Further increase in the amount of the received attention will

increase BG the most (information from gradient of the attention

activations). Eq. 3 ensures that these two conditions are met, since

if [�;<
G ]8 9 ≤ 0, then [� ;<

G ]8 9 = 0, and if [�;<
G ]8 9 is small, then

[� ;<
G ]8 9 is close to zero (recall that [�;<

G ]8 9 ≥ 0, as it is the result

of softmax). Finally, Eq. 2 aggregates the overall contribution of

the attention scores and the positive gradients from all SA heads

across all encoder layers, w.r.t. G8 ∈ G .

We wish to re-emphasize the following important point: Zero-

ing the negative gradients in Eq. 3 enables the preservation of the

positive values of � ;<
G (associated with positive gradients), which

otherwise may be cancelled out by a large accumulated negative

value in the summation in Eq. 2. The activations in the 8-th row

within an attention matrix �;<
G quantify the importance of the to-

ken G8 w.r.t. the other tokens in G . In addition, if [�;<
G ]8 9 > 0, then

an increase in the activation [�;<
G ]8 9 should lead to an increase

in the model’s output score. Therefore, the importance of the to-

ken G8 (according to the attention head < in the encoder layer ; )

is determined by the summation over the 8-th row in � ;<
G , and

the contribution to this sum come from elements for which both

the activation and its gradient are positive. Finally, the overall im-

portance of G8 is accumulated from the " SA heads in ! layers

according to Eq. 2.

In regular BERT-basemodels, there are 144 SAheads (" = 12, ! =

12) that act as filters. However, in practice, we observed that only

a few attention entries are activated. Specifically, we found out

that there is a large number of activations that are close to zero,

but associated with negative gradients. The accumulated effect of

this negative sum leads to a suppression (or even complete can-

cellation) of the small number of activations with positive gradi-

ents (which hold the actual information we are wish to preserve).

Hence, we zero those negative gradients (using ReLU). The neces-

sity of the negative gradient trimming, prior to the summation,

along with the complementary contribution from the attention ac-

tivations and their gradients, are validated in the ablation study

presented in Tabs. 1 and 2.

4 EXPERIMENTAL SETUP AND RESULTS

4.1 Datasets and Downstream Tasks

In all of the experiments, we use a pre-trained BERT-base-uncased

model, taken from Huggingface’s Transformers library [53], asso-

ciated with a standard tokenizer. Then, we finetune BERT on five

downstream tasks (in separate):

• The Stanford Sentiment Treebank (SST) [44]: A sentiment anal-

ysis task (binary classification).
• AgNews (AGN) [20]: Amulticlass classification task, where news

articles are categorized into science, sports, business, world.
• IMDB [31]: A sentiment analysis task (binary classification of

movie reviews).
• MultiRC (MRC) [29]: A binary classification task. The same pro-

cessing from [27] was followed to produce True / False labels w.r.t.

a given snippet.

4.2 Evaluated Methods

We compare several methods for ranking the importance of tokens

in a sentence G :

(1) Gradient: This is the ’Gradient’ method from [27].
(2) [CLS] Att: This is the ’[CLS] Attn’ method from [27].
(3) Att: Setting � ;<

G = �;<
G and using Eq. 2.

(4) Att-Grad: Setting � ;<
G = �;<

G and using Eq. 2.

(5) Att-Grad-R: Setting � ;<
G = ReLU(�;<

G ) and using Eq. 2.

(6) Att × Att-Grad: Setting � ;<
G = �;<

G ◦�;<
G and using Eq. 2.

(7) Grad-SAM: Using Eq. 2 (our proposed method).

Note that methods 3-6 are ablated versions of Grad-SAM.

4.3 Quantitative Evaluations

Our first evaluation follows the protocol from [27]: For each sen-

tence G in the test set, we used each method (Sec. 4.2) to produce a

different ranking over G’s tokens. Then, we preserved the top :%

ranked tokens and masked the rest. We used the same values from

[27]: : = 20% for SST, AGN, and MRC, and : = 30% for IMDB. Fi-

nally, we compute the mean Macro F1 score for each combination

ofmethod and task.We further include the original Full text results

obtained on G without masking.

Table 1 depicts the results for each combination of explanation

method and task. First, we see that Grad-SAM significantly out-

performs both the Gradient and the [CLS] Att methods from [27].

It is worth noting that the methods from [27] require a simulta-

neous training of an auxiliary model that learns to mask, during

the BERT’s finetuning phase, while our Grad-SAM method elim-

inates this need. The ablation study reveals that the ReLU opera-

tion over the gradient-attention is crucial (Att-Grad-R ≻ Att-Grad).

This indicates that by trimming the negative gradients, we avoid

the unwanted suppression of positive gradients (if exist) across the

summation in Eq. 2. Moreover, Grad-SAM, which combines the at-

tention scores together with ReLUed gradients, performs the best

across all tasks.

Our second evaluation is based on the Area Over the Pertur-

bation Curve (AOPC) [34] metric that is designed to assess the

faithfulness of explanations produced by Grad-SAM and the other

methods. AOPC calculates the average change of accuracy over

test data by masking the top k% tokens in the sentence G (the to-

kens are ranked by the explanation method). Hence, the larger the



Method SST AGN IMDB MRC

Full text .904 .942 .957 .682

Gradient .682 .863 .933 .654

[CLS] Att .812 .911 .941 .639

Att .801 .855 .837 .632

Att-Grad .706 .792 .715 .634

Att-Grad-R .819 .911 .946 .657

Att×Att-Grad .810 .778 .743 .636

Grad-SAM .823 .921 .949 .662

Table 1: Model predictive performances across datasets. We

report the mean-macro F1 scores on the test sets. The top

row (Full text) corresponds to passing the sentence, without

masking (upper-bound on performance).

Method SST AGN IMDB MRC

Full text .904 .942 .957 .682

Gradient .16 .101 .05 .09

[CLS] Att .165 .177 .055 .082

Att .113 .118 .047 .093

Att-Grad .072 .109 .031 .113

Att-Grad-R .179 .132 .059 .12

Att×Att-Grad .152 .12 .052 .103

Grad-SAM .195 .14 .065 .122

Table 2: AOPC evaluation. Note that the Full Text row is pre-

sented for reference, reporting themean-macro F1 scores on

test sets without any word filtration. The other rows report

the AOPC for each combination of method and dataset.

value of AOPC, the better the explanations of the models. Table 2

depicts the results with k = 20% (the top 20% of words ranked by

each method). The Full Text row is presented for reference, report-

ing the mean-macro F1 scores on the original sentences from the

test sets without any masking. The other rows report the AOPC for

each combination of method and dataset. Again, we compare Grad-

SAM to the same baselines from Sec. 4.2 (and perform an ablation

study).

The results in Tab. 2 indicate that: 1) Grad-SAM outperforms

the other methods, hence is capable of identifying the words in

the input sequence that contribute the most to the (correct) model

prediction. For example, for a BERT model that was finetuned on

the SST dataset, we observe that bymasking the top 20%words pro-

posed by [CLS] Att, the accuracy drops to 16.5 points, whereas in

the case of Grad-SAM, the accuracy drops to 19.5 points. 2) BERT

is sensitive to the context; omitting important words hinder the

semantics in the sentence and significantly affects the model’s pre-

dictions. Overall, this AOPC evaluation provides another evidence

that Grad-SAM is a state-of-the-art machinery that generates faith-

ful explanations.

4.4 Qualitative Results

In this section, we provide qualitative examples produced by our

Grad-SAM method and the [CLS] Att methods from [27]. We fol-

low the same procedure described in Sec. 4.3: Namely, we applied

both Grad-SAM and [CLS] Att to rank the tokens according to

their importance and considered the top : = 20% tokens in the list

produced by each method. Finally, we masked all the tokens in the

sentences besides the top : = 20% selected tokens, fed the masked

sentence to BERT, and performed the prediction.

From the AGNews test set, we randomly picked 4 examples as-

sociatedwith several ground truth labels. From the SST test set, we

randomly picked 3 positive and 3 negative sentences (according to

the ground truth labels). For all examples, the original prediction

made by BERT (without masking) is correct (matches the ground

truth label).

Table 3 presents the results for both datasets. For AGNews, we

observe that Grad-SAMbasedmasking (fifth column) does not lead

to a change in themodel’s predictions, while [CLS]Att basedmask-

ing (last column) does change the model’s prediction, and to an in-

correct one (recall that the original prediction made by the model

matches the ground truth label). Finally, Grad-SAM identifies to-

kens that better explain the prediction made by BERT.

5 CONCLUSION

This work joins a growing effort to better interpreting deep con-

textualized language models. To this end, we present Grad-SAM, a

novel gradient-based method for explaining predictions made by

a finetuned BERT model. Extensive evaluations show that Grad-

SAM outperforms other state-of-the-art methods across various

datasets, tasks, and evaluation metrics.
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Document / Sentence

Tokens
highlighted
by Grad-SAM

Tokens
highlighted by
[CLS] Att

Original
Prediction

Prediction
(Grad-SAM
Masking)

Prediction
([CLS] Att
Masking)

AGNews

The federal agency
that protects private
sector pension plans
announced yesterday
that the maximum
annual benefit for

plans taken over in
2005 will be $45,614
for workers who wait
until age 65 to retire.

federal,
pension,
yesterday,
plans,
2005,

$45,614,
workers

annual,
workers,
wait,
until,

age, 65,
retire

Business Business World

South Korea’s key allies
play down a shock admission
its scientists experimented
to enrich uranium.

Korea,
allies,

uranium

s,
scientists,
enrich,
uranium

World World Sci/Tech

OTTAWA – A local firm that
says it can help shrink
backup times at large data
centers is growing its business
thanks to an alliance with
Sun Microsystems Inc.

OTTAWA,
–, local,
firm,

centers,
business

it,
backup,
data,

centers,
business,

Microsystems

Business Business Sci/Tech

Tokyo share prices fell
steeply Friday, led by
technology stocks after
a disappointing report
from US chip giant Intel.

The US dollar was up
against the Japanese yen.

Tokyo,
share,
prices,
Friday,

stocks,
US

prices,
steeply,
Friday,
chip,

Intel,
yen

Business Business Sci/Tech

SST

A great idea becomes a
not great movie

not, great becomes, great Negative Negative Positive

Flashy pretentious and as
impenetrable as morvern’s thick
working class scottish accent

flashy,
pretentious,
impenetrable

flashy, and,
impenetrable

Negative Negative Positive

A strong first quarter slightly
less so second quarter and
average second half

strong, less,
average

strong, and,
average

Negative Negative Positive

An impressive if flawed effort
that indicates real talent

impressive,
flawed

an, flawed Positive Positive Negative

This road movie gives you
emotional whiplash and
you’ll be glad you went
along for the ride

gives,
emotional,
whiplash,

glad

this,
emotional,
whiplash,

and

Positive Positive Negative

It never fails to engage us never, fails it, never Positive Positive Negative

Table 3: Top : = 20% ranked tokens for the AGNews dataset

followed by SSTdataset. The tokens are ordered according to

their scores in a descending order. Original Predicted stands

for the predictionmade by BERTon the original input (with-

out masking). The last two columns present the prediction

made by BERT after applying the masking produced by

Grad-SAM and [CLS] Att [27].
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