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ABSTRACT
Automatic Speech Scoring (ASS) is the computer-assisted evaluation
of a candidate’s speaking proficiency in a language. ASS systems
face many challenges like open grammar, variable pronunciations,
and unstructured or semi-structured content. Recent deep learning
approaches have shown some promise in this domain. However,
most of these approaches focus on extracting features from a single
audio, making them suffer from the lack of speaker-specific context
required to model such a complex task. We propose a novel deep
learning technique for non-native ASS, called speaker-conditioned
hierarchical modeling. In our technique, we take advantage of the
fact that oral proficiency tests rate multiple responses for a can-
didate. We extract context vectors from these responses and feed
them as additional speaker-specific context to our network to score
a particular response. We compare our technique with strong base-
lines and find that such modeling improves the model’s average
performance by 6.92% (maximum = 12.86%, minimum = 4.51%). We
further show both quantitative and qualitative insights into the
importance of this additional context in solving the problem of
ASS.
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1 INTRODUCTION
Automated Scoring (AS) of language is one of the most popular
applications of artificial intelligence. The first such reporting goes
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back to 1960s for the Project Essay Grade (PEG) by Ellis Page [41].
Since then, the systems have expanded by leaps and bounds and
now they grademillions of test-takers per year [3, 23, 31]. The scores
given by them are used in important decisions including college
admissions, visa approvals, screening interviews, and even high-
school exams [3, 23, 38, 67]. Apart from its immense importance in
the education and learning domain, automatic scoring also has a
large market size of more than USD 110 billion, with a US market
size alone of USD 17.1 billion [32, 52, 61, 65].

AS, in general, refers to the act of using computers to convert
a candidate’s performance on standardized tests to some perfor-
mance metrics. AS systems are required to interpret and analyse
the candidate’s response and make a prediction that can be used
to infer the person’s ability [15]. Automatic Speech Scoring (ASS),
a type of AS, assesses the speaking proficiency of a candidate in a
language. ASS systems are used for a variety of reasons such as to
decide admissions to universities, alleviate the workload of teachers,
save time and costs associated with grading, and evaluation of on-
line courses. For instance, a British teacher spends an average of 8
hours per calendar week scoring exams and assignments [20]. This
figure is even higher for developing and low-resource countries
where the teacher to student ratio is dismal [39]. ASS systems can
effectively reduce this workload while still maintaining quality [29].
Due to this reason, schools in Ohio and Utah have already started
automated essay scoring for their high school students and would
soon require speech scoring systems [23, 38, 67]. Additionally, with
the rise of people taking online courses, online platforms require
ASS systems to provide immediate results and feedback to the user.
On account of all these reasons, much research and development is
required in ASS to better the systems which play such an important
part in life-changing decisions including university admissions,
visas, and job interviews.

Currently, the majority of work in deep learning based AS has
been done in the Automatic Essay Scoring (AES) domain. Speech
scoring is a much harder problem than essay scoring as we have to
model both the content (what was spoken) and delivery (how it was
spoken). We also have to deal with open grammar, unstructured
or semi structured content, prosody, fluency and pronunciation
variations. Moreover, it has been noted in previous studies that ap-
plying AES approaches for ASS results in significant performance
drops [33] due to the mentioned issues. To deal with these chal-
lenges, most of the previous studies have used handcrafted features
for scoring speech. For instance, TOEFL® from Education Testing
Service (ETS) is a well-known example which uses a rich set of
handcrafted features for ASS [76]. However, handcrafted rules are
unable to model higher level features such as opinion formation,
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arguments, prose coherence, etc. Therefore, recently more and more
approaches are moving towards end-to-end deep learning models
for scoring speech responses. For instance, Chen et al. [10] combine
acoustic and lexical models to perform ASS. Qian et al. [49] and
Grover et al. [19] use LSTM-attention and attention fusion, respec-
tively, to score spontaneous speech responses. Recently, research
studies have also shown that incorporating speech transformers
for scoring improves performance [19, 69].

Contrary to the true classroom settings, a majority of exist-
ing feature engineering and deep-learning research treats auto-
matic speech scoring of samples of the same candidate on different
prompts1 to be independent of each other [6, 74]. That is why most
of the previous literature reports the performance of one model
per prompt with no or minimal information sharing between two
models. It is well-known that a speaker’s performance on differ-
ent prompts is related. Even in classroom settings, while scoring a
response, a teacher knows the subtleties of each pupil on account
of her knowledge of the pupil’s performance on previous occa-
sions [6, 74]. Therefore, conditioning models on speakers can lead
to information sharing across models corresponding to different
prompts and hence is expected to improve the models’ performance.

Fig. 1 presents the basic idea of speaker-prompt interaction. Re-
sponse 𝑟𝑖 𝑗 is determined by two factors: speaker 𝑠𝑖 and prompt 𝑝 𝑗 .
Speaker 𝑠𝑖 remains constant while prompt 𝑝 𝑗 changes for gener-
ating (answering) a response 𝑟𝑖 𝑗 . Therefore, a model finding the
score 𝑜𝑖 𝑗 for a response 𝑟𝑖 𝑗 can benefit from sharing speaker 𝑠𝑖 ’s
information with other prompts (𝑝𝑘 s.t. 𝑘 ≠ 𝑗 ). The same idea of in-
formation sharing through speaker conditioning has been explored
directly or indirectly in other tasks including speaker activity de-
tection [13], speaker diarization [50], text-to-speech [22], speech
translation [36], and speaker detection [27] in the speech domain,
and authorship verification [25], author-based predictive writing
[24], sentiment analysis [75], and natural text generation [40] in the
NLP domain. Conditioning on speakers improved the performance
on all these tasks.

Building on these gaps in existing research, we propose a novel
deep learning architecture which relies on speaker-conditioned
hierarchical modeling, where the prompts of each user are bundled
by the user-specific context. Specifically, we feed our per-prompt
models with user-specific context, allowing the models to better
understand the user and make a more informative prediction (§3.4).
Using an exhaustive set of experiments involving 108 unique model-
prompt pairs, we compare our technique with strong baselines and
show the superiority of the proposed speaker-conditioned hierar-
chical models (§4). We also show that audio features along with
text-based features can boost the model performance, as audio fea-
tures capture details such as stress, hesitation, word intensity, word
duration, etc. which are not directly captured by text transcripts
and hence not modeled by the text based models. In §4.1 we analyze
quadratic weighted kappa and mean squared error to see how well
our models perform in comparison to the baselines. We analyze
how conditioning on other prompts changes the predictions for

1Here a prompt denotes an instance of a unique question asked to test-takers for
eliciting their opinions and answers in an exam. The prompts can come from varied
domains including literature, science, logic and society. The responses to a prompt
indicate the creative, literary, argumentative, narrative, and scientific aptitude of
candidates and are judged on a pre-determined score scale.

high-bias examples. We also note the speaker level accuracy in-
crease by conditioning on speaker for the proposed models. Later,
in §4.2, we interpret the results to see how the speaker-conditioned
hierarchical models obtain better predictions than the baseline mod-
els. For this, we analyze the information-sharing strengths across
prompts (§4.2)

The general
situation for most
office workers in
my company is
... is very

accommodating and
friendly

Response rij

Speaker si

You are talking
with some

participant about
... Describe your
work environment

Prompt pj

A news agency is
preparing a

documentary ... 
tell a story from
your teenage years

Prompt pk

My teenage life is
a very memorable

life ... 
the favorite 

is watching movies
with my friends
Response rik

Score oikScore oij

Figure 1: Speaker-Prompt Interaction: Motivation for speaker-
conditioned models. Speaker 𝑠𝑖 gives responses 𝑟𝑖 𝑗 and 𝑟𝑖𝑘 on
prompts 𝑝 𝑗 and 𝑝𝑘 and obtain the score 𝑜𝑖 𝑗 and 𝑜𝑖𝑘 .

The main contributions of our work are summarised as follows:
• We propose two types of speaker-conditioned hierarchical
models for the problem of ASS. To the best of our knowledge,
this is the first time speaker conditioning is considered on a
multi-prompt dataset in ASS.

• Through extensive experiments on 108 uniquemodel-prompt
pairs on a real-life non-native speaker dataset, which con-
tains 7,198 speakers answering 6 prompts each, we show
that the proposed models achieve state-of-the-art results
on speech scoring. Our method increases average human-
machine agreement by 6.92% (maximum = 12.86%, minimum
= 4.51%) over strong baselines.

• Further, using interpretability experiments, we show how
our model learns the relations between prompts and individ-
ual speaker responses via speaker-conditioned hierarchical
embeddings. We find that this also increases the precision
for all prompt-specific models. We also find the relative im-
portance of audio and text in ASS.

2 RELATEDWORK
Automatic Speech Scoring (ASS): In general, ASS can be of the
following types: read-aloud, repeat-aloud, keyword sentence com-
pletion, structured narrative, providing an opinion, listen-speak,
and conversation-based assessments [16]. Amongst them, struc-
tured narrative, providing an opinion, and conversation-based as-
sessments are the most thorough and hence the most challenging
ones [16]. In this work, we cover the first two of these three. The
range of features covered by this type of assessment is highly com-
prehensive and include fluency, grammar, vocabulary, discourse
coherence, and content, amongst others [73]. Due to the complexity
of the task, earlier systems relied on simply measuring automatic
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Prompt Difficulty Avg #sec. Avg #tokens Score Distribution
1 B1 57.79 101.91 A2(197)/Low B1(1286)/High B1(5715)
2 B1 58.82 111.18 A2(400)/Low B1(2697)/High B1(4101)
3 B2 81.86 151.58 A2(65)/Low B1(463)/High B1(3087)/Low B2(3497)/High B2(86)
4 C1 104.83 183.83 A2(65)/LB1(463)/High B1(3087)/LB2(3497)/High B2(86)
5 C1 106.67 199.61 A2(60)/LB1(382)/High B1(2675)/LB2(3945)/High B2(136)
6 B1 56.15 111.22 A2(56)/Low B1(767)/High B1(6375)

Table 1: Statistics of the SOPI-SLTI dataset. Difficulty measures the CEFR scale difficulty of each prompt. We report the distribution of each
prompt across proficiency levels in the "Score Distribution" column.

speech recognition (ASR) errors on already fixed set of sentences
[71].

Over the years, a lot of studies have focused on extracting hand-
crafted features that cover different aspects of speech such as flu-
ency, rhythm, intonation and stress, vocabulary use, etc. [76]. How-
ever, these systems are not able to capture complex high-level
features such as opinion formation, structure of prose, argument
depth, etc. Studies have shown that end-to-end systems work bet-
ter than feature-based systems, while also obviating the need for
feature engineering.

Chen et al. [11] were the first to propose an end-to-end net-
work that captures both lexical and acoustic cues to score samples.
They used Bi-directional LSTM with attention to generate features
from text, and for acoustic cues they used Kaldi ASR’s [47] out-
puts to obtain acoustic model posterior probabilities and word
durations, and Praat [8] to obtain pitch and intensity values. They
reported an improvement over the conventional method of hand-
crafted features [76]. Saeki et al. [51] proposed a combination of
three models: lexical, acoustic and visual models to score conversa-
tion based assessments. Grover et al. [19] proposed a multimodal
end-to-end system, which uses a Bi-directional Recurrent CNN and
Bi-directional LSTM to encode acoustic and lexical cues from spec-
trograms and transcriptions, respectively. They applied attention
fusion on these features to learn complex interactions between
different modalities before final scoring and reported consistent
empirical improvements of their system over strong baselines. Qian
et al. [48] showed improvements over baselines after including
prompt-level information in their models.

Automated Essay Scoring (AES): A task related to ASS is AES.
It is one of the most important educational applications of natural
language processing (NLP) in the education domain [38, 66, 67]. The
first neural network approach was proposed by T&N [63]. They
proposed a network which uses Convolutional Neural Network
(CNN) to encode local context information, and a long short term
memory network (LSTM) to encode long term dependencies. Dong
[14] improved this by including the attention mechanism into the
network by using attention pooling of CNN features instead of
the simple max pooling/average pooling. Tay et al. [64] hypothe-
sized that scoring essays can be improved by computing and using
coherence scores of an essay, since coherence is an important di-
mension of essay quality. They modeled coherence by adding an
additional layer to their network which takes in two hidden states
of the LSTM network and outputs the similarity or coherence. They
used these coherence values to enrich their features and boost their
performance.

However, none of the approaches in both AES and ASS have
looked into the possible gains after conditioning them on speakers.
Our work differs from the current works as we explore speaker-
conditioned hierarchical modeling, a way to enrich our feature
space by providing speaker-specific cues obtained from previously
trained models. It has been shown by various previous studies that
speaker-conditioned models get better performance across many
tasks such as text-to-speech and natural text generation [22, 40].

3 TASK AND DATASET
3.1 Dataset
In this study, we use the data collected by Second Language Testing
Inc. (SLTI) while administering the Simulated Oral Proficiency Inter-
view (SOPI) Exam for L2 English speakers [19, 58]. The SOPI exam
has been operational since 1992 and has a rich research history
[58, 60]. Currently, SOPI is used for screening interviews, university
admissions, employee training and skill development, university
and job placement, and as a test in several online courses [55]. The
SOPI offers psychometric advantages in terms of reliability and
validity, particularly in standardized testing situations [35].

A majority of the speakers in the released dataset are from the
Philippines region. The candidates are high school graduates and
above. A SOPI test-taker is presented with a question paper contain-
ing six prompts on their computer screens, and their responses for
each individual item are recorded. The test taker is given approx-
imately one minute to think and two minutes to respond to each
question. To answer the questions in the form, the speaker needs
to provide arguments and explanations supporting their opinion.

These responses are rated by two expert raters, and in case
of a disagreement on the overall score a third rater is asked to
resolve the same. The prompts and the rubrics for evaluation follow
the guidelines as proposed by the Central European Framework
of Reference for Languages (CEFR) [9]. CEFR is an international
standard for describing language ability. It describes the language
proficiency on a six-point scale, from A1 for beginners to C2 for
those who are proficient in the language.

The levels of questions vary from B1 to C1, and the ratings pro-
vided to the speakers are upper bounded by the level of the question.
The distribution of the dataset and the relevant statistics is provided
in Table 1. The dataset consists of 931 hours of speech spoken by
7,198 speakers. The test elicits argumentative, narrative, persuasive
and expository skills to answer the questions. For example, the
prompt 1 asks candidates to describe their work environment. A
candidate gets two types of scores: prompt-level and overall (global)
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Figure 2: Speaker-conditioned hierarchical models. Above figures show scoring models (𝑚 𝑗 ) scoring audio responses 𝑎𝑖 𝑗 for
speaker 𝑠𝑖 on prompt 𝑝 𝑗 .
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Figure 3: Baseline Modeling Strategy. The figure shows scoring
models (𝑚 𝑗 ) scoring the audio responses 𝑎𝑖 𝑗 for the speaker 𝑠𝑖 on
prompt 𝑝 𝑗 . The audio responses 𝑎𝑖 𝑗 are converted to deep embed-
dings 𝑐𝑖 𝑗 using text and audio encoders 𝐸 𝑗 .

score. Overall score is computed by combining all the prompt-level
scores. Other studies also use the data for various purposes includ-
ing automated scoring, coherence, etc. [5, 19, 45, 56, 57, 59].

3.2 Experimental Setup
We stratify our dataset based on the speaker and global score and
then split the candidates in train, validation and test set in 70:10:20
ratio. This ensures that for each prompt we have no speaker in-
tersection in the train, validation and test sets, as required by our
speaker-conditioned hierarchical modeling approach. It is notewor-
thy that this also reflects the real deployment setting. For each
prompt, we train our model and report the quadratic weighted
kappa (QWK) score on the test set.

We use DeepSpeech2 [1] based ASR system with a trigram lan-
guage model for transcription of the non-native responses. The
ASR system is trained on approximately 1000 hours of audio sam-
pled from CommonVoice [2] and LibriSpeech datasets [42] and
further fine-tuned on approximately 22 hours of transcribed non-
native spoken responses from our dataset. The dataset is further

augmented with noise using AudioSet [18]. This ASR achieves a
word error rate of 16.63%.

We tokenize the transcripts using the Spacy tokenizer [21] and
lowercase them. Words not part of the training data vocabulary are
mapped to the unknown token (UNK) and initialized to zero vector
in the embedding layer. We treat the scoring of the responses as
a regression problem such that the output 𝑜𝑖 𝑗 is the normalized
score of the speaker 𝑠𝑖 ’s response 𝑟𝑖 𝑗 to a prompt 𝑝 𝑗 . The CEFR
[9] proficiency levels (N levels) associated with the responses are
normalized to the range [0, 1] for training. While testing, we rescale
the model output back to the original score range and measure the
performance. All our experiments are done using PyTorch [44]. All
the plots and hyperparameter tuning were assisted by Weights and
Biases [7]. Next, we present our models that were used as feature
extractors and the proposed modeling strategies.

3.3 Models
We experimented with several model architectures including Bi-
directional LSTM (BDLSTM), Bi-directional LSTM with Attention
(BDLSTM+Attn), and BERT based model. We also tried including
audio features using wav2vec2.0 [4] with each text encoder model.
We demonstrate each of these models with 3 modeling strategies
thus showing results for 18 (6*3) different models for 6 prompts.
In total, we experiment with 108 (18*6) individual model-prompt
pairs. The three modeling strategies are: baseline strategy without
any speaker-conditioning (Fig. 3), one stage speaker-conditioned
hierarchical modeling (Fig. 2a), two stage speaker-conditioned hier-
archical modeling (Fig. 2b). Before explaining the different modeling
strategies in §3.4, we first give a brief overview of each of the mod-
els.

Bi-Directional LSTM: The Bi-directional LSTM is capable of
learning long-term dependencies. A bi-directional network is cho-
sen here to take into account information both from the past and
future given the inherent nature of speech and language produc-
tion. Our model configuration is similar to [11]. The words from
the preprocessed transcripts are mapped to their embedding. This
word embedding layer is initialized with 300-Dimensional glove
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embeddings [46] trained on Wikipedia and is optimized during
training. We use a single layer of BDLSTM, and assign the hidden
layer from the last time step as the context vector (𝑐) for the entire
response.

BDLSTM+Attention:The attentionmechanism [68] has achieved
state-of-the-art on various natural language processing tasks. It
enables weighting contextual information learned during each time
step, allowing the model to determine which states to pay attention
to. We apply attention to the hidden states of a BDLSTM. Given
the hidden states of the BDLSTM ℎ, we calculate the context vector
𝑐 as follows:

𝑒𝑡 =𝑊𝑎ℎ𝑡

𝑎𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑡 )

𝑐 =

𝑇∑︁
𝑖=1

ℎ𝑡𝑎𝑡

(1)

where ℎ𝑡 is the hidden representation at the 𝑡𝑡ℎ timestep,𝑊𝑎 is
the weight matrix for the attention layer which assigns importance
scores (𝑒𝑡 ) to each hidden state. These scores are then normalised
to sum to 1 (𝑎𝑡 ) using a softmax layer. The context vector 𝑐 is a
convex combination of the hidden states with weights 𝑎𝑡 .

BERT:We use the BERT Tokenizer and the BERT Base model
from the huggingface library [72]. Pretrained BERT [12] based em-
beddings have set a new standard in many natural language process-
ing tasks. The BERT base model has 12 multiheaded self-attention
layers with a total of 110M trainable parameters. It produces a 768-
dimensional feature vector for a text sequence. We fine tune the
last 7 self-attention layers and add a projection layer on top of the
features extracted to obtain the context vector (𝑐) for a response.

MultiModalModels:Wehypothesise that audio features, along
with text-based features can improve the performance of models.
We rely on the previous studies that show that audios capture fea-
tures like stress, hesitation, rhythm, word duration, pitch, intensity,
etc.which are absent in transcripts and hence text-based features do
not give complete information required for scoring [53]. To extract
features from audios, we use the pretrained wav2vec2.0 [4] model
provided by the huggingface library [72]. Features extracted from
wav2vec2.0 have shown SOTA results on various speech tasks [53].

Wav2vec2.0 takes in the raw audio sampled at 16khz, and out-
puts a 768 dimensional feature vector (𝑣𝑎), summarising the entire
audio. We store these features (𝑣𝑎) of every audio extracted from
wav2vec2.0 and apply a fully connected layer over these features
to finetune them and obtain the audio context vector 𝑐𝑎 .

𝑐𝑎 =𝑊 𝑎𝑣𝑎 + 𝑏𝑎 (2)

We then concatenate the context vector from the text encoders (𝑐𝑡 )
with the audio context vector (𝑐𝑎) to obtain the multimodal context
vector (𝑐) for a response.

𝑐 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑐𝑡 , 𝑐𝑎) (3)

3.4 Modeling Strategies
We try out three modeling strategies: baseline strategy without
any speaker-conditioning (Fig. 3), one stage speaker-conditioned

hierarchical modeling (Fig. 2a), two stage speaker-conditioned hier-
archical modeling (Fig. 2b). In the speaker-conditioned hierarchical
modeling strategies, we provide other responses (𝑟𝑖 𝑗 for different
values of 𝑗 ) of the same speaker (𝑠𝑖 ) on other prompts (𝑝 𝑗 ) as con-
text (𝑐𝑖 𝑗 ) to the model (𝑚 𝑗 ) to assist its predictions (𝑜𝑖 𝑗 ). Since a
response 𝑟𝑖 𝑗 is dependent on speaker 𝑠𝑖 and prompt 𝑝 𝑗 , we hypoth-
esise that providing the model with a test taker’s context can be
a crucial element in understanding his/her speech and making a
more informed prediction.

Baseline Strategy: This is given by the Fig. 3 where we have 6
models (𝑚 𝑗 , 𝑗 ∈ {1..6}), one for each prompt (𝑝 𝑗 , 𝑗 ∈ {1..6}). The
models are conditioned only on text transcripts (𝑇𝑖 𝑗 ) or a combina-
tion of text and audio (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑇𝑖 𝑗 , 𝐴𝑖 𝑗 )). The text transcripts and
audio are encoded by the text and audio encoders (𝐸 𝑗 , 𝑗 ∈ {1..6})
explained in the previous section (§3.3). We obtain the context vec-
tor 𝑐𝑖 𝑗 from encoder 𝐸 𝑗 for the response of speaker 𝑠𝑖 on prompt 𝑝 𝑗 .
We then pass this context vector through a fully connected layer to
obtain the final score 𝑜𝑖 𝑗 .

𝑜𝑖 𝑗 =𝑊𝑚 𝑗
𝑐𝑖 𝑗 + 𝑏𝑚 𝑗

(4)

The models are trained independently of each other using weighted
MSE loss until convergence.

One Stage Speaker-Conditioned Hierarchical Model: As
we show in Fig. 2a, in this approach, we condition prompt 𝑝 𝑗 ’s
scoring model 𝑚 𝑗 on all the inputs (𝑇𝑖𝑘 , 𝐴𝑖𝑘 ) of prompts 𝑝𝑘 s.t.
𝑘 < 𝑗 . The context of a response is the context vector extracted
from the encoder model (e.g. final hidden state in BDLSTM).

𝑐𝑖 𝑗 = 𝐸 𝑗 (𝑇𝑖 𝑗 , 𝐴𝑖 𝑗 ) (5)

where 𝑐𝑖 𝑗 is the context vector of a model on the 𝑗𝑡ℎ prompt for
the 𝑖𝑡ℎ speaker (𝑠𝑖 ). We define the new context vector 𝑐 ′

𝑖 𝑗
as:

𝑐 ′𝑖 𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑐𝑖1, 𝑐𝑖2, ..., 𝑐𝑖 𝑗) (6)

It is the concatenation of context vectors from the previous prompts
and the context vector from the current prompt 𝑗 for a particular
speaker 𝑠𝑖 . We then pass this new context vector 𝑐 ′

𝑖 𝑗
through a fully

connected layer to obtain a score for the sample 𝑜𝑖 𝑗 .

𝑜𝑖 𝑗 =𝑊𝑚 𝑗
𝑐 ′𝑖 𝑗 + 𝑏𝑚 𝑗

(7)

We train our models sequentially from prompt 1 to prompt 6,
and store the context vector for every speaker after the training
completes. While training the model on the 𝑗𝑡ℎ prompt, the context
vectors 𝑐𝑖1 to 𝑐𝑖 𝑗−1 are stored vectors obtained from previously
trained models (Fig. 2a). We perform this experiment on all of our
models, i.e., BDLSTM, BDLSTM+Attention, BERT, and text encoders
with wav2vec2.0.

TwoStage Speaker-ConditionedHierarchicalModeling: In
this approach (Fig. 2b), we assist the training of our model by pro-
viding it the context of all the responses of a speaker from the
baseline models as shown in Fig. 2b. As modeling non-native users
is a harder problem [6, 17, 53], our model needs more user specific
context. The context of response is the context vector extracted
from the baseline model (e.g. final hidden state in BDLSTM) that is
then passed through the fully connected layer to score the sample.

𝑏𝑖 𝑗 = 𝐸 𝑗 (𝑇𝑖 𝑗 , 𝐴𝑖 𝑗 ) (8)
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Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Average
QWK MSE QWK MSE QWK MSE QWK MSE QWK MSE QWK MSE QWK

Baseline Modelling Strategy
BDLSTM 0.4984 0.2208 0.3298 0.4923 0.4472 0.5847 0.4026 0.7944 0.3718 0.9868 0.3744 0.1534 0.4040

BDLSTM+Attn 0.5291 0.2284 0.3578 0.4784 0.5050 0.6715 0.5007 0.6277 0.5324 0.5277 0.4254 0.1881 0.4751
BERT 0.5443 0.2166 0.3566 0.4763 0.5148 0.6305 0.5302 0.5375 0.5494 0.5555 0.4333 0.1777 0.4881

BDLSTM+Audio 0.5059 0.2336 0.3266 0.4964 0.4732 0.5880 0.4888 0.5951 0.4809 0.6455 0.3922 0.1612 0.4446
BDLSTM+Attn+Audio 0.5173 0.2464 0.3402 0.5255 0.5390 0.5525 0.5286 0.5724 0.5394 0.5269 0.3859 0.2130 0.4751

BERT+Audio 0.5385 0.2230 0.3716 0.4704 0.5420 0.5246 0.5289 0.5253 0.5486 0.5239 0.4208 0.1820 0.4917
One Stage Speaker-Conditioned Hierarchical Modelling Strategy

BDLSTM 0.4984 0.2208 0.3428 0.4645 0.4390 0.5791 0.4450 0.6548 0.5056 0.5187 0.3398 0.2187 0.4284
BDLSTM+Attn 0.5291 0.2284 0.3458 0.5125 0.5334 0.5888 0.5330 0.6222 0.5460 0.5805 0.4216 0.1805 0.4848

BERT 0.5443 0.2166 0.3492 0.4569 0.5772 0.4423 0.5589 0.4479 0.5820 0.4486 0.4726 0.1583 0.5140
BDLSTM+Audio 0.5059 0.2336 0.3447 0.4810 0.5075 0.5468 0.5258 0.5333 0.5281 0.4865 0.4147 0.1498 0.4711

BDLSTM+Attn+Audio 0.5173 0.2464 0.3776 0.4481 0.5716 0.5213 0.5657 0.5142 0.5660 0.5241 0.4610 0.1732 0.5099
BERT+Audio 0.5385 0.2230 0.3746 0.4593 0.5684 0.4642 0.5601 0.4711 0.5770 0.4614 0.4256 0.1938 0.5074

Two Stage Speaker-Conditioned Hierarchical Modelling Strategy
BDLSTM 0.4951 0.2194 0.3257 0.4833 0.5307 0.4826 0.5527 0.4256 0.5279 0.4631 0.3040 0.2541 0.4560

BDLSTM+Attn 0.5350 0.2298 0.3563 0.4437 0.5575 0.5131 0.5592 0.5090 0.5585 0.5326 0.4348 0.1694 0.5002
BERT 0.5361 0.2243 0.3771 0.4451 0.5911 0.4319 0.5765 0.4527 0.5693 0.5145 0.4701 0.1472 0.5200

BDLSTM+Audio 0.5422 0.2173 0.3407 0.5028 0.5732 0.4005 0.5872 0.4353 0.5190 0.4857 0.3031 0.2592 0.4776
BDLSTM+Attn+Audio 0.5104 0.2443 0.3637 0.4332 0.5669 0.5092 0.5614 0.5120 0.5663 0.4801 0.4212 0.1740 0.4983

BERT+Audio 0.5173 0.2216 0.3464 0.4607 0.5992 0.4204 0.5727 0.4558 0.5927 0.4475 0.4552 0.1827 0.5139
Table 2: Quadratic Weighted Kappa (QWK) score and Mean Squared Error (MSE) across prompts for different models. We present the results
for the three modeling strategies (baseline, one stage speaker-conditioned hierarchical and two stage speaker-conditioned hierarchical) and
6 models (BDLSTM, BDLSTM+Attn, BERT, BDLSTM+Attn+wav2vec2.0, BERT+wav2vec2.0). Bold text represents best modeling technique for
the model-prompt pair and green text represents best model for each prompt. It is noteworthy that most green and bold values lie in the
proposed one-stage and two-stage speaker-conditioned hierarchical models.

Let 𝑏𝑖 𝑗 be the stored context vector of a trained baseline model
trained on the 𝑗𝑡ℎ prompt for the 𝑖𝑡ℎ speaker (𝑠𝑖 ). Then the global
context vector for 𝑠𝑖 be defined as

𝑣𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑏6𝑖 𝑗,∀𝑗≠𝑖 ) (9)

We define the new context vector 𝑐 ′
𝑖 𝑗
as

𝑐 ′𝑖 𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑣𝑖 , 𝑐𝑖 𝑗 ) (10)

as the concatenation of the global baseline context vector 𝑣𝑖 and the
context vector from the current prompt 𝑐𝑖 𝑗 for a particular speaker.
We then pass this new context vector (𝑐 ′

𝑖 𝑗
) through a fully connected

layer to obtain a score for the sample 𝑜𝑖 𝑗 .

𝑜𝑖 𝑗 =𝑊𝑚 𝑗
𝑐 ′𝑖 𝑗 + 𝑏𝑚 𝑗

(11)
We perform this experiment on all of our models, i.e., BDLSTM,

BDLSTM+Attention, BERT, and text encoders with wav2vec2.0
(Fig. 2b).

3.5 Training
We use the weighted mean square loss as our loss function defined
as:

𝑊𝑀𝑆𝐸 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖𝑡𝑟𝑢𝑒 − 𝑦𝑖𝑝𝑟𝑒𝑑 )
2𝑤𝑦𝑖𝑡𝑟𝑢𝑒

(12)

where 𝑦𝑖𝑡𝑟𝑢𝑒 , 𝑦
𝑖
𝑝𝑟𝑒𝑑

are the scaled ground truth, and predicted
grade, respectively.𝑤𝑦𝑡𝑟𝑢𝑒 is the weight of the ground truth class.
We use the weighted mean squared loss due to class imbalance

in the training data as shown in Table 1. We use the Adam [26]
optimizer to minimize our loss over the training data. To prevent
overfitting, we train the model with early stopping on the weighted
validation MSE loss. We also use the ReduceLROnPlateau scheduler
as provided in PyTorch [44] to reduce the learning rate when the
weighted validation MSE loss does not improve.

3.6 Evaluation Metric
Similar to previous studies [19, 29, 30, 43, 49, 69, 70], we have used
the quadratic weighted kappa (QWK) as our evaluation metric.
It measures the level of agreement between two sets of ratings.
The metric outputs values between 0 (random agreement between
ratings) and 1 (complete agreement between ratings). In cases where
the agreement is less than expected by chance, the score can be
negative too. To calculate the QWK score, firstly we calculate the
confusion matrix 𝑂 of size 𝐶x𝐶 , where 𝐶 is the total number of
classes. 𝑂𝑖 𝑗 represents the number of samples with true label 𝑖 and
predicted label 𝑗 . The matrix is normalised to have sum equal 1. We
calculate theweightmatrix𝑊 of size𝐶x𝐶 , where𝑊𝑖 𝑗 = (𝑖− 𝑗)2/(𝐶−
1)2. The weight matrix penalises predictions that are further away
from their ground truthmore harshly than the ones that are closer to
the ground truth. Then we create the histogram matrix of expected
grades 𝐸 of size𝐶x𝐶 , which is calculated by taking the outer product
of histograms of ground truth and predicted labels. We normalise
this matrix such that the sum equals 1. The QWK is calculated as:

𝑄𝑊𝐾 = 1 − (
∑︁
𝑖, 𝑗

𝑊𝑖 𝑗𝑂𝑖 𝑗 )/(
∑︁
𝑖, 𝑗

𝑊𝑖 𝑗𝐸𝑖 𝑗 ) (13)
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(a) Number of speakers for whom output scores of at least
𝑘 prompts are predicted correctly.

(b) Relative improvement over baseline (in %) in the number
of speakers for whom output scores of at least 𝑘 prompts
are predicted correctly.

Figure 4: Speaker level accuracy comparison in the threemodeling strategies. For generating these plots, we use the results fromBERTmodel.

Apart from QWK metric, following the recommendations of
other studies [30, 34], we analyze the results more comprehen-
sively by calculating speaker-level accuracy, performance on near
decision-boundary samples and high-biased samples. In order to
gain more intuition, we perform attributions over both modalities
and also show information sharing strength across prompts. The
results of all these analyses are presented in the next section.

4 RESULTS
Here we present the quantitative and qualitative results for the
different models and modeling strategies.

4.1 Quantitative Analysis
QWK Score: In Table 2, we compare the two proposed speaker-
conditioned hierarchical approaches with baseline strategies on
various models. It can be inferred from the table that speaker-
conditioned hierarchical modeling consistently improves performance
across all the models on all prompts. This result supports our hypoth-
esis that speaker-specific cues assist the model in making better
informed predictions. In table 2, we also report the average QWK
for each model which we define as the average of promptwise QWK
values for a model. The mean improvement in average QWK across
all models is 4.97% (maximum = 7.32%, minimum = 2.05%) and 6.92%
(maximum = 12.86%, minimum = 4.51%) in one stage and two stage
hierarchical models compared to their baseline counterparts.

Similar to average QWK, we also compute average MSE for each
model. As compared to the baseline, we observe a mean decrease
in average MSE by 10.03% and 15.21% in one stage and two stage
hierarchichal models, respectively.

We see that the two stage speaker-conditioned hierarchical BERT
model performs better than the other models in three out of six
prompts. For the other three, the one stage speaker-conditioned
hierarchical BERT model performs better. This result strongly indi-
cates that conditioning on speakers has improved the results.

Table 2 also contains results for experiments with text and audio
features. Similar trends as text-only models are also observed here.
First, we see an improvement in performance of 61.11% multimodal
models as compared to the text-only models. Our one stage and two

stage speaker-conditioned hierarchical BDLSTM+Attn+Wav2Vec2.0
model beats the BERT text-only model. This shows that our hy-
pothesis of audio-specific features not being captured within text
transcriptions was true and including wav2vec2.0’s features helped
improve the performance. Speaker-conditioning the models further
improves the performance by 5.9% as compared to the multi-modal
baseline models.

Speaker Level Accuracy: Since our hypothesis is that includ-
ing speaker-level information from previousmodels should improve
the performance of subsequent models, we also show improvements
in speaker-level accuracy. For this, we first compare the mean num-
ber of prompts correctly classified for each speaker by the three
modeling strategies, i.e., 1

𝑁

∑𝑖=𝑁,𝑗=6
𝑖=1, 𝑗=1 𝐼 (𝑦𝑡𝑟𝑢𝑒,𝑖, 𝑗 = 𝑦𝑝𝑟𝑒𝑑,𝑖, 𝑗 ) where

𝑦𝑝𝑟𝑒𝑑,𝑖, 𝑗 , 𝑦𝑡𝑟𝑢𝑒,𝑖, 𝑗 are the predicted output and the ground truth
for 𝑖𝑡ℎ speaker on 𝑗𝑡ℎ prompt. We found that the mean number
of correctly classified prompts for one stage hierarchical and two
stage hierarchical models are 4.018 and 4.014, respectively, which
is 7.4% better than the baseline mean of 3.740.

To strengthen our claims further for speaker level accuracy, we
compare the number of speakers for whom responses on at least 𝑘
prompts are predicted correctly for the three modeling strategies.
Concretely, we measure, 𝐶𝑜𝑢𝑛𝑡𝑁

𝑖=1 (𝐼 (
∑6

𝑗=1 𝐼 (𝑦𝑡𝑟𝑢𝑒,𝑖, 𝑗 = 𝑦𝑝𝑟𝑒𝑑,𝑖, 𝑗 ) ≥
𝑘)) for different values of 𝑘 . We present the results in Fig. 4a, where
we see that both the one-stage hierarchical model and the two stage
hierarchical model outperform the baseline for all the values of
𝑘 . In Fig. 4b, we can see the significance of this improvement as
compared to the baseline model. As the value of k increases, the
relative improvements become more significant. This observation
suggests that speaker-specific cues used in speaker-conditioned
modeling help our model increase speaker level accuracy.

High Bias Samples:We set out to see if conditioning on speak-
ers makes the models avoid errors where the model’s predictions
are far from the ground truth (|𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑 | ≥ 2). Based on our
hypothesis, we expect that given more speaker level information,
the models should be able to perform better on such samples. Con-
sequently, we analyze samples which were predicted incorrectly by
more than 2 score levels. As compared to baseline models, we ob-
serve upto 60% and 55% reduction in high-bias errors in one stage
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Figure 5: Heatmap on prompt 4, each element 𝑒𝑖 𝑗 depicts percentage (number) of samples predicted in score 𝑗 having ground truth score 𝑖.
The blue patches clearly indicate that there are lesser samples satisfying |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑 | ≥ 2 in case of our proposed models when compared
to the baseline models

and two stage hierarchical models, respectively. Results obtained
on prompt 4 are presented in Fig. 5. This shows that giving more
speaker-specific context reduces errors on high-bias samples.

Bias Due To Performance On Other Prompts: Since with
speaker conditioning, we are giving more speaker context to the
models, models might become unfairly biased towards a speaker’s
previous (good or bad) performance in some prior prompt. For
instance, if a speaker performs poorly (well) on some prior prompt
but better (poor) on the current prompt, the speaker should not be
unfairly penalized (awarded) because of his previous performance.

We analyse the models’ predictions for those samples on which
the speakers have a high predicted score on prompt 𝑖 − 1 and low
ground-truth scores on prompt 𝑖 . For the other case (where pre-
dicted score on prompt i - 1 is low and ground truth on prompt i
is high), the number of samples were too less to obtain any statis-
tical inference. We find that one stage and two stage hierarchical
models tend to give a higher score than the ground truth score
relative to the baseline in 3.5%, 7% samples, respectively. Although
this was not consistent across all prompts. Moreover, the average
percentage of correctly predicted samples in the one stage and
two stage hierarchical models were higher by 10.30% (maximum =
28.00%, minimum = 4.10%) and 10.05% (maximum = 36.34%, mini-
mum = 4.43%), respectively, than the corresponding baseline models.
Therefore, despite the increase in predictions observed in 3 out of 6
prompts, the percentage increase in correctly predicted samples is
much more significant. This shows that the model extracts speaker-
specific features and rather than being biased by it, the model uses
it to improve its performance on the current prompt and be more
precise. We leave the correction of marginal score change on 3 out
of 6 prompts as future work.

Performance On Samples Near Decision Boundary:We de-
fine near decision boundary samples as the ones where the two
raters disagree on speech scores. Fig. 6 presents the results for
both types of samples, i.e., where human raters (i) agree and (ii)
disagree with each other. We observe that conditioning on speak-
ers improves the performance on both types of samples. Average
accuracy increase is 14.91% and 6.33% in agreements and disagree-
ments for prompts 2, 3, and 5 over the baseline models. Further,
we observe that all modelling strategies have a lower accuracy and
QWK for samples where the two raters disagree. This is expected

since these samples are hard for both humans and models and can
be considered to lie near the model’s decision boundary.

4.2 Qualitative Analysis
In Section 4.1, we see an improvement in the QWK score. In order
to further probe how our technique helps in improving model
performance, we use an attribution method to analyze models’
predictions with respect to their inputs. We employ the method of
integrated gradients [62] for this purpose:

Given an input 𝑥 and a baseline 𝑏2, the integrated gradient along
the 𝑖𝑡ℎ dimension is defined as:

𝐼𝐺𝑖 (𝑥, 𝑏) = (𝑥𝑖 − 𝑏𝑖 )
∫ 1

𝛼=0

𝜕𝐹 (𝑏 + 𝛼 (𝑥 − 𝑏))
𝜕𝑥𝑖

𝑑𝛼 (14)

where 𝜕𝐹 (𝑥)
𝜕𝑥𝑖

represents the gradient of 𝐹 along the 𝑖𝑡ℎ dimension
of 𝑥 . We choose the baseline as empty input (all 0s) since an empty
speech sample should get a score of 0 as per the scoring rubrics. For
the first experiment on prompt-wise attribution, we took prompt-
wise response embeddings as the dimension of attribution. For
the second experiment on finding the contribution of modalities,
we took text and audio modalities across all prompts, as the two
dimensions for finding attributions.

Integrated gradients have been successfully used in the past for
various NLP tasks [37, 43, 54]. To calculate these attributions, we
used the Captum [28] library and aggregated all attributions of
the test set to retain a global view of the importance of different
embeddings.

Prompt-wiseAttribution: To assess information sharing strength
across prompts, we compute prompt-wise attributions on the two
stage hierarchical models. The results for this are shown in Fig. 7.
Here we observe that the most crucial embedding in predicting each
prompt is the embedding from the prompt itself, which is expected
since this embedding contains most of the context related to the re-
sponse of that prompt. Additionally, we can see that there are many
lighter patches in Fig. 7. These patches represent the importance of
embeddings from other prompts in the current model’s predictions.
As can be seen in the heatmap, embeddings from prompts 1 and 2

2Defined as an input containing absence of cause for the output of a model; also called
neutral input [54, 62].
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(a) Accuracy (b) QWK

Figure 6: (a) Accuracy and (b) QWK on two types of samples: (i) Where the two expert raters agree (ii) Where the two expert raters disagree

Figure 7: Heatmap for promptwise attributions calculated us-
ing BERT two stage speaker-conditioned hierarchical model. Here,
each element 𝑒𝑖 𝑗 depicts contibution (attribution value) of prompt
𝑗 ′𝑠 embeddings in predicting the output score of prompt 𝑖

were the most important and contributed significantly in predict-
ing other prompts. This validates our hypothesis that providing a
model with rich user specific context via hierarchical modeling can
be useful for improving its performance.

Figure 8: Attribution value of each modality in predicting other
prompts calculated using BERT+wav2vec2.0 two stage speaker-
conditioned hierarchical model.

Contribution OfModalities: To understand the importance of
text and audio individually in predicting output scores of different
prompts, we calculated attribution scores over them (see Fig. 8).
We observe that attribution scores are lower for audio as compared
to text for all prompts. This demonstrates that our text encoders
were able to capture most of the information required for predicting
scores and audio embeddings fulfilled the shortcomings of the text
encoding process (like pronunciation and prosody which cannot
be directly extracted from text transcripts).

We also observe that the relative contribution of audio was the
highest for prompts 3 and 4 which are incidentally the most difficult
prompts (Table 1). This is expected since for more difficult prompts,
apart from content, the presentation also plays an important role.
On the other hand, prompts 1 and 6 have the highest contribution
of text. These prompts had the lowest difficulty level (B1) and hence
content plays a dominant role in the score predictions for them. We
observed similar plots for both one stage speaker-conditioned and
baseline models.

5 CONCLUSION
In this paper, we have investigated end-to-end deep learning based
models for the automated speech scoring task for L2 English speak-
ers. We show that speaker-conditioned hierarchical models perform
better than their baseline counterparts. Results indicate that pro-
viding the model with additional speaker-specific context helps
the model in better understanding the speaker and making a more
informed prediction. These models are more precise and less bi-
ased than their baseline counterparts. We also show that including
audio based features increases models’ expressivity and generalis-
ability, which improves the overall performance. In future work,
we wish to explore the effectiveness of our technique on AES, off-
topic response detection, and individual speech components such
as dysfluency and pronunciation.
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