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ABSTRACT
Graph Neural Networks (GNNs) have achieved great success among
various domains. Nevertheless, most GNN methods are sensitive to
the quality of graph structures. To tackle this problem, some studies
exploit different graph structure learning strategies to refine the
original graph structure. However, these methods only consider fea-
ture information while ignoring available label information. In this
paper, we propose a novel label-informed graph structure learning
framework which incorporates label information explicitly through
a class transition matrix. We conduct extensive experiments on
seven node classification benchmark datasets and the results show
that our method outperforms or matches the state-of-the-art base-
lines.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
As a powerful tool of analyzing graph-structured data, GraphNeural
Networks (GNNs) have recently demonstrated great success across
various domains, including node classification [6], link prediction
[14], recommendation systems [13], etc. Despite GNNs’ powerful
ability in learning expressive node embeddings, these methods are
sensitive to the quality of graph structures. To be more specific,
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graphs in the real world are often noisy due to the error-prone
data-collection process. For example, in a citation network, a paper
may include citations to irrelevant papers or miss citations to highly
relevant papers. Since GNNs recursively aggregate neighborhood
information across edges to obtain node embeddings, the above
noise in the graph will propagate to a lot of neighborhood nodes,
hindering the performance.

Recently, some studies [1, 3] attempt to boost the performance of
GNNs through jointly learning a denoised graph structure and node
embeddings. These works can be unified under Graph Structure
Learning (GSL) [16]. The key rationale behind these works is to
remove the suspicious or add a potential edge between two nodes
according to the distance or similarity between their embeddings.
For example, IDGL [1] first computes weighted cosine similarity
between node embeddings. Then, this similarity is used to refine
the original graph structure. Lastly, the optimal graph structure can
be acquired by directly optimizing downstream tasks such as node
classification or link prediction.

However, all of the existing GSL methods ignore available label
information during the graph structure learning process. A poten-
tial edge between two nodes is added to the graph if they have
similar features or embeddings regardless of their labels. These
added edges may contain noise and be harmful to the performance.
Take a citation network as an example, two papers focusing on the
same problem adopt totally different approaches, thus they should
be classified into two different categories. Since these two papers
co-cite some classic papers solving the same problem, they have
some common neighbors in the citation network. Accordingly, the
distance between their embeddings learned by GNNs is relatively
short. In this case, existing GSL methods tend to add an edge be-
tween them, misleading the model to classify them into the same
category.

To overcome this limitation, we propose a label-informed graph
structure learning framework (LGS) which incorporates label infor-
mation into graph structure learning explicitly. To be more specific,
we employ a class transition matrix, where each element represents
the probability of an edge between nodes of two classes. Different
from existing GSL methods, we consider feature similarity and class
transition probability at the same time. Intuitively, for two nodes
with very similar features, if the transition probability between their
corresponding classes is very low, it is still not appropriate to add an
edge between them. In contrast, if the transition probability is very
high, there may still be an edge between them even if their features
are dissimilar. Still using the above citation network to illustrate,
since the two papers adopt totally different approaches, there are
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Figure 1: Framework of LGS.

usually no direct citations between them. Considering their label
information, it is less likely for LGS to add an edge between them
due to much lower transition probability. In LGS, label information
serves as an informative supplement to feature similarity.

The main contributions of this work are summarized as follows:
• Apart from feature similarity, we explicitly consider label
information in graph structure learning. We introduce a
novel iterative graph structure learning framework for node
classification.
• We conduct extensive experiments on both homophily and
heterophily graph datasets, demonstrating the superiority
of our method.

2 METHODOLOGY
2.1 Prelinimary
Problem Formulation. Given a graph with an adjacency matrix
𝐴 ∈ R𝑛×𝑛 and a feature matrix 𝑋 ∈ R𝑛×𝑑 . 𝑉𝑙 is the set of labeled
nodes. Since the original graph structure may be noisy and incom-
plete, the goal is to learn the optimal graph structure and make
predictions for unlabeled nodes simultaneously.

2.2 Overview of LGS Framwork
As illustrated in Figure 1, LGS consists of a GNN and a structure
learner. The GNN acts as a feature extractor and a classifier at the
same time. On the one hand, the GNN outputs intermediate results
𝑍 generated by its last hidden layer as node embeddings which
encode feature information. On the other hand, the GNN makes
predictions for unlabeled nodes. Combining with the ground truth
of labeled nodes, the GNN generates (pseudo) labels 𝑌𝑡𝑟 for all the
nodes. There are two branches in the graph structure learner, which
consider feature information and label information respectively.
The first branch computes multi-head weighted-cosine similarity
between each pair of nodes according to their embeddings. Then, a
feature similarity matrix is obtained by computing the mean across
multiple heads. The second branch generates an edge probability

matrix 𝐸 ∈ R𝑛×𝑛 based on (pseudo) labels 𝑌𝑡𝑟 and a class transition
parameter matrix 𝑃 ∈ R𝑐×𝑐 .

2.3 GNN Architecture
Without loss of generality, we choose two representative GNN
architectures as feature extractor: GCN [6] and ChebNet [2]. For
GCN, the graph convolution in the 𝑙-th layer can be described as:

𝐻 (𝑙) = 𝜎
(
�̃�𝐻 (𝑙−1)𝑊 (𝑙−1)

)
,

�̃� = �̂�−
1
2𝐴�̂�−

1
2 ,

(1)

where 𝐴 = 𝐴 + 𝐼 is the adjacency matrix of graph with self-loops,
�̂� is its corresponding degree matrix with �̂�𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 , and 𝜎 is

non-linear activation function such as ReLU. As to ChebNet, the
computation can be formulated as:

𝐻 (𝑙) = 𝜎

(
𝐾∑︁
𝑘=0

\𝑘𝑇𝑘 (�̃�)𝐻 (𝑙−1)
)
,

�̃� =
2𝐿
_max

− 𝐼 ,

(2)

where 𝐿 = 𝐷−
1
2 (𝐷 − 𝐴)𝐷−

1
2 is graph Laplacian matrix and 𝑇𝑘 is

the 𝑘-th order Chebshev polonomial.
In order to incorporate class transition matrix 𝑃 into graph con-

volution explicitly, we add a label propagation layer weighted with
𝑃 at the end of GNN similar to [15]. In conclusion, the output of
GNN is formulated as:

(𝑍,𝑌 ) = 𝐺𝑁𝑁 (𝐴,𝑋 ), (3)

in which 𝐴 is an adjacency matrix, and 𝑋 is a feature matrix.

2.4 Label-informed Graph Structure Learning
Feature Similarity Matrix. Although there are various options
for distance or similarity computation, such as Euclidean distance,
attention mechanism, Mahalanobis distance and cosine similarity.
Without loss of generality, we adopt weighted consine similarity
as metric function. To further enrich expressiveness, we adopt a
multi-head manner similar to GAT[12]. Specifically, in the 𝑘-th
head, the 𝑛 × 𝑛 similarity matrix 𝑆𝑘 is given by:

𝑆𝑘 [𝑖] [ 𝑗] = cos(𝑤𝑘 ⊙ 𝑧𝑖 ,𝑤𝑘 ⊙ 𝑧 𝑗 ), (4)

where ⊙ is element-wise product operator,𝑤𝑘 is a trainable weight
and 𝑧𝑖 , 𝑧 𝑗 are the 𝑖-th and 𝑗-th rows of 𝑍 , representing embeddings
for node 𝑣𝑖 , 𝑣 𝑗 respectively. Then, a feature similarity matrix 𝑆 ∈
R𝑛×𝑛 is obtained by:

𝑆 =
1
𝐾

𝐾∑︁
𝑘=1

𝑆𝑘 . (5)

Class Transition Matrix. In feature similarity matrix, only
feature information of nodes is considered, while label information
is ignored. To make full use of available label information, we
employ a trainable matrix 𝑃 ∈ R𝑐×𝑐 to reweight similarity score
between nodes, where 𝑐 is the number of classes of node. Intuitively,
𝑃𝑠,𝑡 could be interpreted as the probability that an edge exists
between a 𝑠-th class node and a 𝑡-th class node.

In order to reduce the difficulty of optimization, we investigate
the initialization strategy for class transition matrix 𝑃 . According to
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the definition of 𝑃 , 𝑌𝑇𝑡𝑟𝐴𝑌𝑡𝑟 serves as a good un-normed estimation.
Considering that 𝑃 should satisfy the double stochastic property
(each row and each column sums to one), we propose to adopt
the Sinkhorn-Knopp[11] algorithm which operates iteratively to
generate a double stochastic matrix. So class transition matrix 𝑃 is
initialized as Sinkhorn-Knopp(𝑌𝑇𝑡𝑟𝐴𝑌𝑡𝑟 ).

Learning Graph Structure. Given a class transition matrix 𝑃 ,
the probability of edges between each pair of nodes can be obtained
according to their labels. Nevertheless, labels of most nodes are
unavailable, so we assign pseudo labels to them according to pre-
dictions of the current model. Formally, let 𝑌 ∈ {0, 1}𝑛×𝑐 be ground
truth matrix where each row is an one-hot vector responding to
each node, and 𝑀 ∈ {0, 1}𝑛 be mask for labeled nodes. Then we
define 𝑌𝑡𝑟 as:

𝑌𝑡𝑟 = 𝑀 ⊙ 𝑌 + (1 −𝑀) ⊙ 𝑌 . (6)
The 𝑖-th and 𝑗-th row of𝑌𝑡𝑟 represent (pseudo) labels of nodes 𝑣𝑖 , 𝑣 𝑗
respectively. Only considering label information, the probability
of an edge between nodes 𝑣𝑖 , 𝑣 𝑗 is 𝑦𝑇𝑖 𝑃𝑦 𝑗 according to the random
walk theory[7]. Using matrix notation, this can be formulated as:

𝐸 = 𝑌𝑡𝑟𝑃𝑌
𝑇
𝑡𝑟 . (7)

The simplest way to combine feature similaritymatrix 𝑆 and edge
probability matrix 𝐸 in graph structure learning is through element-
wise product 𝑆 ⊙ 𝐸. However, empirically we find this would make
training unstable. Hence, we introduce a hyper-parameter 𝑟 to con-
trol the weight of 𝐸. In the real world, underlying graph structures
are relatively sparse than fully-connected graphs which not only
include noise, but also are computationally expensive. In addition,
elements of a typical adjacency matrix are non-negative. Hence,
we obtain a sparse non-negative matrix through 𝜖-neighborhood
sparsification, which masks elements less than 𝜖(a non-negative
hyper-parameter controlling sparsity) to zero. In summary, the
refined adjacency matrix can be formulated as:

𝐴 = 𝜖-neighborhood(𝑆 ⊙ (𝑟 ∗ 𝐸 + (1 − 𝑟 ) ∗ 1)), (8)
where 1 is the all ones matrix with the same shape to 𝐸.

Algorithm 1: Training of LGS
Input: 𝑋,𝐴,𝑀,𝑌
Parameters: 𝛼, 𝛽, 𝜖, 𝑟
Result: 𝑌 (𝑡 )

1 𝑌 (0) , 𝑍 (0) ← GNN(A, X)
2 compute 𝑆𝑓 according to 𝑋 following Eq 4, 5
3 for 𝑡 ← 1 to 𝑇 do
4 compute 𝑆 according to 𝑍 (𝑡−1) following Eq 4, 5
5 𝑌𝑡𝑟 ← 𝑀 ⊙ 𝑌 + (1 −𝑀) ⊙ 𝑌 (𝑡−1)
6 𝐸 ← 𝑌𝑡𝑟𝑃𝑌

𝑇
𝑡𝑟

7 𝐴(𝑡 ) ← 𝜖-neighborhood(𝑆 ⊙ (𝑟 ∗ 𝐸 + (1 − 𝑟 ) ∗ 1))
8 𝐴(𝑡 ) ← 𝛼𝐴 + 𝛽𝑆𝑓 + (1 − 𝛼 − 𝛽)𝐴(𝑡 )

9 𝑌 (𝑡 ) , 𝑍 (𝑡 ) ← GNN(𝐴(𝑡 ) , 𝑋 )
10 end
11 L ← 𝐿𝑐 (𝑌 (0) , 𝑌 ) + 1

𝑇

∑𝑇
𝑡=1 𝐿𝑐 (𝑌 (𝑡 ) , 𝑌 ) + Φ(𝑃)

12 back-propagating through L to update parameters

Table 1: Data Statistics

Cora Citeseer Cornell Chameleon Squirrel Wisconsin Texas
Homophily Ratio 0.81 0.74 0.3 0.23 0.22 0.21 0.11
# Nodes 2,708 3,327 183 2,277 5,201 251 183
# Edges 5,278 4,676 280 31,421 198,493 466 295
# Features 1,433 3,703 1,703 2,325 2,089 1,703 1,703
# Classes 7 6 5 5 5 5 5

2.5 Training
GNNWarm-up. In order to obtain relatively accurate pseudo label
for unlabeled nodes, the GNN is trained solely for several epochs
with classification loss function

𝐿𝑐 (𝑌,𝑌 ) =
∑︁
𝑖∈𝑉𝑙

CE(𝑌𝑖 , 𝑌𝑖 ), (9)

where 𝑌𝑖 is the prediction of the GNN for node 𝑣𝑖 , and CE denotes
cross entropy loss.

IterativeGraph Structure Learning. The graph structure learner
and the GNN are jointly optimized in an iterative manner for 𝑇
steps. In the 𝑡-th iteration, given node embedding𝑍 (𝑡−1) and predic-
tions𝑌 (𝑡−1)computed in the (𝑡 −1)-th iteration, the graph structure
learner compute refined adjacency matrix 𝐴(𝑡 ) . Although the origi-
nal graph structure may be inaccurate and incomplete, it still carries
relatively rich and useful information. What’s more, empirically, we
find that feature similarity matrix 𝑆𝑓 computed according to raw
feature 𝑋 serves as a relatively accurate refinement to the original
graph structure. As a result, we combine 𝐴, 𝑆𝑓 and 𝐴(𝑡 ) together:

𝐴(𝑡 ) = 𝛼𝐴 + 𝛽𝑆𝑓 + (1 − 𝛼 − 𝛽)𝐴(𝑡 ) , (10)

in which 𝛼 and 𝛽 are hyper-parameters that control relative im-
portance assigned. Based on the refined graph structure 𝐴(𝑡 ) , the
GNN outputs node embeddings 𝑍 (𝑡 ) and predictions 𝑌 (𝑡 ) for next
iteration use.

Joint Optimization. After 𝑇 iterations, total loss function is
given by:

Φ(𝑃) =
∑︁

𝑖

���∑︁
𝑗
𝑃𝑖 𝑗

��� ,
L = 𝐿𝑐 (𝑌 (0) , 𝑌 )+

1
𝑇

𝑇∑︁
𝑡=1

𝐿𝑐 (𝑌 (𝑡 ) , 𝑌 ) + Φ(𝑃),
(11)

in which 𝐿𝑐 is cross-entropy classification loss and Φ(𝑃) is a reg-
ularization item to encourage the sum of each row of transition
matrix 𝑃 to center around zero. Then, the GNN and the graph
structure learner are optimized through common gradient descent
algorithms.

3 EXPERIMENT
In this section, we conduct extensive experiments to verify the
effectiveness of the proposed method LGS for node classification
on both homophily and heterophily [8] graph datasets.

3.1 Setup
Datasets. For homophily graphs, we choose two citation networks,
Cora andCiteseer [9]. For heterophily graphs, we choose Chameleon,
Squirrel, Wisconsin and Texas [8]. Statistics for these datasets could
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Table 2: Node classification accuracies.

Cora Citeseer Cornell Chameleon Squirrel Wisconsin Texas
GCN 86.66 ± 1.45 76.25 ± 1.19 59.73 ± 6.33 38.99 ± 1.86 29.20 ± 1.10 53.92 ± 5.49 59.73 ± 6.33
ChebNet 86.14 ± 1.35 76.34 ± 1.59 74.86 ± 8.02 46.05 ± 1.46 30.30 ± 1.50 76.08 ± 2.29 74.59 ± 8.04
GAT 87.20 ± 1.09 75.92 ± 1.59 59.46 ± 4.01 44.06 ± 2.52 27.49 ± 1.52 54.71 ± 3.66 58.65 ± 4.84
GEOM-GCN 85.26 ± 1.57 77.99±1.25 60.54 ± 3.67 60.00 ± 2.81 38.15 ± 0.92 64.51 ± 3.66 66.76 ± 2.72
CPGNN 87.00 ± 1.02 76.07 ± 1.21 75.14 ± 7.43 62.21 ± 3.29 40.16 ± 6.43 76.47 ± 2.77 75.68 ± 7.15
IDGL 87.28 ± 1.00 76.88 ± 1.64 68.11 ± 8.87 38.51 ± 4.65 25.18 ± 2.40 55.69 ± 4.57 66.49 ± 6.07
Pro-GNN 83.52 ± 2.20 72.96 ± 1.99 62.97 ± 7.93 58.25 ± 3.84 32.59 ± 1.04 55.69 ± 5.96 60.81 ± 6.07
LGS-GCN 87.38 ± 1.25 76.92 ± 1.75 63.78 ± 7.76 56.27 ± 3.16 34.92 ± 2.21 53.14 ± 6.70 59.73 ± 6.99
LGS-Cheb 86.14 ±1.35 76.65 ± 1.78 76.76 ± 8.56 71.45 ± 2.17 48.94 ± 4.44 76.86 ± 3.70 75.95 ± 7.69

be found in Table 1, where the homophily ratio of a graph repre-
sents the tendency of a node to have nodes of the same class as its
neighbors, and can be computed as:

ℎ𝐺 =
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑁 𝑠
𝑖
|

|𝑁𝑖 |
, (12)

where ℎ𝑖 represents homophily ratio of node 𝑣𝑖 and 𝑁 𝑠𝑖 is the set
of 𝑣𝑖 ’ neighboring nodes with the same label to 𝑣𝑖 . Low homophily
corresponds to high heterophily. For all datasets, we follow the data
splits given in Geom-GCN [8].

Baselines. We compare our methods with following methods
from three categories: (1) classic GNNmodels for node classification:
GCN [6], ChebNet [2] and GAT [12], (2) recent methods designed
specially for heterophily graphs: GEOM-GCN [8] and CPGNN [15],
and (3) the state-of-the-art models with graph structure learning:
IDGL [1] and Pro-GNN [4].

3.2 Implementation
Even though our framework is agnostic to the choice of specific
GNN architecture, we choose two representative GNNs: GCN and
ChebNet, and the corresponding model variants are termed as LGS-
GCN and LGS-Cheb respectively.

For a fair comparison, we implement our method and all base-
lines in the same experimental settings as Pei et al. [8]. We run all
methods on all ten splits, and report mean and standard deviation
of accuracies on the test set. For methods with multiple variants
like CPGNN [15], the best performance is reported.

For hyper-parameter setting, we set the embedding dimension
to 64, the number of layers to 2, 𝜖 to zero. And 𝛼 is fixed at 0.8. We
train the model using Adam optimizer [5] with an initial learning
rate of 0.01. Moreover, for all the datasets, we first train the GNN
alone for 400 epochs, then train the GNN and the graph structure
learner for 1600 epochs together.

3.3 Main Results
Mean and standard deviation of accuracies for node classification on
test sets over 10 splits are reported in Table 2. Our method obtains
best performance on almost all the datasets with varing homophily
ratios. Compared with graph structure learning (GSL) methods
considering only feature information, our method outperforms
them by a wide margin, reflecting the necessity to take available
label information into consideration.
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Figure 2: Distribution of nodes with homophily ratio
and classification accuracy for LGS, GCN and IDGL on
Chameleon dataset.

Compared with GEOM-GCN and CPGNN designed specially for
graphs with strong heterophily, ourmethod still achieves significant
improvement, owing to the refined graph structure by considering
both feature information and label informaiton.

Notably, ChebNet outperforms GCN by a wide margin on graphs
with high hetetrophily ratios, and is slightly inferior on homophily
graphs. As analyzed in [10], GCN implicitly treats high-frequency
components as “noises”, and has them discarded. However, this
may hinder the generalizability since high-frequency components
can carry meaningful information about local discontinuities, This
could also explain why LGS-Cheb performs better than LGS-GCN
on heterophily graphs like Chameleon, Squirrel, etc.

3.4 Accuracy versus Homophily
For a better understanding of the success of our method, we analyze
the relationship between classification accuracy with homophily
ratios of nodes. On Chameleon dataset, we split the range [0, 1] of
homophily ratio into ten segments, and analyze the percentage of
nodes falling in each one. What’s more, we calculate the classifi-
cation accuracy for each sub-range. As shown in Figure 2, GCN
performs poorly on nodes with low homophily. And IDGL’s graph
structure learner may result in negative effect due to its implicit
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assumption of homophily. In contrast, LGS improves the accuracy
of nodes with strong heterophily without harming performance on
nodes with high homophily.

4 CONCLUSION
In this paper, we introduce a novel label-informed graph structure
learning framework (LGS). Apart from feature information, LGS
incorporates label information into graph structure learning ex-
plicitly through a class transition matrix. We conduct extensive
experiments on both homophily and heterophily graph datasets.
Experimental results show that LGS improves the accuracy of nodes
with strong heterophily without harming the performance on nodes
with high homophily, reflecting the superiority of LGS.
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