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ABSTRACT
We study the problem of learning to cluster data points using an

oracle which can answer same-cluster queries. Different from previ-

ous approaches, we do not assume that the total number of clusters

is known at the beginning and do not require that the true clus-

ters are consistent with a predefined objective function such as

the 𝐾-means. These relaxations are critical from the practical per-

spective and, meanwhile, make the problem more challenging. We

propose two algorithms with provable theoretical guarantees and

verify their effectiveness via an extensive set of experiments on

both synthetic and real-world data.

CCS CONCEPTS
• Theory of computation→ Semi-supervised learning; Facil-
ity location and clustering.
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1 INTRODUCTION
Clustering is a fundamental problem in data analytics and sees nu-

merous applications across many areas in computer science. How-

ever, many clustering problems are computationally hard, even

for approximate solutions. To alleviate the computational burden,

Ashtiani et al. [4] introduced weak supervision into the clustering

process. More precisely, they allow the algorithm to query an or-

acle which can answer same-cluster queries, that is, whether two
elements (points in the Euclidean space) belong to the same cluster.

The oracle can, for example, be a domain expert in the setting of

crowdsourcing. It was shown in [4] that the 𝐾-means clustering
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can be solved computationally efficiently with the help of a small

number of same-cluster queries using the oracle.

The initial work by Ashtiani et al. [4] relies on a strong “data

niceness property” called the 𝛾-margin, which requires that for

each cluster 𝐶 with center `, the distance between any point 𝑝 ∉ 𝐶

and ` needs to be larger than that between any point 𝑝 ∈ 𝐶 and `

by at least a constant multiplicative factor 𝛾 > 1 sufficiently large.

This assumption was later removed by Ailon et al. [2], who gave

an algorithm which, given a parameter 𝐾 , outputs a set 𝐶 of 𝐾

centers attaining a (1 + 𝜖)-approximation of the 𝐾-means objective

function. There has been follow-up work by Chien et al. [6] in

the same setting, replacing the 𝛾-margin assumption with a new

assumption on the size of the clusters. However, there are still two

critical issues in this line of approach:

(1) In [2, 6], it is assumed that the total number of clusters𝐾 in the

true clustering is known to the algorithm, which is unrealistic

in many cases.

(2) In [2, 6], it is assumed that the optimal solution to the𝐾-means

clustering is consistent with the true clustering (i.e., when we

have ground truth labels for all points). This assumption is

highly problematic, since the ground-truth clustering can be

arbitrary and very different from an optimal solution with

respect to a fixed objective function such as the 𝐾-means.

In this paper, we aim to remove both assumptions. We shall

design algorithms that find the approximate centers of the true

clusters using same-cluster queries, in the setting that we do not
know in advance the number of clusters in the true clustering and

the true clustering has no relationship with the optimal solution of

a certain objective function. We obtain our result at a small cost:

our sample-based algorithm may not be able to find the centers

of the small clusters which are very close to some big identified

clusters; we shall elaborate on this shortly.

Problem Setup. We denote the clusters by 𝑋1, 𝑋2, . . . , which are

point sets in the Euclidean space. For each 𝑋𝑖 , let `𝑖 =
1

|𝑋𝑖 |
∑
𝑥 ∈𝑋𝑖

𝑥

be its centroid. For simplicity we refer to 𝑋𝑖 as “cluster 𝑖” or “𝑖-th

cluster”. The number of clusters is unknown at the beginning. Our

goal is to find all “big” clusters and their approximate centroids ˜̀𝑖 .

To specify what we mean by finding all big clusters, we need

to introduce a concept called reducibility. Several previous stud-
ies [2, 11, 12] on the 𝐾-means/median clustering problem assumed

that after finding 𝐾 main clusters, the residual ones satisfy some

reducibility condition, which states that using the 𝐾 discovered

cluster centers to cover the residual ones would only increase the to-

tal cost by a small (1+𝜖) factor. Similarly, we consider the following

reducibility condition, based on the usual cost function.

Definition 1 (cost function). Suppose that 𝑋 and 𝐶 are the set of

data points and centers, respectively. The cost of covering 𝑋 using
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Table 1.1: Notations

𝑋 set of input points

𝑟 index of the round

𝐼 set of indices of recovered clusters so far

𝑘 number of recovered clusters so far

𝑄 set of indices of newly discovered clusters

in the current round

𝑞 size of 𝑄 ; number of newly discovered clusters

in the current round

𝑆 multiset of samples. Each sample has the form of

(𝑥, 𝑖), where 𝑥 is the point and 𝑖 the cluster index.

𝑥∗
𝑗

reference point in cluster 𝑗 for rejection sampling

𝑆 𝑗 multiset of uniform samples in cluster 𝑗 returned

by rejection sampling. Note that 𝑆 ≠
⋃

𝑗 𝑆 𝑗 .

𝑊 set of indices of clusters to recover

𝐾 total number of recovered clusters at the end

𝐿 total number of discovered clusters at the end

𝐶 is Φ(𝑋,𝐶) = ∑
𝑥 ∈𝑋 min𝑐∈𝐶 ∥𝑥 − 𝑐 ∥2, where ∥ · ∥ denotes the Eu-

clidean norm. When𝐶 = {𝑐} is a singleton, we also write Φ(𝑋, {𝑐})
asΦ(𝑋, 𝑐). When𝐶 = ∅, we defineΦ(𝑋,𝐶) = |𝑋 | ·sup𝑥,𝑦∈𝑋 ∥𝑥−𝑦∥2.

Definition 2 (𝜖-reducibility). Let 𝑋1, 𝑋2, . . . be true clusters in 𝑋 .

Let 𝐼 be a subset of indices of clusters in 𝑋 . We say the clusters in

𝑋 are 𝜖-reducible w.r.t. 𝐼 if it holds for each ℓ ∉ 𝐼 that

Φ

(
𝑋ℓ ,

⋃
𝑖∈𝐼
{`𝑖 }

)
≤ 𝜖

∑
𝑖∈𝐼

Φ(𝑋𝑖 , `𝑖 ) .

Intuitively, this reducibility condition states that the clusters

outside 𝐼 will be covered by the centers of the clusters in 𝐼 with only

a small increase in the total cost.

Our goal is to find a subset of indices 𝐼 such that the set of true

clusters in 𝑋 is 𝜖-reducible w.r.t. 𝐼 .

Note that in this formulation, we do not attempt to optimize any

objective function; instead, we just try to recover the approximate

centroids of a set of clusters to which all other clusters are reducible.

Inevitably we have to adopt a distance function in our definition

of irreducibility, and we choose the widely used 𝐷2
(Euclidean-

squared) distance function so that we can still use the 𝐷2
-sampling

method developed and used in the earlier works [2, 3, 11]. The

𝐷2
-sampling will be introduced in Definition 3.

To facilitate discussion, we list in Table 1.1 the commonly used

notations in our algorithms and analyses. A cluster 𝑖 is said to be

“discovered” if any point in 𝑋𝑖 has been sampled and “recovered”

when the approximate centroid ˜̀𝑖 is computed. As discussed in

the preceding paragraph, it is possible that the total number of

recovered clusters, 𝐾 , is less than the total number of discovered

clusters, 𝐿, and that 𝐿 is less than the true number of clusters.

Our Contributions. We provide two clustering algorithms with

theoretically proven bounds on the total number of oracle queries in

the circumstance of no prior knowledge on the number of clusters

and no predefined objective function. To the best of our knowledge,

these are the first algorithms for the clustering problem of its kind.

Both our algorithms output (1 + 𝜖)-approximate centers for all

recovered clusters. Our first algorithm makes �̃� (𝜖−4𝐾2𝐿2) queries
(Section 3) and the second algorithm makes �̃� (𝜖−4𝐾𝐿2) queries
(Section 4).

1

We also conduct an extensive set of experiments demonstrating

the effectiveness of our algorithms on both synthetic and real-world

data; see Section 6.

We further extend our algorithms to the case of a noisy same-

cluster oracle which errs with a constant probability 𝑝 < 1/2. This
extension has been deferred to Appendix in the full version of this

paper.
2

We remark that since our algorithms target sublinear (i.e., 𝑜 ( |𝑋 |))
number of oracle queries, in the general case where the shape of

clusters can be arbitrary, it is impossible to classify correctly all

points in the datasets. But the approximate centers outputted by the

algorithms can be used to efficiently and correctly classify any newly
inserted points (i.e., database queries) as well as existing database

points (when needed), using a natural heuristic (Heuristic 1) that

we shall introduce in Section 6. Our experiments show that most

points can be classified using only one additional oracle query.

Related Work. As mentioned, the semi-supervised active cluster-

ing framework was first introduced in [4], where the authors consid-

ered the 𝐾-means clustering under the 𝛾-margin assumption. Ailon

et al. [1, 2] proposed approximation algorithms for the 𝐾-means

and correlation clustering that compute a (1 + 𝜖)-approximation of

the optimal solution with the help of same-cluster queries. Chien

et al. [6] studied the 𝐾-means clustering under the same setting as

that in [2], but used uniform sampling instead of 𝐷2
-sampling and

worked under the assumption that no cluster (in the true cluster-

ing) has a small size. Saha and Subramanian [15] gave algorithms

for correlation clustering with the same-cluster query complexity

bounded by the optimal cost of the clustering. Gamlath et al. [8]

extended the 𝐾-means problem from Euclidean spaces to general

finite metric spaces with a strengthened guarantee that recovered

clusters largely overlap with respect to the true clusters. All these

works, however, assume that the ground truth clustering (known

by the oracle) is consistent with the target objective function, which

is unrealistic in most real world applications.

Bressan et al. [5] considered the case where the clusters are

separated by ellipsoids, in contrast to the balls as suggested by

the usual 𝐾-means clustering objective. However, their algorithm

still requires the knowledge of 𝐾 and has a query complexity that

depends on 𝑛 (although logarithmically), which we avoid in this

work.

Mazumdar and Saha studied clustering 𝑛 points into 𝐾 clusters

with a noisy oracle [13] or side information [14]. The noisy oracle

gives incorrect answers to same-cluster queries with probability

𝑝 < 1/2 (so that majority voting still works). The side information

is the similarity score between each pair of data points, generated

from a distribution 𝑓+ if the pair belongs to the same cluster and

from another distribution 𝑓− otherwise. Algorithms proposed in

these papers guarantee to recover the true clusters of size at least

Ω(log𝑛), however, with query complexities at least Ω(𝐾𝑛), much

larger than what we are interested to achieve in this paper.

1
In �̃� ( ·), Ω̃ ( ·), Θ̃( ·) we use ‘˜’ to hide logarithmic factors.

2
https://arxiv.org/abs/2108.07383
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Algorithm 2.1 Classify(𝑥). The overall algorithm which main-

tains the number 𝐿 of discovered clusters and a representative point

𝑧𝑖 for each 𝑖 = 1, . . . , 𝐿.

for 𝑖 = 1 to 𝐿 do
if Oracle(𝑥, 𝑧𝑖 ) then

return 𝑖
𝐿 ← 𝐿 + 1
𝑧𝐿 ← 𝑥

return 𝐿

Huleihel et al. [9] studied the overlapping clustering with the aid

of a same-cluster oracle. Suppose that𝐴 is an𝑛×𝐾 clustering matrix

whose 𝑖-th row is the indicator vector of the cluster membership of

the 𝑖-th element. The task is to recover𝐴 from the similarity matrix

𝐴𝐴𝑇 using a small number of oracle queries.

Finally, we note that same-cluster queries have been used exten-

sively for entity resolution (or, de-duplication) [7, 16–19].

2 PRELIMINARIES
In this paper we consider point sets in the canonical Euclidean space

(R𝑑 , ∥ · ∥). The geometric centroid, or simply centroid, of a finite

point set 𝑋 is defined as ` (𝑋 ) = 1

|𝑋 |
∑
𝑥 ∈𝑋 𝑥 . It is known that ` (𝑋 )

is the minimizer of the 1-center problem min𝑐
∑
𝑥 ∈𝑋 ∥𝑥 − 𝑐 ∥2. The

next lemma provides a guarantee on approximating the centroid of

a cluster using uniform samples.

Lemma 1 ([10]). Let 𝑆 be a set of points obtained by independently
sampling M points uniformly at random with replacement from a
point set 𝑋 ∈ R𝑑 . Then for any 𝛿 > 0, it holds that

Pr {Φ(𝑆, ` (𝑆)) ≤ (1 + 1/(𝛿𝑀)) Φ(𝑋, ` (𝑋 ))} ≥ 1 − 𝛿.

We define the 𝐷2
-sampling of a point set 𝑋 with respect to a

point set 𝐶 as follows.

Definition 3 (𝐷2
-sampling). The 𝐷2

-sampling of a point set 𝑋

with respect to a point set 𝐶 returns a random point 𝑝 ∈ 𝑋 subject

to the distribution defined by Pr{𝑝 = 𝑥} = Φ({𝑥},𝐶)/Φ(𝑋,𝐶) for
all 𝑥 ∈ 𝑋 .

In this paper we use a same-cluster oracle, that is, given two data

points 𝑥,𝑦 ∈ 𝑋 , Oracle(𝑥,𝑦) returns true if 𝑥 and 𝑦 belong to the

same cluster and false otherwise. For simplicity of the algorithm

description, we shall instead invoke the function Classify(𝑥) to
obtain the cluster index of 𝑥 , which can be easily implemented using

the same-cluster oracle, as shown in Algorithm 2.1. This implies

that the number of oracle queries is at most 𝐿 times the number of

samples.

3 BASIC ALGORITHM
Algorithm. Despite the fact that the algorithm in [2] cannot

be used directly because 𝐾 is unknown to us, we briefly review

the algorithm below. The algorithm gradually “discovers” and then

“recovers” more and more clusters by taking𝐷2
-samples. It recovers

𝐾 clusters in 𝐾 rounds, one in each round. To recover one cluster, it

takes sufficient 𝐷2
-samples w.r.t. the approximate centers { ˜̀𝑖 }𝑖∈𝐼 ,

where 𝐼 is the set of the recovered clusters, and finds the largest

unrecovered cluster 𝑗 . For this cluster 𝑗 , it obtains sufficient uniform

samples via rejection sampling and invokes Lemma 1 to compute an

approximate centroid ˜̀ 𝑗 . Then it includes 𝑗 in the set 𝐼 of recovered

clusters and proceeds to the next round. It is shown that poly(𝐾/𝜖)
samples each round can achieve the failure probability of 𝑂 (1/𝐾)
and taking a union bound over all𝐾 rounds yields a constant overall

failure probability.

There are two major difficulties of adapting this algorithm to

our setting where 𝐾 is unknown.

(1) The number of rounds is unknown. It is not clear when our

algorithm should terminate, i.e., when we are confident that

there are no more irreducible clusters. The failure probability

of each round also needs to be redesigned and cannot be

𝑂 (1/𝐾).
(2) Since 𝐾 is unknown, we cannot predetermine the number

of samples to use and have to maintain dynamically various

stopping criteria. For instance, it is subtle to determine which

one the largest cluster is. If we stop too early, we may identify

a cluster that is actually small and will need a large number

of samples in order to obtain enough uniform samples from

this cluster when doing rejection sampling; if we stop too late,

we can make a more accurate decision but may have already

taken too many samples.

To address the first issue, we observe that Ω(𝜖−1 log𝐾) samples

is sufficient to test whether there are 𝜖-irreducible clusters left with

constant probability. We also assign the failure probability of the

𝑟 -th round to be 𝑎𝑟 such that

∑∞
𝑟=1 𝑎𝑟 is a small constant.

To address the second issue, observe that the 𝜖-irreducibility

condition implies that all unrecovered clusters together have a

Φ-value of Ω(𝜖) and thus the largest unrecovered cluster has a

Φ-value of Ω(𝜖/𝑞), where 𝑞 is the number of newly discovered

clusters. We can show that �̃� (𝑞/𝜖) samples suffices to ensure the

identification of a cluster with Φ-value at least Ω(𝜖/𝑞) and thus we
can, since the value of 𝑞 increases as the number of samples grows,

keep sampling until �̃� (𝑞/𝜖) samples are obtained. Note that this

is a dynamic criterion in contrast to the predetermined one in [2].

We then choose the largest cluster 𝑗 and carry out the rejection

sampling and estimate the approximate centroid ˜̀ 𝑗 with a careful

control over the number of samples.

We present our algorithm in Algorithm 3.1 without attempts

to optimize the constants. In our algorithm, each round is divided

into four phases. Phase 1 tests whether there are new clusters to

recover, using 𝑂 (𝜖−1 ln𝑘) samples, where 𝑘 is the number of the

recovered clusters. If no new clusters are found, the algorithm

would terminate. Phase 2 samples more points and finds the largest

cluster discovered so far, which we shall aim to recover in the

two remaining phases. Phase 3 samples more points and finds a

reference point 𝑥∗
𝑗
to be used in the rejection sampling in the next

phase. Phase 4 executes rejection sampling using the reference point

𝑥∗
𝑗
such that the returned samples are uniform from the cluster 𝑗 .

We need to collect �̃� (𝑘/𝜖) uniform samples before calculating the

approximate centroid ˜̀ 𝑗 for cluster 𝑗 . We then declare that cluster

𝑗 is recovered and start the next round.

We would like to remark that the 𝐷2
-sampling which our algo-

rithm uses has a great advantage over uniform sampling [6] when
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Algorithm 3.1 The Basic Algorithm.

1: 𝐼 ← ∅
2: 𝑘 ← 0, 𝑟 ← 0

3: repeat
4: 𝑟 ← 𝑟 + 1
5: 𝑄 ← ∅, 𝑆 ← ∅
6: 𝑇1 ← 8𝜖−1 ln(10(𝑘 + 1))
7: while 𝑄 = ∅ and |𝑆 | ≤ 𝑇1 do
8: (𝑥,𝑄, 𝑆) ← Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆)
9: end while
10: if 𝑄 ≠ ∅ then
11: while |𝑆 | ≤ 96|𝑄 | ln(10(𝑘 + |𝑄 |))/𝜖 do
12: (𝑥,𝑄, 𝑆) ← Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆)
13: end while
14: 𝑗 ← argmax𝑖 |{𝑢 ∈𝑆 : 𝑢= (𝑥, 𝑖)}|
15: 𝑞 ← |𝑄 |
16: 𝑇2 ← 2

12𝑞 ln(10(𝑘 + 𝑞))/𝜖2
17: while |𝑆 | ≤ 𝑇2 do
18: (𝑥,𝑄, 𝑆) ← Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆)
19: end while
20: 𝑥∗

𝑗
← argmin𝑥 :(𝑥,𝑗) ∈𝑆 Φ({𝑥}, { ˜̀𝑖 }𝑖∈𝐼 )

21: 𝑆 𝑗 ← ∅
22: 𝑇3 ← 20𝜖−1𝑟 ln2 (10𝑟 )
23: 𝑆 𝑗 ← RejSamp(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 ,𝑇3, { 𝑗}, {𝑥∗𝑗 })
24: ˜̀ 𝑗 ← (1/|𝑆 𝑗 |)

∑
𝑥 ∈𝑆 𝑗

𝑥

25: 𝑘 ← 𝑘 + 1
26: 𝐼 ← 𝐼 ∪ { 𝑗}
27: end if
28: until 𝑄 = ∅ ⊲ no new cluster is discovered

Phase

1

Phase

2

Phase

3

Phase

4

Algorithm 3.2 Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆): Returning a single 𝐷2
-

sample w.r.t. recovered clusters 𝐼

1: 𝑥 ← a point returned by 𝐷2
-sampling (w.r.t. { ˜̀𝑖 }𝑖∈𝐼 )

2: 𝑗 ← Classify(𝑥)
3: if 𝑗 ∉ 𝐼 then
4: 𝑄 ← 𝑄 ∪ { 𝑗}
5: 𝑆 ← 𝑆 ∪ {(𝑥, 𝑗)}
6: return (𝑥,𝑄, 𝑆)

Algorithm3.3 RejSamp(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 ,𝑇 ,𝑊 , {𝑥∗
𝑗
} 𝑗 ∈𝑊 ): Rejection sam-

pling on heavy clusters

1: repeat
2: 𝑥 ← a point returned by 𝐷2

-sampling w.r.t. { ˜̀𝑖 }𝑖∈𝐼
3: 𝑗 ← Classify(𝑥)
4: if 𝑗 ∈𝑊 then

5: Add 𝑥 to 𝑆 𝑗 with probability
𝜖
128
·
Φ( {𝑥∗𝑗 },{ ˜̀𝑖 }𝑖∈𝐼 )
Φ( {𝑥 },{ ˜̀𝑖 }𝑖∈𝐼 )

6: until |𝑆 𝑗 | ≥ 𝑇 for all 𝑗 ∈𝑊
7: return {𝑆 𝑗 } 𝑗 ∈𝑊

there are small and faraway clusters. Uniform sampling would re-

quire a large number of samples to find small clusters, regardless

of their locations. On the other hand, faraway clusters are clearly

irreducible and are rightfully expected to be recognized. The 𝐷2
-

sampling captures the distance information such that those small

faraway clusters may have a large Φ-value and can be found with

much fewer samples.

Analysis. Throughout the execution of the algorithm, we keep

the loop invariant that

Φ(𝑋𝑖 , ˜̀𝑖 ) ≤ (1 + 𝜖)Φ(𝑋𝑖 , `𝑖 ) (3.1)

for all 𝑖 ∈ 𝐼 , i.e., the approximate centers are good for all recovered

clusters.

It is clear that the main algorithm will terminate. We prove that

the algorithm is correct, i.e., the algorithm will find all clusters

with ˜̀𝑖 ’s being all good approximate centroids. We first need a

lemma showing that the undiscovered clusters are heavy under the

assumption of 𝜖-reducibility. All proofs are postponed to Appendix

in the full version.

Lemma 2. Suppose the 𝜖-reducibility constraint w.r.t. 𝐼 does not hold.
It holds for 𝜖 ∈ (0, 1] that ∑𝑖∉𝐼 Φ(𝑋𝑖 ,𝐶)/

∑
𝑖 Φ(𝑋𝑖 ,𝐶) ≥ 𝜖/4.

Using the preceding lemma, we are ready to show that Phase 1

of Algorithm 3.1 discovers all heavy clusters with high probability.

Lemma 3. Upon the termination of Algorithm 3.1, with probability
at least 0.95, the 𝜖-reducibility condition w.r.t. 𝐼 is satisfied and an
approximate centroid ˜̀𝑖 that satisfies (3.1) is obtained for every 𝑖 ∈ 𝐼 .

Next we upper bound the number of samples. For each cluster

𝑗 ∉ 𝐼 define its conditional sample probability

𝑝 𝑗 = Φ(𝑋 𝑗 ,𝐶)/
∑
𝑖∉𝐼 Φ(𝑋𝑖 ,𝐶), (3.2)

where 𝐶 = { ˜̀𝑖 }𝑖∈𝐼 is the set of approximate centers so far. For

each 𝑝 𝑗 , we also define an empirical approximation 𝑝 𝑗 = 𝑠 𝑗/
∑
𝑖∉𝐼 𝑠𝑖 ,

where 𝑠𝑖 denotes the number of samples seen so far which belong

to cluster 𝑖 .

The next lemma shows that the new clusters we find in Phase 2

are heavy.

Lemma 4. With probability at least 1 − 2/(100(𝑘 + 𝑞)2), it holds
that 𝑝 𝑗 ≥ 1/(3𝑞) for all 𝑗 ∈𝑊 .

To analyse Phases 3 and 4, we define an auxiliary point set

𝑌𝑗 =
{
𝑦 ∈ 𝑋 𝑗 : Φ({𝑦},𝐶)/Φ(𝑋 𝑗 ,𝐶) ≤ 2/|𝑋 𝑗 |

}
. (3.3)

Points in 𝑌𝑗 are good pivot points for the rejection sampling proce-

dure in Phase 4. We first show that we can find a good pivot point

𝑥∗
𝑗
in Phase 3.

Lemma 5. Assume that the event in Lemma 4 occurs. Then 𝑥∗
𝑗
∈ 𝑌𝑗

with probability at least 1 − 1/(100(𝑘 + 𝑞)2).

We then show that, with a good pivot point 𝑥∗
𝑗
, the rejection

sampling procedure in Phase 4 obtains sufficiently many uniform

samples from cluster 𝑗 so that we can calculate a good approximate

center later.

Lemma 6. Assume that the event in Lemma 5 occurs. By sampling
𝑠 = 2

23𝜖−4𝑞𝑟 ln2 (10𝑟 ) points in total, with probability at least 1 −
exp(−8𝑟 ), every cluster 𝑗 ∈ 𝑊 has 𝑇3 = 20𝜖−1𝑟 ln2 (10𝑟 ) samples
returned by the rejection sampling procedure.
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Combining Lemmata 3, 4, 5 and 6, we arrive at the main conclu-

sion of the basic algorithm.

Theorem 7. With probability at least 0.9, Algorithm 3.1 finds a set
𝐼 of clusters that satisfies Definition 2, and obtains for every 𝑖 ∈ 𝐼 an
approximate centroid ˜̀𝑖 that satisfies (3.1), using𝑂 (𝜖−4𝐾2𝐿2 log2 𝐿)
same-cluster queries in total, where 𝐾 is the total number of recovered
clusters and 𝐿 is the total number of discovered clusters.

Remark 1. When the clusters are 𝜖-irreducible with respect to any

subcollection of the clusters, we shall recover all 𝐿 clusters using

𝑂 (𝜖−4𝐿4 log2 𝐿) same-cluster queries.

4 IMPROVED ALGORITHM
In this section, we improve the basic algorithm by allowing the

recovery of multiple clusters in each round. A particular case in

which the basic algorithm would suffer from a prodigal waste of

samples is that there are in total 𝐾 clusters of approximately the

same size and they are 𝜖-irreducible with respect to any subset

𝐼 ⊂ [𝐾]. In such case, our basic algorithm requires a sample of size

�̃� (𝐾/𝜖) from that cluster, which in turn requires a global sample

of size �̃� (𝐾2/𝜖). Summing over 𝐾 rounds leads to a total num-

ber 𝑂 (𝐾3/𝜖) of samples. However, with �̃� (𝐾2/𝜖) global samples,

we can obtain �̃� (𝐾/𝜖) samples from every cluster and recover all

clusters in the same round. This reduces a factor of 𝐾 in the total

number of samples. The goal of this section is to improve the sam-

ple/query complexity of the basic algorithm by a factor of 𝐾 even

in the worst case.
To recover an indefinite number of clusters in each round, it is

a natural idea to generalize the basic algorithm to identifying a

set𝑊 of clusters, instead of the biggest one only, from which we

shall obtain uniform samples via rejection sampling and calculate

the approximate centroids { ˜̀ 𝑗 } 𝑗 ∈𝑊 . Here we face an ever greater

challenge as to how to determine𝑊 . The naïve idea of including

all clusters of Φ-value at least Ω(𝜖/𝑟 ) runs into difficulty: as we

sample more points, the value of 𝑟 may increase and we may need

to include more and more points, so when do we stop? We may

expect that the value 𝑟 will stabilize after sufficiently many samples,

but it is difficult to quantify “stable” and control the number of

samples needed.

Our solution to overcome the above-mentioned difficulty is

to split the clusters into bands. To explain this we introduce a

few more notations. For each unrecovered cluster 𝑗 ∉ 𝐼 , recall

that we defined in (3.2) its conditional sample probability 𝑝 𝑗 =

Φ(𝑋 𝑗 ,𝐶)/
∑
𝑖∉𝐼 Φ(𝑋𝑖 ,𝐶); we also define its empirical approximation

to be 𝑝 𝑗 = 𝑠 𝑗/
∑
𝑖∉𝐼 𝑠𝑖 , where 𝑠𝑖 denotes the number of samples seen

so far which belong to the cluster 𝑖 . We split {𝑝𝑖 }𝑖∉𝐼 into 𝐿+1 bands
for 𝐿 = 3 log𝑞, where the ℓ-th band is defined to be

𝐵ℓ = {𝑖 ∉ 𝐼 : 2−ℓ < 𝑝𝑖 ≤ 2
−ℓ+1}

for ℓ ≤ 𝐿 and the last band𝐵𝐿+1 consists of all the remaining clusters

𝑖 (i.e., 𝑝𝑖 ≤ 1/𝑞3). We say a band 𝐵ℓ is heavy if

∑
𝑖∈𝐵ℓ

𝑝𝑖 ≥ 1/(3𝐿).
The values 𝑝𝑖 and the bands are dynamically adjusted as the number

of samples grows.

Instead of focusing on individual clusters and identifying the

heavy ones, we shall identify the heavy bands at an appropriate

moment and recover all the clusters in those heavy bands. Intu-

itively, it takes much fewer samples for bands to stabilize than for

individual clusters. For instance, consider a heavy band which con-

sists of many small clusters. In this case, we will have seen most of

the clusters in the band without too many samples, although many

of the 𝑝𝑖 ’s may be far off from 𝑝𝑖 ’s. The important observation

here is that we have seen those clusters; in contrast, if we consider

individual clusters, we would have missed many of those clusters

and will focus on recovering a few of them, which would cause

a colossal waste of samples in the rejection sampling stage, for a

similar reason explained at the beginning of this section. Therefore

such banding approach enables us to control the number of samples

needed.

Algorithm 4.1 The Improved Algorithm

1: 𝐼 ← ∅
2: 𝑘 ← 0, 𝑟 ← 0, 𝐾 ← 1/2
3: repeat
4: 𝐾 ← 2𝐾

5: repeat
6: 𝑟 ← 𝑟 + 1
7: 𝑄 ← ∅, 𝑆 ← ∅
8: 𝑇1 ← 8𝜖−1 ln(10(𝑘 + 1))
9: while 𝑄 = ∅ and |𝑆 | ≤ 𝑇1 do
10: (𝑥,𝑄, 𝑆) ← Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆)
11: end while
12: if 𝑄 ≠ ∅ and 𝑘 < 𝐾 then
13: repeat
14: (𝑥,𝑄, 𝑆) ← Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆)
15: for each 𝑖 ∈ 𝑄 do
16: 𝑝𝑖 ← |{𝑢 ∈ 𝑆 : 𝑢 = (𝑥, 𝑖)}|/|𝑆 |
17: end for
18: Split the clusters in to bands {𝐵ℓ }
19: 𝑊 ← all clusters in heavy bands

20: until |𝑆 | ≥ 1600|𝑊 | log |𝑄 | ln(10(𝑘+|𝑄 |))/𝜖
21: 𝑞 ← |𝑄 |
22: 𝑇2 ← 2

17 |𝑊 | log𝑞 ln(10(𝑘 + 𝑞))/𝜖2
23: while |𝑆 | ≤ 𝑇2 do
24: (𝑥,𝑄, 𝑆) ← Sample(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 , 𝑄, 𝑆)
25: end while
26: for each 𝑗 ∈𝑊 do
27: 𝑥∗

𝑗
← argmin𝑥 :(𝑥,𝑗) ∈𝑆 Φ({𝑥}, { ˜̀𝑖 }𝑖∈𝐼 )

28: 𝑆 𝑗 ← ∅
29: end for
30: 𝑇3 ← 30𝐾/𝜖
31: {𝑆 𝑗 } 𝑗 ∈𝑊 ← RejSamp(𝐼 , { ˜̀𝑖 }𝑖∈𝐼 ,

𝑇3,𝑊 , {𝑥∗
𝑗
} 𝑗 ∈𝑊 )

32: for each 𝑗 ∈𝑊 do
33: ˜̀ 𝑗 ← (1/|𝑆 𝑗 |)

∑
𝑥 ∈𝑆 𝑗

𝑥

34: end for
35: 𝑘 ← 𝑘 + |𝑊 |
36: 𝐼 ← 𝐼 ∪𝑊
37: end if
38: until 𝑄 = ∅ or 𝑘 ≥ 𝐾
39: until 𝑄 = ∅ and 𝑘 ≤ 𝐾

Phase

1

Phase

2

Phase

3

Phase

4

Our improved algorithm is presented in Algorithm 4.1. Each

round remains divided into four phases. Phase 1 remains testing
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new clusters. Starting from Phase 2 comes the change that instead

of recovering only the largest sampled cluster 𝑗 , we identify a

subset𝑊 of indices of the newly discovered clusters and recover all

clusters in𝑊 . Phase 2 samples more points and identifies this subset

𝑊 by splitting the discovered clusters into bands and choosing all

clusters in the heavy bands. Phase 3 samples more points and finds

a reference point 𝑥∗
𝑗
for each 𝑗 ∈𝑊 . Phase 4 keeps sample points

until each cluster 𝑗 ∈𝑊 seesΘ(𝜖−1 |𝑊 |𝑟 ) points and then calculates
the approximate centers ˜̀ 𝑗 for each 𝑗 ∈𝑊 . The clusters in𝑊 will

then be added to 𝐼 as recovered clusters before the algorithm starts

a new round.

A technical subtlety lies in controlling the failure probability in

our new algorithm. In the basic algorithm, the failure probability in

the 𝑟 -th round is 𝑎𝑟 = 1/(𝑟 poly(log 𝑟 )). If we recover𝑤𝑟 clusters

in 𝑟 -th round, this failure probability for each of the 𝑤𝑟 clusters

needs to be 1/(𝑤𝑟𝑎𝑟 ), and as a consequence, �̃� (𝑤2

𝑟 𝑎𝑟 ) samples are

needed in the 𝑟 -th round. In the worst case this becomes �̃� (𝐾3)
samples, the same as in the basic algorithm, when both𝑤𝑟 = Θ(𝐾)
and 𝑎𝑟 = Θ̃(1/𝐾). To resolve this, we guess 𝐾 = 1, 2, . . . in powers

of 2 and assign 𝑎𝑟 to be𝑤𝑟 /𝐾 . For each fixed guess 𝐾 , the number

of samples is bounded by �̃� (𝐾2); iterating over guesses incurs only
an additional log𝐾 factor.

The analysis of our improved algorithm follows the same sketch

of the basic algorithm and we only present the changes below. All

proofs are postponed to Appendix in the full version. The next

lemma offers a similar guarantee as Lemma 3.

Lemma 8. Upon the termination of Algorithm 4.1, with probability
at least 0.95, the 𝜖-reducibility condition w.r.t. 𝐼 is satisfied and an
approximate centroid ˜̀𝑖 that satisfies (3.1) is obtained for every 𝑖 ∈ 𝐼 .

Next we upper bound the number of samples with a lemma

analogous to Lemma 4.

Lemma 9. With probability at least 1− 1/(50(𝑘 +𝑞)2), it holds that
𝑝 𝑗 ≥ 1/(70|𝐵ℓ ( 𝑗) | log𝑞) for all 𝑗 ∈𝑊 .

Recall that 𝑌𝑗 was defined in (3.3) for all 𝑗 ∈𝑊 . The following

two lemmata are the analogue of Lemmata 5 and 6, respectively.

Lemma 10. Assume that the event in Lemma 9 holds. With proba-
bility at least 1 − 1/(25(𝑘 + 𝑞)2), it holds that 𝑥∗

𝑗
∈ 𝑌𝑗 for all 𝑗 ∈𝑊 .

Lemma 11. Assume that the event in Lemma 10 holds. By sampling
𝑠 = 2

28𝜖−4 |𝑊 |𝐾 log𝑞 points in total, with probability at least 1 −
|𝑊 | exp(−8𝐾), every cluster 𝑗 ∈𝑊 has𝑇3 = 30𝐾/𝜖 samples returned
by the rejection sampling procedure.

Now we are ready to prove the main theorem of the improved

algorithm.

Theorem 12. With probability at least 0.9, Algorithm 4.1 (the im-
proved algorithm) finds all the clusters and obtain for every 𝑖 an ap-
proximate centroid ˜̀𝑖 that satisfies (3.1), using𝑂 (𝜖−4𝐾𝐿2 log3 𝐾 log𝐿)
same-cluster queries in total, where 𝐾 is the number of recovered clus-
ters and 𝐿 is the total number of discovered clusters.

Remark 2. The preceding theorem improves the query complexity

of the basic algorithm by about a factor of𝐾 , as desired. In particular,

when the clusters are 𝜖-irreducible with respect to any subcollection

of the clusters, we shall recover all 𝐿 clusters using𝑂 (𝜖−4𝐿3 log3 𝐿)

same-cluster queries, better than basic algorithm by about a factor

of 𝐿.

5 NOISY ORACLES
Our algorithm can be extended to the case where the same-cluster

oracle errs with a constant probability 𝑝 < 1/2. The full details are
postponed to Appendix in the full version.

Theorem 13. Suppose that the same-cluster oracle errs with a con-
stant probability 𝑝 < 1/2. With probability at least 0.6, there is an
algorithm that finds all the clusters and obtains for every 𝑖 an approx-
imate centroid ˜̀𝑖 that satisfies (3.1), using �̃� (𝜖−6𝐿6𝐾) same-cluster
queries in total.

6 EXPERIMENTS
In this section, we conduct experimental studies of our algorithms.

As we mentioned before, all previous algorithms need to know 𝐾

and it is impossible to convert them to the case of unknown 𝐾 (with

the only exception of [6]). In particular, we note the inapplicability

of the 𝑘-means algorithm and the algorithm in [2].

• The𝑘-means algorithm is for an unsupervised learning task and

returns clusters which are always spherical, so it is undesirable

for arbitrary shapes of clusters and it makes sense to examine

the accuracy in terms of misclassified points. Our problem

is semi-supervised with a same-cluster oracle, which can be

used to recover clusters of arbitrary shapes and guarantees no

misclassification. The assessment of the algorithm is therefore

the number of discovered clusters and the number of samples.

Owing to the very different nature of the problems, the𝑘-means

algorithm should not be used in our problem or compared with

algorithms designed specifically for our problem.

• The algorithm in [2] runs in𝑘 rounds and take 212𝑘3/𝜖2 samples

in the first step of each round. With 𝑘 = 10 and 𝜖 = 0.1, it needs

to sample in each round at least 4 × 108 points, usually larger

than the size of a dataset. (Our algorithm can be easily simplified

to handle such cases, see the subsection titled “Algorithms”

below.)

The only exception, the algorithm in [6], is just simple uniform

sampling andwhether or not𝐾 is known is not critical. This uniform

sampling algorithm will be referred to as Uniform below.

Datasets. We test our algorithms using both synthetic and real

world datasets.

For synthetic datasets, we generate 𝑛 points that belong to 𝐾

clusters in the 𝑑-dimensional Euclidean space. Since in the real

world the cluster sizes typically follow a power-law distribution,

we assign to each cluster a random size drawn from the widely

used Zipf distribution, which has the density function 𝑓 (𝑥) ∝ 𝑥−𝛼 ,
where 𝑥 is the size of the cluster and 𝛼 a parameter controlling the

skewness of the dataset. We then choose a center `𝑖 for each cluster

𝑖 ∈ [𝐾] in a manner to be specified later and generate the points in

the cluster from the multivariate Gaussian distribution 𝑁 (`𝑖 , 𝜎2𝐼𝑑 ),
where 𝐼𝑑 denotes the 𝑑 × 𝑑 identity matrix.

Now we specify how to choose the centers. In practice, clusters

in the dataset are not always well separated; there could be clusters

whose centers are close to each other. We thus use an additional

parameter 𝑝 to characterize this phenomenon. In the default setting
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of 𝑝 = 0, all centers of the𝐾 clusters are drawn uniformly at random

from [0, 𝑏]𝑑 . When 𝑝 > 0, we first partition the clusters into groups

as follows: Think of each cluster as a node. For each pair of clusters,

with probability 𝑝 we add an edge between the two nodes. Each

connected component of the resulting graph forms a group. Next,

for each group of clusters, we pick a random cluster and choose its

center ` uniformly at random in [0, 𝑏]𝑑 . For each of the remaining

clusters in the group, we choose its center uniformly at random in

the neighborhood of radius 𝜌 centered at `.

We use the following set of parameters as the default setting in

our synthetic datasets: 𝑛 = 10
6
, 𝐾 = 100, 𝛼 = 2.5, 𝜎 = 0.3, 𝑏 = 5,

𝑑 = 10 and 𝜌 = 0.1.

We also use the following two real-world datasets.

• Shuttle
3
: it describes the radiator positions in a NASA space

shuttle. There are 58,000 points with 9 numerical attributes,

and 7 clusters in total.

• Kdd
4
: this dataset is taken from the 1999 KDD Cup contest.

It contains about 4.9M points classified into 23 clusters. The

original dataset has 41 attributes. We retain all numerical

attributes except one that contains only zeros, resulting in 33

attributes in total.

Each feature in the real world datasets is normalized to have zero

mean and unit standard deviation.

Algorithms. We compare three algorithms listed below. A cluster

is said to be heavy when the number of (uniform) samples obtained

from this cluster is more than a predetermined threshold, which is

set to be 10 in our experiments.

• Uniform: This is uniform sampling. That is, we keep getting

random samples from the dataset one by one and identify their

label by same-cluster queries. We recover a cluster when it

becomes heavy.

• Basic: This is based on our basic algorithm (Algorithm 3.1). We

recover clusters one at a time when it becomes heavy.

• Batched: This is a simplified version of the improved algorithm

(Algorithm 4.1). Instead of partitioning clusters to bands and

then recovering all clusters in the heavy bands, in each round

we just keep sampling points until the fraction of points in the

heavy clusters is more than a half, at which moment we try to

recover all heavy clusters in a batch.

Recall that in our basic and improved algorithms, we always

“ignore” the samples belonging to the unrecovered clusters in the

previous rounds, which will not affect our theoretical analysis.

But in practice it is reasonable to reuse these “old” samples in the

succeeding rounds so that we are able to recover some clusters

earlier. Because of such a sample-reuse procedure, the practical per-

formance difference between the Basic and Batched algorithms

becomes less significant. Recall that in theory, the main improve-

ment of Batched over Basic is that we try to avoid wasting too

many samples in each round by recovering possibly more than

one cluster at a time. But still, as we shall see shortly, Batched

outperforms Basic in all metrics, though sometimes the gaps may

not seem significant.

3
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle).

4
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Measurements. To measure the same-cluster query complexity,

we introduce two assessments. The first is fixed-budget, where given
a fixed number of same-cluster queries, we compare the number

of clusters recovered by different algorithms. The second is fixed-
recovery, where each algorithm needs to recover a predetermined

number of clusters, and we compare the numbers of same-cluster

queries the algorithms use.

We also report the error of the approximate centroid of each re-

covered cluster. For a recovered cluster 𝑋𝑖 , let `𝑖 be its centroid and

ˆ̀𝑖 be the approximate center. We define the centroid approximation

error to be (Φ(𝑋𝑖 , ˆ̀𝑖 ) − Φ(𝑋𝑖 , `𝑖 )) /Φ(𝑋𝑖 , `𝑖 ).
For Basic and Batched, we further compare their running time

and round usage. We note that a small round usage is very useful if

we want to efficiently parallelize the learning process.

Finally, we would like to mention one subtlety when measuring

the number of same-cluster queries. Since all algorithms that we

are going to test are sampling based, and for each sampled point

we need to identify its label by same-cluster queries, which, in the

worst case, takes 𝑘 queries, where 𝑘 is the number of the discovered

clusters so far. In practice, however, a good query order/strategy

can save us a lot of same-cluster queries. We apply the following

query strategy for all tested algorithms.

Heuristic 1. For each discovered cluster, we maintain its approx-

imate center (using the samples we have obtained). When a new

point is sampled, we query the centers of discovered clusters based

on their distances to the new point in the increasing order as follows.
Suppose that the new point is 𝑥 . We calculate the distances between

𝑥 and all approximate centers ˆ̀𝑖 , and sort them in increasing order,

say, 𝑑 (𝑥, ˆ̀1) ≤ 𝑑 (𝑥, ˆ̀2) ≤ · · · . Then for 𝑖 = 1, 2, . . . sequentially,

we check whether 𝑥 belongs to cluster 𝑖 by querying whether 𝑥

and some sample point from cluster 𝑖 belong to the same cluster. If

𝑥 does not belong to any discovered cluster, a new cluster will be

created.

We will also use this heuristic to test the effectiveness of approxi-

mate centers for classifying new points. That is, for a newly inserted

point 𝑞, we count the number of same-cluster queries needed to

correctly classify 𝑞 using the approximate centers and Heuristic 1.

Computation Environments. All algorithms are implemented

in C++, and all experiments were conducted on Dell PowerEdge

T630 server with two Intel Xeon E5-2667 v4 3.2GHz CPU with eight

cores each and 256GB memory.

6.1 Results
The three algorithms, Uniform, Basic and Batched, are compared

on the same-cluster query complexity, the quality of returned ap-

proximate centers, the running time and the number of rounds. All

results are the average values of 100 runs of experiments.

QueryComplexity. For each of the synthetic and real-world datasets,
we measure the query complexities under both fixed-budget and

fixed-recovery settings.

The results for synthetic dataset, the Shuttle dataset and the

Kdd dataset are plotted in Figure 1, Figure 2 and Figure 3, respec-

tively. In all figures, the left column corresponds to the fixed-budget

case and the right column the fixed-recovery case. We note that
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Figure 1: Performance comparison on synthetic datasets.
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Figure 2: Performance comparison on Shuttle dataset. The
curves for Basic and Batched almost overlap for fixed-
recovery.
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Figure 3: Performance comparison on Kdd dataset.

some points for Uniform are missing since they are out of the

boundary. The exact values of all experiments can be found in

Appendix in the full version.

#Clusters Algorithms 20 30 40 50 60 70

𝑝 = 0

Basic 8.70% 8.70% 8.50% 8.41% 8.43% 8.37%

Batched 8.74% 8.60% 8.56% 8.64% 8.43% 8.51%

Uniform 9.90% 9.43% 9.58% 9.22% 9.24% 9.18%

𝑝 = 0.1

Basic 8.86% 8.68% 8.72% 8.39% 8.51% 8.45%

Batched 8.76% 8.64% 8.45% 8.49% 8.50% 8.42%

Uniform 9.59% 9.64% 9.39% 9.42% 9.30% 9.18%

𝑝 = 0.3

Basic 8.87% 8.68% 8.56% 8.40% 8.34% 8.38%

Batched 8.95% 8.64% 8.57% 8.37% 8.35% 8.39%

Uniform 9.75% 9.44% 9.45% 9.35% 9.25% 9.28%

Table 6.2: Error rates on synthetic datasets

#Clusters 2 3 4 5 6 7

Basic 9.72% 4.99% 6.28% 5.40% 5.85% 5.91%

Batched 8.94% 4.78% 6.33% 5.44% 5.89% 5.66%

Uniform 9.32% 4.92% 5.79% 5.67% 5.65% 5.50%

Table 6.3: Error rates on Shuttle dataset

#Clusters 6 8 10 12 14 16

Basic 3.70% 3.83% 4.87% 5.75% 5.95% 5.68%

Batched 3.57% 3.68% 4.49% 4.39% 5.04% 5.53%

Uniform 3.96% 5.21% 4.92% 4.83% 4.57% 5.43%

Table 6.4: Error rates on Kdd dataset

For all datasets, Basic and Batched significantly outperform

Uniform. Take Kdd dataset for example, we observe that with

10
5
query budget Uniform recovers 10 clusters while Basic and

Batched recover around 18 clusters. In order to recover 16 clusters,

Uniform requires 200, 000 queries per cluster, while Basic and

Batched only requires no more than 2, 500 queries per cluster. Even

on small datasets such as Shuttle, Uniform needs about twice

amount of queries to recover all clusters compared with Basic and

Batched. We also observe that Batched performs slightly better

than Basic.

On synthetic datasets, one can see that higher collision proba-

bility 𝑝 makes clustering more difficult for all algorithms. Given a

query budget of 2 × 105, Basic and Batched can recover about 70

clusters when 𝑝 = 0 (no collision), but only about 60 clusters when

𝑝 = 0.3.

We also observe that Batched performs better than Basic in the

Kdd dataset in all settings, except the fixed-recovery setting for the

Shuttle dataset, in which they have almost the same performance.

Center Approximation. We compare the approximation error

of each algorithm to show the quality of returned approximate

centers. We run all three algorithms in the fixed-recovery setting

because we can only measure the error of the recovered clusters. We

examine the median error among all recovered clusters and observe

that the centroid approximation errors are indeed similar on all

datasets when the same number of clusters is recovered. Detailed

results are listed in Tables 6.2 to 6.4. We observe that all centroid

approximation error rates are below 10%: the error rates are about

9% on the synthetic datasets and are about 5% on the two real-world

datasets. There is no significant difference between the error rates

of different algorithms; the maximum difference is no more than

2%. These consistent results indicate that the approximate centers

computed by all algorithms are of good quality.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

985



0
1
0

2
0

3
0

4
0

20 30 40 50 60 70
Recovered #Clusters

R
u
n
n
in

g
 t
im

e
 (

s
) BASIC

BATCHED

𝑝 = 0

2
0

4
0

6
0

20 30 40 50 60 70

Recovered #Clusters

#
R

o
u
n
d
s

BASIC
BATCHED

𝑝 = 0

0
1
0

2
0

3
0

4
0

20 30 40 50 60 70
Recovered #Clusters

R
u
n
n
in

g
 t
im

e
 (

s
) BASIC

BATCHED

𝑝 = 0.1
2
0

4
0

6
0

20 30 40 50 60 70

Recovered #Clusters

#
R

o
u
n
d
s

BASIC
BATCHED

𝑝 = 0.1

0
1
0

2
0

3
0

4
0

20 30 40 50 60 70
Recovered #Clusters

R
u
n
n
in

g
 t
im

e
 (

s
) BASIC

BATCHED

𝑝 = 0.3

2
0

4
0

6
0

20 30 40 50 60 70

Recovered #Clusters

#
R

o
u
n
d
s

BASIC
BATCHED

𝑝 = 0.3

Figure 4: Running time and round usage on synthetic
datasets
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Figure 5: Running time and round usage on Shuttle dataset

Time and Rounds. We compare the running time and the num-

ber of rounds between Basic and Batched, with results presented

in Figure 4 to Figure 6. Here we present the running time in the

sampling stage, showing that the reduced round usage in Batched

also leads to a reduced usage of sampling time in Batched. In terms

of the time saving in querying stage, we have already discussed it

in the query complexity part. The only exception is the Shuttle

dataset, where the performance of Basic and Batched are almost

the same; this may be because the number of clusters in Shuttle

is too small (7 in total) for the algorithms to make any difference.

We remark that fewer rounds implies a shorter waiting time for

synchronization in the parallel learning setting and a smaller com-

munication cost in the distributed learning setting.

Classification Using Approximate Centers. We now measure

the quality of the approximate centers outputted by our algorithms

for point classification using Heuristic 1. That is, after the algorithm

terminates and outputs the set of approximate centers, we try to

cluster new (unclassified) points using Heuristic 1 and count the
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Figure 6: Running time and round usage on Kdd dataset
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Figure 7: Number of same-cluster queries on synthetic
datasets.
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Figure 8: Number of same-cluster queries on real datasets.

number of same-cluster queries used for each new point. Since

there is only a very small number of points in the dataset that

have been sampled/classified during the run of Basic and Batched,

we simply use the whole dataset as test points. This should not

introduce much bias to our measurement.

Our results for the synthetic and the real-world datasets are

plotted in Figures 7 and 8, respectively. We observe that for all

three tested algorithms, for the majority of the points in the dataset,

only one same-cluster query is needed for classification; in other

words, we only need to find their nearest approximate centers for

determining their cluster labels. Except for the Shuttle dataset for

which about 10-15% points need at least three same-cluster queries,

in all other datasets the fraction of points which need at least three

queries is negligible. Overall, the performance of the three tested

algorithms is comparable.

Summary. Briefly summarizing our experimental results, we ob-

serve that both Basic and Batched significantly outperform Uni-

form in terms of query complexities. All three algorithms have

similar center approximation quality. Batched outperforms Basic

by a large margin in both running time and round usage on the

synthetic and Kdd datasets.
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