
VERSACHI: Finding Statistically Significant Subgraph
Matches using Chebyshev’s Inequality

Shubhangi Agarwal
Indian Institute of Technology Kanpur

India
sagarwal@cse.iitk.ac.in

Sourav Dutta
Huawei Research Centre

Dublin, Ireland
sourav.dutta2@huawei.com

Arnab Bhattacharya
Indian Institute of Technology Kanpur

India
arnabb@cse.iitk.ac.in

ABSTRACT
Approximate subgraph matching, which is an important primitive for
many applications like question answering, community detection,
and motif discovery, often involves large labeled graphs such as
knowledge graphs, social networks, and protein sequences. Effective
methods for extracting matching subgraphs, in terms of label and
structural similarities to a query, should depict accuracy, computa-
tional efficiency, and robustness to noise. In this paper, we propose
VERSACHI for finding the top-k most similar subgraphs based on
2-hop label and structural overlap similarity with the query. The
similarity is characterized using Chebyshev’s inequality to compute
the chi-square statistical significance for measuring the degree of
matching of the subgraphs. Experiments on real-life graph datasets
showcase significant improvements in terms of accuracy compared
to state-of-the-art methods, as well as robustness to noise.

CCS CONCEPTS
• Information systems → Information systems applications; Data
mining;

KEYWORDS
Subgraph Similarity, Approximate Matching, Statistical Signifi-
cance, Chi-Square, Labeled Graph, Chebyshev’s Inequality

ACM Reference Format:
Shubhangi Agarwal, Sourav Dutta, and Arnab Bhattacharya. 2021. VER-
SACHI: Finding Statistically Significant Subgraph Matches using Cheby-
shev’s Inequality. In Proceedings of the 30th ACM International Conference
on Information and Knowledge Management (CIKM ’21), November 1–5,
2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3459637.3482217

1 INTRODUCTION
With the growth of Open Linked Data in the form of knowledge
graphs, social networks, bioinformatic structures, and road networks,
efficient graph mining poses a challenging problem [2, 45]. Such
large data sources are represented as labeled graphs, where entities
are modeled as vertices, while their relationships are captured by
edges, with labels defining the attributes of entities and relations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482217

Figure 1: Two-hop neighborhood similarity based computation of 𝜒2

statistical significance for vertex match in VERSACHI.

Subgraph querying is used across several domains including frequent
pattern search in data mining [30], community detection in IR [24],
question answering in NLP [36], object recognition in computer
vision [6], and route planning [10]. The problem of subgraph match
querying entails the extraction of subgraphs from an underlying
graph having similar structure and labels to a given query [29, 33].

Traditional approaches for exact structural and label matching
based on isomorphism are computationally infeasible. Thus, ap-
proaches based on pruning [26, 39, 50], indexing [42, 44], filter-
ing [8, 20], and dynamic programming [22] have been proposed.
However, they fail to scale for modern web-scale graph applications,
wherein approximate subgraph matching was explored [29, 31] to ex-
tract similar subgraphs, with exact matches or with slight variations
in structural elements and label mismatches. For example, in bioin-
formatics, approximate subgraph matching enables the detection
of candidate regions in genome, that might have undergone abnor-
mal mutations, for studying the associated medical effects [43, 51].
Although approximate subgraph extraction have been well stud-
ied [3, 18, 29, 31, 44, 47], efficiently finding matching subgraphs
with improved runtime and accuracy remains an important problem.
Problem Statement. Consider G =

(
VG, EG,LG

)
to be an in-

put graph, where VG and EG denote the vertex and edge sets re-
spectively, while LG : VG → Γ maps the vertices in G to a fi-
nite label (or attribute) set Γ. A similar query graph is considered:
Q =

(
VQ , EQ ,LQ

)
. Without loss of generality, we assume that the

graph 𝐺 is deterministic, undirected, vertex labeled, and does not
contain hyper-edges. The problem of approximate subgraph match-
ing aims to find the top-k subgraphs of G that are best matching
(maximum similarity) to Q in terms of vertex label and edge overlap.
In our context, VERSACHI finds the top-k statistically significant
subgraphs of G as the best approximate matches of Q.

ar
X

iv
:2

10
8.

07
99

6v
1

 [
cs

.D
B

]
 1

8
A

ug
 2

02
1

https://doi.org/10.1145/3459637.3482217
https://doi.org/10.1145/3459637.3482217

State-of-the-art. (Sub-)graph matching has been extensively stud-
ied, and the existing body of work can be broadly categorized into
two groups – exact methods and approximate heuristics. Since graph
isomorphism is quasi-polynomial [4] and subgraph isomorphism
is NP-complete [12], earlier works on exact graph matching such
as Swift-Index [42], VF2 [13, 26], PathBlast [28], SAGA [47], Iso-
Rank [44] and GraphGrep [20] to name a few, explored pruning
and indexing techniques. To tackle incomplete and noisy data, ap-
proximate matching techniques tolerate small amounts of structural
and label mismatches. These methods usually rely on identifying
candidate vertices, whose neighborhoods are then progressively ex-
panded in a greedy manner – providing compute efficiency, although
with possibly sub-optimal results. Initial approaches like TALE [48],
C-Tree [59], GString [25] and SAPPER [58] were based on indexing
techniques and graph distance measures to compute the degree of
similarity. The use of pattern matching, semantic-based search, and
graph decomposition for finding matching subgraphs were explored
in gIndex [54], FG-Index [9], iGraph [23], Grafil [55], GPTree [57],
cIndex [7], iGQ [52], and SIM-T [31]. Surveys on the rich litera-
ture of graph matching can be found in [11, 19, 34, 53]. Recent
techniques like NeMa [29] and GFinder [33] adopt a combination
of efficient indexing and graph traversal based cost measure to effi-
ciently identify candidate matching regions, while VELSET [18] and
NAGA [18] use statistical measure to mine subgraphs that demon-
strate significant deviations from the background distribution when
matched to a query. Approximate graph matching in the context of
probabilistic graphs have also been studied [1, 21, 27, 32, 35, 45, 56].
Preliminaries. Statistical significance models the relationships be-
tween the observations and the factors that affect the system. The p-
value [37] measures the probability of attributing an observed event
to chance or randomness. Since extreme events are rare, they exhibit
a smaller p-value or a higher statistical significance. Since, computa-
tion of p-value is exponential, the Pearson’s chi-square statistic (𝜒2)
has been shown to provide an estimate [38] of the “goodness-of-fit”
of the set of observations. It is computed as the normalized squared
difference between the expected and observed occurrence counts of
the different outcomes. Mathematically, 𝜒2 =

∑
∀𝑖

[
(𝑂𝑖 − 𝐸𝑖)2 /𝐸𝑖

]
,

where 𝑂𝑖 and 𝐸𝑖 are the observed and expected number of occur-
rences, respectively, for all outcomes 𝑖. The Chebyshev’s inequal-
ity [46] models the probability of deviation for a random variable
in terms of the number of standard deviations from the distribution
mean. Thus, for a random variable𝑋 with finite mean ` and non-zero
variance 𝛿2, we have Pr(|𝑋 −` | ≥ 𝑡 ·𝛿) ≤ 1/𝑡2 for any 𝑡 > 0 (𝑡 ∈ R).
Intuitively, the degree of label and structural overlap (i.e., similar-
ity) between a query and its matching subgraph would demonstrate
significant deviations (due to high similarity) from the expected
characteristics (considering a random subgraph). The Chebyshev’s
inequality can be used to characterize the difference in terms of the
number of standard deviations away from the mean to compute the
statistical significance of candidate matching subgraphs. Such tech-
niques have been studied for sequence mining [15, 16, 41], substring
matching [14], subgraph similarity [1, 18], and clique finding [17].
Contributions. In this paper, we propose the Vertex Neighborhood
Aggregation for Statistically Significant Subgraphs via Chebyshev

Inequality (VERSACHI) algorithm for efficient top-k subgraph match-
ing based on statistical significance. We identify candidate neighbor-
hood regions matching an input query by using two-hop label and
structural overlap based similarity. The deviation of the observed
similarity, from the underlying distribution is then characterized
by Chebyshev’s inequality and represented as symbols. Based on
statistical significance, matching candidate regions are identified and
explored in a greedy manner, to obtain the best matching subgraph to
the query. Observe that VERSACHI adopts the methodology of [17]
for finding subgraph matches, while differing from [18] in symbol
computation and neighborhood similarity. Initial empirical results
on real and synthetic datasets showcase our proposed framework to
outperform existing techniques in accuracy and robustness to noise.

2 VERSACHI ALGORITHM
This section describes the VERSACHI algorithm for extracting the
top-k best approximate matching subgraphs from a target graph G =(
VG, EG,LG

)
, with respect to a query graph Q =

(
VQ , EQ ,LQ

)
.

The working of VERSACHI comprises the following steps. The first
5 steps are offline and are done only once for a target graph, while
the last 4 are online and take place when a query arrives.
1. Index Creation. Given a target graph G, VERSACHI initially
constructs two indexing lists summarizing the labels of the vertices
and their neighbors. The first is an inverted list, 𝐼𝐿G , that maps
vertex labels to the corresponding list of vertices having the label.
The second index, the label neighbor list, 𝐿𝑁𝐿G , stores the label
information of the neighbors for each vertex in G. A label count
vector index, 𝐿𝐶𝑉G (𝑢), for each vertex 𝑢 in G is also constructed.
It stores the count of occurrence of each label (for |Γ | labels) in the
neighborhood of 𝑢. This enables efficient computation of similarity
between vertices as described next (step 4 onwards).
2. Similarity Measure. For a vertex pair (𝑢, 𝑣) we use a modified
Tversky index1 [49] to define the vertex similarity score ([):

[𝑢,𝑣 = |N (𝑢) ∩ N(𝑣) |
/
(|N (𝑢) ∩ N(𝑣) | + |N(𝑣) \ N(𝑢) |𝛾) (1)

where N(𝑢) is the set of labels in the neighborhood of 𝑢 including
the label of 𝑢 itself. Observe, by setting 𝛾 = 1, we obtain the original
Tversky index with 𝛼 = 0 and 𝛽 = 1. Intuitively, the similarity of
𝑢 ∈ G is maximized w.r.t. 𝑣 ∈ Q when all neighbor labels of 𝑣 are
present in the neighbors of𝑢 (i.e., N(𝑣) ⊆ N (𝑢)). Since the presence
of additional neighbors of 𝑢 ∈ G should not affect the similarity,
we set 𝛼 = 0 in the Tversky index. In essence, Eq. (1) captures the
neighborhood recall of 𝑣 ∈ Q provided by 𝑢 ∈ G (thus, 𝛽 = 1).
The exponential penalty factor, 𝛾 , penalizes increasing mismatches
in the neighborhood label overlap between vertex pairs. It captures
fine differences in the neighborhoods by accentuating even smaller
mismatches. Empirically, 𝛾 = 3 gave the best results.
3. Initialization. Using 𝐿𝐶𝑉G (𝑢) structures and similarity measure,
VERSACHI computes the vertex similarity scores for every vertex
pair in G. This captures the underlying distribution. The expected
similarity distribution across random neighborhoods of G is captured
via 3 characteristics computed using [𝑢,𝑤 : ∀⟨𝑢 ∈ G,𝑤 ∈ G⟩.
(a)𝜓 (G) = ∑

𝑢,𝑤∈G [𝑢,𝑤/|VG | : average vertex similarity score for
all vertex pairs in G,
(b) 𝛿 (G) =

(∑
𝑢,𝑤∈G ([𝑢,𝑤 − 𝜓 (G))2/(|VG | − 1)

)1/2
: standard

1𝑆 (𝑋,𝑌) = |𝑋∩𝑌 |
|𝑋∩𝑌 |+𝛼 |𝑋 \𝑌 |+𝛽 |𝑌 \𝑋 | for sets 𝑋 and 𝑌 with parameters 𝛼, 𝛽 ≥ 0.

deviation of the vertex similarity scores of G, and
(c) △(G) = max𝑢,𝑤∈G{(|[𝑢,𝑤−𝜓 (G)|/𝛿 (G)} : maximum deviation
of vertex similarity score from the average among all the vertex pairs
in terms of standard deviations in G.
4. Symbol Categorization. The degree of matching between a tar-
get graph vertex and a query vertex is captured in VERSACHI by the
amount of deviation of the vertex pair similarity score (in terms of
the number of standard deviations) from the underlying expected dis-
tribution (computed above). The standard deviations are discretized
using the step size parameter,^. It also determines the total number of
possible symbols, 𝜏 = ⌈(△(G) − 1)/^⌉. The set of category symbols,
therefore, is Σ = {𝜎1, 𝜎2, · · · , 𝜎𝜏 }. Smaller values of ^ is preferred
for differentiating between finer-grained structural mismatches.

For a pair of vertices 𝑢,𝑤 , its similarity is characterized using
the symbol 𝜎𝑖 , 1 ≤ 𝑖 ≤ 𝜏 . The first symbol, 𝜎1, spans the range of
standard deviations up to 1 +^, i.e., 𝜎1 : 0 ≤ |[𝑢,𝑤 −𝜓 (G)|/𝛿 (G) <
1 + ^. Subsequent symbols cover step size standard deviations each,
𝜎𝑖 : 1 + (𝑖 − 1) · ^ ≤ |[𝑢,𝑤 −𝜓 (G)|/𝛿 (G) < 1 + 𝑖 · ^ for 2 ≤ 𝑖 ≤ 𝜏 .
5. Expected Probabilities of Symbols. The expected probability of
occurrence associated with the category symbols is next computed
using the Chebyshev’s inequality. Observe, the deviation of vertex
pair similarity from the mean can be in negative or positive direction.

Since we are interested in vertices that have higher similarity than
the mean (to capture higher matching), we only discretize the similar-
ity (into symbols) when it is greater than the mean. For all similarities
that are lesser than the mean, we fold them into symbol 𝜎1. Thus, as-
suming symmetric one-sided Chebyshev’s inequality, the occurrence
probability of symbol 𝜎𝑖 is Pr(𝜎𝑖) = 1

2

[
1

(1+(𝑖−1) ·^)2 − 1
(1+𝑖 ·^)2

]
for 2 ≤ 𝑖 ≤ 𝜏 , and Pr(𝜎1) = 1 −∑𝜏

𝑗=2 Pr(𝜎 𝑗).
We also empirically evaluated the variant where the deviation in

both the positive and negative side of the mean are considered (i.e.,
without folding). However, it produced no changes in our results.
Since a very low similarity (large negative deviation) can poten-
tially have large chi-square values and, thus, produce false matching
results, VERSACHI uses the one-sided version.

Note that all the above steps are offline operations and performed
only once for a target graph G.
6. Candidate Pair Mapping. Upon arrival of a query graph Q,
the online processing starts with the construction of indexes 𝐼𝐿Q ,
𝐿𝑁𝐿Q , and 𝐿𝐶𝑉Q , analogously to G. For each label in Q, VER-
SACHI creates candidate pairs between the vertices of G and Q
having the same label. These candidate pairs form the initial seed
vertex for extracting matching subgraphs (to the query) via greedy
neighborhood search. Formally, the candidate pairs generated are
𝐶𝑃 =

{
⟨𝑣 ∈ G, 𝑞 ∈ Q⟩ | LG (𝑣) = LQ (𝑞)

}
.

7. Vertex Symbol Sequence. For a candidate pair ⟨𝑣 ∈ G, 𝑞 ∈ Q⟩,
VERSACHI computes the vertex pair similarity score, [(𝑣, 𝑞), and
characterizes the similarity score by assigning a category symbol
based on the deviation from the expected similarity distribution
(as discussed previously). The category symbol 𝜎 ⟨𝑣,𝑞⟩ captures the
one-hop neighborhood similarity for vertices 𝑣 and 𝑞 (see Eq. (1)).

We next compute “second-order” candidate pairs between the
vertex sets adjacent to 𝑣 and 𝑞. A greedy best mapping based on
the vertex pair similarity score is used to compute the second-order
candidate pairs. Similar to ⟨𝑣, 𝑞⟩, each second-order candidate pair
is assigned a category symbol based on the deviation of its similarity

score from the expected. The initial category symbol 𝜎 ⟨𝑣,𝑞⟩ is ag-
gregated with the second-order category symbols to form the vertex
symbol sequence, 𝑂 ⟨𝑣,𝑞⟩ , for the candidate pair ⟨𝑣, 𝑞⟩.

As an example, consider Fig. 1 depicting an initial candidate
pair between vertices 𝑣1 and 𝑞1 (both having label 𝐴) with cate-
gory symbol 𝜎1 assigned to it (using Eq. (1)). The adjacent vertices
of 𝑣1 ({𝑣2, 𝑣3, 𝑣4}) and the neighbors of 𝑞1 ({𝑞2, 𝑞3, 𝑞4}) are then
greedily best-matched based on vertex pair similarity to obtain the
“second-order” candidate pairs. For instance, 𝑣2 and 𝑞2 provides
the best match with the same label and the same neighborhood la-
bels and, thus, forms the next candidate pair (with, say, category
symbol 𝜎2). Subsequently, 𝑣3 and 𝑞3 are matched having the same
label and partial neighborhood overlap (consider to be assigned
symbol 𝜎3). Finally, the candidate pair ⟨𝑣4, 𝑞4⟩ is obtained with
category symbol 𝜎4. The corresponding vertex symbol sequence,
𝑂 ⟨𝑣1,𝑞1 ⟩ = {𝜎1, 𝜎2, 𝜎3, 𝜎4}, associated to ⟨𝑣1, 𝑞1⟩, captures the two-
hop similarity between the candidate pair vertices 𝑣1 and 𝑞1 (Fig. 1).
8. Statistical Significance. The computed symbol sequence 𝑂 ⟨𝑣,𝑞⟩
signifies the degree of matching between the two-hop neighborhoods
of 𝑣 and 𝑞. Assuming 𝑑 to be the degree of 𝑞, since mapping is
performed for the neighbors of 𝑞, the length of 𝑂 ⟨𝑣,𝑞⟩ is 𝑑. Thus,
the expected occurrence counts of category symbol 𝜎𝑖 is 𝐸 [𝜎𝑖] =

𝑑 · Pr(𝜎𝑖). The observed occurrence counts of the category symbols
are directly obtained from 𝑂 ⟨𝑣,𝑞⟩ . Using the observed and expected
counts, VERSACHI computes the chi-square statistics, 𝜒2⟨𝑣,𝑞⟩ , for
all the candidate pairs obtained in 𝐶𝑃 (see step 6).
9. Approximate Matching. The candidate pairs along with their
computed chi-square values, ⟨𝑣, 𝑞, 𝜒2⟨𝑣,𝑞⟩⟩, are inserted into a primary

max-heap structure. The candidate pair with the largest 𝜒2 value is
extracted (assume ⟨𝑣, 𝑞⟩) for initializing the top-1 matching subgraph,
𝑀𝑎𝑡𝑐ℎ (1) , and is considered as the starting seed vertex for greedy
expansion to find matching subgraph region for the query Q.

Next, candidate pairs between the adjacent vertices of the ex-
tracted seed pair (𝑣 and 𝑞) are constructed (as in step 6) and pushed
into a secondary max-heap structure. As before, the vertex symbol se-
quence of the candidate pairs in the secondary heap are constructed,
their statistical significances computed, and the pair with the highest
𝜒2 value is extracted and added to 𝑀𝑎𝑡𝑐ℎ (1) . This process is iterated
till the secondary heap is empty, or the size of 𝑀𝑎𝑡𝑐ℎ (1) equals
the number of vertices in Q. The subgraph obtained in 𝑀𝑎𝑡𝑐ℎ (1) is
reported as the top-1 best approximate matching subgraph for Q.

Vertices extracted from the primary and secondary heaps are
marked as “done” to prevent duplicate entries in the heap structures,
and ensuring that the same region is not repeatedly explored. To
retrieve more top-k approximate matches for a query, the secondary
heap is reset and the process is re-run, starting from picking the
currently best candidate pair (with highest statistical significance)
from the primary heap. This is repeated until 𝑘 matches are obtained.
Complexity Analysis

Assume graph G to contain 𝑛 vertices, 𝑚 edges and |Γ | unique
labels. Index construction (offline phase) requires 𝑂 (𝑛) space for
𝐼𝐿G , 𝑂 (𝑚) for 𝐿𝑁𝐿G , 𝑂 (𝑛 · |Γ |) for 𝐿𝐶𝑉G , and 𝑂 (𝜏) for symbol
probabilities. The overall space complexity of VERSACHI, therefore,
is𝑂 (𝑛+𝑚+𝜏+𝑛 · |Γ |). The time taken for index construction are𝑂 (𝑛)
for 𝐼𝐿G , and 𝑂 (𝑚) for both 𝐿𝑁𝐿G and 𝐿𝐶𝑉G . Computing the target

Dataset # Vertices # Edges # Unique Labels

Human 4,674 86,282 44
HPRD 9,460 37,081 307

Protein 43,471 81,044 3
Flickr 80,513 5.9M 195
IMDb 428,440 1.7M 22

(a)

Dataset / Accuracy Running Time (sec)
Algorithm Human HPRD Protein Flickr IMDb Human HPRD Protein Flickr IMDb

VELSET [18] 0.42 0.65 0.37 0.75 0.53 0.01 0.01 0.16 0.13 1.31
G-Finder [33] 0.45 0.12 0.47 out of memory 0.55 0.01 0.12 out of memory
VERSACHI 0.90 0.81 0.67 0.84 0.87 0.12 0.06 0.77 1.98 6.90

(b)

Table 1: (a) Summary of the datasets characteristics. (b) Overall accuracy and runtime performance of the algorithms on the different datasets.

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VᴇʀSᴀCʜI VELSET G-Finder

 0

 0.5

 1

exact nEAdd nEDel nLabel nVAdd nVDel

R
un

 T
im

e
(s

)

Query Type

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

VᴇʀSᴀCʜI VELSET G-Finder

 0

 0.5

 1

exact nEAdd nEDel nLabel nVAdd nVDel

R
un

 T
im

e
(s

)

Query Type

(a) Human (b) IMDb

Figure 2: Performance for different query types on Human and IMDb datasets.

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

exact
nEAdd
nEDel

nLabel
nVAdd
nVDel

 0

 0.1

 0.2

 0.3

 3 5 7 9 11 13

R
un

 T
im

e
(s

)

Query Size

exact
nEAdd
nEDel

nLabel
nVAdd
nVDel

Figure 3: Performance with query size
on Human dataset.

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

|Γ|=2
|Γ|=50

|Γ|=500
|Γ|=5K

 0.01

 0.1

 1

 10
 30

1K 5K 10K 50K 100K

R
un

 T
im

e
(s

)

Number of Vertices

 |Γ|=2
 |Γ|=50

 |Γ|=500
 |Γ|=5K

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

|Γ|=2
|Γ|=50

|Γ|=500
|Γ|=5K

 0.01

 0.1

 1

 10
 65

5 10 25 50 100 250

R
un

 T
im

e
(s

)

Average Degree

 |Γ|=2
 |Γ|=50

 |Γ|=500
 |Γ|=5K

 0
 0.2
 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

|Γ|=2
|Γ|=50

|Γ|=500
|Γ|=5K

 0.01

 0.1

 1

 10

 0.5 2 4 0.001 0.01 0.1 1

R
un

 T
im

e
(s

)

Value of Step Size (κ)

 |Γ|=2
 |Γ|=50

 |Γ|=500
 |Γ|=5K

(a) Number of Vertices (Avg. Degree = 50, ^ = 0.001) (b) Average Degree (|V| = 50K, ^ = 0.001) (c) Step Size (^) (|V| = 50K, Avg. Degree = 50)

Figure 4: Performance of VERSACHI on Barabási-Albert graphs with varying (a) number of vertices (𝑛), (b) average degree, and (c) step size (^).

graph underlying distribution requires traversal of 𝐿𝐶𝑉G for each
vertex pair in G. Thus, total offline time is𝑂 (𝑛+𝑚+𝑛2 · |Γ |) ≈ 𝑂 (𝑛2).

Once a query arrives, for each query vertex, candidate pairs (with
same label) are constructed using the inverted indices. Assuming
uniform label distribution in G, the number of candidate pairs is
𝑂 (𝑛Q · 𝑛/|Γ |). For each candidate pair, vertex symbol sequence
generation (both initial and “second-order”) takes 𝑂 (𝜌 · |Γ |) time
where 𝜌 is the maximum degree in G. Since 𝜒2 computation takes
𝑂 (𝜏) time, the overall runtime of VERSACHI is 𝑂 (𝑛Q · 𝑛/|Γ |).

3 EXPERIMENTS
In this section, we discuss the empirical setup and evaluation of the
VERSACHI algorithm, and its comparison to existing approaches.
Datasets. We evaluate the performance of the algorithms on real
datasets from 3 different domains: (i) Biological Networks: protein-
protein interaction graphs of Human, HPRD [5] and Protein [40];
(ii) Social Interaction: social interaction network between users of
the image and video hosting site Flickr, with the label of each user
(vertex) denoting the group that she belongs to [40]; and (iii) Knowl-
edge Graph: IMDb [40] containing named-entities like movies, ac-
tors, etc., along with their relationships. The characteristics of the

datasets are shown in Table 1(a). Synthetically generated Barabási-
Albert graphs are also used to study the scalability of VERSACHI.
Query. Query graphs (connected) are constructed (from the dataset)
by initially selecting a random vertex, and exploring its neighbor-
hood till 𝑛Q vertices are visited. These are referred to as exact
queries. To study the performance of the algorithms in presence of
noise, exact query graphs were perturbed by introducing structural
and label noise randomly by (i) modifying vertex labels (nLabel),
or (ii) inserting or deleting vertices (nVAdd and nVDel resp.), or
(iii) adding or deleting edges (nEAdd and nEDel resp.). The number
of perturbations are limited to 2. Further, for each scenario, we gen-
erate queries with sizes varying from 3 to 13 (at intervals of 2), with
20 query graphs extracted for each size. Thus, for each dataset, we
consider (6 × 6 × 20) = 720 queries, and report average results.
Evaluation. The efficiency of the algorithms are measured in terms
of edge retrieval accuracy (using the labels of end vertices), that
is, the fraction of edges of the query graph Q that are present in
the matching subgraph retrieved. Additionally, we report the av-
erage runtime required (per query) by the different approaches to
extract the approximate matching subgraphs. Since the introduced
perturbations do not exist in the original graph, the exact query (for

obtaining the noisy query) is considered as the ground truth. For
Barabási-Albert graphs we use exact queries only.
Baselines. We compare the performance of VERSACHI algorithm
against the following: (i) VELSET [18], a statistical significance
based approach for exploring candidate regions with partial label
match; and (ii) G-Finder [33], a graph traversal based indexing for
dynamic filtering and refinement of candidate match neighborhoods.
Index. The maximum index size taken by VERSACHI in our exper-
iments is 1.4GB for the Flickr graph, while the highest offline
computation time is 32783.44 seconds, for IMDb dataset.
Setup. All experiments were implemented in C++ and were con-
ducted on an Intel(R) Xeon(R) 2.60GHz CPU E5-2697v3 with
500GB of RAM. G-Finder was obtained from github.com/lihuiliullh/
GFinder and evaluated on a Visual Studio 2015 C++ platform.
Empirical Results

From Table 1(b), we observe that VERSACHI has a significantly
better accuracy than the competing algorithms for finding the best
matching subgraphs with more than 20% accuracy improvements
(averaged across varying query types and sizes). The run-time of
VERSACHI is slightly more than the other approaches due to the two-
hop neighborhood similarity computation. In absolute terms, though,
it is quite practical. Overall, with a slight increase in compute time,
VERSACHI offers a substantial accuracy gain. (G-Finder crashes
due to out-of-memory issues for Flickr and IMDb datasets.)

Fig. 2 depicts the performance for different query types. (Results
on the other datasets are similar and are, thus, omitted due to space
constraints). VERSACHI achieves better accuracy across all the
different query types, with slight increase in runtime. Fig. 3 shows
that with increase in query size, the runtime increases linearly (across
query types), while the accuracy remains largely unaffected.

Fig. 4 studies the scalability of VERSACHI using synthetic Barabási-
Albert graphs. The runtime is seen to increase linearly, with increase
in number of vertices and average degree, conforming to the anal-
ysis of Sec. 2. The accuracy of VERSACHI is unaffected in these
scenarios. With increase in the step size ^, accuracy decreases, as the
number of symbols decreases, limiting the power of VERSACHI to
differentiate between finer differences in neighborhood mismatches
between the graphs, while the runtime remains mostly constant.

4 CONCLUSIONS
This paper proposed a scalable and highly accurate algorithm, VER-
SACHI, for approximate labeled graph querying. It shows signifi-
cantly better accuracy than the competing methods across datasets
and noise. Our framework is generic enough to accommodate other
similarity measures and application-dependent tail distributions.

REFERENCES
[1] S. Agarwal, S. Dutta, and A. Bhattacharya. 2020. ChiSeL: Graph Similarity

Search using Chi-Squared Statistics in Large Probabilistic Graphs. PVLDB 13, 10
(2020), 1654–1668.

[2] C. C. Aggarwal and H. Wang. 2010. Graph Data Management and Mining: A
Survey of Algorithms and Applications. Advances in Database Systems 40 (2010),
13–68.

[3] A. Arora, M. Sachan, and A. Bhattacharya. 2014. Mining Statistically Significant
Connected Subgraphs in Vertex Labeled Graphs. In International Conference on
Management of Data (SIGMOD). 1003–1014.

[4] L. Babai. 2016. Graph Isomorphism in Quasipolynomial Time. In STOC. 684–
697.

[5] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. 2016. Efficient Subgraph Matching
by Postponing Cartesian Products. In SIGMOD. 1199–1214.

[6] A. Bordes, S. Chopra, and J. Weston. 2014. Question Answering with Subgraph
Embeddings. In EMNLP. 615–620.

[7] C. Chen, X. Yan, P. S. Yu, J. Han, D. Zhang, and X. Gu. 2007. Towards Graph
Containment Search and Indexing. In VLDB. 926–937.

[8] W. Chen, J. Liu, Z. Chen, X. Tang, and K. Li. 2017. PBSM: An Efficient Top-K
Subgraph Matching Algorithm. International Journal of Pattern Recognition and
Artificial Intelligence 32, 6 (2017).

[9] J. Cheng, Y. Ke, W. Ng, and A. Lu. 2007. FG-Index: Towards Verification-free
Query Processing on Graph Databases. In SIGMOD. 857–872.

[10] T. Y. Cheung. 1983. State of the Art of Graph-based Data Mining. Transactions
on Software Engineering 5, 1 (1983), 59–68.

[11] D. Conte, P. Foggia, C. Sansone, and M. Vento. 2004. Thirty Years of Graph
Matching in Pattern Recognition. IJPRAI 18, 3 (2004), 265–298.

[12] S. A. Cook. 1971. The Complexity of Theorem-proving Procedures. In STOC.
151–158.

[13] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (Sub)graph Isomor-
phism Algorithm for Large Graphs. PAMI 26, 10 (2004), 1367–1372.

[14] S. Dutta. 2015. MIST: Top-k Approximate Sub-string Mining Using Triplet
Statistical Significance. In European Conference on Information Retrieval (ECIR).
284–290.

[15] S. Dutta and A. Bhattacharya. 2010. Most Significant Substring Mining Based
on Chi-square Measure. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD). 319–327.

[16] S. Dutta and A. Bhattacharya. 2012. Mining Statistically Significant Substrings
Based on the Chi-Square Measure. In Pattern Discovery Using Sequence Data
Mining: Applications and Studies. IGI Global, 73–82.

[17] S. Dutta and J. Lauri. 2019. Finding a Maximum Clique in Dense Graphs via
Chi-Square Statistics. In International Conference on Information and Knowledge
Management (CIKM). 2421–2424.

[18] S. Dutta, P. Nayek, and A. Bhattacharya. 2017. Neighbor-Aware Search for
Approximate Labeled Graph Matching using the Chi-Square Statistics. In Interna-
tional Conference on World Wide Web (WWW). 1281–1290.

[19] B. Gallagher. 2006. Matching Structure and Semantics: A Survey on Graph-based
Pattern Matching. In AAAI. 45–53.

[20] Rosalba Giugno and Dennis Shasha. 2002. GraphGrep: A Fast and Universal
Method for Querying Graphs. ICPR 2 (2002), 201–212.

[21] Y. Gu, C. Gao, L. Wang, and G. Yu. 2016. Subgraph Similarity Maximal All-
matching over a Large Uncertain Graph. In International Conference on World
Wide Web (WWW). 755–782.

[22] M. Han, H. Kim, G. Gu, K. Park, and W. Han. 2019. Efficient Subgraph Matching:
Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set
Together. In SIGMOD. 1429–1446.

[23] W. Han, J. Lee, M. Pham, and J. X. Yu. 2010. iGraph: A Framework for Compar-
isons of Disk-based Graph Indexing Techniques. PVLDB 3, 1-2 (2010), 449–459.

[24] L. Hong, L. Zou, X. Lian, and P. S. Yu. 2015. Subgraph Matching with Set
Similarity in a Large Graph Database. Transactions on Knowledge and Data
Engineering 27, 9 (2015), 2507–2521.

[25] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. 2007. GString: A Novel Approach for
Efficient Search in Graph DBs. In ICDE. 566–575.

[26] A. Jüttner and P. Madarasi. 2018. VF2++: An Improved Subgraph Isomorphism
Algorithm. Discrete Applied Mathematics 242 (2018), 69–81.

[27] V. Kassiano, A. Gounaris, A. N. Papadopoulos, and K. Tsichlas. 2016. Mining
Uncertain Graphs: An Overview. In International Symposium on Algorithmic
Aspects of Cloud Computing (ALGOCLOUD). 87–116.

[28] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B.R. Stockwell, and T. Ideker. 2004.
PathBLAST: A Tool for Alignment of Protein Interaction Networks. Nucleic
Acids Research 32 (2004), 83–88.

[29] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. 2013. NeMa: Fast Graph Search
with Label Similarity. PVLDB 6, 3 (2013), 181–192.

[30] A. Khan, X. Yan, and K. L. Wu. 2010. Towards Proximity Pattern Mining in Large
Graphs. In SIGMOD. 867–878.

[31] S. Kpodjedo, P. Galinier, and G. Antoniol. 2014. Using Local Similarity Mea-
sures to Efficiently Address Approximate Graph Matching. Discrete Applied
Mathematics 164 (2014), 161–177.

[32] G. Li, L. Yan, and Z. Ma. 2019. An Approach for Approximate Subgraph Matching
in Fuzzy RDF Graph. Fuzzy Sets and Systems 376 (2019), 106–126.

[33] L. Liu, B. Du, J. Xu, and H. Tong. 2019. G-Finder: Approximate Attributed
Subgraph Matching. In International Conference on Big Data. 513–522.

[34] L. Livi and A. Rizzi. 2013. The Graph Matching Problem. Pattern Analysis and
Application 16 (2013), 253–283.

[35] A. Mahmood, H. Farooq, and J. Ferzund. 2017. Large Scale Graph Matching
(LSGM): Techniques, Tools, Applications and Challenges. International Journal
of Advanced Computer Science and Applications 8, 4 (2017), 494–499.

[36] V. Nastase, R. Mihalcea, and D. R. Radev. 2015. A Survey of Graphs in Natural
Language Processing. Natural Language Engineering 21 (2015), 665–698.

[37] T. Read and N. Cressie. 1988. Goodness-of-fit Statistics for Discrete Multivariate
Data. Springer Series in Statistics.

github.com/lihuiliullh/GFinder
github.com/lihuiliullh/GFinder

[38] T. Read and N. Cressie. 1989. Pearson’s Chi-square and the Likelihood Ratio
Statistic𝐺2: A Comparative Review. International Statistical Review 57, 1 (1989),
19–43.

[39] C. R. Rivero and H. M. Jamil. 2017. Efficient and Scalable Labeled Subgraph
Matching using SGMatch. Knowledge and Information Systems 51 (2017), 61–87.

[40] R. A. Rossi and N. K. Ahmed. 2015. The Network Data Repository with Interactive
Graph Analytics and Visualization. In AAAI. 4292–4293.

[41] M. Sachan and A. Bhattacharya. 2012. Mining Statistically Significant Substrings
using the 𝜒2 Statistic. PVLDB 5, 10 (2012), 1052–1063.

[42] H. Shang, Y. Zhang, X. Lin, and J. Yu. 2008. Taming Verification Hardness:
An Efficient Algorithm for Testing Subgraph Isomorphism. PVLDB 1, 1 (2008),
364–375.

[43] R. Shen and C. Guda. 2014. Applied Graph-Mining Algorithms to Study Biomolec-
ular Interaction Networks. BioMed Research Int. 2014, 439476 (2014), 11.

[44] R. Singh, J. Xu, and B. Berger. 2008. Global Alignment of Multiple Protein
Interaction Networks with Application to Functional Orthology Detection. PNAS
105, 35 (2008), 12763–12768.

[45] S. Sun and Q. Luo. 2019. Scaling Up Subgraph Query Processing with Efficient
Subgraph Matching. In ICDE. 220–231.

[46] P. Tchebichef. 1867. Des Valeurs Moyennes. Journal de Mathématiques Pures et
Appliquees 12 (1867), 177–184.

[47] Y. Tian, R. McEachin, C. Santos, D. States, and J. Patel. 2006. SAGA: A Subgraph
Matching Tool for Biological Graphs. Bioinformatics 23, 2 (2006), 232–239.

[48] Y. Tian and J.M. Patel. 2008. TALE: A tool for approximate large graph matching.
In ICDE. 963–972.

[49] A. Tversky. 1977. Features of Similarity. Psychological Review 84, 4 (1977),
327–352.

[50] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. JACM 23, 1
(1976), 31–42.

[51] F. Vandin, E. Upfal, and B. J. Raphael. 2011. Algorithms for Detecting Signifi-
cantly Mutated Pathways in Cancer. JCB 18, 3 (2011), 507–522.

[52] J. Wang, N. Ntarmos, and P. Triantafillou. 2016. Indexing Query Graphs to
Speedup Graph Query Processing. In EDBT. 41–52.

[53] J. Yan, X. Yin, W. Lin, C. Deng, H. Zha, and X. Yang. 2016. A Short Survey of
Recent Advances in Graph Matching. In ICMR. 167–174.

[54] Xifeng Yan, Philip S. Yu, and Jiawei Han. 2005. Graph Indexing Based on
Discriminative Frequent Structure Analysis. TODS 30, 4 (2005), 960–993.

[55] X. Yan, P. S. Yu, and J. Han. 2005. Substructure Similarity Search in Graph
Databases. In SIGMOD. 766–777.

[56] Y. Yuan, G. Wang, L. Chen, and H. Wang. 2015. Graph Similarity Search on
Large Uncertain Graph Databases. VLDB Journal 24, 2 (2015), 271–296.

[57] S. Zhang, J. Li, H. Gao, and Z. Zou. 2009. A Novel Approach for Efficient
Supergraph Query Processing on Graph Databases. In EDBT. 204–215.

[58] S. Zhang, J. Yang, and W. Jin. 2010. SAPPER: Subgraph Indexing and Approxi-
mate Matching in Large Graphs. PVLDB 3, 1-2 (2010), 1185–1194.

[59] Qinghua Zou, Shaorong Liu, and Wesley W. Chu. 2004. CTree: A Compact Tree
for Indexing XML Data. In WIDM. 39–46.

	Abstract
	1 Introduction
	2 VerSaChI Algorithm
	3 Experiments
	4 Conclusions
	References

