2109.02058v1 [cs.SI] 5 Sep 2021

arXiv

Detecting Communities from Heterogeneous Graphs: A Context
Path-based Graph Neural Network Model

Linhao Luo
Harbin Institute of Technology,
Shenzhen
China
luolinhao@stu.hit.edu.cn

Xiaofeng Zhang*
Harbin Institute of Technology,
Shenzhen
China
zhangxiaofeng@hit.edu.cn

ABSTRACT

Community detection, aiming to group the graph nodes into clus-
ters with dense inner-connection, is a fundamental graph mining
task. Recently, it has been studied on the heterogeneous graph,
which contains multiple types of nodes and edges, posing great
challenges for modeling the high-order relationship between nodes.
With the surge of graph embedding mechanism, it has also been
adopted to community detection. A remarkable group of works use
the meta-path to capture the high-order relationship between nodes
and embed them into nodes’ embedding to facilitate community
detection. However, defining meaningful meta-paths requires much
domain knowledge, which largely limits their applications, espe-
cially on schema-rich heterogeneous graphs like knowledge graphs.
To alleviate this issue, in this paper, we propose to exploit the con-
text path to capture the high-order relationship between nodes,
and build a Context Path-based Graph Neural Network (CP-GNN)
model. It recursively embeds the high-order relationship between
nodes into the node embedding with attention mechanisms to dis-
criminate the importance of different relationships. By maximizing
the expectation of the co-occurrence of nodes connected by con-
text paths, the model can learn the nodes’ embeddings that both
well preserve the high-order relationship between nodes and are
helpful for community detection. Extensive experimental results
on four real-world datasets show that CP-GNN outperforms the
state-of-the-art community detection methods 1.

CCS CONCEPTS

« Information systems — Data mining,.

* Corresponding authors
1Code and data are available at: https://github.com/RManLuo/CP-GNN

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °21, November 1-5, 2021, Virtual Event, QLD, Australia

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11...$15.00
https://doi.org/10.1145/3459637.3482250

Yixiang Fang’
The Chinese University of Hong
Kong, Shenzhen
China
fangyixiang@cuhk.edu.cn

Xin Cao
The University of New South Wales
Australia
xin.cao@unsw.edu.au

Wenjie Zhang
The University of New South Wales
Australia
wenjie.zhang@unsw.edu.au

KEYWORDS

Community Detection, Heterogeneous Graphs, Context Path, Graph
Neural Network, Unsupervised Learning

ACM Reference Format:

Linhao Luo, Yixiang Fang, Xin Cao, Xiaofeng Zhang, and Wenjie Zhang.
2021. Detecting Communities from Heterogeneous Graphs: A Context Path-
based Graph Neural Network Model. In Proceedings of the 30th ACM Inter-
national Conference on Information and Knowledge Management (CIKM °21),
November 1-5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3459637.3482250

1 INTRODUCTION

As a fundamental topic in network science, community detection,
aiming to group the graph nodes into clusters with dense inner-
connection, has been studied for decades and found various real-
world applications, such as recommendation (e.g., [25, 36]), anomaly
detection (e.g., [46]), and scientific discipline discovery (e.g., [60]).
Most existing works of community detection (e.g., [7, 11, 45]) mainly
focus on detecting communities from homogeneous network that
contains the same type of nodes. These solutions, however, may not
work well on many real-world graphs that are with multiple node
types and edge types, which are also called heterogeneous graphs,
and they are prevalent in many real-world applications, including
bibliographic networks, social media, and knowledge graphs. For
example, Figure 1 depicts a bibliographic network with four types
of nodes, i.e., paper, author, venue, and topic, and four relations (edge
types) among them. The existing works of community detection on
heterogeneous graphs can generally be classified into two groups;
the first group [42] focuses on detecting clusters, each of which
contains objects with multiple types, and the second group [2] aims
to generate clusters of nodes with a specific type. In this paper, we
follow the second group and aim to cluster nodes such that nodes
in the same cluster have strong relationships.

Detecting communities from heterogeneous graphs is more chal-
lenging than that on homogeneous graphs, since the multiple types
of nodes and edges carry more abundant semantic information. In
Figure 1, for example, the authors a; and as should belong to the
same community (Community 1), but they are not directly con-
nected in the graph, making them hard to be grouped into the same

https://doi.org/10.1145/3459637.3482250
https://doi.org/10.1145/3459637.3482250

E E\ Topic

Bibli i 4 G
1bliographic Venue
network i i 5
Author
»5 pz p p
r% Paper
S o NG NG\
« }"4 ’:1 > < r4 1 Belongs to

¥, Published in
13 Write

Ty Follow

Figure 1: Detecting communities from a bibliographic
graph.

cluster if only direct relations (e.g., “follow”) are considered). How-
ever, a; and as have written papers p; and p3 respectively, which
share the same topic t;. As a result, they can be grouped into the
same cluster if we consider their high-order relationship, or the
relationship that cannot be captured by directed links.

To capture the high-order relationship above, several efforts have
been made (e.g., [12, 41]), but most of them rely on some pre-defined
meta-paths [40], which reveals the latent high-order relationships.
For example, the path author-paper-topic-paper-author can model
the relationship we showed above. To further capture and represent
the high-order relations, a few works [9, 59] integrate the meta-path
oriented graph embedding mechanism with community detection.
However, the problem of these methods is that their performance
highly depends on the quality of the pre-defined meta-paths, which
need to be selected by domain experts. Moreover, the number of
meta-paths increases exponentially with the path length, meaning
that it is almost infeasible to find all meaningful meta-paths to
capture the high-order relationships. Furthermore, different meta-
paths contribute differently to the community detection, which
imposes great challenges for distinguishing their importance.

In this paper, we propose a novel model, called the Context
Path-based Graph Neural Network (CP-GNN), for detecting com-
munities with nodes of the same target type in the heterogeneous
graph. Here, the target type is also called the primary type, while
the other types of nodes are called auxiliary types. In this model, we
adopt the concept of “context path” [1], which links two primary
type nodes via a sequence of edges with some auxiliary type nodes.
It can not only well capture the high-order relationship, but also
avoid requiring customized meta-paths selected by domain experts.
We first introduce the context path probability that is the probability
that two nodes are connected by a context path. Then, we propose
a novel objective function for learning node embeddings unsuper-
visedly, by maximizing the expectation of the co-occurrence of
context neighbors (nodes connected by context paths), which ex-
ploits both the structure and the high-order context relationships
among nodes.

To learn the embeddings, instead of exhaustedly enumerating
all the context paths, we employ the graph neural network model
to recursively embed the context path information between nodes
into the node embeddings. We further propose the length-wise
and relation-wise attention mechanisms to discriminate the impor-
tance of different context paths that preserve different high-order

relationships. Thus, our model not only avoids customizing the
meta-paths, but also well captures the high-order relationships
between nodes that are preserved by the context paths with differ-
ent importance. Finally, the learned embeddings from the neural
network are directly used for community detection.

In summary, our principal contributions are as follows:

e We adopt the context path to capture the high-order relation-
ship information and introduce the context path probability
to model the learning objective function.

e We propose a novel neural network model CP-GNN, which
can capture the rich high-order relationship for learning the
node embeddings unsupervisedly.

e We conduct extensive experiments on four real datasets,
which demonstrate the superior performance of our CP-GNN
model over the state-of-the-art methods. And the visualiza-
tion experiments show the CP-GNN can capture high-order
relationships with different importance.

2 RELATED WORK

In this section, we review three representative groups of existing
works on the topic of network community detection.

e Conventional community detection. Community detection
has attracted a lot of research attention [6, 13, 14, 28]. The early
works often exploit the local link structure to group the the vertices
into different clusters [35, 45]. More related works can be found in
these survey papers [11, 26].

However, most of these methods focus on homogeneous graphs.
Recently, some works have studied the community detection task
on heterogeneous graph [27, 37]. Reference [3] proposes a method
that can learn an optimal linear combination of the relations in het-
erogeneous graph. Then by adopting MinCut-based and Regression-
based algorithms, it can achieve a better performance on commu-
nity detection. Reference [30] models the structure and content
of heterogeneous graph with outlier links. HeProjl [38] projects
a heterogeneous graph into a sequence of sub-networks and con-
ducts community detection. TCSC [2] considers both the graph
connection and vertex attributes to detect clusters. AGGMMR [58]
proposes a framework to perform community detection utilizing
both the attributes and topological information through a greedy
modularity maximization model. Reference [12, 41] adopt the meta-
path to capture the high-order relationships between nodes for
detecting communities in heterogeneous graphs. Nevertheless, as
aforementioned, the meta-paths need to be carefully selected by
domain experts, which imposes a great limitation for their applica-
tions.

e Graph embedding for community detection. Recently, with
the surge of graph embedding methods [9, 17], many researchers
focus on addressing the community detection problem with the
help of graph embedding [43, 50, 53]. Cavallari et al [4] intergates
the node embedding and clustering together to conduct community
detection by optimizing the first-order and second-order neigh-
bors’ loss, high-order loss, and clustering loss. CDE [23] proposes
a novel embedding based method. It embeds the inherent commu-
nity structures into structure embeddings via known community
memberships. Then based on the node attributes and community
structures embeddings, it formulates the community detection as a

matrix factorization optimization problem. NEC [39] proposes an
algorithm to learn graph embedding for community detection in
heterogeneous graphs, which learns graph structure-based repre-
sentations and clustering-oriented representations together. Then
it adopts the K-means to perform the community detection.

o GNN-based community detection. Many deep learning-based
community detection methods are also developed [19]. As one of
the most widely used deep learning techniques, the Graph Neural
Network (GNN) [22] has also shown great power in community
detection [7, 56]. LGNN [7] is a graph neural network model which
exploits edges’ adjacency information of the graph for community
detection. MRFasGCN [56] proposes a Markov random field en-
hanced GNN to group nodes into different communities. However,
most of them do not consider complex relationships, which leads
them inadequate to fuse enough relationships for heterogeneous
graph community detection. Recently, HTGCN [59] shows a tem-
poral graph neural network to perform the community detection
on temporal heterogeneous graph. It considers both the tempo-
ral and heterogeneous information of the graph to increase the
performance. Despite the existing success, most GNN-based ap-
proaches [7, 48] regard the community detection as a supervised
node classification task, which predicts the target community for
each node. However, the ground truths of the community are not
always available, making them inapplicable in this case. Thus, it
is desirable to develop fully unsupervised GNN-based community
detection methods.

3 PRELIMINARIES

Definition 3.1 (Heterogeneous graph [40]). The heterogeneous
graph is defined as a graph G = (V, &, A, R) with a node mapping
function ¢(v) : V — A and an edge mapping function y(e) : & —
R, where |A| + |R| > 2, each node v € V belongs to a node type
¢(v) € A, and each edge e € & belongs to an edge type (also called
relation) ¥/ (e) € R.

Definition 3.2 (Primary type and auxiliary type). As afore-
mentioned, for the purpose of community detection, usually only
one node type is targeted by the task, and we call it the primary type,
denoted by P. The nodes with type P are called primary nodes. The
other node types are called auxiliary types, which constitute a set
of types A’. Note that technically, any node type can be regarded
as the primary type.

Definition 3.3 (Primary graph and auxiliary graph). Given
a heterogeneous graph G, the primary graph is a subgraph of G,
denoted by Gp=(Vp, Ep) where each node v € Vp is of the primary
node type P and each edge e € Ep € {Vp X Vp}. Similarly, the
auxiliary graph is also a subgraph of G with nodes of a specific type
A, denoted by G4 = (V4,E4), where for eachv € Vg, ¢p(v) = A €
A’ and each edge e € E4 C {V4 X Vy4}.

Example 1. As the heterogeneous graph shown in Figure 1, the
“Author” can be defined as the primary type, and the remaining
node types are treated as auxiliary types. Similarly, the “Paper” can
also be chosen as the primary type if necessary. Meanwhile, the
“Author”, “Topic”, and “Venue” nodes and their relations will form
the auxiliary graphs.

Definition 3.4 (Context path and context neighbors [1]). Given
a heterogeneous graph G, a context path is a path connecting
two nodes v; and v; in the primary graph Gp, denoted by pK =
<U,~, RK, Uj>, where RX is any path connecting v; and vj that con-
tains only K (K > 0) nodes in auxiliary graphs, and it is also called
the context edge sequence. The length of a context path is K (when
K=0, RK=0). We say two nodes are context neighbors if they are
connected by a context-path.

Example 2. Figure 2 depicts four possible context paths p* with
different lengths that can connect authors a; and ap, where R*
denotes the auxiliary nodes that constitute the path.

.y —@—
——B

£
alk_//'az

0
0

Figure 2: Context paths between a; and a;.

Difference between context path and meta-path. Intuitively,
the different high-order semantic relationships revealed from the
context path come from the different auxiliary nodes. The pur-
pose of the meta-path is to manually define the combination of
the auxiliary nodes in the context path. However, the number of
the combinations explodes exponentially when the node types and
order size increase. Thus, the context path relaxes the restriction
of the auxiliary nodes. Given a length K, the context path con-
tains all the possible K-order relationships. For example, in Figure
2, two meta-paths Author-Paper-Topic-Paper-Author and Author-
Paper-Venue-Paper-Author can both be represented by a 3-length
context path, and we propose the CP-GNN to futher differentiate
them.

Besides, specifying an integer K is much easier than defining the
meta-path, because the number of meta-paths of different node/edge
types grows exponentially as the meta-path length increases, while
the choices of K are rather limited since the average length of the
shortest path between two nodes in real-world networks is between
4 to 6, according to [54], thus the K can be determinated empiri-
cally or with the help of the proposed context path length attention
mechanism.

Problem definition. Given a heterogeneous graph G, our goal is
to learn a good primary node embedding Zp € RV*? where N
denotes the number of primary type nodes and d is the embedding
dimension, such that they can be used to group the nodes into a
set of communities C = {1, - - , C} with strong inner-connection.

4 OUR CP-GNN APPROACH

In this section, we present the Context Path-based Graph Neural
Network (CP-GNN) model for learning node representations that
well preserve the high-order relationship between nodes, and the
overall framework is depicted in Figure 3. Given a heterogeneous
graph (composed of a primary graph and auxiliary graphs), for

TN
N
O
Embedding \\O o/
Transform ~_-7
1 Conferencce
e ~~ N
/
/ \
—
\ /
\ /
N ~ P
s . Paper |
Initialize Primary
Graph Embedding Embedding _/ oY
Transform
\
\Q Q/
Author

A. Embedding
Transformation

B. Relation
Attention

-]!
TN ﬂ L_{ | prob. that
OOO\\ | Output @ ® : vy appears
I
X _’// u Embedding :
onferencce |
[I _I

|
|
|
| Primary Graph
|
|
|

~ (————— A= ==~
// . Ketengih | || | prob. that
Il context | v, appears

- Ilnformauon: O] O}

\ Layers | vector | L]

N

P ﬂ I K CK z :

"Attention | Ci ZI 2 2|

Weight | Bt A ——-TzIz
NN I []} prob. that
\ | v3 appears

!

I ml

1

I |

|

C. Context Path
Aggregation

D. Context Probability
Optimization

Figure 3: The overall framework of the CP-GNN (A: The embedding of each auxiliary graph is transformed from the primary
graph. B: The relation attentions are calculated from the corresponding graph representations. C: The context information
vector is generated from the CP-GNN. D: The embedding of the primary graph is optimized with the context probability).

each node in the primary graph Gp, we first extract all its context
neighbors by using the context paths whose lengths range from 0
to K. Then, we learn the representations of nodes in Gp by training
the CP-GNN model, in which the objective function is to maximize
the probability of having the context neighbors for each node in
Gp. In the following, we first introduce the objective function and
then discuss the details of the CP-GNN model.

4.1 Objective Function

In this section, we first introduce the context path probability, which
is defined as the probability that two nodes v; and v; in Gp are con-
text neighbors. Specifically, given a context path pK :<vi, RK v j),
the context path probability is

p(vjloi, RX; 0),)
where 0 is the parameters for computing the probability.

In our model, to learn effective node representations in Gp, a
maximum length K is firstly given. Then, for each length k € [0, K],
we aim to maximize the co-occurrence probability of all nodes in
Gp and their context neighbors w.r.t. all the k-length context paths.
The objective function can be written as

K
argmng(@)z Z Z Z Z lOgP(Uj|Ui>Rk;9)) (2

0; €Gp k=0 0; €Nk (v;) pk €P¥

where Nﬁ(ui) is the set of k-length context neighbors of v; in Gp
and P¥ is a set of all k-length context paths connecting v; and ;.

Intrinsically, Breadth-first search (BFS) is the easiest way to
get all the context paths between nodes. However, the number of
context paths increases exponentially with the path length, which
makes it impossible to traverse all the context paths, and the walk-
based methods (e.g., Node2vec [17], Metapath2vec [57]) are also
computational heavily and cannot fully excavate the relationships.

To address this issue, in our CP-GNN model, we adopt graph
neural network to recursively embed the high-order relationship
of each node into a context information vector cX to represent the

relation information of all context paths with length k, which takes
linear time complexity cost. Many previous researches have already
adopted the GNN to capture the structure and path information in
graph [47, 51]. The GNN message passing is essentially a simulation
of BFS, which exhibits the ability to capture paths between nodes
[55].

After k times message passing, CP-GNN can embed all the k-
length context paths into the context vector cX. Then, the probabil-
ity of two context neighbor nodes v; and v connected by all the pos-
sible k-length context paths can be approximated by their respective
context information vectors cf.c and ci?, written as p(vj|o;, cf, cf; 0),
which could be calculated using a softmax function:

exp (qo(z,-, cf, cf, z]-))

p(vjlvi,cf, cf;@) =
% exp (p(zi ek, ek zv) (3)
ux €Gp
o(zi, cf, c?, zj) =0 ((z,' o} cf)T(z]- 0] c?)),
where z; and z; are the node embeddings of v; and v; we want to
learn, c{.c and ci? denote the context information vectors, © denotes
the element-wise vector product operation, and o(-) denotes the
sigmoid function.
Thus, the objective function could be futher simplified as

K
k k
argmng(@): Z Zak Z logp(vj|vi,cl-,cj;0), (4)

v €GP k=0 v;eNk(v;)

where ng(vi) is the set of k-length context neighbors of v; in Gp.

To differentiate the importance of context paths with differ-
ent lengths from 0 to K, we propose a Context Path Length At-
tention mechanism to assign attention weights for different path
lengths. For the k-length context path, we use aj to denote its atten-
tion weight, which indicates the importance of the k-length context
paths and o € (0, 1]. Inspired by a multi-task leaning method
[20], we adopt the similar way to optimize o during the training.
By considering the negative sampling technique, the final model

objective function is converted to the following loss function:

K
L= Z (Z—Ofk(Z lOg¢(Zi,Cf,c§,zj)+

0;€Gp k=0 0; ENﬁ(Ui) -
Z log — ¢(zi, CZ-C, ek, Zx)) - log(xk),
UxENf]Y(Ui)

where N},f_ is the set of negative context neighbors of v; and log o
is a penalty to prevent o from over small. Currently, the com-
putation complexity of CP-GNN is O(K X |Vp| X (n* + n7)) that
grows linearly with K, where K is the defined maximal context
path length, |Vp| is the number of primary nodes, and n*,n™ are
the numbers of the positive and negative sampling neighbors.
Thus we can optimize the parameters with gradient descent
written as 0 « 0 — y Vg L(0), where y is the learning rate.

4.2 Details of CP-GNN Model

Our CP-GNN model aims to capture the context information and
generate the context information vectors for optimizting the final
node embedding. CP-GNN has two major components: Embedding
Transformation for transforming the node embedding from the pri-
mary graph to auxiliary graphs, and CP-GNN Layer for embedding
the high-order relationship of each node into a context information
vector.

4.2.1 Embedding Transformation. This component is used to trans-
form the node embedding from the primary graph to the auxiliary
graphs along the edges. In this way, we only learn the embedding
of nodes in the primary graph thus reducing the parameters to be
learned, as we only need to learn the transformation weight matrix.

We also observe that this can achieve even better performance
than directly learning the node embeddings for auxiliary graphs
in the experiments as shown in Section 5.5. Because we can learn
the representations of the primary graph by exploiting the infor-
mation from the auxiliary graphs by embedding transformation. It
can generate the representations of primary graph under different
contexts (auxiliary graphs), which is essential in heterogeneous
graph representation and community detection [10, 24, 29].

The embedding transformation function 7s7(-) from one graph
Gg with node type S to another graph Gr with node type T is

Z7 = 0(AsTZsW + B), (6)

where Zg and Z7 respectively denote the embeddings of nodes in
Gs and Gr, Agr is a bipartite adjacency matrix between Gg and G,
Wsr is the transformation weight matrix, and o(-) is the non-linear
activation function such as ReLU. The ReLU can be seen as a “Mask”
for filtering unnecessary embedding features (values less than 0)
during the transformation [52].

4.2.2 Context Path Graph Neural Network Layer. This component
recursively captures the high-order relationship from the graph by
repeating the Relation Attention and Context Path Aggregation
operations.

Relation Attention aims to calculate the attention score of
each relation, so that the contributions of different relations are
well differentiated. We first use a graph encoder to encode each

graph to a summary vector h. After that, the attention score of each
relation is calculated based on the graph summary vectors.

To enhance the model robustness, the graph encoder contains a
node dropout mechanism which randomly drops nodes from the
original graph. Then an averaging operation is adopted to calculate
the global graph representation h. Although there exist several
techniques to generate the graph summary vector h, the simple
averaging operation demonstrates superior performance [32], and
thus h is calculated as

G’ = NodeDropout(G)

h = Mean(C"), @)
where C’ contains the context information vectors of all the nodes
in the graph G’.

After calculating the h, for the I-th CP-GNN layer, we calculate

the h-head attention score a% for each relation rs7 € R by

hlS = GraphEncoder(Clsfl)
th = GraphEncoder(ClT_l)
O (RL)TKM (hL)
= Softmax ——————
SeA \/E
Qh(hé-) = QLinear;f(hé-)
Kh(hé) = KLinearg(hé),
where S and T respectively denote the source and target node types
in the relation rg7, hls and th denote the graph summary vector

hl
st

of Gg and Gr at layer [respectively, Cé’l and CIT’1 are the context
information vectors at the (I — 1)-th layer, QLinear and KLinear
are the linear projection functions that project the graph summary
vectors to a Query vector and a Key vector. We want to learn more
diverse importance of the relations, thus we adopt total H different
heads of Relation Attention with their own parameters to be learned
during the training. ag’ll. is the attention weight in head h at layer [
for the relation rgr.

~ 7 Conference

Paper (P)

Paper (P)
,
CP-GNN(CH'.C) Cr

A) T

Figure 4: The Context Path Aggregation component.

Context Path Aggregation aims to aggregate the information
along relations to generate the context information vectors for all
nodes. As discussed in Section 4.1, it is infeasible to enumerate

all the context paths with lengths at most K, so we propose to
use the context information vectors to approximately compute the
probability that two context neighbors are connected by a context
path. After calculating the scores of different relationships, we
aggregate the information for a node v; of type T from its one-hop
neighbors by adopting the widely used GNN aggregation method.
The procedure of this component is shown in Figure 4.

Assume that at layer I, we are going to obtain the context in-
formation vector cf for v; by aggregating the information from its
neighbors along different relations. We utilize its neighbors’ context
information vectors obtained at layer I — 1, and the computation is
as below
ol = ng(“he[l,H] oWl 3, 062’;,{ z Cﬁ-_l +Bh)+ Bé),

rsTeR 0j GNs(l)

)
where Ng(i) denotes the adjacent neighbors of v; in graph Gg for
each relation rst € R relevant to node type T, Wl, Wzl, Bﬁ, and Bé
are the trainable parameters in the [-th layer, and H is the number
of different heads. Note that finally we only use the embedding
of the primary graph nodes at the k-th layer to obtain k-length
context information vectors Cf,.

In order to get the information of k-length context paths for
nodes, we run CP-GNN layer k times to obtain the cl’g at layer
k. The GRU mechanism [8] is also utilized to alleviate the over
smoothing problem unusually occured in GNN model [5]. The
computation is as below

cl = GRU(cf;l, CP — GNNLayer(C5™, cﬁ;l)), (10)
where qu_l is the embedding of the auxiliary graphs in layer [— 1,
and CP-GNNLayer is the computing process as shown in Eq. 8 and 9.
Therefore, the final context information vector cf of each node in

Gp can be taken from Cf,. The overall process of CP-GNN in shown
in Algorithm 1.

Algorithm 1: The overall process of CP-GNN.

Input: G = {V, &, A, R}, Gp = {Vp, Ep}, K.
Output: The final embedding Zp.
1 Randomly initialize the Zp, and set the loss L « 0;

2 Initialize relation attention weight oy « 1, - -, ag « 1;

3 fork=1,---,Kdo

4 for v; € Vp do

5 for v; € N},f(vi) do

6 C?D — ZP;

7 C?L‘ = EmbTransform(Zf,);

8 forl=1,---,kdo

5 CL = GRU(Ch,CP~GNNLayer(C5 ', CiH);
10 end

11 L—L-a ~log<p(zi,zj,cf,c§),where ci.‘,cf ECIIE,;
12 end
13 end
14 end
15 Back propagation and update CP-GNN parameters, ay, - - - , ak,

Zp;

16 return Zp

5 EXPERIMENTS
5.1 Dataset

Three widely used real-world heterogeneous graph datasets, i.e.,
ACM [48], DBLP [16], IMDB [49], together with a schema-rich
knowledge graph dataset AIFB [33] are chosen in the experiments
to evaluate the performance of CP-GNN and other baseline models.
We report their statistics in Table 1, and discuss their details as
follows.

e ACM dataset [48] is a bibliographic information network
with four types of nodes. We use paper nodes to generate
the primary graph and the rest three types of nodes are re-
spectively used to construct auxiliary graphs. In the original
dataset, the paper nodes are categorized into 3 classes, i.e.,
database, wireless communication and data mining. To eval-
uate the compared models, we pre-define two meta-paths
according to [48], i.e., Paper-Author-Paper (PAP), and Paper-
Subject-Paper (PSP).

DBLP dataset [16] is a monthly updated citation network
consisting of four node types. As we mentioned in Definition
3.2, any node type can be chosen as the primary type. Thus
we choose the author node and paper as the primary node,
respectively, with four classes, i.e., database, data mining, in-
formation retrieval and machine learning. They are denoted as
DBLP-A and DBLP-P in the following section. We use three
meta-paths for this dataset, which are Author-Paper-Author
(APA), Author-Paper-Conference-Paper-Author (APCPA),
and Author-Paper-Term-Paper-Author (APTPA).

IMDB dataset [49] consists of four types of nodes, i.e., “Direc-
tor”, “Actors”, “Movie” and “Key word”. We choose the movie
node as the primary node with three classes, i.e., Action,
Comedy and Drama. We also use three meta-paths on this
network, i.e., Movie-Actor-Movie (MAM), Movie-Director-
Movie (MDM), and Movie-Keyword-Movie (MKM).

ATFB dataset [33] is a knowledge graph dataset consists of
7 types of nodes and 104 types of edges. We choose the
“Personen” node as the primary node with four classes. Due
to the complexity of the graph, we do not provide detail
illustration in Table 1, and pre-define the meta-paths by
ourselves.

Notabally, we adopt the meta-paths in ACM, DBLP, and IMDP
defined by previous works to evaluate the meta-path-based methods.
Due to the rich-schema property of AIFB, we do not define the
meta-path by ourselves. Besides, since the unsupervised methods
do not need the training data, to make a fair comparison between
the unsupervised and supervised methods, the splits of the labled
primary nodes for training and testing are shown in Table 2.

5.2 Baseline Methods

To evaluate the effectiveness of our approach, we compare it with
a list of the state-of-the-art unsupervised methods (i.e., Node2vec
[17], Metapath2vec [9], and HIN2vec [15]) and supervised baseline
methods (i.e., GCN [22], GAT [44], LGNN [7], HAN [48], and HGT
[18]). Especially, HGT is a semi-supervised neural network model
which adopts the transformer mechanism to capture the importance
of relations. It is considered as the SOTA approach.

Table 1: Statistics of datasets (the primary node types are
marked with “*”).

Dataset Node type # Nodes Edge type #Edges Meta-path
*Paper (P) 12,499 Paper - Paper 30,789
ACM Author (A) 17,431 Paper - Author 37,055 PAP
Subject (S) 73 Paper - Subject 12,499 PSP
Facility (F) 1,804 Author - Facility 30,424
f}uath:rr ((II})) ij’;;: Author - Paper 41,794 APA
DBLP P i Paper - Conference 14,736 APCPA
Conference (C) 20 Paper-Term 114,624 APTPA
Term (T) 8,920 P :
IX;‘(I)I:(%) g’i;; Movie - Actor 12,831 MAM
IMDB Director (D) 2,083 Movie - Director 4,181 MDM
ecto ’ Movie - Keyword 20,428 MKM

Keyword (K) 7,313
AIFB 7 different types Total 7,262 104 different types Total 48,810 -

Table 2: Statistics of the training and testing set.

Dataset Primary Type Training Testing

ACM Paper 805 3,220
DBLP-A Author 811 3,246
DBLP-P Paper 20 80

IMDB Movie 855 3,420

AIFB Personen 36 141

Except for graph embedding-based and GNN-based baselines,
we also choose two traditional community detection methods (i.e.,
InfoMap [34] and LP (Label Propagation) [31]), for comparison.

5.3 Settings of Model Parameters

We now briefly discuss the settings of model parameters. For unsu-
pervised approaches such as Node2vec, Metapath2vec, and HIN2vec,
we respectively set the length of a random walk to 20, the sampling
window size to 3, the number of walks per node to 5, and the num-
ber of negative samplings to 3. For supervised-based methods such
as GCN, GAT, LGNN, HAN and HGT, the number of graph convo-
lution layer is set to 2, and their node features are first randomly
initialized then updated during the model learning process. The
dimension of node feature embedding for all compared methods is
set to 128.

For our CP-GNN, the number of attention heads is set to 8, the
dimension of the output vectors of K/Q-Linear components is set to
128, and the node dropout rate is set to 0.3. The number of positive
context neighbors for each node in a context path is set to 20, and
the corresponding negative sampling size is set to 3. The Adam
[21] is adopted to optimize all models, and the learning rate is set
to 0.05.

5.4 Performance Comparison

In this experiment, we first learn the node embeddings and then
employ the k-Means algorithm on these embeddings to detect com-
munities, where k is set to the number of node classes. We evaluate
the community detection results using the ground-truth labels with
four commonly adopted community detection evaluation metrics,
i.e., F1, NMI, ARI, and Purity, and report the performance results
in Table 3. Note that due to the lack of pre-defined meta-paths, the

meta-path-based methods (i.e., Metapath2vec and HAN) cannot be
evaluated on AIFB.

From Table 3, we can clearly see that CP-GNN outperforms all the
baselines on most metrics. This demonstrates that via the context
paths, it can learn node representations that are more suitable for
community detection by capturing more meaningful and high-order
relationships.

For unsupervised methods, HIN2vec achieves better performance
than Node2vec and Metapath2vec on ACM but worse on other
datasets. It shows that even though HIN2vec can automatically dis-
cover meta-paths by random walk, the discovered meta-paths may
not be suitable for community detection. Besides, HIN2vec does
not differentiate the importance of the found meta-paths, which
incorporates some unrelated relations to the community detec-
tion result. The performances of the Metapath2vec are better on
DBLP than ACM, when using the longer meta-path. This demon-
strates the importance of high-order relationships. Last, all the
graph embedding-based methods are better than InfoMap, which
shows the great potential of them in community detection task.

For supervised methods, LP performs well in schema-simple
heterogeneous graphs (i.e., ACM and IMDB), but its performance
drops quickly when it meets the schema-rich heterogeneous graph
(i.e., AIFB). This indicates the simple label propagation mechanism
does not consider the complex relations in heterogeneous graphs,
which leads to its poor performance. GCN and LGNN achieve the
worst results in the GNN-based baselines. The possible reason is
that they are originally proposed for homogeneous graph, thus they
do not consider the complex context information in heterogeneous
graph. GAT performs better than GCN and LGNN, which strongly
supports the importance of the attention mechanism. The atten-
tion mechanism used in GAT can be regarded as a simple way to
differentiate the node type and edge type in heterogeneous graph.
Thanks to the meta-path, HAN can explicitly excavates the complex
semantic information and reaches a better result. In addition, HGT
achieves the second-best performance since it can capture more
diverse relations without the limitation of the meta-paths, and be
easily fit into different datasets. However, the HGT still requires
the labeled data to optimize the model, which strongly limits its
application.

Last, as Definition 3.2 said, each node type can be treated as
primary type. Therefore, the result in DBLP-A and DBLP-P shows
that no matter what node type is chosen as the primary type, the
proposed GP-GNN can still achieve better results with the help of
other auxiliary nodes.

5.5 Parameters Analysis and Ablation Study

In this section, we experimentally investigate the sensitivity of the
parameters and report the results on the ACM dataset with various
parameters shown in Figure 5, and various CP-GNN structures
shown in Tables 4 and 5.

As shown in Figure 5, with the increase of parameter values,
CP-GNN’s performances raise first and then drop slightly; the best
performances are reached when the Embedding size, Attention
head, and Node droupout rate reach 128, 8, and 0.3, respectively.
The reason is that an over large embedding dimension may intro-
duce unnecessary redundancies to the CP-GNN model. Although

Table 3: Comparison of the performance of different community detection methods.

Dataset Metrics InfoMap Node2vec Metapath2vec HIN2vec Lp GCN GAT LGNN HAN HGT CP-GNN
F1 0.5733 0.6954 0.7142 0.7732 0.6691 0.5366 0.6876 0.6987 0.7922 0.7599 0.8596
ACM NMI 0.1933 0.2666 0.3596 0.4066 0.3933 0.0966 0.2577 0.2746 0.394 0.4509 0.4832
ARI 0.1286 0.2469 0.2956 0.3313 0.2992 0.1022 0.1422 0.2368 0.319 0.3813 0.3924
Purity 0.5876 0.4355 0.4969 0.6969 0.6691 0.5808 0.6186 0.6594 0.6942 0.7032 0.715
F1 0.3601 0.7572 0.7144 0.313 0.2451 0.32 0.9023 0.321 0.9023 0.9386 0.9125
DBLP-A NMI 0.0819 0.0638 0.2554 0.0044 0.0984 0.0186 0.618 0.0069 0.624 0.7032 0.7089
ARI 0.0131 0.0409 0.2722 0.0022 0.0033 0.0166 0.5264 -0.0012 0.665 0.7322 0.766
Purity 0.3601 0.3884 0.6169 0.2971 0.2935 03564 0.7476 0.2988 0.8496 0.9325 0.9004
F1 0.3111 0.3 0.3125 0.3375 0.4 0.31 0.3 0.225 0.3375 0.4 0.4875
DBLP-P NMI 0.0463 0.0655 0.0034 0.0514 0.0429 0.0171 0.0495 0.0431 0.0732 0.1086 0.1846
ARI 0.0032 -0.0016 0.0013 -0.0021 0.0042 -0.0048 -0.0029 0.0016 -0.0103 0.0724 0.0564
Purity 0.4111 0.432 0.4212 0.431 0.4 0.41 0.422 0.44 0.426 0.426 0.488
F1 0.3038 0.5494 0.488 0.4184 0.3826 0.3628 0.3587 0.3646 0.4888 0.3634 0.614
IMDB NMI 0.0098 0.0745 0.027 0.0031 0.0081 0.0018 0.0012 0.0158 0.1172 0.0101 0.1225
ARI -0.005 0.0471 0.0146 -0.0022 -0.0004 0.0013 -0.0009 -0.0079 0.131 0.0083 0.1231
Purity 0.3898 0.4442 0.438 0.3744 0.3825 0.3885 0.3746 0.3738 0.3734 0.4023 0.4949
F1 0.434 0.7517 - 0.6524 0.4151 0.6524 0.7375 0.6809 - 0.7163 0.7659
ATFB NMI 0.0645 0.2401 - 0.1912 0.2216 0.1567 0.2117 0.2435 - 0.3812 0.4147
ARI 0.0286 0.1518 - 0.1202 0.0985 0.1248 0.1142 0.079 - 0.3011 0.3898
Purity 0.4403 0.6091 - 0.5494 0.5157 0.5835 0.5568 0.5875 - 0.7102 0.6966

Table 4: Effectiveness of embedding transform functions.

Trans. Function NMI ARI
CP-GNN w/o Trans. 0.3397 0.3665
CP-GNN w/o ReLU 0.3908 0.2908

CP-GNN 0.4832 0.3924
—— NMI —e— ARI

0.45 -r/\‘ '.,/\' 'r/‘/\

0407 _//./‘ _°\o/.\.

0'35_| T T e T T T

3264 128 2561 4 8 16 0
Embedding size Attention Head

T T
0.20.3 0.5
Node dropout rate

Figure 5: Parameter sensitivity w.r.t. different parameters.

more attention heads can capture more diverse relation importance
and increase the representation ability, they also introduce more
parameters to the model, making it hard to train. Besides, too many
nodes are dropped, which causes that the graph summary vectors
cannot be well generated from the remaining nodes.

In Table 4, we evaluate the effect of the embedding transforma-
tion mechanism where CP-GNN w/o Trans. means that the initial
embeddings of all the auxiliary nodes are randomly initialized and
optimized during the training; CP-GNN w/o ReLU denotes that
the initial embeddings are transformed from the primary node
embeddings but without non-linear function in Eq. 6. CP-GNN de-
notes the final embedding transformation function used in our
CP-GNN. The experiment results show that our non-linear trans-
formation function performs the best. The reason is that using the
proposed transformation function can establish stronger connec-
tions between the primary graph and auxiliary graphs. Meanwhile,
it provides different contextual representation of the primary graph.

Table 5: Effectiveness of attention mechanisms.

Attention NMI ARI
CP-GNN w/o Attention 0.2214 0.1132
CP-GNN w/o Relation Att. 0.3239 0.1008
CP-GNN w/o Length Att. 0.4452 0.3739
CP-GNN 0.4832 0.3924

Besides, the non-linear function, such as ReLU, can “mask” some
unimportant features during the transformation to provide better
result.

In Table 5, to examine the effectiveness of different attention
methods, we gradually remove the relation and length attention
mechanism. CP-GNN w/o Attention means CP-GNN without any
attention mechanism. CP-GNN w/o Relation Att. and CP-GNN w /o
Att. respectively denote the CP-GNN without relation attention and
context path length attentnion. The experimental results show that
both the context path length attention and the relation attention
are helpful for improving the model performance.

5.6 Case Study

5.6.1 Context Path Length Attention. To analyze the effect of con-
text path length attention, we conduct experiments on the ACM
dataset with different maximum context path length K. The experi-
ment results and attention weight of each context path length are
depicted in Figure 6(a) and 6(b). Clearly, with the increase of K, the
performances of CP-GNN increases and reaches the best when K=4.
This demonstrates our assumption that the high-order relationship
information is crucial for community detection. When K > 4, the
performance of the model slightly drops, which may due to the fact
that the nodes will be fully connected when K is overly increasing.

Besides, by reporting the attention score of each length, we can
see that with the context path length increases, the corresponding
attention weight decreases, which is consistent to the common
sense that the short paths often reflect stronger connections than

the long ones. What is more, the attention scores of lengths longer
than 4 (i.e., k = 5, 6) are barely the same. It indicates the less rele-
vance of these paths, and explains why the performance of CP-GNN
drops slightly when K > 4. By using the context path length at-
tention, we not only capture the high-order relationships among
the graph nodes, but also discard some less important high-order
relationships during learning.

Since the context path length attention can discriminate the
importance of context paths with different lengths and assign lower
importance to unnecessary long meta-paths, we can set a slightly
larger value for K, which can yield a result closed to the optimal
one. As demonstrated by Figure 6(a) where the optimal result is
reached when K=4 but the results are close when K=5 or 6. This
will alleviate the model’s dependence on the hyper-parameter K.

10 BN Olcngth W 4-length
04 E 08 I-length WEEE S-length
3 2 -length 6-length
g 06 B 3oength
0.2 2 04
—e— NMI § 04
—e— ARI <02
0.0 0.0
0 1 2 3 4 5 6 0 1 2 34 5 6
K-length K-length

(a) CP-GNN’s performances un-(b) Attention weight of each con-
der different K-length context text path length.
paths.
Figure 6: Visualization of the context path length attention
mechanism.

Target
) 3 S
O GO @ €
\\\\‘o(Qz&\\\ﬂ 'ﬂc‘\ %\N\e’c

' ' 8

o
- 0.00 300 0.00 Fl
3 P&‘\“ B Attention Score
6z
8 400 0.00 0.00 0.00 g 1.0 10 ,
Q’b‘/ 4 g E
& -14.000 0.00 |4.00 L ‘g
e ,8 & 05 5 &
- 0.00 0.00 1.00 0.00 s
o =

0 0
S(PAP)=PA+AP=7 0.0 PAP PSP 0

S(PSP)=PS+SP=9
(a) Attention matrix of 1-length con-(b) Metapath2vec F1 values on
text path on ACM. ACM.
Figure 7: Visualization of the context relation attention ma-
trix on ACM.

5.6.2 Relation Attention. To further analyze whether CP-GNN can
differentiate the context paths, we first present the corresponding
relations attention matrix acquired from CP-GNN in Figure 7(a) and
8(a), where each entry is the attention score of the relation with
a source node type and a target node type. The attention score of
each context path can be computed by summarizing the scores of its
relations. Then, to justify whether the paths with higher attention
score are more meaningful for community detection, we adopt the
Metapath2vec to evaluate the effect of each path. The results are
shown in Figure 7(b) and 8(b)

Target

0 e\C\
Pl AR\
P\\{(\o‘(p&e@ %Q“‘\ s
N S o
8
5 \\ox>0.00 0.00 [4.00 0.00 B Attention Score
& W 6=
o~ 000 000 300 000 I E 1.0 30 o
e g 20 3
B 3.00 | 8.00 [N 3.00 AR
o AWl | 5 <o :
S =
- 000 0.00 100 0.00 105
0 0.0 0 =

S(APCPA)=AP+PC+CP+PA=23

S(APTPA)=AP+PT+TP+PA=21 APCPA. APTPA

(a) Attention matrix of 3-length con-(b) Metapath2vec F1 values on
text path on DBLP. DBLP.

Figure 8: Visualization of the context relation attention ma-
trix on DBLP.

For example, the paths PAP and PSP in ACM are both 1-length
context path. Therefore, there attention scores can be computed
from the relation attention matrix of 1-length context path shown in
Figure 7(a) where S(PAP) = PA+ AP =7 and S(PSP) = PS + SP =
9. Clearly, we can find that the attention score of PSP is higher
than PAP, which means the path PSP is slightly more important
than PAP for community detection. This can be justified by the
result shown in Figure 7(b) where the F1 score of PSP is higher
than PAP. Similarly, from Figure 8(a), the attention scores of paths
APCPA and APTPA are S(APCPA) = AP + PC + CP + PA = 23
and S(APTPA) = AP + PT + TP + PA = 21. This indicates that the
relationship reflected by APCPA is a little bit more important than
that of APTPA. This finding can be proved by the result shown in
Figure 8(b) where the F1 of APCPA is higher than APTAP.

In summary, the above analysis demonstrates that the Relation
Attention can discover context path of different importance and cap-
ture the context path of high importance that are more meaningful
and useful for community detection.

6 CONCLUSION

In this paper, we propose the Context Path-based Graph Neural
Network (CP-GNN) model for detecting communities from hetero-
geneous graphs, which not only avoids using pre-defined meta-
paths, but also well captures the high-order relationship among
nodes. In particular, we adopt the context path and propose the
context path probability to model the objective function. Besides,
CP-GNN distinguishes the importance of different context paths.
Extensive experiments on real-world datasets show that CP-GNN
outperforms the baselines, and its attention mechanisms can well
differentiate the importance of different context paths.

7 ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science
Foundation of China under Grant No. 61872108, and the Shenzhen
Science and Technology Program under Grant No. JCYJ2020010911
3201726, JCYJ20170811153507788. Xin Cao is supported by ARC
DE190100663. Yixiang Fang is supported by CUHK-SZ grant UDF0
1002139. Wenjie Zhang is supported by ARC DP200101116.

REFERENCES

(1]

=L

=
22

[10

(1]

[12

[13

[14]

[15

[16]

[17]

[18

[19

™
=

[21]

[22

[23

[24

[25

[26]

Debaditya Barman, Subhayan Bhattacharya, Ritam Sarkar, and Nirmalya Chowd-
hury. 2019. k-Context Technique: A Method for Identifying Dense Subgraphs
in a Heterogeneous Information Network. IEEE Transactions on Computational
Social Systems 6, 6 (2019), 1190-1205.

Brigitte Boden, Martin Ester, and Thomas Seidl. 2014. Density-based subspace
clustering in heterogeneous networks. In ECML PKDD. Springer, 149-164.
Deng Cai, Zheng Shao, Xiaofei He, Xifeng Yan, and Jiawei Han. 2005. Mining
hidden community in heterogeneous social networks. In Proceedings of the 3rd
international workshop on Link discovery. 58-65.

Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,
and Erik Cambria. 2017. Learning community embedding with community
detection and node embedding on graphs. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. 377-386.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 3438-3445.

Yankai Chen, Jie Zhang, Yixiang Fang, Xin Cao, and Irwin King. 2020. Efficient
Community Search over Large Directed Graph: An Augmented Index-based
Approach.. In IJCAIL 3544-3550.

Zhengdao Chen, Lisha Li, and Joan Bruna. 2019. Supervised Community Detec-
tion with Line Graph Neural Networks. In ICLR.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In SIGKDD. 135-
144.

Alessandro Epasto and Bryan Perozzi. 2019. Is a single embedding enough?
learning node representations that capture multiple social contexts. In The World
Wide Web Conference. 394-404.

Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. The VLDB
Journal 29, 1 (2020), 353-392.

Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020. Ef-
fective and efficient community search over large heterogeneous information
networks. PVLDB 13, 6 (2020), 854-867.

Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.
Effective and Efficient Community Search over Large Heterogeneous Infor-
mation Networks. Proc. VLDB Endow. 13, 6 (Feb. 2020), 854-867. https:
//doi.org/10.14778/3380750.3380756

Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75-174.

Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths
in heterogeneous information networks for representation learning. In CIKM.
1797-1806.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei Han. 2009. Graph-based
consensus maximization among multiple supervised and unsupervised models.
In NIPS. 585-593.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In SIGKDD. 855-864.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In WWW. 2704-2710.

Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Philip S Yu, and Weixiong Zhang. 2021.
A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning. arXiv preprint arXiv:2101.01669 (2021).

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In CVPR. 7482—
7491.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. 2018. Community detec-
tion in attributed graphs: An embedding approach. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia
Hu. 2019. Is a single vector enough? exploring node polysemy for network
embedding. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 932-940.

Linhao Luo, Kai Liu, Dan Peng, Yaolin Ying, and Xiaofeng Zhang. 2020. A Motif-
Based Graph Neural Network to Reciprocal Recommendation for Online Dating.
In International Conference on Neural Information Processing. Springer, 102-114.
Fragkiskos D Malliaros and Michalis Vazirgiannis. 2013. Clustering and com-
munity detection in directed networks: A survey. Physics reports 533, 4 (2013),

[27

[28

[29

@
&

&
2

[37

[38

[39

S
=

[41

[42

[43

(44

[46]

[47

(48]

[49]

[50]

[51

[52

[53

95-142.

Vincenzo Moscato and Giancarlo Sperli. 2021. A survey about community detec-
tion over On-line Social and Heterogeneous Information Networks. Knowledge-
Based Systems (2021), 107112.

Mark EJ Newman. 2004. Finding and Evaluating Community Structurein Net-
works. Physical Review E 69, 26113 (2004), 1-16.

Chanyoung Park, Carl Yang, Qi Zhu, Donghyun Kim, Hwanjo Yu, and Jiawei
Han. 2020. Unsupervised Differentiable Multi-aspect Network Embedding. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1435-1445.

Guo-Jun Qi, Charu C Aggarwal, and Thomas S Huang. 2012. On clustering
heterogeneous social media objects with outlier links. In WSDM. 553-562.
Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear
time algorithm to detect community structures in large-scale networks. Physical
review E 76, 3 (2007), 036106.

Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, and Jiawei Zhang. 2019.
Heterogeneous deep graph infomax. arXiv preprint arXiv:1911.08538 (2019).
Petar Ristoski, Gerben Klaas Dirk De Vries, and Heiko Paulheim. 2016. A collec-
tion of benchmark datasets for systematic evaluations of machine learning on
the semantic web. In International Semantic Web Conference. Springer, 186—194.
Martin Rosvall and Carl T Bergstrom. 2008. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy of
Sciences 105, 4 (2008), 1118-1123.

Marta Sales-Pardo, Roger Guimera, André A Moreira, and Luis A Nunes Amaral.
2007. Extracting the hierarchical organization of complex systems. PNAS 104, 39
(2007), 15224-15229.

Venu Satuluri, Yao Wu, Xun Zheng, Yilei Qian, Brian Wichers, Qieyun Dai,
Gui Ming Tang, Jerry Jiang, and Jimmy Lin. 2020. SimClusters: Community-Based
Representations for Heterogeneous Recommendations at Twitter. In SIGKDD.
3183-3193.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A survey
of heterogeneous information network analysis. TKDE 29, 1 (2016), 17-37.
Chuan Shi, Ran Wang, Yitong Li, Philip S Yu, and Bin Wu. 2014. Ranking-based
clustering on general heterogeneous information networks by network projection.
In CIKM. 699-708.

Heli Sun, Fang He, Jianbin Huang, Yizhou Sun, Yang Li, Chenyu Wang, Liang
He, Zhongbin Sun, and Xiaolin Jia. 2020. Network embedding for community
detection in attributed networks. ACM Transactions on Knowledge Discovery from
Data (TKDD) 14, 3 (2020), 1-25.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
PVLDP 4, 11 (2011), 992-1003.

Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S Yu, and Xiao
Yu. 2013. Pathselclus: Integrating meta-path selection with user-guided object
clustering in heterogeneous information networks. TKDD 7, 3 (2013), 1-23.
Yizhou Sun, Yintao Yu, and Jiawei Han. 2009. Ranking-based clustering of
heterogeneous information networks with star network schema. In SIGKDD.
797-806.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning deep
representations for graph clustering. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 28.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Ken Wakita and Toshiyuki Tsurumi. 2007. Finding community structure in
mega-scale social networks. In WWW. 1275-1276.

Jing Wang and Ioannis Ch Paschalidis. 2016. Botnet detection based on anomaly
and community detection. IEEE Transactions on Control of Network Systems 4, 2
(2016), 392-404.

Ping Wang, Khushbu Agarwal, Colby Ham, Sutanay Choudhury, and Chandan K
Reddy. 2021. Self-Supervised Learning of Contextual Embeddings for Link Pre-
diction in Heterogeneous Networks. Proceedings of The Web Conference 2021
(2021).

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW. 2022-2032.
Chao-Yuan Wu, Alex Beutel, Amr Ahmed, and Alexander J Smola. 2016. Ex-
plaining reviews and ratings with paco: Poisson additive co-clustering. In WWW.
127-128.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding
for clustering analysis. In International conference on machine learning. PMLR,
478-487.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Carl Yang et al. 2020. MultiSage: Empowering GCN with Contextualized Multi-
Embeddings on Web-Scale Multipartite Networks. In SIGKDD. 2434-2443.
Liang Yang, Xiaochun Cao, Dongxiao He, Chuan Wang, Xiao Wang, and Weixiong
Zhang. 2016. Modularity Based Community Detection with Deep Learning.. In
IJCAL Vol. 16. 2252-2258.

https://doi.org/10.14778/3380750.3380756
https://doi.org/10.14778/3380750.3380756

[54] Qi Yeetal. 2010. Distance distribution and average shortest path length estimation
in real-world networks. In ADMA. 322-333.

[55] Jiaxuan You et al. 2021. Identity-aware Graph Neural Networks. In AAAL

[56] Binbin Zhang, Zhizhi Yu, and Weixiong Zhang. 2020. Community-Centric Graph
Convolutional Network for Unsupervised Community Detection. [JCAL

[57] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Metagraph2vec:

Complex semantic path augmented heterogeneous network embedding. In
PAKDD. Springer, 196-208.

(58]

[59

[60]

Chen Zhe, Aixin Sun, and Xiaokui Xiao. 2019. Community detection on large
complex attribute network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 2041-2049.

Yaping Zheng, Shiyi Chen, Xinni Zhang, Xiaofeng Zhang, Xiaofei Yang, and Di
Wang. 2019. Heterogeneous-Temporal Graph Convolutional Networks: Make
the Community Detection Much Better. arXiv preprint arXiv:1909.10248 (2019).
Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on
structural/attribute similarities. Proceedings of the VLDB Endowment 2, 1 (2009),
718-729.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our CP-GNN Approach
	4.1 Objective Function
	4.2 Details of CP-GNN Model

	5 Experiments
	5.1 Dataset
	5.2 Baseline Methods
	5.3 Settings of Model Parameters
	5.4 Performance Comparison
	5.5 Parameters Analysis and Ablation Study
	5.6 Case Study

	6 Conclusion
	7 Acknowledgments
	References

