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ABSTRACT
User response prediction, which aims to predict the probability

that a user will provide a predefined positive response in a given

context such as clicking on an ad or purchasing an item, is crucial

to many industrial applications such as online advertising, recom-

mender systems, and search ranking. For these tasks and many

other machine learning tasks, an indispensable part of success is

feature engineering, where cross features are a significant type of

feature transformations. However, due to the high dimensionality

and super sparsity of the data collected in these tasks, handcrafting

cross features is inevitably time expensive. Prior studies in predict-

ing user response leveraged the feature interactions by enhancing

feature vectors with products of features to model second-order or

high-order cross features, either explicitly or implicitly. However,

these existing methods can be hindered by not learning sufficient

cross features due to model architecture limitations or modeling

all high-order feature interactions with equal weights. Different

features should contribute differently to the prediction, and not all

cross features are with the same prediction power.

This work aims to fill this gap by proposing a novel architecture

Deep Cross Attentional Product Network (DCAP), which keeps

cross network’s benefits in modeling high-order feature interac-

tions explicitly at the vector-wise level. By computing the inner

product or outer product between attentional feature embeddings

and original input embeddings as each layer’s output, we can model

cross features with a higher degree of order as the network’s depth

increases. We concatenate all the outputs from each layer, which

further helps the model capture much information on cross fea-

tures of different orders. Beyond that, it can differentiate the impor-

tance of different cross features in each network layer inspired by

the multi-head attention mechanism and Product Neural Network
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(PNN), allowing practitioners to perform a more in-depth analysis

of user behaviors. Additionally, our proposed model can be easily

implemented and train in parallel. We conduct comprehensive ex-

periments on three real-world datasets. The results have robustly

demonstrated that our proposed model DCAP achieves superior

prediction performance compared with the state-of-the-art models.

Public codes are available at https://github.com/zachstarkk/DCAP.
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1 INTRODUCTION
With the continuous and rapid growth of online service platforms,

user response prediction (URP) has played an increasingly impor-

tant role as the central problem of many online applications, such

as online advertising [10, 14, 21], recommender systems [6, 15],

and web search [29]. In online advertising, quantifying user intent

allows advertisers or social platforms to target ads’ right users. It

leads to the judicious use of multi-billion marketing dollars and

also renders a pleasant user experience. In recommender systems,

correctly predicting the rating or preference a user would respond

to an item can also create a delightful user experience while driving

incremental revenue.

As illustrated in Figure 1, based on the user level features col-

lected within a particular historical window of any specific task,

the predictive system can estimate in advance how likely a user

will provide a predefined positive response, e.g., clicks an ad (also
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known as click-through rate, CTR), likes a post, purchases an item,

etc., in a given context [23].

As Figure 1 also reflects, user-level data collected from these

tasks are usually in a multi-field categorical form, for example,

[Country=USA, Gender=Male, · · · ] which is normally transformed

into binary features via one-hot encoding. When performing ma-

chine learning on solving such prediction tasks, an indispensable

part of success is applying feature interactions across raw features,

which has been emphasized in related literature [3, 6, 11, 36]. For

instance, young male users may have a higher chance of clicking

ads toward video games, which indicates that the cross feature re-
garding age and gender can be a significant predictor for estimating

whether users will click on some certain types of ads. However, the

binarized user data leads to a high-dimensional and sparse feature

space (e.g., the well-known CTR prediction dataset Criteo
1
has a

feature dimension of over one million with sparsity over 99% [30])

where handcrafting powerful cross features are inevitably time ex-

pensive, and results can rarely be generalized to unseen high-order

feature interactions [7].

Some pioneering work was then proposed to overcome the lim-

itation by leveraging feature interactions in an automation fash-

ion. For example, Factorization Machines (FMs) [28] was proposed

to model second-order cross features by parameterizing a cross

feature’s weight as the constituent features’ inner product of the

embedding vectors. Other recent developments [11, 13, 18, 36] have

also augmented FMs with deep neural networks (DNNs) to model

more expressive high-order feature interactions, which have gained

promising results. However, we argue that two remaining chal-

lenges can potentially hinder these approaches. First, for models

relying on DNNs to achieve the capability of modeling high-order

cross features (e.g., DeepFM [11], NFM [13], etc.), an obvious draw-

back is that deep neural networks only learn feature interactions in

an implicit way, which have been shown inefficient in learning mul-

tiplicative feature interactions [2, 30]. It also significantly reduces

the model’s interpretability. Second, for models able to explicitly

model high-order feature interactions (e.g., xDeepFM [18], etc.),

they are limited by assigning equal weights to factorized embed-

dings. In most real-business scenarios, it is undeniable that different

predictors might have different predicting power, and not all the

features contain useful signals for making the forecasting. Note

that Attentional Factorization Machine (AFM) [12] produces an

attention-based pooling layer to differentiate the cross feature im-

portance such that the influence of less useful feature interactions

can be compromised by assigning lower weights. Unfortunately,

AFM only aims to model second-order feature interactions, which

lacks the capability of capturing high-order feature information.

To overcome these challenges, we propose a novel architecture

Deep Cross Attentional Product network (DCAP) that aims to explic-

itly learn high-order cross features with discriminated importance

at a vector-wise level. Our approach is inspired by the cross network
[33] architecture and utilizes the multi-head self-attention mecha-

nism proposed in Transformer [32] which is now the defacto state-
of-the-art model in broad NLP domains [4, 8]. To be specific, we

first form the attentional feature embeddings in the first network

layer using the self-attention mechanism. We then compute the

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

Figure 1: An visualization of illustrating user response pre-
diction tasks.

inner product or outer product between attentional feature em-

beddings and original input embeddings as each layer’s output.

By increasing the network’s depth, we further generate the cross

attentional features across each layer using the last layer’s outputs

and the original inputs. As the depth of the network increases,

the degree of feature interactions grows up correspondingly. Sig-

nificantly, this attention mechanism greatly enhances our model’s

interpretability and transparency, allowing practitioners to perform

a more in-depth analysis of user behaviors. Inspired by PNN [26],

for each layer, we represent all cross features in product fashion.

To summarize, we make the following contributions:

• Wepropose a novel Deep Cross Attentional Product Network

(DCAP) that explicitly models high-order feature interac-

tions with discriminated importance at a vector-wise level in

an automation fashion. It can efficiently capture highly non-

linear feature interactions of bounded degree concerning the

network’s depth, requiring no handcrafted feature engineer-

ing or large-scale searching at a tremendous computational

cost.

• We concatenate outputs from each layer such that the net-

work outputs consist of all cross features with the degree of

order ranging from 1 to the highest, which contains richer

predictor information.

• We conduct comprehensive experiments on three real-world

datasets, and the results have demonstrated that our pro-

posed DCAP achieves superior performance compared with

the state-of-the-art models.

The remainder of this paper is organized as follows. The related

work is first reviewed in Section 2. We further provide some prelim-

inary knowledge in Section 3, which is necessary for understanding

our model architecture and the inspirations of our design. We then

describe our proposed architecture DCAP in Section 3. We conduct

experiments and report the results in Section 4. For simplicity, we

take the click-through rate (CTR) estimation in online advertising

as working examples to explore our model’s potential effective-

ness as it is one of the most critical applications of user response

prediction. Finally, we conclude our work in Section 5.

2 RELATEDWORK
The problem of user response prediction in machine learning is es-

sentially a binary classification problem with prediction likelihood



as the training objective [23, 26]. It is widely acknowledged that

modeling feature interactions are crucial for a good performance

[6, 11, 18, 33].

2.1 Individual Models
Rendle et al. [28] proposed the pioneering work Factorization Ma-

chines (FMs) to capture at most second-order feature interactions.

It has been demonstrated effective in both recommender systems

[12, 25] and CTR prediction [11, 18]. With the success of FMs, differ-

ent variants of FMs have been proposed. For example, Juan et al. [14]
proposed Field-aware Factorization Machine (FFM) to model fine-

grained interactions across features within different fields. Cheng

et al. [5] proposed GBFM and He et al. [12] introduced AFM to cap-

ture the importance of different second-order feature interactions.

However, all these approaches focused on modeling low-order fea-

ture interactions, which are not sufficient for the model to capture

high-order information. Blondel et al. [3] proposed a high-order

FMs algorithm (HOFMs) to generalize the capability of FMs for

modeling any cross feature at any degree of order. However, it is

limited by the polynomial model complexity.

2.2 Ensemble Models
As deep neural networks (DNNs) demonstrated the capability to ex-

plore high-order hidden patterns, more ensemble models were then

proposed to integrate with DNNs as encounter parts to boost the

prediction performance. Cheng et al. [6] developed Wide & Deep

for online recommendation at Google combining linear model and

DNN, which achieves a remarkable performance in APP recom-

mendation. He et al. [13] introduced NFM, Guo et al. [11] proposed
DeepFM, and Zhang et al. [35] proposed FNFM to further combine

FMs with DNNs to gain the capability of modeling implicit high-

order feature interactions. Qu et al. [26] proposed Product Neural

Network (PNN) that utilizes the inner product and outer product

of features to model the inter-field feature interactions followed by

DNNs. Wang et al. [33] devised a cross network (DCN) architecture
that jointly learn both explicit and implicit high-order feature inter-

actions in an automation fashion. It can learn feature interactions

efficiently; however, all interactions come in a bit-wise fashion,

bringing more implicitness. More importantly, it is inefficient in

learning multiplicative feature interactions [2]. Lian et al. [18] com-

bined compressed interaction network with a multi-layer perceptron

(xDeepFM) to learn high-order feature interactions explicitly at a

vector-wise level. Additionally, Cheng et al. [7] devised AFN with a

logarithmic transformation layer that converts each feature’s power

in a feature combination into the coefficient to be learned. Despite

the promising results, these methods can be hindered due to the low

interpretability caused by DNNs’ implicitness or assigning equal

weights to all the feature interactions without discrimination.

Moreover, AutoFIS [20] can automatically identify important

feature interactions for factorization models with computational

cost just equivalent to training the target model to convergence.

Song et al. [30] adopted the multi-head attention mechanism (MHA)

[32] for modeling feature interactions due to its superiority over

modeling attentional pairwise feature correlations. Feng et al. [9]
also directly applied this self-attention mechanism in the Deep Ses-

sion Interest Network (DSIN) for CTR prediction. However, these

Figure 2: An example of the embedding layer with an em-
bedding dimension of 5.
models’ performance can be limited in modeling high-order com-

plicated feature interactions by merely stacking the self-attention

blocks. Thus, we propose a model that can fully utilize the MHA

mechanism to model explicit high-order feature interactions with

discriminated importance.

3 METHODOLOGIES
Inspired by the Deep&Cross Network [29], we design this Deep

Cross Attentional Product Network (DCAP) with the following

considerations: (1) high-order explicit feature interactions at vector-

wise level; (2) differentiating the significance of feature interactions

with any degree of order; (3) easy parallelization for computation

efficiency. This section presents the architecture of our proposed

model and analyzes both time and space complexity. We present

a comprehensive description of how to learn a low-dimensional

dense feature embedding that models high-order cross features

with discriminated importance.

3.1 Sparse Input and Embedding Layer
In web-scale recommender systems or CTR prediction problems,

the input features are usually sparse with tremendous dimension

and present no clear spatial or temporal correlation. One common

approach is transforming the multi-field categorical data into a

high-dimensional sparse feature space via field-aware one-hot en-

coding. An embedding layer is developed upon the raw feature

input to compress it to a low dimensional, dense real-value vector

representation through a shared latent space. Expressly, we rep-

resent each categorical feature with a low-dimensional vector as

following:

x𝑖 = V𝑖e𝑖 (1)

where V𝑖 is an embedding matrix for field 𝑖 , and e𝑖 is a one-hot

vector. If the field is multivalent, we take the field embedding as

the sum of feature embedding. The output of the embedding layer

is then a wide concatenated vector as:

x = [x1, · · · , x𝑛] (2)

where 𝑛 denotes the number of feature fields, and x𝑖 ∈ R𝑑 denotes

the embedding of one field. The embedding layer is illustrated in

Figure 2. We apply the input and embedding layer as the first stage

of our model, which converts a set of sparse representations of input

features into dense vectors as shown in the left panel of Figure 3.

3.2 Multi-head Self-attention
3.2.1 Motivations. One efficient way to enable feature interactions

to contribute differently to the prediction is the attention mech-

anism. Attention-based models can be traced back to the Neural

Machine Translation [1, 22], where Recurrent Neural Networks



(RNNs) applied the attention mechanism between encoder and de-

coder. However, the recurrent mechanism for temporal dependency

modeling is not easy to parallelize. Transformer [32] extends the

attention mechanism to a multi-head self-attention with scaled

dot-production. It has been widely used in diverse NLP domains

and many other tasks such as recommendation system [9], infor-

mation retrieval [31], and computer vision [27]. The main idea of

self-attention is a soft addressing process within pair-wise token

representations in a sequence. Only a subset of tokens are worth

more attention instead of assigning equal weights to all the features.
For example, consider a sentiment classification problem with the

texts “I feel so happy to buy a new laptop.” The words besides

“happy” are not indicative of the positive emotion exhibited in this

sentence. Those interactions involving irrelevant features can be

considered as noises that have less contribution to the prediction. In

real-world applications, different predictor variables usually have

different predictive power, and not all features contain a useful

signal for estimating the target. The interactions with less useful

features should be assigned a lower weight as they contribute less

to the prediction. Here we extend this multi-head attention mech-

anism to model the dependencies across different feature fields

due to its capability of differentiating the importance of feature

interactions.

3.2.2 Formulations. Specifically, for a set of input feature embed-

dings X = (x1, x2, · · · , x𝑛)𝑇 ∈ R𝑛×𝑑 (with number of feature fields

𝑛 and dimensionality 𝑑), where x𝑖 ∈ R𝑑 . The self-attention func-

tion firstly projects them into queries Q ∈ R𝑛×𝑑𝑞 , keys K ∈ R𝑛×𝑑𝑘
and values V ∈ R𝑛×𝑑𝑣 , with different, learned linear projections

to 𝑑𝑞 , 𝑑𝑘 and 𝑑𝑣 dimensions, respectively. Then a particular scaled

dot-product attention was computed to obtain the weights on the

values as:

Attention(Q,K,V) = softmax(QK
𝑇√︁

𝑑𝑘

)V (3)

For any single head, this attention mechanism operates on the

input embedding and computes a new embedding output Z =

(z1, z2, · · · , z𝑛)𝑇 of the same number of fields where z𝑖 ∈ R𝑑𝑣 .
Each output element, z𝑖 , is computed as weighted sum of a lin-

early transformed input elements:

z𝑖 =
𝑛∑︁
𝑗=1

𝛼𝑖 𝑗

(
x𝑗𝑊𝑉

)
(4)

Each weight coefficient, 𝛼𝑖 𝑗 , is computed using a softmax funtion:

𝛼𝑖 𝑗 =
exp 𝑒𝑖 𝑗∑𝑛
𝑘=1

exp 𝑒𝑖𝑘
(5)

And 𝑒𝑖 𝑗 is computed by the attention function that essentially

captures the correlations between queries and keys using this dot-

product so as to perform a soft-addressing process:

𝑒𝑖 𝑗 =

(
x𝑖𝑊𝑄

) (
x𝑗𝑊𝐾

)𝑇
√
𝑑𝑣

(6)

where𝑊𝑄 ∈ R𝑑×𝑑𝑞 ,𝑊𝐾 ∈ R𝑑×𝑑𝑘 ,𝑊𝑉 ∈ R𝑑×𝑑𝑣 are parameter

matrices.

Multi-head attention allows the model to jointly attend to infor-

mation from different representation subspaces of different fields.

Figure 3: The overall architecture of our Deep Cross Atten-
tional Network consists of multiple cross attentional prod-
uct layers (left panel). Specifically, we illustrate the model-
ing process in detail for the (𝑙 +1)-th layer in the right panel.

The weighted sum of all concatenated heads is then computed as

following:

MultiHead(Q,K,V) = Concat(head1, · · · , headℎ)𝑊𝑂
(7)

in which, ℎ is the number of total heads. Each head is defined as:

head𝑖 = Attention(X𝑊𝑄

𝑖
,X𝑊𝐾

𝑖 ,X𝑊𝑉
𝑖 ) (8)

where the projections are parameter matrices𝑊
𝑄

𝑖
∈ R𝑑×𝑑𝑞 ,𝑊𝐾

𝑖
∈

R𝑑×𝑑𝑘 ,𝑊𝑉
𝑖

∈ R𝑑×𝑑𝑣 and𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑 . In practice, we usually

set 𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 , and 𝑑 = ℎ𝑑𝑣 .

3.3 Deep Cross Attentional Product Network
In order to explore richer explicit high-order feature interactions by

deepening the attention network, we design cross attention layers

with each layer having the following functions:

Z(𝑙+1) = MultiHead(Q(𝑙) ,K(𝑙) ,V(𝑙) ) (9)

P(𝑙+1) = Z(𝑙+1) ⊙ | ⊗ X (10)

Y(𝑙+1) =
∑︁
𝑑

P(𝑙+1) (11)

X(𝑙+1) = AvgPooling(P(𝑙+1) ) (12)

where Q(𝑙)
, K(𝑙)

and V(𝑙)
are projections of X(𝑙) ∈ R𝑛×𝑑 that

are embedding vectors denoting the inputs for the (𝑙 + 1)-th layer.

P(𝑙+1) ∈ R𝑛 (𝑛−1)/2×𝑑 represents the production between theweighted



Figure 4: An example of the average pooling process with a
kernel size as 2.

outputs of multi-head attention Z(𝑙) ∈ R𝑛×𝑑 and the original in-

put embeddings X ∈ R𝑛×𝑑 using either inner product ⊙ or outer

product ⊗. We further sum up the products along the embedding

dimension to get Y(𝑙+1) ∈ R𝑛 (𝑛−1)/2 as the output (used for predic-
tion) of the (𝑙 + 1)-th layer. The average pooling layer then involves

calculating the average for each patch of the feature interactions

which means that each 𝑘 (kernal size) cross features is down sam-

pled to the average value of them. In output layer, we concatenate

the flattened input embeddings with outputs from each layer fol-

lowed by a fully connected neural network. A visualization of the

general architecture is shown in Figure 3.

3.3.1 Product Operation. We adopt the product operation to model

the feature interactions as inspired by [26]. For inner product, we

define the operation of two vectors a ∈ R𝑑 and b ∈ R𝑑 as following:

a ⊙ b ≜ (a1b1, · · · , a𝑖b𝑖 , · · · , a𝑛b𝑛) (13)

For outer product, the definition of the operation is as following:

a ⊗ b ≜ (
∑︁
𝑗

a1b𝑗 , · · · ,
∑︁
𝑗

a𝑖b𝑗 , · · · ,
∑︁
𝑗

a𝑛b𝑗 ) (14)

Now, if we apply inner product operation between Z(𝑙+1)
and X,

then

Z(𝑙+1) ⊙ X = {z(𝑙+1)
𝑖

⊙ x𝑗 } (𝑖, 𝑗) ∈R𝑥
(15)

where R𝑥 = {(𝑖, 𝑗)}1≤𝑖, 𝑗≤𝑛,𝑗>𝑖 . Note that we only use the cross

relationships between features from different fields once such that

we expand 𝑛 features to 𝑛(𝑛 − 1)/2 interacted cross features for

each layer.

3.3.2 Adaptive Average Pooling. In fact, the production result P(𝑙+1)

of the (𝑙 + 1)-th layer has a total number of O(𝑛2) cross feature
representations, and it will go quadratically as we further pass it

to the multi-head attention in the next layer since the dot-product

attention computation takes another O(𝑛2) complexity, 𝑛 is the

number of input features. Average pooling is a common technique

used in computer vision, especially in the pooling layer of convolu-

tional neural network [19]. In our model, we extend the average

pooling approach to avoid the quadratic complexity caused by the

depth of network without losing too much information. The general

1D average pooling process is as following:

Output =
1

𝑘

𝑘−1∑︁
𝑚=0

Input (Stride × 𝑙 +𝑚, · · · ) (16)

where output ∈ R𝐿out×𝑑 and input ∈ R𝐿in×𝑑 . Adaptive average

pooling strategy can adaptively tune the kernel size 𝑘 and stride

steps to our desired cross feature dimension since one can easily

conclude that 𝐿out =

⌊
𝐿in +2×Padding −Kernel Size

Stride
+ 1

⌋
. Figure 4 is a

visualization of the average pooling process.

By applying the average pooling method, we compress down the

cross features space from O(𝑛2) to O(𝑛) while each new feature is

a combination of a subset of original cross features.

3.4 Combination with Bit-wise Feature
Interactions

Upon the deep feature interactions, we concatenate all the outputs

from each layer with the flattened input embedding followed by

a multi-layer perceptron (also known as a fully connected neural

network with multiple layers) to further explore the implicit bit-

wise interactions. Suppose a cross attentional product network with

𝐿 layers, the final output would be computed as:

Ŷ = Mlp(Concat[X
flatten

,Y(1) , · · · ,Y(𝐿) ]) (17)

where the architecture of Mlp can be referred to Section ??. At the
end, the output of the hidden layers is transformed to the final user

clicking probabilities through sigmoid function 𝜎 (Ŷ) = 1/(1+ 𝑒−Ŷ).
For binary classifications, the loss function is the log loss:

L = − 1

𝑁

𝑁∑︁
𝑖=1

y𝑖 log ŷ𝑖 + (1 − y𝑖 ) log (1 − ŷ𝑖 ) (18)

where 𝑁 is the total number of training instances. The optimization

process is to minimize the following objective function:

J = L + _∗∥Θ∥ (19)

where _∗ denotes the regularization term and ∥Θ∥ denotes the set
of parameters, including these in both cross feature modeling layers

and DNN part.

3.5 Model Analysis
In this section, we analyze the proposed DCAP to study the model

complexity and potential effectiveness.

3.5.1 Model Effectiveness. First of all, we argue that this deep and

cross structure is able to model high-order explicit feature interac-

tions as the degree of cross features grows with layer depth.

Theorem 3.1. Consider an 𝑙-layer deep cross attentional product
network with the (𝑚 + 1)-th layer defined as Section 3.3. Let the input
embedding be X, the output of attentional feature embeddings in
(𝑚 + 1)-th layer be Z(𝑚+1) . Then, the highest degree of cross features
captured in terms of original input embedding X is 𝑙 + 1.

Proof. As an example, for the first layer, as Eq. 15 demonstrates,

z(1)
𝑖

⊙ x𝑘 =

𝑛∑︁
𝑗=1

𝛼𝑖 𝑗

(
x(𝑙)
𝑗
𝑊𝑉

)
⊙ x𝑘

=

𝑛∑︁
𝑗=1

𝛼𝑖 𝑗

(
x(𝑙)
𝑗
𝑊𝑉 ⊙ x𝑘

)
= p𝑇

𝑛∑︁
𝑗=1

𝛼𝑖 𝑗

(
x(𝑙)
𝑗

⊙ x𝑘
)

(20)

which models cross features ranging from x1x𝑘 to x𝑛x𝑘 and the

degree of cross feature in terms of input embedding x is 2. Note that



the average pooling process does not change the order of feature

interactions since it can be viewed as multiplying an additional av-

eraging coefficient 𝛽𝑖 𝑗 to the cross feature representations. Suppose

this statement holds for 𝑙 =𝑚. For (𝑚 + 1)-th layer, we have:

z(𝑚+1)
𝑖

⊙ x𝑘 = p𝑇
𝑛∑︁
𝑗=1

𝛼𝑖 𝑗

(
x(𝑚)
𝑗

⊙ x𝑘
)

(21)

where x(𝑚)
𝑗

⊙ x𝑘 can model cross features with degree of order

(𝑚 + 1) since x(𝑚)
𝑗

represents the 𝑚-th order cross features. By

induction hypothesis, one can easily prove that the highest degree in

terms of original input embedding X for an 𝑙-layer cross attentional

product network is 𝑙 + 1. □

3.5.2 Model Complexity. For computing multi-head attention, the

total number of Mult-Adds is O(2𝑛2𝑑 + 4𝑛𝑑2). For production of

features, it takes another O(𝑛𝑑 (𝑛 − 1)/2) = O(𝑛2𝑑) Mult-Adds. So

the total computation complexity for each layer in terms of Mult-

Adds is O(3𝑛2𝑑 + 4𝑛𝑑2). A cross attentional product network with 𝑙

layers would take a total number of Mult-Adds as O(3𝑛2𝑑𝑙 + 4𝑛𝑑2𝑙).
For the feed-forward network, the input size is 𝑑 ′ = 𝑛𝑑 +𝑙𝑛(𝑛−1)/2
such that the total number of Mult-Adds is O(𝑑 ′ℎ1 + ℎ1ℎ2 + ℎ2),
where ℎ1, ℎ2 are the hidden size of each hidden layer, respectively.

For space complexity, the attention part takes O(4𝑑2) including
three projection matrices and one final weighted sum layer. For

DNN part, it contains weight matrices that are O(𝑑 ′ℎ1 +ℎ1ℎ2 +ℎ2).
For a model with 𝑙 layers, the total space complexity would be

O(4𝑑2𝑙 +𝑑 ′ℎ1 +ℎ1ℎ2 +ℎ2), which is quadratic with respect to both

number of fields 𝑛 and embedding dimension 𝑑 .

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer the

following questions:

• (RQ1) How does our proposed Deep Cross Attentional Prod-

uct Network (DCAP) perform in high-order feature interac-

tions learning compared to the other state-of-the-art meth-

ods?

• (RQ2) How do the different hyper-parameter settings affect

model performance?

• (RQ3) Is the multi-head attention mechanism vital for our

model, and how can it essentially be useful in prediction?

4.1 Experimental Setup
4.1.1 Datasets. As the click-through rate (CTR) prediction in on-

line advertising is one of the most critical user response domains,

we take it as our experimental examples to explore our model’s

potential effectiveness. We evaluate the proposed model on the

following three public datasets: 1) Criteo2 Display Ads dataset is

a famous benchmark for ads click-through rate prediction. It has

45 million users’ clicking records on displayed ads. It contains 13

numerical feature fields and 26 categorical feature fields where each

category has a high cardinality. 2) Avazu3 This dataset contains
users’ mobile behaviors, including whether a user clicks a displayed

mobile ad or not. It has 23 feature fields spanning from user/device

2
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

3
https://www.kaggle.com/c/avazu-ctr-prediction/data

Table 1: Statistics of evaluation datasets.

Dataset #Instances #Fields #Feature Dimension

Criteo 45,840,617 39 1,086,810

Avazu 14,426,917 23 767,250

MovieLens-1M 1,000,209 5 10,072

features to ad attributes. 3) MovieLens-1M4
This dataset contains

users’ ratings on movies. We treat samples with a rating of less

than three as negative samples for binarization because a low score

indicates that the user does not like the movie and will not click it

for watching. We treat samples with a rating greater than three as

positive samples. The statistics of the three datasets are summarized

in Table 1.

4.1.2 Data Preparation. First, we set a frequency threshold for

removing all infrequent features and treat them as a single feature

"<unknown>", where threshold is set to {10, 4} for Criteo, Avazu,
respectively. Second, for numerical features with a high variance

that might influence the learning process, we normalize them by

transforming a value 𝑧 to log
2 𝑧 if 𝑧 > 2, which is proposed by the

winner of Criteo Competition
5
. Third, we randomly select 80% of all

samples for training and consecutively split the rest into validation

and test sets as 1:1.

4.2 Evaluation Metrics
We apply two famous metrics to evaluate the performance of our

proposed approach and all other competitive models: AUC Area

under ROC curve and Logloss (cross entropy). Note that a slight
increase inAUCor decrease in Logloss at 0.001-level is known
to be a significant improvement for the tasks such as CTR prediction

[6, 11, 33].

4.3 Baselines
We compare DCAP with existing methods of three classes (also

see Table 2): (a) The first-order approaches that model a linear

combination of raw features; (b) FM-based methods that capture

second-order feature interactions; (c) Advanced approaches that

model high-order cross features.

• LR logistic regression models the linear relationship be-

tween features and targets.

• FM [28] factorization machine applies matrix factorization

techniques to capture the second order feature interactions

for prediction.

• AFM [12] attentional factorization machine assigns atten-

tion weights to feature interactions based on FM.

• HOFM [3] high-order factorization machine canmodel high-

order feature interactions.

• NFM [13] neural factorization machine sums up pairwise

Hadamard product of features followed by a fully connected

neural network.

• PNN [26] product neural network models high-order fea-

ture interactions by computing pairwise inner (iPNN) or

outer products (oPNN) of input features followed by a fully

connected neural network.

4
https://grouplens.org/datasets/movielens/

5
https://www.csie.ntu.edu.tw/ r01922136/kaggle-2014-criteo.pdf



• Wide & Deep [6] wide & deep model integrates LR and

DNN. Also, we omit the hand-crafted cross features for a fair

comparison.

• DCN [33] deep & cross network models the explicit fea-

ture, by computing the outer product between original input

embedding and corresponding output across layers.

• DeepFM [11] deep factorization machine is an ensemble

between DNN and FM.

• xDeepFM [18] xDeepFM models both explicit and implicit

high-order feature interactions by computing outer products

of feature vectors at different orders. It also combines with

DNN.

• AutoInt [30] auto feature interaction model applies multi-

head self-attention mechanism on modeling cross feature

interactions.

• AFN [7] adaptive factorization network learns arbitrary-

order cross features adaptively by building a logarithmic

transformation layer that converts each feature’s power in a

feature combination into the coefficient to be learned.

4.4 Training Settings
We implement our approaches using PyTorch

6
. We apply Adam

[16] with a learning rate of 0.001 and a weight decay of 1𝑒−6 to
prevent overfitting, and a mini-batch size of 4096 across all tasks.

For the fair competition, we set the default architecture of the dense

neural network with two hidden layers and 100 neurons per layer

for all models that involve DNN. To avoid overfitting, we perform

the early-stopping strategy based on AUC on the validation set. A

dropout method is also applied across all models with a rate of 0.5

for the MovieLens-1M dataset and 0.2 for the other two datasets to

prevent overfitting. The dimension of feature embeddings is set to

16 for all the models across all tasks consistently. More specifically,

the number of layers in DCN set to 2. The maximum order in HOFM

is set to 3. The attention embedding size of model AFM and AutoInt

is 64. Additionally, the number of heads in AutoInt is set to 4. The

default number of logarithmic neurons in AFN is set to 1500, 1200,

800 for Criteo, Avazu, and Movielens datasets. For our model DCAP,

we set the maximum depth of network to 2 as a bounded order of

feature interactions.

All the hyper-parameters are tuned on the validation set. We

run the experiments for each empirical result as 20 independent

trials on four NVIDIA Tesla P100 GPUs in parallel and report the

average value with the standard deviation.

4.5 Comparative Performance (RQ1)
First, we want to know how our proposed model performs com-

pared with various models involving first-order, second-order, and

high-order feature interactions. Note that FM only models second-

order cross features explicitly while DNNs model high-order fea-

ture interactions implicitly. Models integrated with DNNs such as

NFM, PNN, DeepFM,Wide&Deep, etc., are also capable of modeling

high-order interactions. Additionally, models like DCN, xDeepFM,

AutoInt, and AFN are all ensemble models that combine the ef-

fectiveness of jointly explicit and implicit learning, which means

they can model high-order feature interactions both explicitly and

6
https://pytorch.org/

implicitly. Our proposed DCAP is also such an ensemble model that

cross attentional product explicitly models weighted high-order

feature interactions followed by an implicit feed-forward neural

network.

The results shown in Table 2 demonstrate that our method out-

performs the other models across different datasets consistently.

For the Criteo dataset, DCAP outperforms the second-best model

oPNN by a significant 0.001 increase in AUC and 0.001 decreases

in Logloss. It also has an 0.001 prediction performance increase

in both AUC and Logloss on the Avazu dataset. For MovieLens-

1M, the gap between DCAP and the second-best model is further

widened. Compared to FM based models, DCAP has an almost 0.006

higher AUC score than DeepFM, which is generally considered a

significant user response prediction benchmark. It also has a 0.0034

higher AUC score than xDeepFM, which also models high-order

feature interactions explicitly yet without differentiating each cross

feature’s importance. Another interesting finding is that there is

no theoretic guarantee of the superiority of high-order ensemble

methods over the simple individual models since AFN performs

worse than FM and AFM on both Avazu andMovieLens-1M datasets.

Compared to the Criteo dataset, these two datasets contain fewer

training instances and feature fields requiring minimal high-order

feature interactions to make the predictions. As the AFN model

learns arbitrary-order cross features, it can be hindered by overfit-

ting the data due to the over-complicated feature interaction space.

In this case, a simple model such as FM might achieve relatively

better performance. Note that for the Avazu dataset, models such as

DeepFM, xDeepFM, AutoInt also have worse performance than in-

dividual models like FM. These models share a typical architecture

that combines the explicit cross features and implicit embeddings in

an add fashion. However, for PNN and DCN, they stack explicit fea-

ture interaction outputs and input embeddings together, followed

by the DNNs. As such, this concatenated way of combining outputs

may have a superiority than sum up.

Generally, models integrated with DNNs have a better perfor-

mance over individuals, which further illustrates the effectiveness

of implicit feature interactions. Among all the integrated models,

the results of PNN and DCN are more impressive due to the con-

sistent outstanding prediction performance on three datasets. We

analyze the potential effectiveness of these models and compare

them with our method in the following.

4.5.1 Comparison Between DCAP and DCN. Both DCAP and DCN

adopt the cross network architecture to explicitly model high-order

cross features. However, the differences are: (a) DCN can learn

feature interactions very efficiently (with much less computation),

but the output of each cross network layer is limited to a scalar

multiple of original input embedding [18], which may lead to a

suboptimal model performance; (b) DCAP has a higher requirement

for computational resources while can learn more elaborate cross

feature interactions with discriminated attention or weights; (c) all

interactions in DCN come at a bit-wise fashion, which brings more

implicitness; however, DCAP models high-feature interactions at

a vector-wise level which can be followed by an implicit bit-wise

interaction layer. Though they are both jointly explicit and implicit

learners, DCAP owns better interpretability.



Table 2: The overall performance of all models on Criteo, Avazu, and MovieLens-1M datasets. Best performance in boldface.
We also mark the second-best model with an underline. We further analyze these results in Section 4.5.

Model Class Model

Criteo Avazu MovieLens-1M

AUC Logloss AUC Logloss AUC Logloss

First-Order LR 0.7943+/-0.0000 0.4560+/-0.0000 0.7608+/-0.0000 0.3916+/-0.0000 0.7918+/-0.0000 0.5406+/-0.0000

Second-Order

FM 0.8040+/-0.0001 0.4478+/-0.0001 0.7816+/-0.0004 0.3826+/-0.0005 0.8004+/-0.0005 0.5391+/-0.0017

AFM 0.8073+/-0.0001 0.4443+/-0.0001 0.7756+/-0.0008 0.3859+/-0.0017 0.7983+/-0.0018 0.5368+/-0.0021

High-Order

HOFM 0.8059+/-0.0001 0.4459+/-0.0001 0.7824+/-0.0002 0.3820+/-0.0006 0.7953+/-0.0008 0.5381+/-0.0011

NFM 0.8061+/-0.0006 0.4455+/-0.0006 0.7809+/-0.0010 0.3892+/-0.0016 0.7896+/-0.0175 0.5512+/-0.0149

iPNN 0.8118+/-0.0001 0.4400+/-0.0001 0.7847+/-0.0007 0.3772+/-0.0007 0.8039+/-0.0009 0.5292+/-0.0012

oPNN 0.8132+/-0.0001 0.4387+/-0.0001 0.7851+/-0.0003 0.3766+/-0.0001 0.8046+/-0.0008 0.5289+/-0.0019

Wide&Deep 0.8107+/-0.0001 0.4411+/-0.0001 0.7732+/-0.0006 0.3855+/-0.0003 0.7999+/-0.0012 0.5374+/-0.0009

DCN 0.8112+/-0.0001 0.4408+/-0.0001 0.7833+/-0.0004 0.3784+/-0.0002 0.8051+/-0.0010 0.5271+/-0.0015

DeepFM 0.8086+/-0.0001 0.4432+/-0.0000 0.7757+/-0.0005 0.3853+/-0.0005 0.8008+/-0.0011 0.5366+/-0.0017

xDeepFM 0.8108+/-0.0002 0.4411+/-0.0002 0.7767+/-0.0007 0.3845+/-0.0004 0.8045+/-0.0009 0.5297+/-0.0013

AutoInt 0.8108+/-0.0001 0.4411+/-0.0001 0.7760+/-0.0003 0.3846+/-0.0004 0.8047+/-0.0006 0.5289+/-0.0007

AFN 0.8122+/-0.0000 0.4397+/-0.0001 0.7743+/-0.0012 0.3876+/-0.0010 0.7947+/-0.0021 0.5424+/-0.0025

DCAP(ours) 0.8142+/-0.0001 0.4376+/-0.0001 0.7861+/-0.0003 0.3754+/-0.0002 0.8066+/-0.0012 0.5260+/-0.0013

Table 3: AUC scores of model with different number of lay-
ers and heads on MovieLens-1M dataset.

#Layers

#Heads

1 2 4 8 16

1 0.8066 0.8073 0.8065 0.8072 0.8068

2 0.8074 0.8074 0.8073 0.8075 0.8061

3 0.8079 0.8068 0.8053 0.8072 0.8066

4 0.8070 0.8078 0.8073 0.8055 0.8081
5 0.8075 0.8071 0.8076 0.8078 0.8068

4.5.2 Comparison Between DCAP and PNN. The backbone of mod-

eling cross features is inspired by PNN, which first applies inner

product or outer product operations on modeling feature inter-

actions. The downsides of Product Neural Network are: (a) PNN

only models second-order explicit cross features while DNN im-

plicitly captures the high-order cross features; DCAP can model

high-order feature interactions both explicitly and implicitly; (b)

similar to many other models, PNN is not capable of differentiat-

ing the importance of feature interactions. By deepening the cross

product network combining with attention mechanism, we gener-

alize the product network’s capability to model high-order feature

interactions explicitly.

4.6 Hyper-parameter Investigation (RQ2)
One intuitive question is that how the multi-head attention and

depth of the network affect the model performance. In this section,

we study hyper-parameters’ impact, including (a) the number of

heads in multi-head attention; and (b) the number of cross layers

in the network. We conduct experiments via holding the identi-

cal settings for the DNN part while varying the cross attentional

product network part settings. We show how the validation ACU

and Logloss change by adding more layers and heads when setting

the embedding size to 64. Table 3 and Table 4 show the changes in

model performance in terms of AUC and Logloss on the MovieLens

dataset, respectively.

Table 4: Logloss of model with different number of layers
and heads on MovieLens-1M dataset.

#Layers

#Heads

1 2 4 8 16

1 0.5297 0.5286 0.5293 0.5296 0.5274

2 0.5282 0.5278 0.5282 0.5300 0.5303

3 0.5265 0.5296 0.5290 0.5270 0.5302

4 0.5278 0.5294 0.5276 0.5294 0.5266

5 0.5295 0.5278 0.5275 0.5266 0.5265

4.6.1 Number of Heads. The number of heads is a critical hyper-

parameter in multi-head attention. With each attention head po-

tentially focusing on different parts of the input and revealing

complementary information, this attention mechanism can express

sophisticated functions beyond the simple weighted average. How-

ever, recent research [24] has discovered that not all heads are

practically necessary since only a small percentage of heads will

significantly impact the performance. Besides, many heads will have

a higher chance of modeling a more sophisticated combination of

input embedding and overfitting the data. We then hypothesize that

the number of heads is not the more, the better. As such, it is worth

investigating how the number of heads affects model performance

in practice. Besides the experiment results listed in Table 3 and

Table 4, we further visualize the model performance against the

number of heads in Figure 5a and Figure 6a fixing other chosen ran-

domly hyper-parameters. The performance generally ascends first

and then descends as the number of heads increases. Specifically,

when we have sixteen heads for the model, the performance drops

down heavily, further demonstrating our conjecture. The model

with eight heads has an astonishing AUC score, while the Logloss

is not good on MovieLens dataset. For Avazu dataset, the model can

achieve the best performance with a total of four heads. In all, we

conclude that the model can achieve relatively good performance

with at most four heads on both Avazu and MovieLens dataset.

4.6.2 Depth of Network. The depth of network controls the up-

per bound degree of cross features. The deeper the network is,

the higher order of feature interactions are captured by the model.



(a)Model performance against
the number of heads.

(b) Model performance
against the depth of network.

Figure 5: Results on the Avazu dataset.

(a)Model performance against
the number of heads.

(b) Model performance
against the depth of network.

Figure 6: Results on the MovieLens dataset.

Meanwhile, a deeper network involves more computational com-

plexity which may cause overfitting. To investigate the impact of

number of layers, we increase the depth from 1 to 5 and report

the AUC and Logloss results on Avazu and MovieLens datasets.

We also visualize the model performance against number of lay-

ers in Figure 5b and Figure 6b. We observe that as the depth of

network increases, the performance generally increases since the

model captures more sophisticated high-order feature interactions.

However, model complexity is linearly related to the number of

layers and it could be a trade-off between prediction precision and

computational requirements.

Figure 7: The attention pattern of each head on MovieLens
dataset.

4.7 Is Multi-head Attention Really Necessary?
(RQ3)

Another straightforward question is that is multi-head attention

crucial for our model? Unlike the multi-head attention mechanism,

Attentional Factorization Machine (AFM) generally applies a DNN

on the inner product of feature embeddings followed by a softmax

function to compute the attention scores, allowing different cross

features contribute differently to the prediction.

Since multi-head attention is more computationally expensive,

we further investigate whether this multi-head attention mecha-

nism is necessary for user response prediction tasks. We conduct

experiments on replacing the multi-head attention with this less

complicated attention mechanism proposed by AFM and compare

it with our model. Table 5 shows the results of comparison on two

datasets, Avazu and MovieLens-1M. We let w/ represent the origi-
nal multi-head attention mechanism used in our model, while w/o

Table 5: The performance comparison between multi-head
attention and AFM attention mechanism.

Datasets Models AUC Losloss

Avazu

DCAP𝑤/ 0.7861+/-0.0003 0.3754+/-0.0002
DCAP𝑤/𝑜 0.7830+/-0.0004 0.3818+/-0.0005

MovieLens-1M

DCAP𝑤/ 0.8066+/-0.0012 0.5260+/-0.0013
DCAP𝑤/𝑜 0.8043+/-0.0015 0.5290+/-0.0015

stands for the attention mechanism used in AFM. As we can see,

the original DCAP model consistently outperforms the model with

the attention mechanism used in AFM, which further demonstrates

the superiority of multi-head attention mechanism in modeling

pairwise feature relevance.

To better understand the importance of multi-head attention, we

also investigate the patterns learned by each attention head. We

select out four feature fields MovieID, Gender, Age and Occupation
from the MovieLens dataset and visualize the attention pattern

of each attention head (four in all). As Figure 7 shows, the color

darkness represents the degree of correlation or attention weights

between pairwise feature fields. We observe that different heads

attend to different parts of the feature fields as the first head con-

centrates more on the cross correlation betweenMovieID and other

fields (left half). In contrast, the third head focuses on the cross

dependencies between Age, Occupation and other features (right

half). It is also obvious that Gender is the least attentional feature
in predicting whether a user will watch a certain movie, which is

reasonable to some extent.

The great interpretability of our model gives much more room

for data engineers to analyze user behaviors further. More targeting

strategies could be made based on these results to improve the user

experience or expand the market.

5 CONCLUSION
This paper proposed a novel model Deep Cross Attentional Product

Network (DCAP), which can learn high-order feature interactions

explicitly at the vector-wise level. It also had the capability of dif-

ferentiating the importance of all cross features of any degree of

order. The core of our models consisted of three parts: (a) multi-

head attention for capturing pairwise feature relevance Product of

features across layers for modeling high-order cross features; (b)

concatenation of output from each layer for retaining information

of all feature interactions at any order; (c) experimental results on

three real-world datasets demonstrate the effectiveness and supe-

riority of our model in predicting user response. Additionally, we

demonstrated our model interpretability via visualizing the fea-

ture correlations of different attention heads. After incorporating

DNNs for modeling implicit feature interactions, our model consis-

tently achieved better AUC and Logloss scores than state-of-the-art

models.

For future work, we will further explore the other attention

variants with less computation complexity. Recent work such as

Reformer [17] or Linformer [34] have provided a faster version

of multi-head attention with only O(𝑛
√
𝑛) and O(𝑛) complexity,

respectively. Besides the attention blocks, we are also interested in

redesigning computing feature production in a more efficient way

such that the model can be trained on GPU clusters distributively.
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