
Match-Ignition: Plugging PageRank into Transformer
for Long-form Text Matching

Liang Pang1, Yanyan Lan2∗, Xueqi Cheng3
pangliang@ict.ac.cn,lanyanyan@tsinghua.edu.cn,cxq@ict.ac.cn

1Data Intelligence System Research Center,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2Institute for AI Industry Research, Tsinghua University, Beijing, China
3CAS Key Lab of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

ABSTRACT
Neural text matching models have been widely used in community
question answering, information retrieval, and dialogue. However,
these models designed for short texts cannot well address the long-
form text matching problem, because there are many contexts in
long-form texts can not be directly aligned with each other, and it
is difficult for existing models to capture the key matching signals
from such noisy data. Besides, these models are computationally
expensive for simply use all textual data indiscriminately. To tackle
the effectiveness and efficiency problem, we propose a novel hierar-
chical noise filtering model, namely Match-Ignition. The main idea
is to plug the well-known PageRank algorithm into the Transformer,
to identify and filter both sentence and word level noisy informa-
tion in the matching process. Noisy sentences are usually easy to
detect because previous work has shown that their similarity can
be explicitly evaluated by the word overlapping, so we directly use
PageRank to filter such information based on a sentence similarity
graph. Unlike sentences, words rely on their contexts to express
concrete meanings, so we propose to jointly learn the filtering and
matching process, to well capture the critical word-level matching
signals. Specifically, a word graph is first built based on the atten-
tion scores in each self-attention block of Transformer, and key
words are then selected by applying PageRank on this graph. In this
way, noisy words will be filtered out layer by layer in the matching
process. Experimental results show that Match-Ignition outper-
forms both SOTA short text matching models and recent long-form
text matching models. We also conduct detailed analysis to show
that Match-Ignition efficiently captures important sentences and
words, to facilitate the long-form text matching process.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; •
Computing methodologies→ Neural networks.

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482450

Sentence1: What makes a pizza the best?

Short-form Text Matching
(Paraphrasing Identification):

Sentence2: What makes a good pizza?

Long-form Text Matching
(Redundancy News Identification):

Doc2: … McGrady had one of the most memorable performances of
his career, the final 35 seconds win 13 points when against the San
Antonio Spurs to secure a comeback victory. The sequence included
four consecutive three-pointers …

Doc1: … it took unreal shooting by Tracy McGrady. McGrady made
four 3-point shots and scored 13 points in the final 35 seconds,
including a 26-footer with 1.7 seconds remaining, to send the Spurs to
San Antonio with a second loss in as …

Figure 1: The top example is a short-form text matching for
the paraphrasing identification, and the lines indicate the
alignments between words from two sentences. The bottom
example is a long-form text matching for the redundancy
news identification, and the highlights indicate the impor-
tant matching signals for the identity event of two news.

KEYWORDS
Text Matching; Long-form Text; PageRank Algorithm

ACM Reference Format:
Liang Pang, Yanyan Lan, Xueqi Cheng. 2021. Match-Ignition: Plugging
PageRank into Transformer for Long-form Text Matching. In Proceedings
of the 30th ACM International Conference on Information and Knowledge
Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482450

1 INTRODUCTION
Semantic text matching is an essential problem in many natural
language applications, such as community question answering [42],
information retrieval [17], and dialogue [25]. Many deep text match-
ing models have been proposed and gain good performance, such
as representation based models [17, 28, 37, 40], interaction based
models [13, 16, 29, 41], and their combinations [9, 27, 44].

However, these models cannot be well applied to long-form text
matching problems, which have attracted increasing attention in
the field of news deduplication [22], citation recommendation [43],
plagiarism detection [47] and attachment suggestion [19]. This is

ar
X

iv
:2

10
1.

06
42

3v
2 

 [
cs

.C
L

] 
 1

7 
A

ug
 2

02
1

https://doi.org/10.1145/3459637.3482450


mainly because long-form text matching is quite different from the
short-form text matching problem. For short-form text matching,
almost every term in the short texts is critical to the matching
score, because short text matching tasks are just like finding a
reasonable semantic alignment between two sentences [29]. For
example, in paraphrasing identification, the major problem is to
find the paraphrasing sentence for the given sentence. In this case,
the matching score is mainly determined by the alignment between
each word in the sentences, as shown in Figure 1.

Long-form text matching has its own characteristics. Firstly,
long-form text matching cares more about the global semantic
meanings rather than the bipartite alignment. The fine-grained
matching signals between long-form texts are usually very sparse,
which makes the existing short text matching models hard to fig-
ure out from huge noisy signals. For example, redundant news
identification merely focuses on where/when the event happened
and what the event is, instead of who posted this news and the
detailed descriptions of the news. Secondly, long-form text intrin-
sically consists of a two-level structure, i.e. sentences and words.
Most existing short text matching approaches can only process
text word by word while missing the sentence-level structure. For
example, one sentence should be ignored entirely if it is irrelevant
to the current document, e.g. advertisement, even though some of
its internal words are relevant. Thirdly, long-form text matching
contains a very long text by nature, which makes the existing short
text matching models computational expensive because they have
to treat every word indiscriminately and emphasize the sufficient
interactions between words [9, 44]. In practice, the long-form text
often has to be truncated in the computation. For example, BERT
only accepts text lengths of less than 512. These operations may
hurt the final matching performance. From these discussions, we
can see that noise is the main challenge in long-form text matching,
affecting both performance and efficiency.

In this paper, we propose a novel hierarchical noise filtering
model, namely Match-Ignition, to distill the significant matching
signals via the well-known link analysis algorithm PageRank [5].
PageRank utilizes random walk on a graph to determine the im-
portance of each node. In this way, the noises (i.e. less important
nodes) can be eliminated and the algorithmwill be accelerated. Con-
sidering the two-level structures in the long-form text matching
problem, our model contains two hierarchies, i.e. sentence-level and
word-level. In the sentence-level noise filtering process, the nodes
are defined as sentences from a pair of long-form texts, and the link
is defined as the similarities between each pair of sentences. That is
to say, the similarities inside each long-form text and between the
two long-form texts are both captured in our graph. Then the noisy
sentences could be identified by PageRank score, and be directly
removed. The word-level noise filtering process is jointly learned
with the matching process. That is because each word relies on its
context to express its concrete meanings, so noisy words need to be
estimated dynamically during the matching process. To this end, we
first apply the state-of-the-art Transformer to the texts, which well
captures the contextual information among words. It turns out that
the attention matrix in the self-attention block, the key component
of Transformer, could be treated as a fully connected word-level
similarity graph [8, 15, 46]. PageRank is then applied to filter out
noise words at each layer. We can see this technique is different

from previous works [8, 15, 46] which focus on eliminating links
in the graph because our model focuses on filtering noisy words,
i.e., nodes in the graph. Please note that attention weights could be
directly applied to filter noisy words. The reason why we still use
PageRank here is that the attention weights have been proven not
reliable in explaining the importance of words in [6]. Furthermore,
PageRank has the ability to consider the global importance of each
word by value propagation on a graph, which is more thorough
than attention weights.

We experiment on three long-form text matching tasks, news
deduplication, citation recommendation, and plagiarism detection,
including seven public datasets, e.g. CNSE, CNSS, AAN-Abs, AAN-
Body, OC, S2ORC, and PAN. The experimental results show that
Match-Ignition outperforms all baseline methods, including both
short text matching models and recent long-form text matching
models. The further detailed analysis demonstrates that Match-
Ignition efficiently captures important matching signals in long-
form text, which helps understand the matching process. Besides,
we compare different noisy filtering methods to show the superior-
ity of using PageRank.

2 RELATEDWORK
In this section, we first introduce the text matchingmodels designed
for short-form text matching, then review the most recent works
for long-form text matching.

Short-form Text Matching Existing text matching models
fall into representation-based approaches, interaction-based ap-
proaches, and their combinations [14].

Representation-based matching approaches are inspired by the
Siamese architecture [7]. This kind of approach aims at encoding
each input text in a pair into the high-level representations re-
spectively based on a specific neural network encoder, and then
the matching score is obtained by calculating the similarity be-
tween the two corresponding representation vectors. DSSM [17],
C-DSSM [37], ARC-I[16], RNN-LSTM [28] and MV-LSTM [40] be-
long to this category. Interaction-based matching approaches are
closer to the nature of the matching task to some extent since they
aim at directly capturing the local matching patterns between two
input text, rather than focusing on the text representations. The
pioneering work includes ARC-II [16], MatchPyramid [29], and
Match-SRNN [41]. Recently, there has been a trend that the two
aforementioned branches of matching models should complement
each other, rather than being viewed separately as two different
approaches. DUET [27] is composed of two separated modules, one
in a representations-based way, and another in an interaction-based
way, the final matching score is just their weighted-sum result. The
attention mechanism is another way to combine the above two ap-
proaches, such as RE2 [44] and BERT [9]. However, these existing
approaches for short-form text matching have limited success in
long-form text matching settings, due to their inability to capture
and distill the main information from long documents. Besides,
these models are computationally expensive because they simply
use all textual data indiscriminately in the matching process.

Long-formTextMatchingDue to the lack of the public datasets
and the efficient algorithms, few work directly focuses on the long-
form text matching and further explores the application scenarios



of it. In recent years, since the pioneering work SMASH proposed
by Jiang et al. [19], they are the first to point out that long-form
text matching (e.g. source text and target text both are long-form
text) has a wide range of application scenarios, such as attach-
ment suggestion, article recommendation, and citation recommen-
dation. They propose a hierarchical recurrent neural network un-
der Siamese architecture which is a kind of representation-based
matching approach. It synthesizes information from different docu-
ment structure levels, including paragraphs, sentences, and words.
SMITH model [43] follows the SMASH’s settings, then utilizes pow-
erful pre-trained language model BERT [9] as their key component
and breaks the 512 tokens limitation to build a representation-
based matching approach. Instead of using BERT as a component,
TransformerXL [8] and Longformer [2] try to directly extent the
Transformer structure towards the long-form text by introducing
a sliding window or memory strategy into it. However, they are
designed for general natural language understanding, not for text
matching tasks. Another work on long-form text matching is Con-
cept Interaction Graph (CIG) [22], which concerns modeling the
relation between two documents, e.g. same event or story. It can be
treated as an interaction-based matching approach, which selects a
pair of sentences based on their concepts and similarities. Besides,
they also construct two types of duplicate news detection datasets,
which are labeled by professional editors.

All the previous works ignore the fact that long-form text pro-
vides overabundant information for matching, that is to say, there
are usually many noises in the setting of long-form text matching.
This phenomenon also is discussed in query-document matching
tasks [11, 13, 18, 30], which is a short to long text matching be-
cause a query is a short-form text and a document is a long-form
text. DeepRank [30] treats query and document differently, in their
model, each query term acts as a filter that picks out text spans
in the document which contain this query term. That is to say,
query irrelevant text spans are the noise that can be ignored in the
matching process. PACRR [18] also has similar findings, they filter
document words using two kinds of processes, 1) keep first 𝑘 terms
in the document or 2) retain only the text that is highly relevant
to the given query. These previous works provide strong evidence
that our noise filtering motivation can be effective for long-form
text matching problems.

3 MATCH-IGNITION
In this section, we first introduce the two components of Match-
Ignition. They are sentence-level noise filter and word-level noise
filter, shown in Figure 2(a) and Figure 2(c) respectively. After that,
the model training details are described in the last subsection.

3.1 Sentence-level Noise Filtering
To enable the application of graph-based ranking algorithms PageR-
ank to natural languages, such as documents, a graph is needed to
build that represents the relation between sentences. TextRank [26]
makes it possible to form a sentence extraction algorithm, which
can identify key sentences in a given document. It becomes a ma-
ture approach in automatic summarization. The most direct way is
to apply the TextRank algorithm on each long-form text indepen-
dently, so that we can reduce the length of each long-form text by

summarizing. However, the goal of long-form text matching is to
find the matching signals between a pair of texts, which is different
from summarization task that extracts key information from one
text. Therefore, directly applying the TextRank algorithm to each
text independently leads to the problem of loss of matching signals.

Inspired by the previous works [18, 30], they tell us that two
texts can help each other for noise detection, so that both long-form
texts should be represented in one graph to involve the matching
information across two texts. Firstly, sentences in both long-form
texts are collected together to form a united sentence collection.
Formally, two long-form texts are first split into sentences, denoted
as 𝑑𝑠 = [𝑠11, 𝑠

1
2, . . . , 𝑠

1
𝐿1
] and 𝑑𝑡 = [𝑠21, 𝑠

2
2, . . . , 𝑠

2
𝐿2
], where 𝐿1 and 𝐿2

are the number of sentences in 𝑑𝑠 and 𝑑𝑡 respectively. The united
sentence collection S = {𝑠11, 𝑠

1
2, . . . , 𝑠

1
𝐿1
, 𝑠21, 𝑠

2
2, . . . , 𝑠

2
𝐿2
} then have

𝐿1 + 𝐿2 elements. Thus, the sentence similarity graph can be con-
structed by evaluating the sentence pair similarities in the united
sentence collection S. The sentence similarity is defined as the
same as in TextRank [26], to measures the overlapping word ratio
between two sentences:

𝑆𝑖𝑚(𝑠𝑖 , 𝑠 𝑗 ) =
|{𝑤𝑘 |𝑤𝑘 ∈ 𝑠𝑖 ,𝑤𝑘 ∈ 𝑠 𝑗 }|
log( |𝑠𝑖 |) + log( |𝑠 𝑗 |)

, 𝑠𝑖 , 𝑠 𝑗 ∈ S, (1)

where𝑤𝑘 denotes the word in the sentence, | · | denotes the length
of the sentence or word set, and 𝑠𝑖 , 𝑠 𝑗 are two sentences in the
united sentence collection S. To make sentence similarity sparsity
e.g. returns 0 most of the time, we remove the stopwords in the sen-
tences before we calculate the similarities. Thus, the final sentence
similarity graph has sparse links. Finally, a PageRank algorithm
is applied to this constructed sentence similarity graph, to get the
important score of each sentence. To balance the information com-
ing from different long-form texts for the following step, the top 𝜆

sentences are extracted for each long-form texts respectively. Thus,
both texts contain 𝜆 sentences as their digestion, which we called a
sentence-level filter.

As shown in Figure 2(b), the selected sentences are concatenated
as a text sequence, which starts with [CLS] token and separates
by [SEP] token. It is then treated as the input of the model in the
word-level filter. Note that the hyper-parameter 𝜆 should be neither
too small to lose a lot of information, nor too large to make text
extremely long. A suitable 𝜆 can yield a moderate text sequence,
which length is just less than the BERT max input length.

PageRank algorithm can also be used at the word level if we
can define a word-by-word relation graph. However, sentences are
adjectives from each other, noise in this level is discrete than an
entire sentence can be removed in an unsupervised way, while
a word relies on its context to express concrete meanings, noise
in this level is continuous that should be estimated during the
model training. Therefore, we need to construct a graph within the
Transformer model structures.

3.2 Word-level Noise Filtering
To filter the noise in the word level, a word-level graph needs to be
constructed first in the inherent transformer structure (Sec 3.2.1).
After that, the traditional PageRank algorithm is required to imple-
ment as a tensor version, for better to embed into the transformer
structure (Sec 3.2.2). Finally, we propose our plug PageRank to the
Transformer model for word-level noise filtering (Sec 3.2.3).



Sentence-Level Filter Word-Level Filter
Doc1

Doc2

Sentence SimilarityGraph

PageRank

[CLS]

[SEP]

[SEP]

… …

…

……

Word SimilarityGraph 𝐀𝒍

……

PageRank

Filtering
Words

Select top-𝜆
Sentences

𝑠%
%

𝑠&
%

𝑠'
%

𝑠(
%

𝑠)
%

𝑠%
&

𝑠&
&

𝑠'
&

𝑠(
&

𝑠)
&

[CLS] [SEP] [SEP]

𝛼𝑁

𝑁

(a) (b) (c)

𝑁
𝛼𝑁

Figure 2: The overall architecture of Match-Ignition. (a) represents the sentence-level filter, (b) represents the outputs of the
sentence-level filter, and (c) represents the word-level filter.

3.2.1 Transformer as a Graph. Transformer architecture [39] boosts
the natural language processing a lot, where most well-known mod-
els are a member of this family, such as BERT [10], RoBERTa [23],
and GPT2 [34]. They achieve state-of-the-art performance in almost
all NLP tasks, e.g. named entity recognition, text classification, ma-
chine translation, and also text semantic matching. For long-form
text matching, we also adopt this architecture.

The self-attention block is the main component in Transformer
architecture, which figure out how important all the other words in
the sentence are for the contextual word around it. Thus, the self-
attention block builds the relations between words, which can be
viewed as a fully connected graph amongwords [8, 15, 46]. Knowing
that the updated word representations are simply the sum of linear
transformations of representations across all the words, weighted
by their importance. It makes full use of the attention mechanism
in deep neural networks to update word representations. As have
shown in [39], the attention function can be formalized as a scaled
dot-product attention with inputs H𝑙 :

H𝑙+1 = Attn(Q𝑙 ,K𝑙 ,V𝑙 ) = Softmax
(
Q𝑙 (K𝑙 )𝑇

√
𝐸

)
V𝑙 = A𝑙V𝑙 , (2)

where Q𝑙 = WQ
𝑙H𝑙 ∈ R𝑁×𝐸 denote the attention query matrices,

K𝑙 = WK
𝑙H𝑙 ∈ R𝑁×𝐸 the key matrix, and V𝑙 = WV

𝑙H𝑙 ∈ R𝑁×𝐸

the value matrix. 𝑁 denotes the number of words in a text, and 𝐸
denotes the dimensions of the representation. The attention mech-
anism can be explained as: for each attention query vector in Q,
it first computes the dot products of the attention query with all
keys, aiming to evaluate the similarity between the attention query
and each key. Then, it is divided each by

√
𝐸, and applies a softmax

function to obtain the weights on the values, denotes as A𝑙 . Finally,
the new representation of the attention query vector is calculated
as weighed sum of values. Getting this dot-product attention mech-
anism to work proves to be tricky bad random initializations can
de-stabilize the learning process. It can be overcome by performing
multiple ‘heads’ of attention and concatenating the result:

H𝑙+1 = Concat(ℎ𝑒𝑎𝑑1, · · · , ℎ𝑒𝑎𝑑𝐻 )O𝑙 ,

ℎ𝑒𝑎𝑑𝑘 = Attention(Q𝑘𝑙 ,K𝑘𝑙 ,V𝑘𝑙 ) = A𝑘𝑙V𝑘𝑙 ,
(3)

where Q𝑘𝑙 , K𝑘𝑙 and V𝑘𝑙 are of the 𝑘-th attention head at layer 𝑙
with different learnable weights, O𝑙 down-projection to match the
dimensions across layers, 𝐻 is the number of the heads in each
layer and 𝐿 is the number of the layers.

If we treat each word as a node in a graph, they update their
representations by aggregating all other contextual word represen-
tations, just like messages passing from other neighbor nodes in
graph neural network [36]. Thus, for self-attention block, it can
be treated as a fully-connected word graph, where its adjacency
matrix is the transpose of the word-by-word similarity matrix A𝑘𝑙 .

3.2.2 PageRank in A Tensor View. PageRank [5] is a graph-based
ranking algorithm, which is essentially a way of deciding the im-
portance of a vertex within a graph, and recursively attracts global
information from the entire graph. Formally, given a graph𝐺 (𝑉 , 𝐸),
where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is a set of nodes and 𝐸 is the links be-
tween these nodes. The goal is to determine the order of these
nodes that the more important node has a higher rank. The PageR-
ank value on each node 𝑣𝑖 , denotes as 𝑢𝑖 , is used to indicate the
importance of the node 𝑣𝑖 . For convenience, we define A as the
adjacency matrix, that A𝑖 𝑗 denotes the 𝑣𝑖 has a link from 𝑣 𝑗 with
weight A𝑖 𝑗 . A is also a stochastic matrix because each column sums
up to 1. At the initial step all 𝑢𝑖 have the same value 1/𝑁 , denotes
that all nodes are equally important. At each following step , then
PageRank value 𝑢𝑖 is updated using other nodes and links pointed
to it,

𝑢𝑖 =
∑︁

𝑣𝑗 ∈𝑉
A𝑖 𝑗 · 𝑢 𝑗 . (4)

After several iterations, the PageRank values 𝑢𝑖 will converge to a
set of stable values 𝑢𝑖 , and that is the solution of PageRank.

To implement PageRank in a tensor-based computational frame-
work, such as TensorFlow [1] or PyTorch [31], we need a tensor
version of PageRank algorithm. Let u𝑡 = [𝑢𝑡1, 𝑢

𝑡
2, . . . , 𝑢

𝑡
𝑛] to be a

vector of length 𝑁 , that obtains all nodes PageRank values at step
𝑡 . Then, PageRank can be rewritten as,

u𝑡+1 = Au𝑡 . (5)
To solve the problem of isolated nodes, a stable version of PageRank
is proposed [5] and adopted by our work,

u𝑡+1 = 𝑑Au𝑡 + (1 − 𝑑)/𝑁 · I, (6)
where 𝑑 ∈ [0, 1] is a real value to determine the ratio of the two
parts, and I is a vector of length 𝑁 with all its values are 1. The



factor 𝑑 is usually set to 0.85, and this is the value we are also using
in our implementation.

In practice, the number of the iteration step 𝑇 is set to a fixed
value for computational efficiency. Thus, u𝑡 is the final PageRank
scores for each 𝑣𝑖 ∈ 𝑉 , and the larger of PageRank denotes the more
importance of this node in the current graph, thus we can filter out
the nodes with small PageRank values.

3.2.3 Plug PageRank in Transformer. In this section, we propose
a novel approach that plugs PageRank in the Transformer model
to filter the noise at the word level. Notice that, word-level noise
is composite, thus need to be estimated dynamically during the
matching process. In each self-attention block, an inherent PageR-
ank algorithm is utilized to dynamically filter the noisy words,
which can reduce the sequence length layer by layer.

Standard Transformer structure, which has been selected as
our base model structure, has 𝐿 layers of multi-head self-attention
blocks, stacked one after another, and maintains the same sequence
length 𝑁 at each layer. From the description in Section 3.2.1, we
have known that self-attention block in Transformer can be treated
as aword-by-word graph, which can be specified using an adjacency
matrix (A𝑘𝑙 )⊤ at 𝑘-th head and 𝑙-th layer in Eq 3. The word-level
noise filtering process is once per layer, thus we need to average
the effects of all adjacency matrices across different heads in the
𝑙-th layer,

A𝑙 =
1
𝐻

∑︁𝐻

𝑘=1 A
𝑘𝑙 . (7)

BecauseA𝑙 is the output of row-wise Softmax function, each row
of A𝑙 sum to 1. Thus, (A𝑙 )⊤ is a stochastic matrix, which can be
treated as the adjacency matrix in a graph. With above observation,
we substitute (A𝑙 )⊤ into Eq 5 and yield:

u𝑡+1 = 𝑑 (A𝑙 )⊤u𝑡 + (1 − 𝑑)/𝑁 · I. (8)

Iteratively solving the equation above, we then get the PageRank
values for all words/nodes in the (𝑙−1)-th layer, denote as u. Thus, u
represents the importance of the words in the (𝑙 − 1)-th layer. After
applying the attentionmechanism to thewords in the (𝑙−1)-th layer,
we get a list of newword representations as to the input of 𝑙-th layer.
To filter noisy words, we have to estimate the importance of the
words/nodes in 𝑙-th layer, which can be evaluated by redistributing
the importance of the word in (𝑙 −1)-th layer under the distribution
A𝑙 , thus the word importance scores are r = A𝑙u. Finally, we can
reduce the sequence length at 𝑙-th layer by removing the nodes
which have the small values in r.

In this work, we design a strategy that remove the percentage
𝛼 ∈ [0%, 100%] nodes per layer, so that the 𝑙-th layer has (𝛼)𝑙−1 ·𝑁
nodes. The hyper-parameter 𝛼 is called a word reduction ratio. For
example, let 𝐿 = 12, 𝑁 = 400, if we set 𝛼 to 10%, the numbers of
nodes at each layer are 400, 360, 324, 291, 262, 236, 212, 191, 172,
154, 139, 125.

For the BERT model, some words are too special to be removed,
such as [CLS] token and [SEP] token. If the model occasionally
removes these tokens during the training, it will lead to an unstable
training process. It also affects the overall performance. Therefore,
a token mask is designed to keep these tokens across all the layers.

Discussions: Many previous works [8, 15, 46] have also noticed
the relation between Transformer and graph. Star-Transformer [15]

Table 1: Description of evaluation datasets, AvgWPerD de-
notes average number ofwords per document andAvgSPerD
denotes the average number of sentences per document.

Dataset AvgWPerD AvgSPerD Train Dev Test
CNSE 982.7 20.1 17,438 5,813 5,812
CNSS 996.6 20.4 20,102 6,701 6,700

AAN-Abs 122.7 4.9 106,592 13,324 13,324
AAN-Body 3270.1 111.6 104,371 12,818 12,696

OC 190.4 7.0 240,000 30,000 30,000
S2ORC 263.7 9.3 152,000 19,000 19,000
PAN 1569.7 47.4 17,968 2,908 2,906

adds a hub node to model the long-distance dependence and elim-
inates the links far from 3-term steps. TransformerXL [8] uses a
segment-level recurrence with a state reuse strategy to remove all
the links between words in different segments, so that can break
the fixed-length limitation. Sparse-Transformer [46] explicitly elim-
inate links in which attention scores are lower than the threshold to
make the attention matrix sparse. All of these previous works focus
on eliminating links in the graph, while in this work, we focus on
filtering noise words, as well as nodes, in the graph.

3.3 Model Training
The sentence-level filter is the heuristic approach that does not
need a training process. Thus, in this section, we only consider
model training for the word-level filter component.

For the model training of word-level filter, we adopt the “pre-
training + fine-tuning” paradigm as in BERT. In this paradigm, the
pre-trained Transformer is firstly obtained using a large unlabeled
plain text in an unsupervised learning fashion. Then, the Trans-
former plugging PageRank at each layer is fine-tuned using the
supervised downstream task. Note that word-level filters do not
change the parameters in the original Transformer, due to all the
parameters in the Transformer are input sequence length indepen-
dent. Therefore, change the sequence length layer by layer does
not affect the structure of the Transformer. Benefit from the good
property of PageRank-Transformer, we can directly adopt a publicly
released Transformer model, such as BERT or RoBERTa trained on
a large corpus, as our pre-trained model.

In the fine-tuning step, we add the PageRank module in each
self-attention layer, without introducing any additional parameters.
The objective function for long-form text matching task is a binary
cross-entropy loss:

L = −
∑︁

𝑖
𝑦𝑖 log 𝑝𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 ), (9)

where 𝑝𝑖 is the probability represents the matching score, generated
by the representation of [CLS], and 𝑦𝑖 is the ground-truth label.

4 EXPERIMENTS
In this section, we conduct experiments and in-depth analysis on
three long-form text matching tasks to demonstrate the effective-
ness and efficiency of our proposed model.



4.1 Datasets
We use seven public datasets in our experiments, and their detailed
statistics are shown in Table 1.

NewsDeduplication: For this task, we use two datasets, i.e. Chi-
nese News Same Event dataset (CNSE) and the Chinese News Same
Story dataset (CNSS) released in [22]. They are constructed based
on large Chinese news articles collected from major Internet news,
which cover diverse topics in the open domain 0. CNSE is designed
to identify whether a pair of news articles report the same break-
ing news (or event), and CNSS is used to identify whether they
belong to the same series of news stories, labeled by professional
editors. The negative samples in the two datasets are not randomly
generated. Document pairs that contain similar keywords are se-
lected and exclude samples with TF-IDF similarity below a certain
threshold. Finally, we follow the settings in [22] and split either
dataset into training, development, and testing set with the portion
of instances 6:2:2.

Citation Recommendation: Citation recommendations can
help researchers find related works and finish paper writing more
efficiently. Given the content of a research paper and a candidate ci-
tation paper, the task aims to predict whether the candidate should
be cited by the paper. In our experiment, four datasets are used
for this task, i.e. AAN-Abs, AAN-Body, OC, and S2ORC. AAN-Abs
and AAN-Body are both constructed from the AAN dataset [33],
which contains computational linguistics papers published on ACL
Anthology from 2001 to 2014, along with their metadata. For the
AAN-Abs dataset released in [47], each paper’s abstract and its
citations’ abstracts are extracted and treated as positive pairs, and
negative instances are sampled from uncited papers. For the AAN-
Body dataset, we follow the same setting described in the previous
work [19, 38, 43], where they remove the reference sections to pre-
vent the leakage of ground-truth and remove the abstract sections
to increase the difficulty of the task. Besides, we also use the same
training, development, and testing splitting released in [38]. The OC
dataset [3] contains about 7.1M papers major in computer science
and neuroscience. The S2ORC dataset [24] is a large contextual
citation graph of 8.1M open access papers across broad domains of
science. The papers in S2ORC are divided into sections and linked
by citation edges. AAN-Abs, OC, and S2ORC are pre-processed,
split, and released by [47], for a fair comparison, we adopt the same
settings in our experiments.

PlagiarismDetection: The detection of plagiarism has received
considerable attention to protect the copyright of publications. It is
a typical long-form text matching problem because even partial text
reuse will identify plagiarism between two documents. For this task,
we use the PAN dataset [32], which collects web documents with
various plagiarism phenomena. Human annotations are employed
to indicate the text segments that are relevant to the plagiarism both
in the source and suspicious documents. Follow the settings of [45],
the positive pairs are constructed by the segment of the source
document and the suspicious document annotated as plagiarism,
while the negative pairs are subsequently constructed by replacing
the source segment in the positive pair with a segment from the
corresponding source documents which is not annotated as being

0Datasets are available at https://github.com/BangLiu/ArticlePairMatching

plagiarised. Note that the aforementioned AAN-Abs, OC, S2ORC,
and PAN datasets can be directly downloaded 1.

Evaluation Metrics: Since all the above tasks are binary classi-
fication, we use accuracy and F1 to act as the evaluation measures,
similar to [22, 47]. Specifically for eachmethod, we perform training
for 10 epochs and then choose the epoch with the best validation
performance to evaluate on the test set.

4.2 Baselines and Experimental Settings
We adopt three types of baseline methods for comparison, including
traditional term-based retrieval methods, deep learning methods
for short-form text matching, and recent deep learning methods
for long-form text matching.

We select three traditional term-based methods for comparison,
i.e. BM25 [35], LDA [4] and SimNet [22]. BM25 is one of the most
popular traditional term-based methods. The experimental results
on CNSE and CNSS datasets are directly brought from [22], while
others are implemented by ourselves. LDA is a famous topic model,
which is used here to demote the matching method by computing
similarities between the two texts represented by topic modeling
vectors. We do not implement it by ourselves, and the results are
directly from [22]. SimNet first extracts five text-pair similarities
and conducts classification by a multi-layer neural network, whose
results are brought from [22].

Considering deep learningmethods for short-form text matching,
we compare four types of models, including representation-based
models, i.e. DSSM [17], C-DSSM [37], and ARC-I [16]; interaction-
based models, i.e. ARC-II [16] and MatchPyramid [29]; hybrid mod-
els, i.e. DUET [27] and RE2 [44], and the pretraining matching
model BERT-Finetuning [10]. The results of DSSM, C-DSSM, ARC-
I, ARC-II, MatchPyramid, and DUET on CNSE and CNSS dataset,
are directly borrowed from the previous work [22], which uses the
implementations fromMatchZoo [12] 2. RE2 [44] is implemented us-
ing released code by the author 3 with the default configuration, e.g.
300-dimensions pre-trained word vectors provided by Glove.840B
and 30-epochs training. BERT-Finetuning [10] is fine-tuned on text
matching tasks based on a large-scale pre-training language model,
e.g. BERT for Chinese ‘bert-base-chinese’ and BERT for English
‘bert-base-uncased’ in the Transformers library 4. For each of the
pretraining models, we finetune it 10 epochs on the training set.

For the methods specially designed for the long-form text match-
ing problem, we first focus on traditional hierarchical models, e.g.
HAN [45] and its variance GRU-HAN [47], GRU-HAN-CDA [47]
and SMASH [20]. Then, we compare our model with a group
of BERT-based hierarchical models, e.g. MatchBERT [47], BERT-
HAN [47], BERT-HAN-CDA [47] and SMITH [43]. Finally, we con-
sider some matching models by representing each text by a pre-
trained model specifically designed for the long-form text, like
TransformerXL [8] and Longformer [2]. The results of GRU-HAN,
GRU-HAN-CDA, BERT-HAN, and BERT-HAN-CDA on AAN-Abs,
OC, S2ORC, and PAN datasets are from the previous work [47].

1https://xuhuizhou.github.io/Multilevel-Text-Alignment/
2https://github.com/NTMC-Community/MatchZoo
3https://github.com/alibaba-edu/simple-effective-text-matching
4https://github.com/huggingface/transformers

https://github.com/BangLiu/ArticlePairMatching
https://github.com/NTMC-Community/MatchZoo
https://github.com/alibaba-edu/simple-effective-text-matching
https://github.com/huggingface/transformers


Table 2: Experimental results on the news deduplication
task, e.g. CNSE and CNSS datasets. Significant performance
degradation with respect to Match-Ignition is denoted as (-)
with p-value ≤ 0.05. We only do significant test on the mod-
els reimplemented from the source code, while the results
bring from [22] do not test due to the lack of the detailed
predictions.

CNSE Dataset CNSS Dataset
Model Acc F1 Acc F1

I
BM25 [35] 69.63 66.60 67.77 70.40
LDA [4] 63.81 62.44 67.77 70.40
SimNet [22] 71.05 69.26 70.78 74.50

II

ARC-I [16] 53.84 48.68 50.10 66.58
ARC-II [16] 54.37 36.77 52.00 53.83
DSSM [17] 58.08 64.68 61.09 70.58
C-DSSM [37] 60.17 48.57 52.96 56.75
MatchPyramid [29] 66.36 54.01 54.01 62.52
DUET [27] 55.63 51.94 52.33 60.67
RE2 [44] 80.59− 78.27− 84.84− 85.28−
BERT-Finetuning [9] 81.30− 79.20− 86.64− 87.08−

III
CIG-Siam-GCN [22] 74.58− 73.69− 78.91− 80.72−
CIG-Sim&Siam-GCN [22] 84.64− 82.75− 89.77− 90.07−
CIG-Sim&Siam-GCN-Sim𝑔 [22] 84.21− 82.46− 90.03− 90.29−

IV Match-Ignition 86.32 84.55 91.28 91.39

The results of HAN, SMASH, MatchBERT and SMITH on the AAN-
Body dataset are from the previous work [43]. TransformerXL-
Finetuning and Longformer-Finetuning are implemented using the
Transformers library. The pretrained model we selected are ‘transfo-
xl-wt103’ for TranformerXL and ‘allenai/longformer-base-4096’ for
Longformer. For each of the pre-trained models, we finetune it 10
epochs on the training set.

Specially, for CNSE and CNSS datasets, Concept Interaction
Graph (CIG) model [22] is the state-of-the-art approach, which gen-
erates the representation for each vertex, and then uses a GCN to
obtain the matching score. So we compare with three representative
models of this approach, i.e. CIG-Siam-GCN, CIG-Sim&Siam-GCN,
and CIG-Sim&Siam-GCN-Sim𝑔 . The results are obtained by imple-
mentations based on their released code 5.

The hyper-parameters of our Match-Ignition model are listed
below. For the sentence-level filter, the number of selected sentences
per text 𝜆 is set to 5, the 𝑑 in PageRank algorithm defined in Eq 5 is
set to 0.85. For the word-level filter, we adopt a pre-trained BERT
model for Chinese, e.g. ‘bert-base-chinese’, which contains 12 heads
and 12 layers. The words filtering ratio 𝛼 is set to 10%, that is to
say, we remove 10% words per layer. The fine-tuning optimizer is
Adam [21] with the learning rate 10−5. 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =

10−8, and batch size is set to 8. The model is built based on the
Transformers library using PyTorch [31]. The source code will be
released at https://github.com/pl8787/Match-Ignition.

5https://github.com/BangLiu/ArticlePairMatching

4.3 Experimental Results
The performance comparison results of Match-Ignition against
baseline models are shown in Table 2 and Table 3. From these
experimental results, we can obtain the following summaries:

1) Comparing Match-Ignition with existing deep learning mod-
els for short-form text matching, we can see that Match-Ignition
outperforms all types of the existing short-form text matching
models on both CNSE and CNSS datasets. Specially, it performs
significantly better than two strong baselines, e.g. the hybrid model
RE2 and the pretraining model BERT-Finetuning. For the tasks of
citation recommendation and plagiarism, we compare the Match-
Ignition model with the two strongest short-form text matching
methods in the news deduplication task. The results in Table 3 II
show that Match-Ignition also significantly outperforms RE2 and
BERT-Finetuning, which demonstrates the superiority of Match-
Ignition against existing short-form text matching models.

2) Then we Compare Match-Ignition with the current state-of-
the-art methods in the three tasks, including graph-based method
CIG, hierarchical methods HAN and its variants. For the news
deduplication task, the Match-Ignition model significantly outper-
forms the state-of-the-art method CIG-Sim&Siam-GCN-Sim𝑔 , as
shown in Table 2 III. That is because CIG is usually affected by
noisy concept terms, while our model has the ability to filter noisy
information in the learning process. For the other two tasks, as
we can see in Table 3 III, Match-Ignition outperforms the state-
of-the-art hierarchical methods HAN and HAN-CDA. Note that
another newly proposed state-of-the-arts model SMITH-WP+SP is
also an extension of the hierarchical method to tackle long-form
text matching problems. However, they do not use the AAN-Abs
dataset but conduct their experiments on the context-only version
of the AAN dataset, namely AAN-Body. To compare with it, we
apply our model to AAN-Body dataset. As we can see from the
results in Table 4 II, the Match-Ignition model also outperforms the
SMITH-WP+SP model.

3) Comparing the Match-Ignition model with the matching mod-
els based on pretrained long-form text representation models, e.g.
TransformerXL and Longformer. The experimental results in Ta-
ble 3 IV show that comparing with the finetuned version of Trans-
formerXL and Longformer, the Match-Ignition model achieves bet-
ter performances. Especially in the plagiarism detection task, noises
affect the performances a lot, since the goal of TransformerXL and
Longformer is to preserve the information in the long-form text
as much as possible. Note that TransformerXL and Longformer
only release their English versions, which are not applicable in
the Chinese dataset, thus we do not list their results for the news
deduplication task on CNSE and CNSS datasets.

Furthermore, we compare with another branch of the state-
of-the-art hierarchical methods, e.g. SMASH and SMITH, on the
AAN-Body dataset in Talbe 4. We do not implement them on other
datasets because 1) SMASH does not provide code for model con-
struction and training; 2) SMITH needs to pretrain on large-scale
data and then finetune. So we implement our model on the dataset
they used, e.g. the AAN-Body dataset, to achieve a fair comparison.
The experimental results show that Match-Ignition also outper-
forms these baseline methods.

https://github.com/pl8787/Match-Ignition
https://github.com/BangLiu/ArticlePairMatching


Table 3: Experimental results on the citation recommendation task, e.g. AAN-Abs, OC, and S2ORC datasets and the plagiarism
detection task, e.g. PAN dataset. Significant performance degradation with respect to Match-Ignition is denoted as (-) with
p-value ≤ 0.05. We only do significant test on the models reimplemented from the source code, while the results bring from
[47] do not test due to the lack of the detailed predictions.

AAN-Abs Dataset OC Dataset S2ORC Dataset PAN Dataset
Model Acc F1 Acc F1 Acc F1 Acc F1

I BM25 [35] 67.60− 68.00− 80.32− 80.38− 76.47− 76.53− 61.59− 62.47−

II RE2 [44] 87.81− 88.04− 94.53− 94.57− 95.27− 95.34− 61.97− 58.30−
BERT-Finetune [9] 88.10− 88.02− 94.87− 94.87− 96.32− 96.29− 59.11− 69.66−

III

GRU-HAN [47] 68.01 67.23 84.46 82.26 82.36 83.28 75.70 75.88
GRU-HAN-CDA [47] 75.08 75.18 89.79 89.92 91.59 91.61 75.77 76.71
BERT-HAN [47] 73.36 73.51 86.31 86.81 90.67 90.76 87.57 87.36
BERT-HAN-CDA [47] 82.03 82.08 90.60 90.81 91.92 92.07 86.23 86.19

IV TransformerXL-Finetune [8] 83.85− 83.24− 91.61− 91.79− 92.50− 92.39− 58.25− 69.07−
Longformer-Finetune [2] 88.06− 88.41− 94.76− 94.74− 96.31− 96.29− 56.61− 69.74−

V Match-Ignition 89.62 89.64 95.70 95.71 96.97 96.97 89.37 89.42

Table 4: Experimental results on AAN-Body dataset make a
fair comparison for our Match-Ignition model and the long-
form text matching models proposed in [43].

AAN-Body Dataset
Model Acc F1

I BM25 [35] 59.66 59.90

II RE2 [44] 80.15 79.25

III

HAN [45] 82.19 82.57
SMASH [19] 83.75 82.78
MatchBERT [43] 83.55 82.93
SMITH-WP+SP [43] 85.36 85.43

IV Match-Ignition 89.92 89.91

Table 5: Ablation study of the two-level noise filteringmech-
anisms in Match-Ignition.

CNSE CNSS
Model Acc F1 Acc F1

Match-Ignition 86.32 84.55 91.28 91.39
· Sentense-level Filter Only 84.11 82.17 91.04 91.07
· Word-level Filter Only 80.31 76.39 91.10 91.18

BERT-Finetune 81.30 79.20 86.64 87.08

4.4 Ablation Study
Now we conduct an ablation study to investigate the two-level
noise filtering strategies in Match-Ignition on news deduplication.

4.4.1 Investigations on the sentence-level filtering. In Table 5, the
‘Sentence-level Filter Only’ and ‘Word-level Filter Only’ model
denotes the result by only using the sentence-level and word-level
filter, respectively. Therefore, the sentence-level filter is critical
on both CNSE and CNSS datasets: 1) without it, the accuracy on
CNSE will degrade from 86.32%/91.28% to 80.31%/91.10 on CNSE
and CNSS, respectively; 2) Match-Ignition with sentence-level filter

Table 6: The impact of word reduction ratio 𝛼 and the execu-
tion time of these models.

Words Reduc- CNSE CNSS Time per batch
tion Ratio 𝛼 Acc F1 Acc F1 Train Eval

0% 84.11 82.17 91.04 91.07 1.73s 0.42s
5% 85.68 83.65 90.70 90.73 1.58s 0.37s
10% 86.32 84.55 91.28 91.39 1.33s 0.31s
20% 82.55 79.66 90.25 90.21 1.07s 0.21s

Table 7: Comparison results with other word-level noise fil-
tering strategies.

CNSE CNSS
Word-level Filter Acc F1 Acc F1

Random 80.38 79.19 87.68 88.20
Embedding Norm 80.54 78.15 84.92 85.03
Attention Weight 85.52 83.34 89.91 89.88
PageRank 86.32 84.55 91.28 91.39

only outperforms the strong baseline ‘BERT-Finetune’ by 3.5% and
5.1% w.r.t. accuracy on CNSE and CNSS, respectively.

4.5 Case Study
4.5.1 Investigations on word-level filtering. Still, from Table 5, we
can see the effect of the word-level filtering: 1) the performance in-
creases 2.6% and 0.3% from ‘Sentence-level Filter Only’ model to the
full version Match-Ignition model on CNSE and CNSS, respectively;
2) though Match-Ignition with word-level filter only cannot beat
BERT-Finetune on CNSE, it outperforms BERT-Finetune by 5.1%
on CNSS. Therefore, word-level filtering also plays an important
role in Match-Ignition.

Then we study the impact of word reduction ration 𝛼 , which
is a major hyper-parameter in the word-level filter because it de-
termines how many words/nodes should be deleted in each layer.
Specifically, we evaluate four words reduction ratio, where 𝛼 = 0%



[CLS] Foshan's online car-hailing plans to stipulate: the vehicle must be a local license

and the driver must have a Foshan household registration or residence permit. On October

Measures for the Administration of Online Taxi Booking Service in Foshan City

31, the Foshan Municipal Transportation Bureau (Draft for Solicitation of Comment)"

……

[SEP] Foshan's first national interim measures for the zero transition period of the new policy

for car-hailing in Foshan. This morning, the Foshan Municipal Transportation Bureau pub-

Lished the "Interim Measures for the Management of Online Taxi Service Management in

Doc1:

Doc2:

(a) Graph for each document (b) Graph for pair documents

(c) Word importance

Doc1: Doc2: Doc1+Doc2:

(hereinafter referred to as the "Interim Measures") and officially issued the "Interim 

Foshan City (Draft for Solicitation of Comments) " on its official website ……

Figure 3: (a) sentence graph for each document using Tex-
tRank, (b) sentence graph built in Match-Ignition, each sen-
tence is a node in the graph, its color represents the doc-
ument it belongs to and its size represents the importance
(PageRank value). (c) illustrates the word importances, and
the darker color means the more important word.

means the word-level filter is turned off. From the results shown in
Table 6, we can see that too small or large a value of 𝛼 leads to bad
performance, and 𝛼 = 10% yields the best performances on both
CNSE and CNSS datasets.

We also demonstrate the efficiency of the Match-Ignition model
with different 𝛼 as in Table 6. Please note that the sentence-level
filter executes very fast, comparing to evaluating Transformer. So
the efficiency on sentence-level filter can be ignored. Theoreti-
cally, the major time cost in Match-Ignition is computing the word-
by-word similarity matrices in self attention blocks in the Trans-
former model. Let 𝑁 denotes the text length and 𝐿 denotes the
number of layers, the computation cost can be approximated by
TimeCost(𝛼) ≈ ∑𝐿−1

𝑙=0 (1 − 𝛼)2𝑙 where TimeCost(0%) ≈ 12 and
TimeCost(20%) ≈ 2.76, thus 𝛼 = 20% is 4 times faster than 𝛼 = 0%
in theory. In our experiments, we use a single 12G Nvidia K80 GPU
with batch size 8. The efficiency results in Table 6 show that 𝛼 = 20%
is 1.6 times faster than 𝛼 = 0% at the training stage and 2 times
faster at the evaluation stage.

Furthermore, we compare different types of word-level filtering
strategies. Random stands for the method which randomly selects
words at each layer, and Embedding Norm selects words depending
on its embedding norms. AttentionWeight uses the attention weight

to determine the importance of the word, which has been proven
to be a special case of PageRank, i.e. without propagation on the
graph. From the results in Table 7, PageRank achieves the best
results, demonstrating the importance of word selecting strategies
in word-level filtering.

To illustrate the Match-Ignition model more intuitively, we give
an example from the CNSE dataset to visualize the sentence-level
graph (Fig 3 (a)(b)) and word importance (Fig 3 (c)).

Specifically, Figure 3 (a) demonstrates the graph by directly ap-
plying TextRank on each document separately, and Figure 3 (b)
shows the constructed sentence-level graph built-in Match-Ignition.
The difference indicates the rationality of our model. For example,
sentence ‘2238-01’ are equally important as ‘2238-02’ and ‘2238-03’
in Figure 3 (a). While it becomes much more important in Fig-
ure 3 (b) because it has more connections with the sentences in
Doc1. Therefore, our model is capable to capture the key sentences
in the matching process, by considering connections both inside
and between two documents.

Fig 3 (c) show the word importance in different colors, where
darker color indicates a higher importance score. Specifically, the
importance score is computed based on the number of layers re-
taining the word, which shows the importance of each word in the
whole matching process. The results are accordant with human
understanding. For example, the location ‘the Foshan’ and the name
of the policy ‘Draft for Solicitation of Comment’ is important for
determining the matching degree of the news, which indeed obtain
a higher importance score in the model, as highlighted with rectan-
gles. Furthermore, the results show that special tokens like [CLS]
and [SEP] are also important for long-form text matching. That
is because [CLS] token acts as the global information aggregator
and [SEP] token acts as a separator of the two texts, which are two
crucial indicators in long-form text matching.

5 CONCLUSION
In this paper, we propose a novel hierarchical noise filtering ap-
proach for the long-form text matching problem. The novelty lies in
the employment of the well-known PageRank algorithm to identify
and filter both sentence-level and word-level noisy information,
which can be viewed as a generalized version of using attention
weight with propagation on the graph. We conduct extensive ex-
periments on three typical long-form text matching tasks including
seven public datasets, and the results show that our proposed model
significantly outperforms both short-form text matching models
and recent state-of-the-arts long-form text matching models.

In the future, we plan to investigate how to jointly learn the
sentence-level and word-level noise filter in Match-Ignition. In ad-
dition, we would like to study the relation between Match-Ignition
and graph neural network, and whether there exists a graph neural
network-based model to achieve the two-level noise filtering in
long-form text matching.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China (NSFC) under Grants No. 61906180, No. 61773362 and
No. 91746301, National Key R&D Program of China under Grants
2020AAA0105200.



REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation. 265–283.

[2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv:2004.05150 [cs.CL]

[3] Chandra Bhagavatula, Sergey Feldman, Russell Power, and Waleed Ammar. 2018.
Content-Based Citation Recommendation. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). 238–251.

[4] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[5] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems 30, 1-7 (1998), 107–117.

[6] Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano Ciaramita,
and Roger Wattenhofer. 2019. On Identifiability in Transformers. In International
Conference on Learning Representations.

[7] Sumit Chopra, Raia Hadsell, Yann LeCun, et al. 2005. Learning a similarity
metric discriminatively, with application to face verification. In CVPR (1) (Boston,
Massachusetts). 539–546.

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 2978–2988.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics. 4171–4186.

[11] Yixing Fan, Jiafeng Guo, Yanyan Lan, Jun Xu, Chengxiang Zhai, and Xueqi
Cheng. 2018. Modeling Diverse Relevance Patterns in Ad-Hoc Retrieval. In The
41st International ACM SIGIR Conference on Research Development in Information
Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). Association for ComputingMachinery,
New York, NY, USA, 375–384.

[12] Yixing Fan, Liang Pang, JianPengHou, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng.
2017. Matchzoo: A toolkit for deep text matching. arXiv preprint arXiv:1707.07270
(2017).

[13] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM CIKM. ACM,
55–64.

[14] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W Bruce Croft, and Xueqi Cheng. 2019. A deep look into neural ranking
models for information retrieval. Information Processing & Management (2019),
102067.

[15] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng
Zhang. 2019. Star-Transformer. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). 1315–1325.

[16] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in neural information processing systems. 2042–2050.

[17] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. ACM, 2333–2338.

[18] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2017. PACRR: A
Position-Aware Neural IR Model for Relevance Matching. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing. 1049–1058.

[19] Jyun-Yu Jiang, Mingyang Zhang, Cheng Li, Michael Bendersky, Nadav Golbandi,
and Marc Najork. 2019. Semantic Text Matching for Long-Form Documents. In
The World Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 795–806.

[20] Ray Jiang, Sven Gowal, Timothy A Mann, and Danilo J Rezende. 2018. Beyond
greedy ranking: Slate optimization via List-CVAE. arXiv preprint arXiv:1803.01682
(2018).

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[22] Bang Liu, Di Niu, HaojieWei, Jinghong Lin, Yancheng He, Kunfeng Lai, and Yu Xu.
2019. Matching Article Pairs with Graphical Decomposition and Convolutions.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Florence, Italy, 6284–6294.

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692

(2019).
[24] Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel S Weld.

2020. S2ORC: The Semantic Scholar Open Research Corpus. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. 4969–4983.

[25] Zhengdong Lu and Hang Li. 2013. A deep architecture for matching short texts.
In Advances in Neural Information Processing Systems. 1367–1375.

[26] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Pro-
ceedings of the 2004 conference on empirical methods in natural language processing.
404–411.

[27] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using
local and distributed representations of text for web search. In Proceedings of the
26th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1291–1299.

[28] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep sentence embedding using long
short-term memory networks: Analysis and application to information retrieval.
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 24, 4
(2016), 694–707.

[29] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text matching as image recognition. In Thirtieth AAAI Conference on
Artificial Intelligence.

[30] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.
2017. Deeprank: A new deep architecture for relevance ranking in information
retrieval. In Proceedings of the 2017 ACM CIKM. ACM, 257–266.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024–8035.

[32] Martin Potthast, Matthias Hagen, Tim Gollub, Martin Tippmann, Johannes Kiesel,
Paolo Rosso, Efstathios Stamatatos, and Benno Stein. 2013. Overview of the
5th international competition on plagiarism detection. In CLEF Conference on
Multilingual and Multimodal Information Access Evaluation. CELCT, 301–331.

[33] Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-
Jbara. 2013. The ACL anthology network corpus. Language Resources and
Evaluation 47, 4 (2013), 919–944.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. [n.d.]. Language models are unsupervised multitask learners. ([n. d.]).

[35] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Information Retrieval 3, 4 (2009), 333–389.

[36] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61–80.

[37] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM international conference on conference on
information and knowledge management. ACM, 101–110.

[38] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. 2020. Long Range
Arena: A Benchmark for Efficient Transformers. arXiv:2011.04006 [cs.LG]

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[40] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
2016. A deep architecture for semantic matching with multiple positional sen-
tence representations. In Thirtieth AAAI Conference on Artificial Intelligence.

[41] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng.
2016. Match-srnn: Modeling the recursive matching structure with spatial rnn.
arXiv preprint arXiv:1604.04378 (2016).

[42] Zhiguo Wang, Wael Hamza, and Radu Florian. 2017. Bilateral multi-perspective
matching for natural language sentences. arXiv preprint arXiv:1702.03814 (2017).

[43] Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, and Marc Najork.
2020. Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical
Encoder for Document Matching. arXiv:2004.12297 [cs.IR]

[44] Runqi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and Haiqing Chen. 2019. Simple
and Effective Text Matching with Richer Alignment Features. arXiv preprint
arXiv:1908.00300 (2019).

[45] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical Attention Networks for Document Classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, San Diego, California, 1480–1489.

[46] Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, and Xu Sun.
2019. Sparse Transformer: Concentrated Attention Through Explicit Selection.
(2019).

[47] Xuhui Zhou, Nikolaos Pappas, and Noah A. Smith. 2020. Multilevel Text Align-
ment with Cross-Document Attention. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Online, 5012–5025.

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2011.04006
https://arxiv.org/abs/2004.12297

	Abstract
	1 Introduction
	2 Related Work
	3 Match-Ignition
	3.1 Sentence-level Noise Filtering
	3.2 Word-level Noise Filtering
	3.3 Model Training

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Experimental Settings
	4.3 Experimental Results
	4.4 Ablation Study
	4.5 Case Study

	5 Conclusion
	Acknowledgments
	References

