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Abstract—Core decomposition is a fundamental operator in
network analysis. In this paper, we study a problem of com-
puting distance-generalized core decomposition on a network. A
distance-generalized core, also termed (k, h)-core, is a maximal
subgraph in which every vertex has at least k other vertices
at distance no larger than h. The state-of-the-art algorithm for
solving this problem is based on a peeling technique which
iteratively removes the vertex (denoted by v) from the graph
that has the smallest h-hop degree. The h-hop degree of a
vertex v denotes the number of other vertices that are reachable
from v within h hops. Such a peeling algorithm, however, needs
to frequently recompute the h-hop degrees of v’s neighbors
after deleting v, which is typically very costly for a large h.
To overcome this limitation, we propose an efficient peeling
algorithm based on a novel h-hop degree updating technique.
Instead of recomputing the h-hop degrees, our algorithm can
dynamically maintain the h-hop degrees for all vertices via
exploring a very small subgraph, after peeling a vertex. We show
that such an h-hop degree updating procedure can be efficiently
implemented by an elegant bitmap technique. In addition, we
also propose a sampling-based algorithm and a parallelization
technique to further improve the efficiency. Finally, we conduct
extensive experiments on 12 real-world graphs to evaluate our
algorithms. The results show that, when h ≥ 3, our exact and
sampling-based algorithms can achieve up to 10× and 100×
speedup over the state-of-the-art algorithm, respectively.

I. INTRODUCTION

Many real-world networks such as social networks, biolog-

ical networks, and collaboration networks often contain co-

hesive subgraph structures. Finding cohesive subgraphs from

a network is a fundamental problem in networks analysis

which has attracted much attention in recent years [1], [2],

[3], [4], [5]. A variety of cohesive subgraph models have been

proposed, such as maximal clique [6], [7], k-plex [8], [4], k-

truss [9], [3], [10], and k-core [11]. Among of them, k-core is

the most appealing model, because it can be computed in linear

time [12]. However, computing cohesive subgraphs based on

the other models is often very costly. As a consequence,

the k-core model has been widely used in many application

domains, including community discovery [13], [14], network

topology analysis [15], protein complex modeling [16], [17],

and network visualization [18] [19].

The k-core of a graph G is defined as a maximal subgraph

in which every vertex has a degree at least k within that

subgraph. Although it is commonly used in practice, the k-

core model sometimes cannot detect cohesive subgraphs. For

example, let us consider a graph shown in Fig. 1. Intuitively,

the subgraph induced by the vertices {v8, v9, · · · , v14} is

a cohesive subgraph. Such a cohesive subgraph, however,

cannot be identified by the k-core model. This is because the

entire graph is 2-core, and we cannot distinguish the cohesive

subgraph and the entire graph based on different k values using

the k-core model.

To overcome this limitation, Bonchi et al. [5] recently

proposed a distance-generalized k-core concept, called (k, h)-
core, where k and h (h ≥ 1) are two integer parameters.

Specifically, the (k, h)-core is a maximal subgraph in which

every vertex has at least k other vertices with distance at most

h within that subgraph. As indicated in [5], such a distance-

generalized k-core model can detect cohesive subgraphs that

cannot be found by the traditional k-core model. Reconsider

the graph in Fig. 1. Suppose that h = 2. We can easily verify

that the subgraph induced by {v8, v9, · · · , v14} is a (6, 2)-
core, while the entire graph is a (4, 2)-core. Therefore, we are

able to apply the (k, h)-core model to identify the cohesive

subgraph induced by {v8, v9, · · · , v14}.
In this paper, we focus on the problem of computing all

(k, h)-cores on a graph G for a given parameter h. Such a

problem is also called (k, h)-core decomposition. The (k, h)-
core decomposition has many applications in practice. As

shown in [5], the (k, h)-core decomposition can be used to

speed up the computation of finding the maximum h-club on

a graph; It can also be used to find a good approximation for

the distance-generalized densest subgraph problem.

To compute the (k, h)-core decomposition, Bonchi et al.

[5] proposed a peeling algorithm which iteratively removes

the vertex that has the smallest h-hop degree until all vertices

are deleted. Here the h-hop degree of a vertex v is defined as

the number of other vertices that are reachable from v within

h hops. The defect of such a peeling algorithm is that it needs

to recompute the h-hop degrees for all vertices in v’s h-hop

neighborhood when peeling a vertex v, which is often costly

for a large h. Here the h-hop neighborhood of v, denoted by

Nh
v (G), is a set of other vertices that are reachable from v

within h hops. Bonchi et al. [5] also developed an improved

algorithm with several lower and upper bounding techniques to

alleviate such h-hop degree re-computation costs. However, as

shown in our experiments, such an improved peeling algorithm

is still very costly for h ≥ 3 on large graphs, because the

http://arxiv.org/abs/2006.03372v2


algorithm may still need to frequently recompute the h-hop

degrees.

To circumvent this issue, we propose an efficient peeling

algorithm, called KHCore, based on a novel h-hop degree

updating technique. Specifically, when peeling a vertex v,

we prove that the h-hop degree for each vertex in Nh
v (G)

can be updated by exploring a small subgraph induced by

Nh
v (G). Based on this key result, we devise the KHCore

algorithm which does not recompute the h-hop degrees for

all vertices in Nh
v (G), but it updates the h-hop degrees for

every vertex in Nh
v (G) by only accessing a small subgraph

induced by Nh
v (G), thus it is very efficient in practice. We

also develop an elegant bitmap technique to implement the h-

hop degree updating procedure which not only improves the

efficiency, but it also reduces the space usage of our algorithm.

In addition, a sampling-based algorithm is also presented

to further improve the efficiency. To scale to larger graphs,

we also propose a parallelization strategy to parallelize our

algorithms for (k, h)-core decomposition. Finally, we conduct

extensive experiments using 12 real-world datasets to evaluate

the proposed algorithms. The results show that, if h ≥ 3, our

exact and sampling-based algorithms (with a sampling rate

r = 0.1) using the bitmap technique can achieve up to 10×
and 100× acceleration over the state-of-the-art algorithm. The

results also show that the proposed sampling-based algorithm

is very accurate. The average accuracy of our sampling-

based algorithm is no less than 98% on most graphs with a

sampling rate r = 0.1, when h ≥ 3. To summarize, the main

contributions of this paper are as follows.

• A new algorithm. We propose a new peeling algorithm,

called KHCore, for (k, h)-core decomposition. The ap-

pealing feature of KHCore is that it can update the h-hop

degrees for all vertices in Nh
v (G) when peeling a vertex

v by exploring a small subgraph induced by Nh
v (G),

without recomputing the h-hop degrees for all vertices

in Nh
v (G).

• Optimization techniques. We develop a bitmap tech-

nique, a sampling-based algorithm, and a parallelization

strategy to improve the efficiency and scalability of

KHCore.

• Extensive experiments. We make use of 12 large real-

world datasets to evaluate our algorithms, and the results

demonstrate the efficiency and scalability of our algo-

rithms.

• Reproducibility. For reproducibility purpose,

we release the source code of this paper at

https://github.com/BITDataScience/khcore.

Organization. The rest of this paper is organized as follows.

Section II describes the (k, h)-core model and the problem

statement. Section III introduces existing algorithms for (k, h)-
core decomposition. All our algorithms are presented in Sec-

tion IV. The experimental results are reported in Section V.

Finally, we survey the related work and conclude this paper

in Section VI and Section VII respectively.
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Fig. 1. Running example

II. PROBLEM STATEMENT

In this paper, we focus on an undirected and unweighted

graph G = (V,E), where V is the set of vertices and E is

the set of edges. Let n = |V | and m = |E| be the number

of vertices and edges respectively. For each vertex v, the

neighborhood of v, denoted by Nv(G), is defined as Nv(G) ,
{u ∈ V |(v, u) ∈ E}. The degree of a vertex v in G, denoted

by dv(G), is the cardinality of Nv(G), i.e., dv(G) = |Nv(G)|.
Let G(S) = (S,E(S)) be an induced subgraph of G if S ⊆ V
and E(S) = {(u, v)|(u, v) ∈ E, u ∈ S, v ∈ S}. According to

[11], a k-core of a graph G is defined as follows.

Definition 1 (k-core). Given a graph G, the k-core of G,

denoted by Ck , is a maximal subgraph of G in which every

vertex has a degree at least k, i.e., ∀v ∈ Ck, dv(Ck) ≥ k.

Based on Definition 1, the core number of a vertex v,

denoted by core(v), is the largest integer k such that there

is a k-core containing v. Denote by kmax the maximum k
value such that a k-core of G exists, i.e., the maximum

core number. It is easy to verify that the k-cores satisfy a

containment property, i.e., Ck+1 ⊂ Ck for all 1 ≤ k < kmax.

The core decomposition of G is a problem of computing

the core numbers for all vertices in G. Note that the core

decomposition of a graph G can be computed in linear time

by a classic peeling algorithm [12], which iteratively removes

the minimum-degree node in G using an elegant bin-sort data

structure.

Similar to the definition of k-core, Bonchi et al. [5] recently

introduced a distance-generalized k-core notion, called (k, h)-
core, based on the h-hop degrees of the vertices. Specifically,

we denote by disG(u, v) the shortest-path distance between u
and v in G. Given a positive integer h, the h-hop neighborhood

of a vertex v in G is defined as Nh
v (G) , {u|u 6= v, u ∈

V, disG(u, v) ≤ h}. The h-hop degree of a vertex v in G,

denoted by dhv (G), is the cardinality of Nh
v (G), i.e., dhv (G) =

|Nh
v (G)|.

Definition 2 ((k,h)-core). Given a graph G and two integers

k and h (h > 0), the (k, h)-core of G is a maximal subgraph

Ch
k such that every vertex v in Ch

k has an h-hop degree at

least k, i.e., ∀v ∈ Ch
k , d

h
v (C

h
k ) ≥ k.

It is worth noting that in Definition 2, the h-hop degree for

each vertex in Ch
k is defined on the subgraph Ch

k (not on the

original graph G). When h = 1, we can easily show that the

(k, h)-core is the same as the traditional k-core.

As shown in [5], the (k,h)-core of a graph G is unique for

any positive integer h. For a positive integer h, the (k, h)-
core number of a vertex v, denoted by coreh(v), is the largest
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integer k such that there is a (k, h)-core containing v. Let khmax

be the maximum k value such that a (k, h)-core of G exists,

i.e., the maximum (k, h)-core number of G. Then, similar to

the traditional k-cores, the (k, h)-cores of G also satisfy a

containment property, i.e., Ch
k+1 ⊂ Ch

k for all 1 ≤ k < khmax.

Example 1. Consider the graph G in Fig. 1. Clearly, the entire

graph is a 2-core, as all vertices in this graph have degrees

no less than 2. Suppose that h = 2. Then, we can see that the

subgraph G(S) induced by S = {v8, v9, · · · , v14} is a (6, 2)-
core. This is because each vertex in G(S) has an h-hop degree

no less than 6, and there is no other subgraph that contains

G(S) and satisfies the h-hop degree constraint (i.e., every

vertex has an h-hop degree no less than 6). Similarly, we can

easily check that the subgraph induced by {v4, v5, · · · , v14}
is a (5, 2)-core, and the entire graph is a (4, 2)-core. Given

h = 2, the (k, h)-core numbers of {v1, v2, v3}, {v4, v5, v6, v7},
and {v8, v9, · · · , v14} are 4, 5, 6, respectively.

For a positive integer h, the distance-generalized core de-

composition of G is a problem of determining the (k, h)-core

numbers for all vertices in G. Below, we formally define our

problem.

Problem statement. Given a graph G and a positive integer h,

our goal is to compute the (k, h)-core number for each vertex

in G.

III. EXISTING SOLUTIONS

In this section, we introduce several existing solutions

proposed in [5] to compute the (k, h)-core decomposition.

Similar to the traditional core decomposition algorithm, the

(k, h)-core decomposition algorithm proposed in [5] is also

based on a peeling idea. In particular, the peeling algorithm

iteratively removes the vertex with the smallest h-hop degree

and sets the (k, h)-core number as its h-hop degree at the time

of removal. The detailed procedure of the peeling algorithm

is shown in Algorithm 1.

The algorithm first computes the h-hop degree for each

vertex v ∈ V (line 3), and uses a bucketing array B to maintain

all the vertices in V that have the same h-hop degree (line

4). Then, the algorithm iteratively deletes the vertices in V
based on the non-decreasing order of the h-hop degrees of

the vertices (lines 5-12). Specifically, in the k-th iteration, the

algorithm sequentially removes each vertex v in B[k] (the

h-hop degrees of v is equal to k) and sets its (k, h)-core

numbers as k (lines 6-8). After that, the algorithm updates

the h-hop degrees of the vertices in v’s h-hop neighborhood

(Nh
v (G)), because the h-hop degrees of the vertices in Nh

v (G)
may need to update after removing v. For each u ∈ Nh

v (G),
the algorithm first recomputes the h-hop degree of u in the

reduced subgraph G(V \{v}) (line 10), and then moves u into

B[max{k, dhu(G(V \{v}))}] if necessary. It is easy to see that

the number of iterations of the algorithm is at most n, as the

h-hop degrees of the vertices in G are bounded by n. The

time complexity of Algorithm 1 is O(nñ(ñ+ m̃)) [5], where

ñ and m̃ are the number of vertices and edges of the largest

Algorithm 1: The basic peeling algorithm [5]

Input: a graph G = (V,E) and a positive integer h
Output: coreh(v) for all v ∈ V

1 Initialize B[v]← ∅ for each v ∈ V ;

2 for v ∈ V do

3 Compute dhv (G);
4 B[dhv (G)]← B[dhv (G)] ∪ {v};

5 for k = 1 to n do

6 while B[k] 6= ∅ do

7 Pick and remove a vertex v from B[k];
8 coreh(v)← k;

9 for u ∈ Nh
v (G) do

10 Compute dhu(G(V \ {v}));
11 Move u to B[max{k, dhu(G(V \ {v}))}];

12 V ← V \ {v};

13 return coreh(v) for all v ∈ V ;

subgraph induced by the h-hop neighborhood of a vertex in

V , respectively.

As analyzed in [5], the most time-consuming step in Algo-

rithm 1 is to recompute the h-hop degrees of all the vertices in

Nh
v (G) when deleting a vertex v. To speed up the algorithm,

Bonchi et al. [5] proposed two improved algorithms based

on lower and upper bounding techniques, called h-LB and h-

LB+UB respectively. In particular, the h-LB algorithm first

estimates the lower bound of the (k, h)-core number for each

vertex. Then, based on the lower bounds, the h-LB algorithm

can avoid a number of useless h-hop degree re-computations

for the vertices whose lower bounds are no less than the h-

hop degree of the current removed vertex [5]. The h-LB+UB

algorithm also leverages an upper bound of the (k, h)-core

number for each vertex to further improve the efficiency.

Specifically, the algorithm first applies the upper bounds of

vertices to partition the graph into several nested subgraphs.

Then, the algorithm invokes h-LB to compute (k, h)-cores in

the induced subgraph G(V [i]) following a top-down manner,

where V [i] denotes a set of vertices with upper bounds no

less than i. As shown in [5], the h-LB+UB algorithm is

the state-of-the-art algorithm for computing the (k, h)-core

decomposition.

Limitations of the existing solutions. Although the h-LB+UB

algorithm is more efficient than the basic peeling algorithm,

it is still very costly for handling medium-sized graphs given

that h ≥ 3. For example, as reported in [5], the h-LB+UB

algorithm takes nearly one hour to compute the (k, h)-core

decomposition on the social network Douban (154,908 ver-

tices and 327,162 edges) when h = 4. The main defect of

the h-LB+UB algorithm is that the algorithm still needs to

frequently recompute the h-hop degrees of the vertices when

peeling a vertex. For a relatively large h value (e.g., h ≥ 3),

the time overheads for recomputing h-hop degrees can be very

high on large graphs. To circumvent this issue, in the following



sections, we will propose several efficient algorithms which

can dynamically update the h-hop degrees of the vertices when

peeling a vertex, instead of recomputing the h-hop degrees.

Due to the efficient h-hop degree updating technique, the

proposed algorithms are much faster than the state-of-the-art

h-LB+UB algorithm as confirmed in our experiments.

IV. THE PROPOSED ALGORITHMS

In this section, we propose several efficient (k, h)-core

decomposition algorithms based on a novel h-hop degree

updating technique. Below, we first introduce the basic version

of our (k, h)-core decomposition algorithm. Then, we will

develop a bitmap technique to improve the time and space

overheads of our basic algorithm. Finally, we will propose

a more efficient sampling-based algorithm, as well as a par-

allelization technique to further improve the efficiency and

scalability of the (k, h)-core decomposition algorithms.

A. The basic h-hop degree updating algorithm

Recall that the most time-consuming step in Algorithm 1

is to recompute the h-hop degrees of the vertices in Nh
v (G)

after peeling v (lines 9-10 of Algorithm 1). To alleviate

the computational costs, we propose a novel h-hop degree

updating technique based on the following key observations.

Note that when deleting v, only the vertices in Nh
v (G)

may need to update their h-hop degrees. For any vertex

u /∈ Nh
v (G), its h-hop degree keeps unchanged after removing

v. For a vertex u ∈ Nh
v (G), the question is how can we

efficiently update the h-hop degree of u after deleting v,

without recomputing its h-hop degree on G(V \ {v}) (i.e.,

dhu(G(V \ {v}))). Clearly, after deleting v, the h-hop degree

of u may reduce by more than 1 if h > 1. In order to derive the

exact gap between dhu(G) and dhu(G(V \{v})), it is sufficient to

consider the vertices in Nh−s
v (G)∪{v}, where s = disG(u, v)

is the shortest-path distance between u and v in G (s ≤ h).

Below, we give two key observations.

Observation 1. Given a positive integer h ∈ N
+ and a vertex

u ∈ Nh
v (G), we have Su = Nh

u (G) \ (Nh−s
v (G) ∪ {v}) ⊆

Nh
u (G(V \ {v})) for s ≤ h.

Proof. Clearly, for any vertex w ∈ Su, we have disG(w, v) >
h−s by definition. To prove the observation, we consider two

disjoint subsets of Su: A = {w|w ∈ Su, disG(w, v) > h} and

B = {w|w ∈ Su, h − s < disG(w, v) ≤ h}. First, we claim

that for any vertex w ∈ A, we have w ∈ Nh
u (G(V \ {v})).

Since w ∈ Su ⊆ Nh
u (G), we have disG(w, u) ≤ h <

disG(w, v). That is to say, there does not exist any shortest

path between u and w that passes through v. Therefore,

after deleting v from G, the shortest-path distance between

w and u does not affect, indicating that disG\{v}(w, u) ≤ h.

Second, for any vertex w ∈ B, we have disG(u,w) <
disG(u, v) + disG(v, w). This is because disG(u,w) ≤ h,

disG(u, v) = s and disG(v, w) > h − s. Therefore, any

shortest-path between u and w does not pass through v, which

suggests that disG(V \{v})(w, u) ≤ h.

Based on the Observation 1, we can see that only the ver-

tices in Nh−s
v (G)∪{v} may affect the h-hop degree of u after

deleting v for any u ∈ Nh
v (G). Below, we show that any vertex

w in Nh−s
v (G)∪{v} that satisfies disG(V \{v})(u,w) > h must

be excluded in Nh
u (G(V \ {v}).

Observation 2. Given a positive integer h ∈ N
+ and

a vertex u ∈ Nh
v (G), we define Fu , {w|w ∈

Nh−s
v (G), disG(V \{v})(u,w) > h}. Then, we have Nh

u (G) \
Nh

u (G(V \ {v})) = {v} ∪ Fu.

Proof. Clearly, the vertex v is contained in Nh
u (G)\Nh

u (G(V \
{v})). On the one hand, for any vertex w 6= v and w ∈
Nh

u (G) \ Nh
u (G(V \ {v})), we have disG(u,w) ≤ h and

disG(V \{v})(u,w)> h. Therefore, the shortest path from u to

w in G must pass through v. Since disG(u, v) = s, we have

disG(v, w) ≤ h − s. In other words, w ∈ Nh−s
v (G) which

indicates that w ∈ Fu holds. On the other hand, for any vertex

w 6= v and w ∈ Fu, w /∈ Nh
u (G(V \{v})) clearly holds (by the

definition of Fu). Since w ∈ Nh−s
v (G) and disG(u, v) = s,

we have disG(u,w) ≤ h by triangle inequality. Hence, we

obtain that w ∈ Nh
u (G). This completes the proof.

Based on the Observation 2, we can obtain that dhu(G) −
dhu(G(V \ {v})) = 1+ |Fu|. As a result, the key to update the

h-hop degree of a vertex u after removing v is to identify

the set Fu. Since the set Nh−s
v (G) can be easily derived

by Nh
v (G), the challenge is how can we efficiently compute

disG(V \{v})(u,w) on the graph after removing v. Below, we

prove an interesting result which indicates that the shortest-

path distance disG(V \{v})(u,w) can be computed on the

subgraph induced by Nh
v (G) if disG(V \{v})(u,w) ≤ h.

Theorem 1. Given a positive integer h ∈ N
+, all shortest-

paths between u ∈ Nh
v (G) and w ∈ Nh−s

v (G) on G(V \
{v}) that satisfy disG(V \{v})(u,w) ≤ h are contained in the

induced subgraph G(Nh
v (G)), where s = disG(u, v). In other

words, for any shortest path P = (u, ..., wi, ..., w) between u
and w on G(V \ {v}), we have wi ∈ Nh

v (G) for all wi ∈ P .

Proof. Suppose, to the contrary, that there exists a shortest-

path P = (u, ..., w′, ..., w) between u ∈ Nh
v (G) and

w ∈ Nh−s
v (G) on G(V \ {v}) that satisfies w′ /∈

Nh
v (G). By this assumption, we have disG(V \{v})(u,w) =

disG(V \{v})(u,w
′)+disG(V \{v})(w

′, w). Then, disG(v, w
′)−

disG(v, u) ≤ disG(u,w
′) ≤ disG(V \{v})(u,w

′) holds by tri-

angle inequality. Since w′ /∈ Nh
v (G) (by assumption), we have

disG(v, w
′) > h. Thus, we have h− s < disG(V \{v})(u,w

′).
Similarly, we have disG(v, w

′)−disG(v, w) ≤ disG(w
′, w) ≤

disG(V \{v})(w
′, w). Therefore, we get that s = h− (h− s) <

disG(V \{v})(w
′, w). Putting it all together, we can derive that

h < disG(V \{v})(u,w) which is a contradiction.

Let F̄u , {w|w ∈ Nh−s
v (G), disG(V \{v})(u,w) ≤ h} =

Nh−s
v (G) \ Fu. By Theorem 1, F̄u can be determined on the

subgraph induced by Nh
v (G). As a result, we are also able

to compute |Fu| on the induced subgraph G(Nh
v (G)) (not on

the entire graph G(V \ {v})). In other words, we only need

to explore a small subgraph G(Nh
v (G)) to maintain the h-hop



Algorithm 2: KHCore

Input: a graph G = (V,E) and a positive integer h
Output: coreh(v) for all v ∈ V

1 for v ∈ V do

2 Compute dhv (G);

3 while V 6= ∅ do

4 k ← argminv∈V {dhv (G)};
5 B ← {v|v ∈ V, dhv (G) = k};
6 while B 6= ∅ do

7 Pick and remove a vertex v from B;

8 coreh(v)← k;

9 dh(G(V \ {v}))← UpdateHNbr(G, h, v);

10 for u ∈ Nh
v (G) do

11 if dhu(G(V \ {v})) ≤ k and u /∈ B then

12 B ← B ∪ {u};

13 V ← V \ {v};

degrees for all vertices in Nh
v (G) after removing v, without

recomputing the h-hop degree for every vertex in Nh
v (G).

Based on such an efficient h-hop degree updating technique,

we propose a new (k, h)-core decomposition algorithm, called

KHCore, which is shown in Algorithm 2. Algorithm 2 is also

a peeling algorithm which iteratively deletes the vertices with

the minimum h-hop degree (lines 3-13 in Algorithm 2). The

algorithm terminates when all vertices are deleted. However,

unlike Algorithm 1, Algorithm 2 invokes a UpdateHNbr

procedure (Algorithm 3) to update the h-hop degree for

each vertex in Nh
v (G) after removing v based on the results

shown in Theorem 1 (line 9). Below, we describe the detailed

implementation of Algorithm 3.

In Algorithm 3, we develop a new data structure, named

Reach, to maintain the set of vertices that are reachable

from u ∈ Nh
v (G) within h hops in the induced subgraph

G(Nh
v (G)). Initially, for each u ∈ Nh

v (G), if disG(v, u) < h,

Reach(u) = {u}, and otherwise Reach(u) = ∅ (lines 2-

6). This is because when disG(v, u) = h, the h-hop degree

of u decreases by 1 after deleting v, and thus we do not

need to maintain the Reach structure for u in this case

(i.e., Reach(u) = ∅). Then, we can make use of a dynamic

programming (DP) procedure to identify all the vertices in

Nh
v (G) that are reachable from u within h hops (lines 7-12). In

particular, the DP procedure is based on the following results.

Let Rs
u be the set of vertices that are reachable from u within

s hops. Then, Rs+1
u can be obtained by merging the sets Rs

w

for all w ∈ Nu(G) ∪ {u}, i.e., Rs+1
u =

⋃
w∈Nu(G)∪{u} R

s
w.

We can adopt the Reach structure to implement such a DP

procedure which is shown in lines 7-12 of Algorithm 3.

Subsequently, Algorithm 3 applies the results in Theorem 1

to update the h-hop degree for each u ∈ Nh
v (G) (lines 13-

17). The following example illustrates the detailed procedure

of Algorithm 2 and Algorithm 3.

Example 2. Consider the graph shown in Fig. 1. Assume that

Algorithm 3: UpdateHNbr (G, h, v)

1 G(R) = (R,E(R))← the subgraph induced by

R = Nh
v (G);

2 for u ∈ R do

3 if disG(v, u) < h then

4 Reach[0][u]← {u}; Reach[1][u]← {u};

5 else

6 Reach[0][u]← ∅; Reach[1][u]← ∅;

7 p← 1; q ← 0;

8 for hop = 1 to h do

9 q ← p; p← 1− p;

10 for (u,w) ∈ E(R) do

11 Reach[q][u]← Reach[q][u] ∪ Reach[p][w];
12 Reach[q][w]← Reach[q][w] ∪ Reach[p][u];

13 for u ∈ R do

14 s← disG(u, v); d
h
u(G(V \ {v}))← dhu(G)− 1;

15 for w ∈ R s.t. disG(v, w) ≤ h− s do

16 if w /∈ Reach[q][u] then

17 dhu(G(V \ {v}))← dhu(G(V \ {v}))− 1;

18 return dhu(G(V \ {v})) for each vertex u ∈ R;

h = 2. We can see that v1 has the minimum 2-hop degree

which is 4. When removing v1, Algorithm 2 needs to invoke

Algorithm 3 to update the 2-hop degrees for the vertices in

R = N2
v1
(G) = {v2, v3, v4, v6} (line 9 of Algorithm 2). Specif-

ically, Algorithm 3 initializes the Reach sets for all vertices in

R as follows: Reach(v2) = {v2}, Reach(v3) = {v3}, and

Reach(v4) = Reach(v6) = ∅ (lines 2-6 of Algorithm 3).

Then, the algorithm performs the DP procedure to compute

the Reach sets for all vertices in R (lines 7-12 of Algorithm 3).

After that, we can get that Reach(v2) = {v2}, Reach(v3) =
{v3}, Reach(v4) = {v2} and Reach(v6) = {v3}, respectively.

Then, based on the Reach sets, the algorithm updates the 2-

hop degrees for the vertices in R (lines 13-17 of Algorithm 3).

In particular, d2v2(G) decreases by 2 (d2v2(G(V \ {v1})) = 3),

since v3 ∈ N1
v1
(G) is not included in Reach(v2). Similarly,

d2v3(G) decreases by 2 (d2v3(G(V \ {v1})) = 3), and both

d2v4(G) and d2v6(G) decreases by 1 (d2v4(G(V \{v1})) = 7 and

d2v6(G(V \ {v1})) = 7). As a result, the vertices {v2, v3} are

also deleted after removing v1, and the (k, h)-core numbers

for {v1, v2, v3} are equal to 4. In the next iteration of

Algorithm 2, v5 has the minimum 2-hop degree. The algorithm

uses Algorithm 3 to update the 2-hop degrees of the vertices

in N2
v5
(G(V \ {v1})). After that, we can derive that the

vertices {v4, v6, v7} are also deleted after removing v5 in this

iteration. The (k, h)-core numbers for {v4, v5, v6, v7} are 5. In

the last iteration, the algorithm will remove all vertices, and

we can obtain that the (k, h)-core numbers for the vertices

{v8, · · · , v14} are 6.

Complexity analysis. We start by analyzing the time com-



plexity of Algorithm 3 as follows. First, Algorithm 3 takes

O(dhv (G)) time to initialize the Reach structures. Then, the

algorithm takes O(h|E(R)|dhv (G)) time to compute the Reach

sets (lines 7-12). This is because the size of the Reach set

is bounded by dhv (G), and thus the set union operator can

be computed in O(dhv (G)) time using some hash techniques.

Finally, the time cost for updating the h-hop degrees in

line 13-17 is O(dhv (G) × dh−1
v (G)). Let ñ and m̃ be the

number of vertices and edges of the largest subgraph induced

by the h-hop neighborhood of a vertex in V , respectively.

Then, the worst-case time complexity of Algorithm 3 is

bounded by O(ñ2 + hñm̃). Based on this, we can easily

derive that the worst-case time complexity of Algorithm 2

is O(nñ2 + nhñm̃), which is asymptotically the same as the

time complexity of Algorithm 1 (because h is often a very

small integer). For the space overhead, we need to maintain

the Reach sets for all vertices in Nh
v (G) when deleting a vertex

v which takes at most O(dhv (G)2) ≤ O(ñ2) in total. Therefore,

the space complexity of Algorithm 2 can be bounded by

O(m + n + ñ2). Below, we propose a bitmap technique to

further improve the time and space overheads of our algorithm.

B. A bitmap optimization

Recall that in Algorithm 3, we have a Reach structure for

each vertex u ∈ Nh
v (G) which maintains the set of vertices in

Nh
v (G) that are reachable from u within h hops. To improve

the efficiency of the algorithm, we develop a bitmap to

implement such a Reach structure for each vertex u ∈ Nh
v (G).

Suppose without loss of generality that the vertices in Nh
v (G)

are labeled from u0 to udh
v
(G)−1. For each vertex ui ∈ Nh

v (G),
we create a bitmap to represent the Reach structure of ui. If

uj (j 6= i, j ∈ {0, 1, · · · , dhv (G) − 1}) is reachable within

h hops from ui in the subgraph induced by Nh
v (G), the j-th

bit of ui’s bitmap is equal to 1, and otherwise it equals 0.

For example, if ui’s bitmap is 10101, we can conclude that

ui can reach u0, u2, and u4 within h hops in the induced

graph G(Nh
v (G)). To merge two Reach sets, we can perform

a bitwise-or operator using two bitmaps which is much more

efficient than the traditional set-union operator. In this sense,

the bitmap technique is not only reduce the space usage, but

it also improves the time overhead of our algorithm.

Implementation details. The detailed implementation of the

bitmap technique is outlined in Algorithm 4. Specifically, we

make use of a set of 64-bit integers to represent a bitmap

Reach(ui) for each vertex ui ∈ Nh
v (G). In other words, the

bitmap of a vertex ui (i.e., Reach(ui)) is an integer array. For

any vertex ui, if uj is reachable from ui within h hops in

G(Nh
v (G)), then we can compute the position of uj in ui’s

bitmap array by div(j, 64) =
⌊

j

64

⌋
. In Algorithm 4, for each

vertex ui ∈ Nh
v (G), we first initialize its bitmap to 0 (line 1

of Algorithm 4). Then, for each vertex ui, we set the i-th
bit of ui’s bitmap to 1 (lines 4-6), denoting that the Reach

set of ui contains ui itself. Note that in Algorithm 4, the

notation mod(i, 64) means i%64 (lines 5-6), which is used

to determine the bit-position of ui in a bitmap. After that, we

perform the DP procedure to compute the Reach sets. Note

Algorithm 4: BmUpdateHNBr (G, h, v)

1 G(R) = (R,E(R))← the subgraph induced by

R = Nh
v (G);

2 Initialize the bitmaps (the Reach arrays) for all ui ∈ R
to 0;

3 Nh−1
v (G)← {ui ∈ R|disG(v, ui) < h};
d← |Nh−1

v (G)|;
4 for ui ∈ Nh−1

v (G) do

5 Reach[0][i][div(i, 64)]← 1≪ mod(i, 64);
6 Reach[1][i][div(i, 64)]← 1≪ mod(i, 64);

7 p← 1; q ← 0;

8 for hop = 1 to h do

9 q ← p; p← 1− p;

10 for (ui, uj) ∈ E(R) do

11 for b = 0 to div(d, 64) do
12 Reach[q][i][b] = Reach[q][i][b] ∨ Reach[p][j][b];
13 Reach[q][j][b] = Reach[q][j][b] ∨ Reach[p][i][b];

14 for ui ∈ R do

15 s← disG(ui, v); d
h
ui
(G(V \ {v}))← dhui

(G) − 1;

16 for uj ∈ R s.t. disG(v, uj) ≤ h− s do

17 x← 1≪ mod(j, 64);
y ← Reach[q][i][div(j, 64)];

18 if (x ∧ y) = 0 then

19 dhui
(G(V \ {v}))← dhui

(G(V \ {v}))− 1;

20 return dhui
(G(V \ {v})) for each vertex ui ∈ R;

TABLE I
THE bitmaps OF VERTICES IN N2

v5
(G(V \ {v1, v2, v3}))

N2
v5
(G(V \ {v1, v2, v3})) v4 v6 v7 v8 v9

re-label u0 u1 u2 u3 u4

Initialization 1 2 4 0 0

Iteration 1 1 2 4 5 6

Iteration 2 5 6 7 5 6

that the process of merging two Reach sets is implemented

by a bitwise-or operator ( lines 11-13). Finally, Algorithm 4

updates the h-hop degrees for all vertices in Nh
v (G) (lines 14-

19). Notice that based on the bitmap structure, we can use

a bitwise-and operator to determine whether a vertex uj ∈
Nh−s

v (G) is reachable from ui within h hops (lines 17-18).

The following example illustrates the detailed procedure of

our bitmap technique.

Example 3. Reconsider the graph G shown in Fig. 1. Sup-

pose that h = 2. After the first iteration, we can obtain a

subgraph G′ induced by the vertices {v4, v5, · · · , v14}. Then,

let us consider the vertex v5, which has the smallest h-

hop degree in G′. We show the bitmap structure of each

vertex in N2
v5
(G′) in Table I. First, we relabel the vertices

in N2
v5
(G′) = {v4, v6, v7, v8, v9} by {u0, · · · , u4} (the sec-

ond row of Table I). Since disG′(v5, v8) = h = 2 and

disG′(v5, v9) = h = 2, the bitmaps of u3 and u4 are initial-



ized by 0. We can easily derive that the bitmaps of u0, u1, and

u2, are initialized by 1, 2, and 4, respectively. Note that the set

of edges in N2
v5
(G′) is {(u0, u3), (u2, u3), (u1, u4), (u2, u4)}.

In the first iteration (i.e., hop = 1 in line 8 of Algorithm 4), the

bitmap of u3 (i.e., v8) is updated by 5 (obtained by merging

the bitmaps of u0 and u2), and the bitmap of u4 is updated

by 6 (obtained by merging the bitmaps of u1 and u2). For

the other vertices, their bitmaps keep unchanged in the first

iteration. Similarly, in the second iteration (hop = 2), we can

derive that the bitmaps of u0, u1, and u2 are updated by 5,

6, and 7 respectively.

Complexity analysis. Armed with the bitmap technique,

Algorithm 4 can significantly reduce the set-union costs. In our

basic KHCore algorithm (Algorithm 3), the set-union operator

can be done in O(dhv (G)) time (lines 10-12 of Algorithm 3).

However, by using the bitmap technique, we can implement

the set union operator by a bitwise-or operator which takes

O(dhv (G)/64) time. In other words, the bitmap technique can

achieve around 64× speedup for the set union computation.

As a result, the total time costs of the KHCore algorithm with

bitmap technique can be bounded by O(nñ2 + nhñm̃/64).
Since h is typically smaller than 64, the time complexity of our

algorithm is lower than that of Algorithm 1 which is confirmed

in our experiments.

Remark. It is worth remarking that the lower and upper

bounding techniques developed in [5] can also be integrated

into Algorithm 2. However, we empirically find that such

lower and upper bounding techniques cannot significantly

improve the efficiency of our algorithm, thus in this work we

mainly focus on our algorithms without using the lower and

upper bounds developed in [5]. Also, it is worth emphasizing

that the bitmap technique is an elegant implementation of our

theoretical finding; it is not a general optimization technique

and it cannot be used in the state-of-the-art algorithm [5].

In the experiments, we will focus mainly on evaluating the

proposed algorithms with the bitmap implementation.

C. A sampling-based algorithm

To further improve the efficiency, we propose a sampling-

based algorithm to compute the (k, h)-core decomposition.

The key idea of the sampling-based algorithm is that when

deleting a vertex v, it estimates the updated h-hop degree for

a vertex u ∈ Nh
v (G) using the randomly sampled vertices

(not all vertices in Nh
v (G)). Due to the less computation for

updating the h-hop degrees of vertices, the sampling-based

approach can significantly reduce the time cost compared to

the exact algorithm.

The implementation details of the sampling-based algorithm

are shown in Algorithm 5. First, the algorithm randomly

selects r|V | vertices from V (line 2 of Algorithm 5), where

0 < r < 1 denotes the sampling rate. Then, for each vertex v,

the algorithm computes the number of selected vertices in the

h-hop neighborhood of v (line 3), denoted by sec[v]. Based

on sec[v], the algorithm calculates the sampling rate for v
(line 4 of Algorithm 5), i.e., rate[v] = sec[v]/dhv (G). Similar

Algorithm 5: KHCoreSamp

Input: a graph G = (V,E), a positive integer h, and a

sampling rate r
Output: coreh(v) for all v ∈ V

1 Lines 1-2 of Algorithm 2;

2 S ← uniformly sampling r|V | vertices from V ;

3 sec[v]← |{u|u ∈ Nh
v (G), u ∈ S}| for each v ∈ V ;

4 rate[v]← sec[v]/dhv (G) for each v ∈ V ;

5 Lines 3-8 of Algorithm 2;

6 dh(G(V \ {v}))←
UpdateHNbrSamp(G, h, v, S, sec, rate);

7 Lines 10-13 of Algorithm 2;

to Algorithm 2, the algorithm iteratively deletes the vertex that

has the smallest h-hop degree (lines 5-7). When removing a

vertex v, it invokes Algorithm 6 to update the h-hop degrees

of the vertices in Nh
v (G) (line 6).

In Algorithm 6, it first initializes the bitmap structures for

the vertices in Nh
v (G) (lines 1-2 of Algorithm 6). Let S be

the set of sampled vertices. Then, the algorithm computes

the bitmaps for the vertices in Nh−1
v (G) ∩ S (lines 2-3).

Note that for the vertices in Nh
v (G) \ Nh−1

v (G), their h-hop

degrees decrease by 1 after deleting v, thus we do not need

to maintain the bitmaps for those vertices. Subsequently, for

each ui ∈ Nh
v (G), the algorithm updates the h-hop degree

of ui based on the sampled vertices (lines 4-11). Notice that

it first updates sec[ui], and then uses sec[ui]/rate[ui] as an

estimator for the updated dhui
(G) (lines 10-11). The following

illustrative example shows how our algorithm works.

Example 4. Suppose there is a vertex v and its h-neighbors

Nh
v (G) = {u1, u2, u3, ...}, the sampling rate of vertices in

Nh
v (G) is rate[u1] = 0.3, rate[u2] = 0.45, rate[u3] = 0.25,

respectively. If the vertex v is removed from the graph, the se-

lected h-degrees of vertices in Nh
v (G) are decreased to 6, 8, 7,

respectively. According to the proposed method, we estimate

h-degrees of {u1, u2, u3, ...} in graph G. The approximate h-

degrees of u1, u2 and u3 are decreased to 6÷ rate[u1] = 20,

8÷ rate[u2] = 17 and 7÷ rate[u3] = 20, respectively.

Complexity analysis. We first analyze the time complexity of

Algorithm 6. Compared to Algorithm 4, Algorithm 6 only need

to maintain the bitmaps for the sampled vertices Nh−1
v (G)∩S.

The cardinality of the set Nh−1
v (G) ∩ S can be bounded by

O(rdhv (G)) ≤ O(rñ). Similar to Algorithm 4, we can easily

derive that the time complexity of Algorithm 4 is O(rñ2 +
hrñm̃/64), where r < 1 is sampling rate. Based on this, the

time complexity of Algorithm 5 is O(rnñ2 + hrnñm̃/64),
which is lower than our exact algorithm by a factor r. For

example, if r = 0.1, the sampling-based algorithm can be one

order of magnitude faster than the proposed exact algorithm,

as confirmed in our experiment. For the space usage, we

can easily derive that the complexity of the sampling-based

algorithm is the same as that of the exact algorithm.



Algorithm 6: UpdateHNbrSamp (G, h, v, S, sec, rate)

1 Lines 1-2 of Algorithm 4; R = Nh
v (G);

2 Ñh−1
v (G)← Nh−1

v (G) ∩ S; d← |Ñh−1
v (G)|;

3 Lines 4-13 of Algorithm 4;

4 for ui ∈ R do

5 s← disG(ui, v); cnt← 0;

6 if v ∈ S then cnt← 1;

7 for uj ∈ R ∩ S s.t. disG(v, uj) < h− s do

8 x← 1≪ mod(j, 64);
y ← Reach[q][i][div(j, 64)];

9 if (x ∧ y) = 0 then cnt← cnt+ 1;

10 sec[ui]← sec[ui]− cnt;

11 dhui
(G(V \ {v}))← sec[ui]/rate[ui];

12 return dhui
(G(V \ {v})) for each vertex ui ∈ Nh

v (G);

D. Parallelization

In this section, we explore how Algorithm 2 splits the

computation in several sub-tasks which can be processed

independently. Note that the parallelization strategy for Al-

gorithm 2 and Algorithm 5 is the same. Therefore, we focus

mainly on developing parallelization strategy for Algorithm 2.

First, in lines 1-2 of Algorithm 2, we can compute the

h-hop degree for each vertex in parallel, because the sub-

tasks for computing h-hop degrees are clearly independent.

Second, when deleting the vertices in the bucket B (line 6

of Algorithm 2), we can also process the vertices in parallel.

However, the sub-task for deleting a vertex is not independent,

but it depends on the former deleted vertices. To make all the

sub-tasks independent, we can follow an increasing order by

vertex ID to delete vertex. When processing a vertex vi, we

use a thread to update the h-hop degrees of the vertices in

Nh
vi
(G) that either has a h-hop degree no less than dhvi(G) or

has a larger vertex ID. Based on this strategy, the sub-tasks for

removing the vertices in the bucket B are independent, and

therefore we can safely process the vertices in B in parallel.

Note that in Algorithm 4, the procedure of updating the h-hop

degree of a vertex should be considered as an atomic operator

(line 15 and line 19). In our experiments, we will show that the

proposed parallel algorithms can achieve a very good speedup

ratio over the corresponding sequential algorithms.

V. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate

the efficiency and scalability of the proposed algorithms.

Below, we first describe the experimental setup and then report

our results.

A. Experimental setup

We implement three sequential algorithms to compute the

(k, h)-core decomposition: KHC, KHCS, and h-LB+UB. The

KHC and KHCS are our exact and sampling-based (k, h)-core

decomposition algorithms respectively. Both KHC and KHCS

TABLE II
DATASETS

Dataset |V | |E| dmax ∆ kmax

BioCE 15,229 245,952 375 13 78

BioWorm 16,347 762,822 1,272 12 164

Ca-As 18,771 198,050 504 14 56

SocEps 75,880 405,740 3,044 15 67

Flickr 105,939 2,316,948 5,425 9 573

Douban 154,908 327,162 287 9 15

Cnr2000 325,557 2,738,969 18,236 34 83

Amazon 334,863 925,872 549 44 6

Socytb 495,957 1,936,748 25,409 21 49

Hyves 1,402,673 2,777,419 31,883 10 39

Pokec 1,632,803 22,301,964 14,854 14 47

SocLJ 4,846,609 42,851,237 20,333 16 372

are integrated with the bitmap technique proposed in Sec-

tion IV-B. The h-LB+UB algorithm denotes the state-of-the-

art h-LB+UB algorithm [5], which is served as a baseline in

our experiments. For all these algorithms, we also implement

the parallelized versions using OpenMP. All algorithms are

implemented in C++. We conduct all experiments on a PC

with two 2.3 GHz Xeon CPUs (16 cores in total) and 64GB

memory running Ubuntu 16.4.

Datasets. We make use of 12 real-world datasets in our

experiments. Table II shows the detailed statistics of the

datasets, where dmax, ∆ and kmax denote the maximum

degree, the diameter and the maximum k-core number of the

network. ca-AstroPH1 (Ca-As for short) is a collaboration

network; com-amazon1 (Amazon) is a co-purchasing network;

Douban2, Hyves2, soc-LiveJournal1 (SocLJ), soc-youtube3

(Socytb), soc-pokec2 (Pokec), and soc-Epinions1 (SocEps)

are social networks; flickrEdges2 (Flickr) is a network of

Flickr images sharing common metadata such as tags, groups,

locations etc; bio-CE-CX 3 (BioCE) and bio-WormNet-v33

(BioWorm) are biological networks; italycnr-20003 (Cnr2000)

is a web graph.

Parameters. Both KHC and h-LB+UB have only one param-

eter h ∈ N
+, and the KHCS algorithm has an additional pa-

rameter r which denotes the sampling rate. In our experiment,

the parameter h is selected from the interval [2, 5] (the same

parameter setting also used in [5]), because larger values are

often not interesting in practice [5]. For KHCS, the parameter

r is selected from the interval [0.05, 0.8] with a default value

of r = 0.1, because KHCS performs very well on all datasets

given that r = 0.1.

B. Experimental results

Exp-1: Efficiency of various sequential algorithms. We start

by comparing the efficiency of different sequential algorithms.

Fig. 2 shows the runtime of h-LB+UB, KHC, and KHCS on

all datasets. Note that in all experiments, INF means that the

algorithm does not terminate in 28 hours. From Fig. 2(a),

1http://snap.stanford.edu/data
2http://konect.uni-koblenz.de
3http://networkrepository.com

http://snap.stanford.edu/data
http://konect.uni-koblenz.de
http://networkrepository.com
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Fig. 2. Runtime of different sequential algorithms on all datasets

we observe that KHC and KHCS significantly outperform

the state-of-the-art h-LB+UB algorithm on most datasets with

h = 2. We also notice that on some very sparse graphs,

such as Amazon and Hyves, h-LB+UB is faster than KHC

and KHCS. This is because, on very sparse graphs, the costs

for recomputing the h-hop degrees are very low with h = 2.

However, when h ≥ 3 (Figs. 2(b-d)), we can clearly see that

KHC and KHCS are substantially faster than h-LB+UB on

all datasets. For example, on BioCE, KHC is at least one

order of magnitude faster than h-LB+UB with h ≥ 3. On

larger datasets, such as Pokec (more than 1.6 million vertices

and 22 million edges), h-LB+UB cannot terminate within 28

hours when h = 3, while KHC takes around 52,000 seconds to

compute all (k, h)-cores. When comparing KHC with KHCS,

we find that KHCS (with the sampling rate r = 0.1) is much

more efficient than KHC given that h ≥ 3. On some large

graphs, KHCS is one order of magnitude faster than KHC

when h ≥ 3. For instance, on Pokec, KHCS takes around 2,000

seconds to compute all (k, h)-cores when h = 3, whereas the

time overhead of KHC is around 52,000 seconds. In addition,

when h = 5 (Fig. 2(d)), h-LB+UB cannot handle four medium-

sized graphs, while our algorithms still work well on all eight

medium-sized graphs. These results are consistent with our

theoretical analysis in Section IV.

Exp-2: Efficiency of different parallel algorithms. Here we

evaluate the performance of the parallelized versions of h-

LB+UB, KHC, and KHCS. To this end, we vary the number

of threads t from 1 to 16 with different h values. Fig. 3 shows

the results on five datasets, and similar results can also be

observed on the other datasets. As expected, the runtime of

all the three algorithms decreases with increasing t. We also

observe that if t ≥ 8, the speedup ratios of all algorithms

do not significantly increase as t grows on all datasets. This

is because, for all algorithms, the parallel performance mainly

relies on the size of the bucket B that maintains all the vertices

having the minimum h-hop degrees. In some iterations of each

algorithm, the size of the bucket B might be smaller than t
which limits the parallel speedup ratio of the algorithm. In

addition, we also notice that the speedup ratio of KHCS is

significantly higher than those of h-LB+UB and KHC. For

example, when h = 3, the parallel KHCS algorithm with

t = 16 can achieve nearly 9× speedup over the sequential

KHCS algorithm on the Flickr dataset (Fig. 3(i)). However, the

speedup ratios of the parallel h-LB+UB and KHC algorithms

are around 6.6 and 5.3 on Flickr respectively, given t = 16
and h = 3.

Exp-3: Runtime of KHCS with varying r. We evaluate the

runtime of KHCS with varying r (sampling rate). Fig. 4 depicts

the runtime of (parallel) KHCS when r varies from 0.05 to 0.8.

As expected, the runtime of KHCS increases when r increases,

because the graph is sparser with a smaller r value. In addition,

we also observe that KHCS can always achieve high speedup

ratios at different sampling rates. For example, when h = 3
and r = 0.2, KHCS takes 332 seconds to compute all (k, h)-
cores using a single thread, while it only takes 44 seconds

and 26 seconds using 8 and 16 threads, respectively. These

results further confirm the high efficiency of our parallel KHCS

algorithm.

Exp-4: Precisions of KHCS with varying r. In this ex-

periment, we evaluate the precision of the KHCS algorithm

with various sampling rates. Here we define the precision

as follows. Let coreh[v] and ĉoreh[v] be the exact and the

estimated (k, h)-core number of the vertex v, respectively.
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Fig. 3. Runtime of different parallel algorithms with varying t (the number of threads)
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Fig. 4. Runtime of the KHCS algorithm

Then, the precision of an algorithm is computed by 1 −
(
∑

v∈V (|coreh[v]− ĉoreh[v]|)/coreh[v])/|V |. Fig. 6 shows the

precisions of KHCS with varying r on five datasets. Similar

results can also be observed on the other datasets. As expected,

the precisions of KHCS typically increase as r increases. When

h = 2 (Fig. 6(a)), the precisions of KHCS are no less than

92% on all datasets even when r = 0.05. Moreover, with r
increases, the precisions can be quickly improved to 98% on

all datasets given that h = 2. When h ≥ 3 (Fig. 6(b-d)),

KHCS exhibits very high precisions (≥ 99%) in most cases.

For example, even when r = 0.05, the precision of KHCS is

higher than 99% with h ≥ 4 on most datasets. These results

indicate that KHCS is very accurate in practice even for a very

small sampling rate (e.g., r = 0.1).

We also evaluate the precision of the KHCS algorithm

by only considering the top-s maximal (k, h)-cores. Specif-

ically, the precision of an algorithm is computed by 1 −
(
∑

v∈S(|coreh[v] − ĉoreh[v]|)/coreh[v])/|S|, where the S is

the set of vertices of the top-s maximal (k, h)-cores. Fig. 5

shows the precision results of KHCS on five datasets that only

considers the top-1 and top-50 maximal (k, h)-cores. Similar

results can also be observed on the other datasets. As expected,

the precisions of top-s maximal (k, h)-cores also typically

increase as r increases on most datasets. When h = 2 and

s = 1 (Fig. 5(a)), the precisions of KHCS are no less than 95%

on all datasets except SocEps even when r = 0.05. Moreover,

with r increases, the precisions can be quickly improved to

98% on most datasets given that h = 2. When h ≥ 3 (Fig. 5(b-

d)), KHCS exhibits very high precisions (≥ 99%) in most

cases. From Fig. 5(e-h), we find that the results for s = 50
are consistent. These results further confirm that the KHCS

algorithm is very accurate in practice even for a very small

sampling rate (e.g., r = 0.1).

Exp-5: Memory overhead. We compare the memory over-

head of different algorithms. Fig. 7 shows the results on Flickr

and Cnr2000, and similar results can also be obtained on

the other datasets. As expected, the memory overheads of

KHC and KHCS are slightly higher than that of the h-LB+UB

algorithm, because our algorithms need to maintain a Reach
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Fig. 5. Precisions of KHCS by only considering the top-s maximal (k, h)-cores (s = 1 and s = 50)
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Fig. 6. Precisions of KHCS with varying r

 0
 20
 40
 60
 80

 100
 120
 140

 2  3  4  5

M
em

or
y 

(M
)

h

Graph size
h-LB+UB

KHC
KHCS

(a) Flickr

 0

 20

 40

 60

 80

 100

 2  3  4  5

M
em

or
y 

(M
)

h

Graph size
h-LB+UB

KHC
KHCS

(b) Cnr2000

Fig. 7. Memory overheads of various algorithms

data structure (the bitmaps for all vertices). Specifically, we

can see that the memory usage of h-LB+UB is less than twice

of the graph size. The memory overhead of KHC and KHCS

are comparable, both of which are less than 4 times of the

graph size. These results indicate that our algorithms (with the

bitmap optimization technique) are space efficient for handling

real-world graphs.

Exp-6: Scalability. Here we aim at evaluating the scalability

of h-LB+UB, KHC and KHCS, using 16 threads. To this end,

we first generate eight subgraphs by randomly sampling 20-

80% of vertices and edges from the original graph respectively.

Then, we evaluate the runtime of all algorithms on these

subgraphs using 16 threads. The results on Pokec with h = 2
and h = 3 are shown in Fig. 8, and the results on the

other datasets and for the other h values are consistent. From

Fig. 8, we observe that the time costs of KHC and KHCS
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Fig. 8. Scalability testing on the Pokec dataset (16 threads)

increase smoothly as |V | or |E| increases. The runtime of

h-LB+UB, however, increases sharply with increasing |V | or

|E|. Moreover, both KHC and KHCS significantly outperform

h-LB+UB under all parameter settings. These results suggest

that both KHC and KHCS exhibit a good scalability, while

h-LB+UB shows a poor scalability when h ≥ 3.

VI. RELATED WORK

K-core based models and algorithms. The k-core model was

originally proposed by Seidman [11] for modeling cohesive

subgraphs in an undirected network. Recently, many k-core

based models have been proposed for modeling cohesive sub-

graphs on different types of networks. For example, Batagelj

and Zaversnik [2] introduced a generalized concept of k-core

by considering weights of the edges on weighted graphs.

Bonchi et al. [20] proposed a k-core model for uncertain

graphs based on a definition of reliable degree of nodes. Li

et al. [21] proposed an influential community model based

on k-core to capture both the influence and cohesiveness of

a community. Galimberti et al. proposed two generalized k-

core models for multi-layer networks [22] and temporal graphs

[23], respectively. Fang et al. [24] extended the k-core concept

to attribute graphs. More recently, Li et al. [25] proposed

a skyline k-core model for modeling communities on multi-

valued networks. From the algorithmic point of view, Batagelj



and Zaversnik [12] proposed a linear-time core decomposition

algorithm. Sariyüce et al. [26] and Li et al. [27] developed

efficient algorithms for maintaining the core decomposition on

dynamic graphs. Wen et al. [28] presented an I/O efficient core

decomposition algorithm for web scale graphs. Unlike all these

existing studies, we focus on developing efficient algorithms

to solve the distance-generalized core decomposition problem,

which was originally introduced in [5].

Other cohesive subgraph models. Beyond k-core, there also

exist many other cohesive subgraph models which have been

widely used for modeling communities. Notable examples

include the maximal clique model [6], [7], the k-plex model

[8], [4], the k-truss model [9], [3], [10], the nucleus model

[29], [30], the locally densest subgraph (LDS) model [31],

[32], [33], as well as the maximal k-edge connected subgraph

(k-ECS) model [34], [35]. Noted that the problems of enumer-

ating all maximal cliques and all k-plex subgraphs are NP-hard

[6], [4], thus they are often intractable for massive graphs.

However, for the k-truss, the nucleus, the LDS, the k-ECS

models, there exist polynomial-time algorithms to compute the

corresponding cohesive subgraphs. Similar to these cohesive

subgraph models, the (k, h)-core model studied in the paper

can also be computed in polynomial time [5].

VII. CONCLUSION

In this paper, we propose an efficient peeling algorithm to

compute the (k, h)-core decomposition on graphs based on a

novel h-hop degree updating technique. The striking feature of

our algorithm is that it only needs to traverse a small induced

subgraph (G(Nh
v (G))) to maintain the h-hop degrees for all

vertices after peeling a vertex v, instead of recomputing the h-

hop degrees of the vertices. We also develop an elegant bitmap

technique to efficiently implement such an h-hop degree

updating procedure. Additionally, we present a sampling-based

algorithm and a parallelization strategy to further improve the

efficiency for (k, h)-core decomposition. The results of exten-

sive experiments on 12 real-world large graphs demonstrate

the efficiency and scalability of the proposed algorithms.
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