
An EfficientQuantitative Approach for Optimizing
Convolutional Neural Networks

Yuke Wang†, Boyuan Feng†, Xueqiao Peng∗, Yufei Ding†
†{yuke_wang, boyuan, yufeiding}@cs.ucsb.edu, *{peng.969}@osu.edu

† University of California, Santa Barbara
*The Ohio State University

ABSTRACT
With the increasing popularity of deep learning, Convolutional Neu-
ral Networks (CNNs) have been widely applied in various domains,
such as image classification and object detection, and achieve stun-
ning success in terms of their high accuracy over the traditional
statistical methods. To exploit potentials of CNN models, a huge
amount of research and industry efforts have been devoted to opti-
mizing CNNs. Among these endeavors, CNN architecture design
has attracted tremendous attention because of its great potential of
improving model accuracy or reducing model complexity. However,
existing work either introduces repeated training overhead in the
search process or lacks an interpretable metric to guide the design.

To clear these hurdles, we propose 3D-Receptive Field (3DRF), an
explainable and easy-to-compute metric, to estimate the quality
of a CNN architecture and guide the search process of designs.
To validate the effectiveness of 3DRF, we build a static optimizer
to improve the CNN architectures at both the stage level and the
kernel level. Our optimizer not only provides a clear and repro-
ducible procedure but also mitigates unnecessary training efforts in
the architecture search process. Extensive experiments and studies
show that the models generated by our optimizer achieve up to
5.47% accuracy improvement and up to 65.38% parameters deduc-
tion, compared with state-of-the-art CNN model structures like
MobileNet and ResNet.

CCS CONCEPTS
•Computingmethodologies→Machine learning; Supervised
learning by classification.

KEYWORDS
Deep Learning, Neural Network Optimization, Image Classification.

ACM Reference Format:
Yuke Wang†, Boyuan Feng†, Xueqiao Peng∗, Yufei Ding†. 2021. An Efficient
Quantitative Approach for Optimizing Convolutional Neural Networks.
In Proceedings of the 30th ACM Int’l Conf. on Information and Knowledge
Management (CIKM ’21), November 1–5, 2021, Virtual Event, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482230

This work is licensed under a Creative Commons Attribution International 4.0
License.

CIKM ’21, November 1–5, 2021, Virtual Event, Australia.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8446-9/21/11.
https://doi.org/10.1145/3459637.3482230

1 INTRODUCTION
Deep convolutional neural networks (CNNs) have achieved sig-
nificant successes in a broad collection of fields, including object-
detection [6], video classification [10], object tracking [29], image
segmentation [17] and human pose estimation [28]. Such unparal-
leled successes attract many interests in CNN architecture design to
improve accuracy or reduce complexity. Examples include an array
of efficient models that have been crafted manually (e.g., VGG [26],
MobileNet [8], ShuffleNet [18]) and those generated automatically
by the neural architecture search (NAS) tools [1, 14, 16, 22, 35]. Yet,
two challenges of CNN architecture design remain far from well
resolved: 1) missing an interpretable metric, and 2) huge training
efforts. The former indicates that some direct and easy-to-interpret
metric is still missing to guide the design, while the latter means
that the repeated training cost is huge for evaluating different ar-
chitectures in the search process.

To address these challenges, we propose 3D-Receptive Field (3DRF),
an interpretable metric, for efficient CNN architecture designs. Par-
ticularly, we focus on two levels: the stage level1 and the kernel level.
At the stage level, we decide the number of convolution kernels
in different stages, while at the kernel level we choose the type of
the convolution kernel to use (i.e., standard convolution kernels or
efficient factorized kernels [25, 33]). We build up 3DRF to uniformly
conduct the optimization at both levels. The key insight is that the
portion of the input tensor that can flow into each output neuron,
which we name as 3DRF, often determines the learning potential
of that given stage or kernel. A stage or kernel with larger 3DRF
will have more input elements passing through, leading to a higher
potential for extracting useful features and improving the classi-
fication accuracy. Therefore, we use 3DRF to estimate the quality
of architecture design in the search process, rather than repeated
training.

To validate and showcase the effectiveness of 3DRF, we propose
an architecture optimizer to examine CNN architecture designs at
stage and kernel level. At stage level, we provide an organizer to
improve the accuracy of a CNN model while using the same or
fewer convolution kernels. The organizer, in effect, removes the
convolution kernels that cannot contribute to 3DRF enough or
move the kernels from the positions with marginal contributions to
3DRF in one stage to another stage with larger contributions. The
optimization is based on two key observations: 1) the contributions
from the latter kernels in a stage are diminishing since the newly
observed input elements are on the marginal positions, which have

1Following many works [7, 32, 33], we define a stage in a CNN as a collection of
consecutive convolution layers with input tensors of the same spatial dimensions (i.e.,
pooling or convolution kernel with stride ≥ 2 will generate a new stage).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2050

https://doi.org/10.1145/3459637.3482230
https://doi.org/10.1145/3459637.3482230
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3482230&domain=pdf&date_stamp=2021-10-30

less impact compared with the central input already observed; 2)
when the spatial size of the input tensor to a stage is small, piling
more layers can barely learn more features. On the other side,
moving some layers to another stage with larger input tensor would
promote 3DRF and better learning capacity.

At the kernel level, we propose a decomposer to reduce model
complexity without substantively affecting accuracy. The decom-
poser, in effect, replaces standard convolution kernels 2 with convo-
lution blocks composed of efficient factorized kernels (e.g., Depth-
wise Convolution [25], and Pointwise Convolution [27]). The key
guidance behind such replacement is to maintain the same 3DRF
(i.e., the efficient convolution block should observe the same amount
of 3DRF as standard convolutions in order to maintain accuracy).
We name this rule as Rule for Kernel Replacement. This rule not
only allows us to unify all existing convolution blocks used in Mo-
bileNet, ShuffleNet, clcNet [32], and Xception [2], but also inspires
the discovery of one new basic factorized convolution kernel, as we
named Rolling Pointwise Convolution (RPW), and a new convolution
block (Depthwise (DW) + RPW). This new convolution block turns
out to be more efficient than existing factorized kernel designs, like
that in MobileNet model.

To facilitate the end-to-end CNNmodel design, we introduce our
design prototype. As shown in the Listing 1, we start with importing
our 3DRF-based optimization libraries, including a stage optimizer
(stage_opt) and a kernel optimizer (kernel_opt). We will then
build a CNN models as we normally do in the regular Pytorch.
Here, convolutional layers in the CNN models can be grouped into
different stages, where each stages consists of convolutions linearly
stacked together. Different stages are sequentially connected. At
the end of those stages, we put the linear (fully-connected) layer
and a softmax layer layer to generate logits for classification.

In summary, the major contributions of our work are:
• We propose a brand-new interpretable metric 3D-Receptive
Field (3DRF) for guiding CNN architecture designs efficiently.
Whereas previous CNN model architecture exploration tech-
niques (e.g., NAS) require huge training and searching efforts.

• We build an end-to-end CNN stage-level organizer for im-
proving the accuracy performance of CNN models at the
model architectural level. This can largely ease the manual
efforts in arduous CNN model optimization process.

• We introduce an new type of convolution kernel – Rolling-
Pointwise Convolution to reduce the model parameters and
the computation FLOPs.

Rigorous evaluations on real-world image datasets (e.g., CIFAR-
10/100 [11], and ImageNet [3]), demonstrate the strength of our
architecture optimizer in terms of model accuracy, FLOPs and pa-
rameters. At the stage level, the organizer improves the accuracy (up
to 5.47%) of the manually crafted CNN structures (e.g., MobileNet)
bymaximizing the contribution to 3DRF. For instance, the optimized
MobileNet achieves 3.7% higher accuracy with 74% fewer parame-
ters and 16% fewer FLOPs compared with the original structure. At
the kernel level, the newly discovered convolution block achieves
higher accuracy (up to 0.58%) with much fewer computations (up to
40.0% reduction) and parameters (up to 90.4% reduction) compared

2In this paper, we refer to the standard convolution kernel as the one with 3 * 3 * C
filters, where C is the number of input channels.

Listing 1: Illustration of 3DRF-based Optimizer Prototype.
1 from 3DRF_optimizer import stage_opt, kernel_opt
2 # import other libraries, such as Pytorch...
3

4 # Create an stage of CNN model.
5 def make_stage(stage_depth):
6 layers = nn.sequential()
7 for i in range(stage_depth):
8 layers.append(nn.conv2D(inChannel, outChannel))
9 return layers
10

11 # Create a CNN model.
12 class CNN(nn.module):
13 def __init__(self, stageDepth=[2,2,2,2], outClass=10):
14 self.stages = torch.nn.moduleList()
15 for depth in stageDepth:
16 self.stages.append(make_stage(depth))
17 self.classifier = nn.Linear(flatDim, outClass)
18 self.softmax = nn.softmax()
19

20 def forward(self, X):
21 out = X
22 for stg in self.stages:
23 out = stg(out)
24 out = self.classifier(out)
25 out = self.softmax(out)
26 return out
27 # Define a simple CNN Model.
28 model = CNN([2,2,2,2], 10)
29 # Compute the delta 3DRF for a input model.
30 info_3DRF = stage_opt.comp_Delta3DRF(model)
31 # Optimize the model structure with delta 3DRF.
32 model_opt = stage_opt.optimze_arch(model, info_3DRF)
33 # Optimize the kernel.
34 model_final = kernel_opt(model_opt)
35 # Do regular model training and inference.

with the existing design. For example, one kernel designed by us
has 2.54% higher accuracy and 29.04% fewer FLOPs in comparison
with the MobileNet.

2 RELATEDWORK
2.1 Neural Architecture Search (NAS)
NAS methods have been widely studied to automatically construct
efficient CNN architectures. NAS frameworks generally come with
three major components, 1) Search space: The NAS search space is
composed of several types of operations (e.g., convolution, fully-
connected, and pooling) and the inter-connection among these
operators. The design of search space demands domain expertise
from both the deep learning and the specific application settings; 2)
Search algorithm: A NAS search algorithm samples a population of
network architecture candidates. It receives the model performance
evaluation result (e.g., result) as rewards and optimizes to generate
high-performance architecture candidates. 3) Evaluation strategy:
This step will measure the performance of candidate models in
order to improve the search algorithm.

The most significant part of NAS research has been devoted
to the neural architecture search algorithm. And a array of tech-
niques and strategies have been proposed, such as evolutional al-
gorithms [21, 22], hill climbing [4]; multi-objective search [5, 34],
and reinforcement learning (RL) [16, 22]. To accelerate the NAS
search, ENAS [20] represents the search space using a directed

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2051

(a) Standard Convolution (e) Group-Pointwise Convolution(c) Group Convolution (d) Depthwise Convolution(b) Pointwise Convolution

Figure 1: Channelmapping (top) and Spatial mapping (bottom) of the standard convolution and factorized convolution kernel.

acyclic graph (DAG) and targeting at optimizing the subgraph struc-
ture within the large supergraph. Meanwhile, it also introduces a
training strategy of parameter sharing among subgraphs to signifi-
cantly boost the searching efficiency. Work from [9, 15] also follow
the similar idea of hierarchical computation graph optimization.
Work from [31] further share the parameters of different paths
within a block using super-kernel representation. [19] proposes a
fine-grained search space comprised of atomic blocks that is much
smaller than the ones used in recent NAS algorithms.

Although NASmethods can build high-quality CNN architecture,
they have two major drawbacks. First, they require prohibitively
expensive computing power and add significant overhead to the
design time. For instance, the RL-based method in [35] requires
500 NVIDIA P100 GPUs for more than 4 days to evaluate 20000
candidate neural networks, even after adopting many proxy tasks
techniques including early stopping with few epochs, running on a
small dataset, and limiting the kernel numbers. Second, the NAS
method can identify the design, but it does not explain the general
rule behind to obtain such a design, which limits its applicability.
Once the task changes, one has to run NAS again. In contrast, our
static architecture optimizer gives an alternative solution, offering
a clear and reproducible design procedure without training in the
architecture search process. Other works still requires non-trivial
overhead of CNN runtime profiling for optimization.

2.2 Standard Convolution
The widely applied deep learning application demands effective
ways to capture the characters of the inputs (e.g., images). Among
those techniques, the standard convolution is most widely used
in many CNNs [23, 26, 30]. In general, we annotate the input im-
age (𝐼), output feature map (𝑂), and filter (𝐹). The dimension of an
image is [𝐼𝑤 , 𝐼𝑤 ,𝐶𝑖𝑛], where 𝐼𝑊 is the size of an image while 𝐶𝑖𝑛
is the number of input channels (e.g., the RGB image has 3 input
channel). The standard convolution (Figure 1a) leverages𝐶𝑜𝑢𝑡 stan-
dard convolutional filters with the shape of [𝐾,𝐾,𝐶𝑖𝑛], where the
𝐾 is the filter size, 𝐶𝑖𝑛 is the number of input channels, and 𝐶𝑜𝑢𝑡
is the number filters. After applying the standard convolution on
the input (with the shape of [𝐼𝑤 , 𝐼𝑤 ,𝐶𝑖𝑛]), we will get the output
feature map 𝑂 , which has the shape of [𝑂𝑤 ,𝑂𝑤 ,𝐶𝑜𝑢𝑡]., where the
𝑂𝑤 is size of the output feature map. Note that the mainstream
CNNs [8, 26, 30] generally maintain the same feature map spatial

dimension at different convolutional layers while only changing
the number of the channels across different layers.

Formally, for standard convolution, we have

𝑂𝑚,𝑛,𝑐 =

𝐾,𝐾,𝐶𝑖𝑛∑
𝑖, 𝑗,𝑎

𝐹𝑖, 𝑗,𝑎,𝑐 ∗ 𝐼𝑚+𝑖−1,𝑛+𝑗−1,𝑎 (1)

where 𝑂𝑚,𝑛,𝑐 is one pixel point in the output feature map;𝑚 and
𝑛 are the spatial indexes in the output feature map (𝑚 ∈ 𝑍 : 𝑚 ∈
[0,𝑂𝑤) and 𝑛 ∈ 𝑍 : 𝑛 ∈ [0,𝑂𝑤)); 𝑎 is the channel index in the
input feature map (𝑎 ∈ [0,𝐶𝑖𝑛)); 𝑐 is the channel index in the
output feature map (𝑐 ∈ 𝑍 : 𝑐 ∈ [0,𝐶𝑜𝑢𝑡)); 𝑖 , 𝑗 , and 𝑎 are the
index used to accumulated the elementwise multiplication values
between input feature map and one filter. The standard convolution
will not only extract the spatial information by traversing a 𝐾 × 𝐾
2D sliding window within each channel but also effectively fuses
the information across different channels (Figure 1a), where each
kernel filter will gather the information from all input channels.

2.3 Kernel Factorization
Besides the standard convolution kernel, recent deep-learning re-
search introduces several factorized kernels [12, 25, 27, 33] and
combine them into a convolution block. This can offer another way
to improve the computation efficiency of CNN architecture designs
while maintaining the prediction power. Existing factorized kernels
can be divided into four categories. Specifically, the first type is the
Pointwise Convolution (PW) [27]) (Figure 1b), which is a standard
convolution with 1×1 spatial size. The second type is Group Convo-
lution (GC) [12] (Figure 1c) that divides input channels into several
groups and performs standard convolution within each group. The
third type is Depthwise Convolution (DW) [25] (Figure 1d) which
calculates spatial convolution per channel or can be regarded as
an extreme case of GC when the group number equals the number
of the input channels. The last one is Group Pointwise Convolu-
tion (GPW) [33] (Figure 1e), that further splits PW into groups.
Previously, researchers combine some of the factorized kernels into
convolution blocks.

Xception [2] and MobileNet [8] demonstrate the successful ap-
plication of convolutional kernel factorization in the popular CNN
models. It breaks the original standard convolution into two parts:
depthwise (DW) convolution and pointwise (PW) convolution.
The first step (DW) applies 𝐶𝑖𝑛 different [𝑊,𝑊 , 1] filters to each

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2052

kth
Kernel

(k-1)th

Kernel

Input
Tensor

…

… …

…

IFk-1
wIFk-1
w

IFk-1
c

IFk-1
c

Wk -1

kth
Kernel

(k-1)th

Kernel …

… …
… IFk-1

c
IFk-1

c

kth
Kernel

(k-1)th

Kernel

Input
Tensor

…

… …

…

IFk-1
wIFk-1
w

IFk-1
c

IFk-1
c

Wk -1

kth
Kernel

2nd

Layer

1st
Layer

Input
Tensor

Wk -13DRFk-1
w3DRFk-1
w

(a) Spatial Dimension (b) Channel Dimension

Channels

1 2 3 41 2 3 4

Figure 2: Illustration of 3D-Receptive Field (3DRF) for con-
volutions of a single stage.

of the 𝐶𝑖𝑛 input channels independently, which can be formalized
as Equation 2

�̂�𝑚,𝑛,𝑎 =

𝐾,𝐾∑
𝑖, 𝑗

𝐹
(𝑑𝑤)
𝑖, 𝑗,𝑎

∗ 𝐼𝑚+𝑖−1,𝑛+𝑗−1,𝑎 (2)

The second step (PW) applies a filter with 1 × 1 spatial dimension.
As shown in Equation 3.

𝑂𝑚,𝑛,𝑐 =

𝐶𝑖𝑛∑
𝑎

𝐹
(𝑝𝑤)
𝑎,𝑐 ∗ 𝐼𝑚−1,𝑛−1,𝑎 (3)

In this paper, we use the idea of 3DRF to unify these previous
convolution blocks. In addition, we create a new type of factorized
convolution kernel, named Rolling Pointwise Convolution (RPW),
and a new convolution block (DW+RPW) that can outperform the
previous designs.

3 3D-RECEPTIVE FIELD
In this section, we present 3D-Receptive Field (3DRF) for measuring
the representation ability of each neuron in a convolution layer.
Then, we derive the 3D-Receptive Field Gain (3DRF Gain) for quan-
tifying the representation ability change when an additional convo-
lution layer is inserted. This 3DRF Gain is sensitive to the location,
type, and combination of the inserted convolution layer, thus guid-
ing the CNN design. We demonstrate the effectiveness of 3DRF
Gain in quantifying representation ability, in terms of its impact
on accuracy.

Our 3D-Receptive field is inspired by an existing metric, receptive
field [24], which quantifies the spatial area of neurons for evaluat-
ing a single neuron in the next convolution layer. This receptive
field serves well for quantifying the local representation ability in
a single traditional convolution layer, where a larger receptive field
leads to higher accuracy. However, the receptive field fails to quan-
tify the global representation ability across layers, when a large
number of convolution layers with diverse receptive fields stacked
in a CNN stage. Moreover, the receptive field fails to consider the
channel number, which becomes critical in modern convolution
layers (e.g., Depthwise convolution and Channel-wise convolution).
By contrast, our 3DRF provides the first global metric for quanti-
fying the global representation ability across layers, considering
extensively the location, type, and combination of convolution lay-
ers. By quantifying the global representation ability, 3DRF serves as
an effective and efficient tool for guiding the CNN design without
tediously enumerating and training NN architectures.

3.1 Definition of 3D-Receptive Field
For a CNN stage with a sequence of layers, we define the 3D-
Receptive Field (3DRF) for the 𝑘𝑡ℎ convolution layer in the current
stage as 3𝐷𝑅𝐹𝑘 . This 3𝐷𝑅𝐹𝑘 captures the number of neurons in the
initial input tensor to the CNN stage that contributes to computing
individual neurons in this layer 𝑘 . This initial input tensor is the
𝑤0 ×𝑤0 × 3 input tensor (e.g., input image) in the first stage of a
CNN, and a 𝑤0 ×𝑤0 × 𝑐0 input tensor in later stages. Here, 𝑤0 is
the spatial width of the input tensor and 𝑐0 is the channel number
of the input tensor. To cater convolution layers with diverse kernel
sizes and types, 3DRF considers two factors of the spatial width
3𝐷𝑅𝐹𝑤

𝑘
for the kernel size and the channel number 3𝐷𝑅𝐹𝑐

𝑘
for the

convolution type:

3𝐷𝑅𝐹𝑘 = (3𝐷𝑅𝐹𝑤
𝑘
)𝑑 ∗ 3𝐷𝑅𝐹𝑐

𝑘
(4)

where 𝑑 = 1 for 1D convolution (Figure 2) and 𝑑 = 2 for 2D convo-
lution. We recursively compute the spatial width 3𝐷𝑅𝐹𝑤

𝑘
in layer

𝑘 based on the spatial width 3𝐷𝑅𝐹𝑤
𝑘−1 in the preceding layer 𝑘 − 1

and the kernel width𝑤𝑘 in the current layer 𝑘 :

3𝐷𝑅𝐹𝑤
𝑘

= min(3𝐷𝑅𝐹𝑤
𝑘−1 +𝑤𝑘 − 1,𝑤0) (5)

A𝑚𝑖𝑛() is applied for ensuring that the spatial width 3𝐷𝑅𝐹𝑤
𝑘

does
not exceed the spatial width𝑤0 of the input tensor.

We compute recursively the channel number 3𝐷𝑅𝐹𝑐
𝑘
in layer 𝑘

with a property function 𝑔(·, ·), that captures the channel number
3𝐷𝑅𝐹𝑐

𝑘−1 in the preceding layer 𝑘 − 1 and the convolution type 𝑇𝑘
in the current layer 𝑘 :

3𝐷𝑅𝐹𝑐
𝑘
= min(𝑔(3𝐷𝑅𝐹𝑐

𝑘−1,𝑇𝑘), 𝑐0) (6)

A𝑚𝑖𝑛() is applied for ensuring that the channel number 3𝐷𝑅𝐹𝑐
𝑘

does not exceed the channel number 𝑐0 of the input tensor. The
property function 𝑔(·, ·) captures the information flow from the
perspective of channel numbers and is designed for individual
convolution types. For example, as illustrated in Figure 2, we set
the property function 𝑔(3𝐷𝑅𝐹𝑐

𝑘−1, 𝑃𝑊) = 𝑐0 for Pointwise (PW)
Convolution, since the output neuron of PW observes all input
channels. Similarly, we set 𝑔(3𝐷𝑅𝐹𝑐

𝑘−1, 𝐷𝑊) = 3𝐷𝑅𝐹𝑐
𝑘−1 for Depth-

wise Convolution (DW), since only one channel from the preceding
layer 𝑘 − 1 contributes to the neuron in the current layer 𝑘 . This
property function 𝑔(·, ·) is designed only once for a small set of
convolution types. While modern CNNs may have hundreds of
convolution layers, these layers often use the same convolution
type repeatedly. Thus, the property function can be written once
and applied repeatedly for a large number of convolution layers.

3.2 Definition of 3DRF Gain
We derive the 3DRF Gain (Δ3𝐷𝑅𝐹) to measure the impact of a con-
volution layer 𝑘 over the model representation ability, in terms
of the impact over the 3DRF. While 3DRF quantifies the informa-
tion flow in a convolution unit as a whole, 3DRF Gain—denoted
by Δ3𝐷𝑅𝐹— targets at measuring the contribution of a single con-
volution kernel 𝑘 in the unit. The goal of introducing Δ3𝐷𝑅𝐹 is
to create a direct indicator that could match the learning power
(i.e., prediction accuracy) of a CNN model in the granularity of
a single convolution, laying a foundation for static architecture
optimization. Specifically, we define Δ3𝐷𝑅𝐹𝑘 as the difference in

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2053

Table 1: Illustration of computing 3DRF Gain on Variant-3.

k Layer Type 3𝐷𝑅𝐹𝑤
𝑘

3𝐷𝑅𝐹𝑐
𝑘

3𝐷𝑅𝐹𝑘 Δ3𝐷𝑅𝐹𝑘

1 conv3-256 3 128 1152 -
2 conv3-256 5 128 3200 1.17

3 conv3-256 7 128 6272 0.29

Table 2: Impact of 3DRF Gain (Δ3𝐷𝑅𝐹) over Accuracy.

Network Δ3𝐷𝑅𝐹 Accuracy (%) ΔAccuracy (%)

VGG-11 0 92.68 0

Variant-1 1.73 93.56 0.88
Variant-2 1.60 93.46 0.78

Variant-3 0.29 92.75 0.07

Variant-4 0.0 92.58 -0.10
Variant-5 0.0 92.41 -0.27

the receptive field with and without the layer 𝑘 , adjusted with an
exponential decay term:

Δ3𝐷𝑅𝐹𝑘 =
3𝐷𝑅𝐹𝑘 − 3𝐷𝑅𝐹𝑘−1

3𝐷𝑅𝐹𝑘−1
∗ 𝑒−𝛼∗

3𝐷𝑅𝐹𝑘−1
𝑉0 (7)

where 𝑉0 = 𝑤0 × 𝑤0 × 𝑐0 is the volume of the input tensor. The
exponential decay term rescales the impact of the 𝑘𝑡ℎ layer with
regards to the information already observed by 1𝑡ℎ to (𝑘 − 1)𝑡ℎ
layers. which composes of two major terms: the former calculates
the relative increase in 3DRF incurred by kernel 𝑘 ; the latter intro-
duces an exponentially decay term to rescale the impact of the 𝑘𝑡ℎ

layer with regards to the information already observed by 1𝑡ℎ to
(𝑘 − 1)𝑡ℎ layers. This decay term is inspired by the observation
that the elements in the central region of the input tensor usually
have a larger impact than the newly observed elements on the mar-
gin: the central input elements have more paths to propagate their
values into the output in the forward pass and larger gradient in
the backward pass. Note that 𝛼 is a hyperparameter that should be
set larger than 0. In our empirical study, we tried multiple choices
and observed no substantial difference in architecture optimization,
and we set it to 3 for the rest of this paper.

3.3 Case Study: Accuracy Impact of 3DRF Gain
We demonstrate the impact of diverse (Δ3𝐷𝑅𝐹) over the accuracy.
Here we generate diverse (Δ3𝐷𝑅𝐹) by sticking to the same base
model and inserting an additional convolution layer at diverse lo-
cation. More study on the (Δ3𝐷𝑅𝐹) from varying the type and
combination of convolution layers will be conducted later in the
evaluation section. As shown in Figure 2, we take VGG11 [26] as the
baseline structure and run it on CIFAR-10 dataset [11]. Specifically
we generate five VGG-variants by inserting a single standard convo-
lution before each max pooling. The inserted convolution layer has
the same kernel width and channel number as its preceding layer.
For example, we insert a conv3-64 before the first max pooling
as the Variant-1, and a conv3-512 before the fifth max pooling as
the Variant-5. Specifically, we train these models on the CIFAR-10
training dataset and report the accuracy on the CIFAR-10 testing

dataset. We repeat this procedure for ten times and present the
average accuracy here. We also present the Δ3𝐷𝑅𝐹 of each variants
for demonstrating the impact of Δ3𝐷𝑅𝐹 over accuracy. Δ3𝐷𝑅𝐹 is
calculated by leveraging our proposed Equation 7 for the newly
inserted layer.

As shown in Table 1, the procedure of computing Δ3𝐷𝑅𝐹 on
Variant-3, which inserts an additional layer to the third stage in
VGG-11. Originally, the third stage in VGG-11 contains two con-
volution layers (i.e., the 1𝑠𝑡 layer and the 2𝑛𝑑 layer in Table 1). We
insert the 3𝑟𝑑 convolution layer with the same kernel width and
channel number as the first two layers. The input tensor to this
third stage is of shape 8 × 8 × 128, leading to a 𝑉0 of 8192. Follow-
ing Equation 4 - 6, we can compute 3𝐷𝑅𝐹𝑤

𝑘
, 3𝐷𝑅𝐹𝑐

𝑘
, and 3𝐷𝑅𝐹𝑘

recursively. The derived 3𝐷𝑅𝐹𝑘 can be exploited for computing
Δ3𝐷𝑅𝐹 following Equation 7. This procedure can be applied for
other VGG-11 model variants, leading to the Δ3𝐷𝑅𝐹 in Table 2.

As shown in Table 2, we can clearly figure out the the impact
of Δ3𝐷𝑅𝐹 on CNN model accuracy. Large Δ3𝐷𝑅𝐹 of the newly
inserted layer agrees with notable accuracy gain, as is the case for
Variant-1 and Variant-2. For the Variant-3, small Δ3𝐷𝑅𝐹 indicates
close-to-saturation information coverage, yielding negligible accu-
racy improvement from the original model. Variant-4 and Variant-5
has a low Δ3𝐷𝑅𝐹 of 0, indicates that inserting convolution layers
does not improve its 3DRF. The insight is that, for an input tensor
with a small spatial width 𝑤0 of 2 (after 4 times of max pooling
from an input image of shape 32 × 32 × 3), a single convolution
layer of kernel width 3 is sufficient for capturing all neurons. In fact,
Variant-4 and Variant-5 show an accuracy degradation of −0.10%
and −0.27% respectively. This degradation shows that a Δ3𝐷𝑅𝐹
of 0 signals overfitting since all input elements have already been
observed by other kernels at such stage. Comparing across variants,
Variant-1 has a larger Δ3𝐷𝑅𝐹 of 1.73 and a larger Δ𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of
0.88%, compared with Variant-5 with Δ3𝐷𝑅𝐹 of 0.0 and Δ𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
of −0.27%. This trend demonstrates a strong correlation between
theΔ3𝐷𝑅𝐹 and theΔ𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, thus guiding the NN design in terms
of the insertion location.

To sum up, Δ3𝐷𝑅𝐹 effectively probes the potential of accuracy
improvement, and we leverage such an easy-to-compute metric to
build our architecture optimizer in Section 4.

4 ARCHITECTURE OPTIMIZER VIA 3DRF
We build a static Architecture Optimizer based on 3DRF and Δ3𝐷𝑅𝐹 .
It examines the structure inefficiency in a given CNN architecture
and optimizes it at the stage level and kernel level.

4.1 Stage-Level Organizer
Stage-level organizer (Figure 3) manages to improve the prediction
accuracy of a CNN design by iteratively removing a convolution
kernel from a saturated stage or moving it to another stage with
more room to absorb new information (i.e., learn from more mar-
ginal elements introduced by the kernel).

Three sub-steps are conducted in each iteration. The first step is
to find the convolution kernel withminimumΔ3𝐷𝑅𝐹 , which has the
lowest contribution to the 3DRF. In consideration of the decaying
property of Δ3𝐷𝑅𝐹 within a stage, this step can be simplified to
compute the Δ3𝐷𝑅𝐹 of the last convolution kernel in each stage.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2054

Conv
7

Conv
8

Conv
9

Conv
2’

2
Spot stage 1 with
largest ∆3DRF’MAX

from the temporarily
inserted conv

Conv
1

Pooling
Conv
2 · · · Pooling

Stage 1
Stage 5

Original
CNN

Structure

Optimized
CNN

Structure

Conv
1’

Pooling
Conv
3’

Conv
2· · · Pooling

Conv
8

Stage 1 Stage 5

3

1

if ∆3DRF’MAX > ∆3DRFMIN and
∆3DRF’MAX > θ , move conv 9

from stage 5 to stage1

Select ∆3DRFMIN from
conv 9 of stage 5

Figure 3: Illustration of the Stage-level Organizer.

Comparing across stages, we select the convolution layer with the
minimum 3DRF Gain, denoted as Δ3𝐷𝑅𝐹𝑀𝐼𝑁 in Figure 3, and
identify the corresponding stage as the source stage. This identified
convolution layer will be either deleted or moved from the source
stage to another stage, in the following steps.

The second step is to spot the stage with the largest room for
improving 3DRF. This step follows the insight from our case study
that a larger Δ3𝐷𝑅𝐹 often leads to higher accuracy. We tentatively
append the convolution kernel identified in the first step to each
stage and compute the corresponding Δ3𝐷𝑅𝐹 . When appending
the convolution layer, the input and output channel number will
be adjusted for catering to the preceding layers in the source stage
and the following layer in the next stage if available. Comparing
across stages, we can find the one, called target stage, with maxi-
mum Δ3𝐷𝑅𝐹 for the appended layer (Δ3𝐷𝑅𝐹 ′

𝑀𝐴𝑋
in Figure 3). This

step follows the insights obtained from our case study that a strong
correlation exists between Δ3𝐷𝑅𝐹 and Δ𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦. to conduct ar-
chitecture optimization.

The third step decides whether moving the last convolution layer
from the source stage to the target stage or simply removing this
layer. When moving the convolution layer, we adjust the input
channel number and the output channel number with the same
strategy in the second step. This step follows the insights obtained
from our case study to conduct architecture optimization. There are
three key choices: 1) If Δ3𝐷𝑅𝐹 ′

𝑀𝐴𝑋
> Δ3𝐷𝑅𝐹𝑀𝐼𝑁 and Δ3𝐷𝑅𝐹 ′

𝑀𝐴𝑋
> \ , we move the last kernel from the source stage and append it to
the target stage; 2) If Δ3𝐷𝑅𝐹 ′

𝑀𝐴𝑋
< \ and Δ3𝐷𝑅𝐹𝑀𝐼𝑁 < \ , we just

remove the last kernel from the source stage (no appending); 3) If
Δ3𝐷𝑅𝐹𝑀𝐼𝑁 > Δ3𝐷𝑅𝐹 ′

𝑀𝐴𝑋
and Δ3𝐷𝑅𝐹𝑀𝐼𝑁 > \ , we keep the origi-

nal structure and terminate our optimization procedure. Here the
hyperparameter \ is the border we draw empirically to distinguish
underfitting from overfitting. For example, \ is set to 0 for VGG.
Following this iterative optimization procedure, our organizer man-
ages to mitigate the structure-level inefficiency in a CNN design

via static architecture optimization. The experimental results of the
organizer can be found in our evaluation.

4.2 Kernel-Level Decomposer
At the kernel level, our decomposer reduces the computational cost
of a CNN architecture design, by substituting its standard convolu-
tion kernels with less computational expensive convolution blocks.
The key challenge here is to construct such an efficient and effective
convolution block with multiple factorized kernels. Previous manual
efforts by domain experts have made some progress [23, 32, 33],
but the underlying design principle remains unclear. In this paper,
we provide the first easy-to-follow design principle, Rule of Kernel
Replacement, to guide the design of efficient convolution blocks.

Rule of Kernel Replacement To avoid significant accuracy
degradation and achieve computation efficiency, a convolution
block 𝑁 can replace the standard convolution kernels 𝑆 only if two
conditions are satisfied: 1) Quality Condition: 3𝐷𝑅𝐹 (𝑁) = 3𝐷𝑅𝐹 (𝑆)
for the same input tensor; 2) Compact Condition: 3𝐷𝑅𝐹 (𝑁 − 𝑥) <
3𝐷𝑅𝐹 (𝑆) if we remove a factorized kernel 𝑥 from 𝑁 . The former
ensures the effectiveness of 𝑁 with regards to its learning capacity,
while the latter guarantees its optimality in terms of computation
efficiency. The rule helps us unify the previous construction of the
convolution block, as well as inspires us to build a new convolution
blocks and one efficient factorized kernel.

Unifying Existing Convolution Blocks This section shows
that the previous four convolution blocks follow the Rule of Kernel
Replacement: they have the same 3DRF as the standard convolutions
and they are already in the compact form that cannot be further
simplified. Figure 4 depicts the 3DRF for a standard convolution
block (𝑆) and four previously explored convolution blocks (𝐴-𝐷), in
their spatial and channel dimensions. As shown in Figure 4 (𝑆), the
3DRF spatial size 3𝐷𝑅𝐹𝑤1 for 𝑆 is 3 for one standard convolution and
3𝐷𝑅𝐹𝑤2 is 5 when two standard convolutions are packed together

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2055

Standard
Convolution

c

3
3
(S)

I. Channel:

II. Spatial
1 conv: 3*3
2 convs: 5*5

In

Out

Standard
Conv

PW+DW

c

1
1

(A)

I. Channel:

II. Spatial:
Spatial:1 conv: 3*3
2 convs: 5*5

In

Out
3

3

1

PW

DW

DW+PW

c

1
1
(B)

I. Channel:

II.Spatial:
Spatial:1 conv: 3*3
2 convs: 5*5

In

Out

3

3

1

DW

PW

(GC+Interlace+
GPW)*2

3
3

(C)

I. Channel:

II.Spatial:
Spatial:1 conv: 3*3
2 convs: 5*5

In

Out

GC1C0
g

I

g
C0

Interlace

GPW1

GC2

Interlace

GPW2

1

(GPW+Shuffle
+DW+GPW)*2

3

3

(D)

I. Channel:

II.Spatial:
Spatial:1 conv: 3*3

2 convs: 5*5

In

Out

GPW1C0
g

s
Shuffle

DW1

GPW2

DW2

GPW3

1

1

C0
g

1 Shuffle

GPW4

Figure 4: Illustration of the 3DRF, both in the channel (I) and spatial (II) dimension, for the standard kernels (𝑆) and previous
convolution blocks (𝐴-𝐷). 𝑔 is the number of groups for GC and GPW. The arrow denotes the flow from inputs to outputs
in the channel dimension, and the number of input channels that could flow into an output neuron would be the channel
dimension of 3DRF for that block. We omit the process of computing the spatial size of 3DRF, while only giving the computed
result based on Equation 4 in the figure.

in the block. The 3DRF channel dimension 3𝐷𝑅𝐹𝑐
𝑘
for 𝑆 equals the

number of the input channels to the block.
Convolution block𝐴 (adopted by Xception [2]) and 𝐵 (applied in

MobileNet [8]) follow a similar structure. Both𝐴 and 𝐵 successfully
maintain the same 3DRF with that of 𝑆 with one standard kernel.
Specifically, the spatial coverage is managed by DW 3 and channel
coverage is taken care of by PW, which communicates the infor-
mation among all input channels. Convolution block 𝐶 (used in
clcNet [32]) and 𝐷 (utilized by ShuffleNet [33]), on the other hand,
achieve the same 3DRF with that of 𝑆 with two standard kernels.
Take block 𝐶 (shown in Figure 4 (𝐶)) as an example, one combina-
tion of GC, Interlace, and GPW, can perceive the same spatial region
but only half of the entire input channels, compared to a standard
convolution kernel. But with one extra GC+Interlace+GPW, the
channel dimension gets full coverage. Thus, the 3DRF is the same
for the block with (GC+Interlace+GPW) * 2 and two standard con-
volutions. The proof of the compactness for four convolution blocks
is omitted, but it is clear from the plot that if we remove any of the
factorized kernels, the 3DRF cannot be maintained.

New Kernel Design Inspired by the Rule of Kernel Replacement,
we discover an unexplored convolution block and a new type of
factorized kernel, shown in Figure 5. The first block includes a
DW, a channel shuffle, and a GWC. The key insight of the design
is choosing a DW to capture information in the spatial dimension
and using a GPW with a shuffle operation to observe full channel
information. Since the PW contributes to the majority of the com-
putations in the previous factorized design (more than 95% FLOPs
in MobileNet [8]), the usage of GPW to replace PW can largely
reduce the computation cost, compared to blocks like (A) and (B).

The convolution block we come up with composes of a DW
and a Rolling-Pointwise Convolution (RPW), as shown in the left
side of Figure 5 (model 𝐹). The comparison between RPW and

3Definitions of factorized kernels like DW can be found in the Related Work Section.

II.Spatial:

GPW vs. RPW
Channel Channel

1st filter

2nd filter

3rd filter

4th filter

GPW-g2 RPW-g2-o50%

I.Channel:

In

Out

DW1

RPW1

DW2

RPW2

DW3

RPW3

(DW+RPW)
*3

1

3

3

1
1

𝑪𝟎
𝒈

(F)

1. Conv 3*3
2. Conv 5*5
3. Conv 7*7

Figure 5: Left: DW+RPW convolution block design. Right:
Comparison of RPW kernel with GPW kernel. Note that in
RPW, adjacent filters overlap in channel dimensions.

GPW is presented in the right side of Figure 5. Different from
GPW, RPW is the new factorized convolution kernel we invented,
where adjacent convolution filters partially overlap in the channel
dimension. The overlapped part serves as a bridge to communicate
the different channel information and allows the later kernel to
observe different channels without channel shuffle. Specifically,
there are two parameters that come with RPW: group number
𝑔 and overlap ratio 𝑜 . For instance, RPW-gX-oY% denotes each
filter in the convolution kernel takes 1

𝑋
number of input channels,

while adjacent filters in RPW have y% overlap in their consumed
channels. The newly designed block outperforms previous designs
in accuracy, memory and computation efficiency, which are detailed
in our evaluation.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2056

Listing 2: Compositing RPW via PyTorch Operators.
1 width = int(input_channel/num_groups)
2 start, end, start_v, end_v= 0, width, 0, width
3 item_set, slice_li = set(), []
4 # input channel range for each kernel filter.
5 for fid in range(output_channel):
6 item_set.add((start,end)); slice_li.append((start,end))
7 start_v = end_v - int(overlap * width)
8 end_v = start_v + width
9 start, end= start_v%input_channel, end_v%input_channel
10 # define a groupwise convolution.
11 conv2D = nn.Conv2d(width*len(item_set), len(item_set),
12 kernel_size=1, groups=len(item_set))
13 # forward computation.
14 def forward(input):
15 comb_unit = []
16 for idx in range(len(item_set)):
17 item = slice_li[idx]
18 start, end = item[0], item[1]
19 if start > end and start < input_channel:
20 tmp = input[:, start:, :, :]
21 tmp_1 = input[:, :end, :, :]
22 new_tmp = torch.cat([tmp, tmp_1], dim=1)
23 comb_unit.append(new_tmp)
24 else:
25 comb_unit.append(input[:, start:end, :, :])
26 comb_tensor = torch.cat(combined_unit, dim=1)
27 return conv2D(comb_tensor)

Implementation of New Kernel Design To implement the
new rolling-pointwise convolution, we introduce two kind of im-
plementation by compositing the existing Pytorch Operators. First,
we can first extract the corresponding channels and concatenate
them together.Wewill leverage the existing Pytorch operators, such
as tensor slicing, concatenation, and standard group convolution.
There are several steps, as shown in Listing 2. The second type of de-
sign is to let the convolution iterate through the input channel. The
second implementation circumvents the “huge” concatenated ten-
sor in the above implementation by applying convolution operation
before concatenating. Onemajor key insight is that the computation
on the large concatenated tensor can be decomposed into the more
effective computation on a set of small tensors. Instead of simply
combining all the extracted features maps, we can pre-build a set of
lightweight convolutions, each of which will generate the feature
map for only one kernel filter. Finally, we concatenate these output
feature map together. While this solution can largely overcome the
third problem of the above channel-stack implementation, it is still
hindered by the excessive inefficient Pytorch operations and lack
of parallelization.

5 EVALUATION
To validate the effectiveness of the architecture optimizer, we run
comprehensive experiments on the state-of-the-art CNN models
(VGG16 and VGG19 [26], MobileNet [8] and ResNet50 [7]. The
major reason of choosing these CNN models are 1) VGG16 and
VGG19 are two most classic CNNs with linearly stacked layers; 2)
MobileNet is the representative lightweight model with DW+PW
convolution block; 3) ResNet50 is the representative model with
the non-linearly stacked layers (residual connections).

Dataset:We use CIFAR-10 (CIFAR-100) [11] and ImageNet [3]
dataset for evaluation. CIFAR-10 consists of 60,000 32×32 colour
images in 10 classes, with 6,000 images per class. CIFAR-100 dataset

is just like the CIFAR-10, except it has 100 classes containing 600
images each. ImageNet is a large dataset of over 14 million images
with up to 1,000 output classes, and it is mainly used for computer
vision research, such as image classification.

Training Settings: We follow the conventional settings [13]
for training and testing on CIFAR-10 and CIFAR-100: learning rate
starts from 0.1 and decays by the factor of 0.1 after 150 and 250
epochs, with 350 epochs in total. We adopt SGDwith 0.9 momentum
and 5e-4 for the weight decay. We apply normalization for the input
image with (0.491, 0.482, 0.446) for each RGB channel as the mean
and (0.247, 0.243, 0.261) for standard deviation, respectively. And
we select two state-of-the-art Pytorch CNNs implementations on
CIFAR-10 and CIFAR-100 , respectively. For ImageNet, we use the
official Pytorch implementations 4 and choose learning rate starts
with 0.1 with total 120 epochs. We adopt SGD with 0.9 momentum
and 1e-4 weight decay. We also apply normalization for the input
image with (0.485, 0.456, 0.406) for each RGB channel as the mean
and (0.229, 0.224, 0.225) for standard deviation. We select the pre-
trained model as the baseline from Pytorch official website.

5.1 Stage-Level Organizer
This experiment aims to demonstrate the effectiveness of our stage-
level organizer. Specifically, we first use CIFAR-10 and CIFAR-100
for detailed analysis, and further leverage ImageNet to show our
design applicability and scalability towards the challenging state-
of-the-art large dataset. Table 3 exhibits the performance of various
CNNs optimized by the stage-level organizer, including computa-
tion complexity (MFLOPs), parameter size, and accuracy. It is clear
that the stage-level organizer can improve the accuracy of various
state-of-the-art CNN models. On CIFAR-10 and CIFAR-100, stage-
level organizer improves the accuracy of four evaluated models by
1.18% and 1.90% on average, while reducing model parameters by
54.15% and 32.33% on average, respectively. We also notice on the
more complicated model, such as ResNet50, the accuracy improve-
ment is notable (2.04% on CIFAR-10 and 0.86% on CIFAR-100). The
original ResNet50 model has 4 stages. Each stage contains {3, 4, 6, 3}
bottleneck blocks respectively. Following the iterative optimization
steps, the organizer moves the last two blocks from the third stage
to the first stage and the last block from the last stage to the sec-
ond stage to generate an optimized ResNet50 containing {5, 5, 4, 2}
blocks in each stage. By improving the total Δ3𝐷𝑅𝐹 , this optimized
architecture gets both higher accuracy and fewer model parame-
ters. In addition, on the lightweight MobileNet model, which has
factorized kernel designs (DW+PW) with the smallest number of
parameters, our stage-level organizer also achieves a notable perfor-
mance improvements (1.38% on CIFAR-10, and 5.47% on CIFAR-100).
This is because our organizer finds five convolutions—four from
the fourth stage and one from the last stage—which suffer from
small Δ3𝐷𝑅𝐹 . By moving these convolutions to the first and second
stage, we get a new architecture contains {4, 4, 2, 2, 1} convolutions
in each stage, which offers a more efficient architecture in terms
of less model parameters and higher accuracy. On the challenging
ImageNet, our stage-level organizer can still effectively reduce the
number of model parameters (up to 16.7%), meanwhile improving
the testing accuracy (up to 0.58%) compared with baseline models.

4github.com/pytorch/examples/tree/master/imagenet

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2057

github.com/pytorch/examples/tree/master/imagenet

Table 3: Performance comparison (CIFAR-10) between orig-
inal CNNs and reorganized structures.

Network MFLOPs Param. Acc. (%) Δ3𝐷𝑅𝐹

VGG16 310 14.73M 92.64 -
VGG16-opt 370 5.10M 92.95 2.30

VGG19 400 20.04M 91.91 -
VGG19-opt 490 8.09M 92.89 3.13

MobileNet 50 3.22M 90.67 -
MobileNet-opt 50 1.13M 92.05 3.94

ResNet50 1,300 23.52M 93.75 -
ResNet50-opt 1,310 17.24M 95.79 0.76

Table 4: Performance comparison (CIFAR-100) between orig-
inal CNNs and reorganized structures.

Network MFLOPs Param. Acc. (%) Δ3𝐷𝑅𝐹

VGG16 330 34.02M 72.93 -
VGG16-opt 390 24.39M 74.64 2.30

VGG19 420 39.33M 72.23 -
VGG19-opt 500 27.38M 74.00 3.13

MobileNet 50 3.32M 65.98 -
MobileNet-opt 50 1.23M 71.45 3.94

ResNet50 1,310 23.71M 77.39 -
ResNet50-opt 1,380 21.89M 78.25 0.76

Table 5: Performance comparison (ImageNet) between orig-
inal CNNs and reorganized structures.

Network MFLOPs Param. Acc. (%) Δ3𝐷𝑅𝐹

VGG16 15,500 138.36M 71.59 -
VGG16-opt 16,900 133.82M 72.17 0.39

VGG19 19,670 143.67M 72.38 -
VGG19-opt 21,060 141.34M 72.61 1.09

MobileNet 580 4.23M 70.60 -
MobileNet-opt 570 3.52M 71.05 2.59

ResNet50 4,120 25.56M 76.15 -
ResNet50-opt 4,130 23.67M 76.56 0.47

5.2 Kernel-Level Decomposer
This experiment aims to demonstrate the benefits of our brand-new
kernel design. We first use VGG16-opt (with stage-level optimiza-
tion) on CIFAR-10 for a detailed study.We further highlight our new
kernel scalability by applying it towards the complicated ResNet50-
opt model on ImageNet. Table 6 shows that our new convolution
block based on rolling-channel design achieve a better balance be-
tween the model efficiency and the prediction accuracy on VGG16-
opt on CIFAR10, in contrast to DW+PW factorized kernel design.
We tried three different group numbers 𝑔 (2, 4, 8), as well as two
overlapping ratios 𝑜 (33%, 50%). Our model with DW+RPW-g2-
o50% achieves a better accuracy compared to the high-performance

Table 6: Kernel-level design (CIFAR-10) on VGG16-opt.

Network MFLOPs Param. Acc.(%)

Baseline 370 9.64M 92.95

DW+PW 50 1.11M 92.12

DW+GPW-g2 30 0.67M 92.35

DW+GPW-g4 20 0.36M 88.05

DW+GPW-g8 10 0.20M 86.41

DW+RPW-g2-o33% 30 0.66M 92.52

DW+RPW-g2-o50% 30 0.66M 92.70

DW+RPW-g4-o33% 20 0.36M 91.61

DW+RPW-g4-o50% 20 0.36M 91.59

DW+RPW-g8-o33% 10 0.20M 89.86

DW+RPW-g8-o50% 10 0.20M 90.19

DW+PWmodel while saving about 40.0% FLOPs and 40.5% parame-
ters. With an increase in the group number, we observe a significant
reduction in both computational cost and parameter usage, along
with a slight degradation in prediction accuracy. This aligns well
with our expectation that the group number 𝑔 determines the num-
ber of input channels that GPW/RPW would take, and thus also
decides the number of computations and parameters of the model.

We also notice that our new convolution block design consis-
tently outperforms with the ones without overlap (𝑜) under the
same number of groups (𝑔). For example, our new design (DW+RPW-
g4-o33%) outperform DW+RPW-g4 with 3.56% better accuracy.
Under the settings with same number of group in RPW, such as
DW+RPW-g2-o33% vs. DW+RPW-g2-o50%, the latter with higher
overlap ratio offers higher accuracy, indicating the effectiveness of
overlapping channels to improve model accuracy.

6 CONCLUSION
In this paper, we propose 3D-Receptive Field (3DRF), an interpretable
and easy-to-compute metric to guide the search of CNN designs. To
illustrate the usefulness of 3DRF, We build an optimizer and improve
the CNN structure at the stage and kernel level. The stage-level
optimization target at reducing the model structural redundancy by
improving the kernel organization, while the kernel-level optimiza-
tion improve the individual kernel design by reducing the number
of parameters without much compromising the model accuracy. Ex-
periments show models generated by our optimizer achieve higher
efficiency and accuracy compared with state-of-the-art CNNs.

7 ACKNOWLEDGMENT
This work was supported in part by NSF 1925717. Use was made of
computational facilities purchased with funds from the National
Science Foundation (OAC-1925717) and administered by the Cen-
ter for Scientific Computing (CSC). The CSC is supported by the
California NanoSystems Institute and the Materials Research Sci-
ence and Engineering Center (MRSEC; NSF DMR 1720256) at the
University of California, Santa Barbara.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2058

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

neural network architectures using reinforcement learning. ICLR (2017).
[2] François Chollet. 2017. Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR).

[3] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (CVPR).

[4] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. 2017. Simple and efficient
architecture search for convolutional neural networks. arXiv (2017).

[5] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Efficient Multi-
objective Neural Architecture Search via Lamarckian Evolution. ICLR (2019).

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR).

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
e-prints (2017).

[9] Xiaojie Jin, Jiang Wang, Joshua Slocum, Ming-Hsuan Yang, Shengyang Dai,
Shuicheng Yan, and Jiashi Feng. 2019. Rc-darts: Resource constrained differen-
tiable architecture search. arXiv preprint arXiv:1912.12814 (2019).

[10] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale Video Classification with Convolutional
Neural Networks. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

[11] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems (NeurIPS), F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.).

[13] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.
Pruning filters for efficient convnets. ICLR (2017).

[14] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In Proceedings of the European Conference on Computer
Vision (ECCV).

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[16] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning Efficient Convolutional Networks Through Network
Slimming. In The IEEE International Conference on Computer Vision (ICCV).

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR).

[18] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European Conference on Computer Vision (ECCV).

[19] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and
Jianchao Yang. 2020. AtomNAS: Fine-Grained End-to-End Neural Architecture
Search. In International Conference on Learning Representations (ICLR).

[20] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In International Conference on
Machine Learning. PMLR, 4095–4104.

[21] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. AAAI (2019).

[22] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution of
image classifiers. In Proceedings of the 34th International Conference on Machine
Learning (ICML).

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[24] Charles Scott Sherrington. 1906. Observations on the scratch-reflex in the spinal
dog. The Journal of physiology (1906).

[25] Laurent Sifre and Stéphane Mallat. 2014. Rigid-motion scattering for image classi-
fication. Ph.D. Dissertation. Citeseer.

[26] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks
for large-scale image recognition. ICLR (2015).

[27] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-First AAAI Conference on Artificial Intelligence (AAAI).

[28] Alexander Toshev and Christian Szegedy. 2014. Deeppose: Human pose estima-
tion via deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR).

[29] Naiyan Wang and Dit-Yan Yeung. 2013. Learning a Deep Compact Image Rep-
resentation for Visual Tracking. In Advances in Neural Information Processing
Systems (NeurIPS), C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger (Eds.).

[30] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,
Mingxing Tan, Thomas Huang, Xiaodan Song, and Quoc Le. 2019. Scaling Up
Neural Architecture Search with Big Single-Stage Models. arXiv preprint (2019).

[32] Dongqing Zhang. 2018. clcNet: Improving the Efficiency of Convolutional Neural
Network using Channel Local Convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[33] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[34] Yanqi Zhou and Gregory Diamos. 2018. Neural architect: A multi-objective neural
architecture search with performance prediction. In SysML.

[35] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2059

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Architecture Search (NAS)
	2.2 Standard Convolution
	2.3 Kernel Factorization

	3 3D-Receptive Field
	3.1 Definition of 3D-Receptive Field
	3.2 Definition of 3DRF Gain
	3.3 Case Study: Accuracy Impact of 3DRF Gain

	4 Architecture Optimizer via 3DRF
	4.1 Stage-Level Organizer
	4.2 Kernel-Level Decomposer

	5 Evaluation
	5.1 Stage-Level Organizer
	5.2 Kernel-Level Decomposer

	6 Conclusion
	7 Acknowledgment
	References

