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ABSTRACT
Zero-shot learning (ZSL) aims to recognize unseen classes based
on the knowledge of seen classes. Previous methods focused on
learning direct embeddings from global features to the semantic
space in hope of knowledge transfer from seen classes to unseen
classes. However, an unseen class shares local visual features with
a set of seen classes and leveraging global visual features makes the
knowledge transfer ineffective. To tackle this problem, we propose
a Region Semantically Aligned Network (RSAN), which maps local
features of unseen classes to their semantic attributes. Instead of
using global featureswhich are obtained by an average pooling layer
after an image encoder, we directly utilize the output of the image
encoder whichmaintains local information of the image. Concretely,
we obtain each attribute from a specific region of the output and
exploit these attributes for recognition. As a result, the knowledge
of seen classes can be successfully transferred to unseen classes in a
region-bases manner. In addition, we regularize the image encoder
through attribute regression with a semantic knowledge to extract
robust and attribute-related visual features. Experiments on several
standard ZSL datasets reveal the benefit of the proposed RSAN
method, outperforming state-of-the-art methods.
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1 INTRODUCTION
Deep learning has accomplished a great success in various tasks,
especially in supervised image recognition [24]. However, super-
vised learning requires a large quantity of labeled data which are
expensive to obtain and even unavailable in a real world scenario.
Zero-shot learning (ZSL) [25–27, 38, 42], which aims to recognize
unseen classes through the knowledge from seen classes, has shown
the potential to avoid collecting large-scale labeled samples. To
tackle the absence of unseen samples, ZSL methods exploit seman-
tic descriptions [12, 14, 25, 46] which describe the characteristics
of both seen and unseen classes. Most semantic descriptions are
composed of a group of high-level class attributes [12, 25], such as
shape (e.g., round), color (e.g., red), pattern (e.g., striped), which not
only depict the class objects, but also connect the unseen classes to
the seen classes. The knowledge of semantic attributes are learned
from the seen classes and then transferred to the unseen classes for
recognition.

Previous methods [1, 3, 13, 37, 43] on ZSL established an embed-
ding between visual space and semantic space via seen samples and
their semantic descriptions. Then unseen samples are recognized by
the predicted semantic representation of the image through this em-
bedding. Specifically, [3, 13, 14, 43, 63] mapped the visual features
to semantic space while [11, 44, 60] mapped the semantic represen-
tations to visual space. To alleviate the hubness problem [4, 62],
[57, 62] leveraged a latent space as an intermediary between visual
and semantic space. With the help of generative models [16, 23],
[6, 29, 31, 53, 66] generated unseen samples via their semantic
descriptions and convert a ZSL problem to a supervised learning
problem. As the embeddings or generators from ZSL methods are
learned only from seen samples, they inevitably bias to seen classes
in Generalized Zero-shot Learning settings (GZSL) [7] where the
test samples are comprised of both seen and unseen samples. To
tackle this problem, [49] considered the semantic relationships be-
tween unseen classes and seen classes, and [8, 59] proposed the gate
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Figure 1: Motivation of this paper. The seen and unseen sam-
ples relate to each other by similar image regions as illus-
trated. The unseen sample shares orange belly, leg pattern,
blue crown and tail pattern with seen sample (a), (b), (c), (d).
Our work directlymaps the image regions of unseen sample
to its semantic attributes through the knowledge from the
image regions of seen samples.

method to discriminate seen and unseen domains to convert a GZSL
problem to a ZSL problem plus a supervised learning problem.

It is worth noting that most of the existing embedding and fea-
ture generation methods extract global features from an end-to-end
or pre-trained network [2, 5, 43, 62]. However, the global features
lack fine-grained information of the image, which is essential to the
knowledge transfer in ZSL. As shown in Figure 1, an unseen sam-
ple shares different partial information with a set of seen samples
and this part information represents the knowledge of semantic
attributes. Since each of the shared parts only takes up a small
area of the unseen sample, global features of the unseen sample
fail to represent those part information and lead to a negative ef-
fect on knowledge transfer from seen classes to unseen classes.
Recently, several methods [20, 34, 55, 56] focused on utilizing part
information in ZSL. Huynh et al. [20] proposed a dense attention
mechanism that for each attribute focuses on the relevant image
regions. Xie et al. [55] leveraged a region graph to accomplish
region-based relation reasoning. Xu et al. [56] jointly learned glob-
ally and locally discriminative features for knowledge transfer. Liu
et al. [34] leveraged a gaze estimation module to predict the ac-
tual human gaze location to get the visual attention regions for
recognition. However, the local features in [34, 56] are only used as
supplements of global features instead of being directly utilized for
recognition when facing an unseen sample. To reserve every detail
information, in our work, rather than adopting the commonly-used
average pooling layer to extract global features, we directly exploit
the outputs of the image encoder as our visual features.

Interestingly, when facing an unseen sample, humans tend to
scrutinize the sample and find the regions which are similar to
the regions of seen samples [35]. The knowledge of seen classes
is transferred to unseen samples in a region-based manner in hu-
man brains. Inspired by this, we propose a Region Semantically
Aligned Network (RSAN) for Zero-Shot Learning. Our goal is to
map the visual features of unseen image regions to their semantic
attributes with the knowledge of seen classes. However, as we only

have the image-wise annotations, our work can be considered as
a weakly supervised learning model and it is difficult to localize
the attributes. To handle this problem, we first partition the image
to a set of image regions. Then we respectively compute the confi-
dence of each region to have a specific semantic attribute and get
a possibility map of each attribute. Through the confidence map,
we are able to localize each semantic attributes and get attribute
representations from the corresponding regions. By integrating all
attribute representations, we obtain the semantic representations
of the image for recognition. In addition, to benefit the process of
attribute localization, we leverage attribute regression to enforce
the image encoder to extract visual features which are related to
semantic attributes. However, the domain shift problem [15, 21, 64]
impedes the image encoder to learn valid attribute patterns for un-
seen sample. To mitigate this problem, we further utilize a semantic
knowledge as auxiliary information.

To sum up, our contributions are as follows:
(1) We directly utilize the output of image encoder to reserve the

valuable detail information of the samples. We further exploit this
information as the knowledge which can be transferred from seen
classes to unseen classes.

(2) We propose a Region Semantically Aligned Network (RSAN)
which builds a direct connection between the visual features of
image regions and semantic attributes. With the help of this con-
nection, the knowledge from seen classes can be successfully trans-
ferred to unseen classes for recognition. We further enforce the
image encoder to learn visual features that are related to semantic
attributes to improve the localization of attributes.

(3) We evaluate the proposed RSAN on three benchmark datasets
and report state-of-the-art or competitive results under both ZSL
and GZSL settings. Moreover, the proposed model achieves a signif-
icant improvement on those classes which are hard to discriminate
compared with previous methods.

2 RELATEDWORK
Zero-shot learning. ZSL [25–27, 38] aims to transfer the knowl-
edge from seen classes to unseen classes via semantic descriptions.
Most existing ZSL methods can be divided into two categories:
embedding-based methods [1, 13, 37, 43] and generative-based
methods [9, 10, 29–33, 53, 66]. Generative-based methods generate
samples for unseen classes with the guidance of their semantic
descriptions and convert the ZSL problem to a supervised learning
problem. However, it is difficult to synthesize discriminative data
samples from semantic descriptions, due to the overlap of common
features such as color and shape between many classes. The gen-
erated unseen samples can be easily mistaken as the similar seen
classes [28]. Embedding-based methods, on the other hand, aim to
learn a projection or embedding function to associate the low-level
visual features of seen classes with their corresponding semantic
representations and exploit the predicted semantic for classification.
However, it is challenging to learn an explicit projection function
between two spaces due to the distinctive properties of different
modalities. What’s more, data samples of seen and unseen classes
are disjoint and their distributions are dissimilar, thus, learning
a projection function using data samples from the seen classes
without any adaptation to the unseen classes causes the domain
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Figure 2: Illustration of the RSAN framework. Fine-grained Recognition branch (FR) and Attribute Constraint branch (AC)
share the Image Encoder.

shift problem [15, 21, 64]. In our work, we propose the Fine-grained
Recognition branch and the Attribute Constraint branch to alleviate
the above problems.
Semantic alignment in ZSL. The alignment between visual space
and semantic space has always been a main issue of embedding-
based ZSL methods, earlier works handled this issue from different
aspects. For instance, [3, 11, 13, 14, 43, 44, 60, 63] proposed to trans-
form representations to the visual space or the semantic space
for discriminating image samples. To mitigate the hubness prob-
lem [4, 57, 62], [40, 57, 61, 62] introduced a latent space for better
alignment between visual and semantic space. Vyas et al. [49] con-
sidered the relationships between different classes and used them
as supplementary information of unseen samples. Recently, sev-
eral methods [17, 51] got inspiration from self-supervised learning
and leveraged the contrastive learning [18, 48] to obtain a better
embedding. Specifically, Han et al. [17] learned a novel embedding
space for instance discrimination via contrastive learning. Wang et
al. [51] simultaneously learned task-specific and task-independent
knowledge to produce transferable representations via contrastive
learning. Although these methods learned better alignment to some
extent, the core of the alignment between two spaces should not
be the sample and its semantic description, but the image regions
and semantic attributes. To achieve this region-attribute alignment,
our work directly learn different attributes from different regions
of image samples.
Part-based ZSL. Recently, several ZSL methods focused on lever-
aging detail information of visual features. Yu et al. [58] utilized
attention mechanism to weigh different local image regions from
class embeddings. Sylvain et al. [47] demonstrated the importance

of locality and compositionality of image representations for zero-
shot learning. Zhu et al. [67] developed the attention method by
learning multiple channel-wise part attentions. Huynh et al. [20]
used an attribute-based dense attention mechanism to alleviate
the bias problem [60]. To utilize the relationships between image
regions, [55] exploited a region graph to learn better visual embed-
ding, but they failed to directly map the attributes to the image
regions. Xu et al. [56] learned a prototype for each attribute via
utilizing the local features, they improved the locality of image
representations but failed to directly exploit local features in ZSL
inference. Similar to [56], [34] exploited a gaze estimation method
to predict the human gaze towards an image sample and trans-
formed the gaze information to the attribute attention of different
image regions, however, they still relied on global features in ZSL
inference. In our work, we directly leverage the outputs of image en-
coder and then map the regions of visual features to corresponding
semantic attributes.

3 THE PROPOSED METHOD
3.1 Problem Setting
The objective of ZSL is to classify images X into unseen classes
U by transferring the knowledge of seen classes S through se-
mantic description A. In ZSL, the seen and unseen classes are
disjoint, i.e. Y𝑠 ∩ Y𝑢 = ∅. We define the training set D𝑡𝑟𝑎𝑖𝑛 =

{𝑥𝑠 ∈ X𝑠 , 𝑦𝑠 ∈ Y𝑠 , 𝑎(𝑦𝑠 ) ∈ A𝑠 } where 𝑥𝑠denotes a sample from
seen classes 𝑥𝑠 , 𝑦𝑠denotes the label of seen class which is available
in training phase and 𝑎(𝑦𝑠 ) ∈ R𝐾 denotes the semantic description
of a seen class which contains K semantic attributes. In testing
phase, we have access to the semantic description of unseen classes
A𝑢 . ZSL aims to predict the label of image from unseen classes,
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Figure 3: Illustration of the region-based mapping process.
The region-based mapping process generally consists of
three operations among which “partition” and “map” to-
gether compute the attribute saliency over all the regions
for each attribute through 𝑃 . Then, the “max” operation se-
lects regions of the highest attribute saliency to obtain the
semantic representation of the sample.

i.e. X𝑢 → Y𝑢 , while GZSL aims to predict the labels of images
from both seen and unseen classes, i.e. X → Y𝑠 ∪ Y𝑢 . In addition,
we assume the access to GloVe [41] representations of text descrip-
tions of all the attributes. Specifically, for the 𝑛-th word in the 𝑘-th
attribute, its word embedding is denoted as 𝑒𝑘𝑛 .

3.2 Overview
As shown in Figure 2, the Region Semantically Aligned Network
(RSAN) consists of two subbranches: the Fine-grained Recogni-
tion branch (FR) and the Attribute Constraint branch (AC). Both
branches share an image encoder which maps the image sample x
to a feature map 𝑣 (x) ∈ R𝐶×𝐻×𝑊 , where𝐻 ,𝑊 and𝐶 are the height,
width and channel of the feature map. The FR branch is capable of
mapping the image regions to the semantic attributes and using
the predicted attributes to discriminate the samples from different
classes. Moreover, the AC branch focuses on learning better image
encoder via attributes regression with semantic knowledge.

3.3 Fine-grained Recognition Branch
To fully leverage the detail information during seen knowledge
transfer, in FR branch, we first map the visual features of image
regions to its semantic attributes and obtain the predicted semantic
representation 𝑎 (region-based mapping module), then we exploit
a cosine space to classify the sample via its predicted semantic
representation (cosine embedding module).
Region-based mapping. A commonly used method in ZSL [3, 13,
14, 43, 63] is to map the global visual feature of a sample to its
semantic space and exploit the predicted semantic representation
to classify the sample. Therefore, an appropriate mapping from the
visual space to its semantic space is crucial for ZSL problems. Given
the feature map 𝑣 (𝑥) ∈ R𝐶×𝐻×𝑊 of an image 𝑥 , previous methods

[34, 56] firstly applied a global average pooling layer to get a global
feature 𝑔(𝑥) ∈ R𝐶 :

𝑔(𝑥) = 1

𝐻 ×𝑊

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝑣𝑖, 𝑗 (𝑥), (1)

where 𝑣𝑖, 𝑗 (𝑥) is extracted from the feature 𝑣 (𝑥) at spatial location
(𝑖, 𝑗).

Then a projection matrix 𝑉 ∈ R𝐶×𝐾 is learned to project 𝑔(𝑥)
to its semantic space 𝑎(𝑥) ∈ R𝐾 :

𝑎(𝑥) = 𝑔(𝑥)𝑇𝑉 . (2)

However, a specific attribute from the semantic description usu-
ally denotes part information of a sample, e,g., bill shape for a bird
in CUB dataset [50], global features fail to accurately represent in-
formation for certain attribute since the attribute only corresponds
to a region of the image and the redundant information from other
regions plays a negative role under such a circumstance. What’s
more, each dataset contains several similar classes which can not
be easily discriminated while using global features, e.g. chimpanzee
and gorilla. When an unseen class shares a lot of semantic attributes
with a seen class, the images of the unseen class would easily be clas-
sified into the similar seen class using the global features. Therefore,
instead of global feature mapping, we propose a Region-based map-
ping module to directly map the visual features of image regions to
its semantic attributes.

As shown in Figure 3, given a visual featuremap 𝑣 (x) ∈ R𝐶×𝐻×𝑊 ,
we naturally obtain 𝐻 ×𝑊 regions where each region (𝑖, 𝑗) is rep-
resented by a C-dimensional vector. Then we learn the significance
level of each semantic attribute for each region. In detail, we exploit
a fully-connected layer with parameter 𝑃 ∈ R𝐶×𝐾 to map visual
feature of each region to the significance level of each semantic
attribute. Finally we gather the attribute significance level for all
regions together in spatial order and obtain an attribute saliency
map𝑀 ∈ R𝐾×𝐻×𝑊 .

It is obvious that fine-grain attributes should learn from the
visual features of specific image regions, as for coarse-grain at-
tributes, two reasons ensure the region-based mapping remains
effective: 1. The visual features of image regions extracted by deep
convolution network have a receptive field as large as the original
image size theoretically. The region visual features actually con-
tain the information from the whole image and focus mostly on
the corresponding image regions. 2. It is unnecessary to consider
every part of the coarse-grain attribute, focusing on one or a few
discriminative regions is enough for knowledge transfer. To this
end, we would like to constrain the unrelated region to have a low
significance level for each attribute, especially for the regions that
are far from the peak regions. Therefore, we exploit a concentrate
loss[65] on𝑀 to regularize the attribute saliency map

L𝐶𝑜𝑛 =

𝐾∑︁
𝑘=1

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝑀𝑘
𝑖,𝑗

[
(𝑖 − 𝑖𝑘 )2 + ( 𝑗 − 𝑗𝑘 )2

]
, (3)

where (𝑖𝑘 , 𝑗𝑘 ) denotes the location with the highest significance
level in attribute saliency map for the k-th attribute.

Given that the attribute saliency map shows the significance
level of a region for a contain attribute, we can localize the attribute



by finding the peak region of the attribute saliency map and the
predicted value 𝑎𝑘 for 𝑘-th attribute can be denoted as

𝑎𝑘 = max
𝑖, 𝑗

𝑀𝑘
𝑖,𝑗 . (4)

In section 4.3, we verify the effectiveness of our Region-based
Mapping module via reporting a significant improvement on the
baseline model in both ZSL and GZSL settings.
Cosine embedding. Semantic description is a useful information
to discriminate samples from different classes. However, the im-
age samples from certain class often fail to express all attribute
information from their semantic descriptions due to various filming
angles and the blocking of other objects. To tackle this problem,
follow [34, 45], we propose a robust Cosine Embedding module to
focus on the most discriminative attributes during classification.
Specifically, we computer cosine similarity between the predicted
semantic representation 𝑎 and the ground truth semantic descrip-
tions. Concretely, we define the classification loss for a given image
𝑥 with label 𝑦 as

L𝐶𝑙𝑠 = − log
exp (𝑐𝑜𝑠 (𝑎, 𝑎(𝑦)) /𝜏𝑠 )∑

𝑦𝑠 ∈Y𝑠 exp (𝑐𝑜𝑠 (𝑎, 𝑎(𝑦𝑠 )) /𝜏𝑠 )
, (5)

where 𝜏𝑠 > 0 is the temperature parameter and 𝑎(𝑦) denotes the
ground truth semantic description of the label 𝑦 . In section 4.3, we
validate that the cosine embedding helps to learn a robust discrimi-
nator for both ZSL and GZSL problem.

3.4 Attribute Constraint Branch
Although the Fine-grained Recognition branch is able to localize se-
mantic attributes for an input with the knowledge transferred from
seen categories, the accuracy of localization cannot be guaranteed
because other irrelevant visual features like "branch" of a tree may
be mistaken as "leg" of a bird by our Region-based Mapping branch
if we try to localize attribute about "leg" from a bird. This is be-
cause the image encoder is pretrained on other dataset which is not
directly related to our task. Moreover, the problem of domain shift
[15, 21, 64] further degrades the performance of the image encoder.
Specifically, samples from two categories share the same attribute
but the visual patterns of the attribute differ significantly. As a
result, the Region-based Mapping module may fail to localize the
attribute correctly. Therefore, we propose our Attribute Constraint
branch (AC) to regularize the image encoder to extract robust and
attribute-related visual features through attribute regressions with
semantic knowledge.
Attribute-aware feature map. Feature maps obtained by the im-
age encoder perform poorly for localization because the image
encoder cannot sufficiently extract attribute-related visual patterns
for ZSL problem and suffers severely from domain shift. We allevi-
ate these two problems by obtaining a better visual representation
of the image sample, i.e., attribute-aware feature map. Specifically,
we add another convolution layer comprised of heuristic-initialized
kernels after the image encoder and obtain estimated attributes
of the sample. Then, we apply attribute regression between the
estimated attributes and the ground truth attributes to enforce the
feature map to encode semantic attributes. For the convolution

layer, we formulate our attribute-kernels as follows:

𝐻 =

{
ℎ𝑘 ∈ R𝐶×ℎ×𝑤

}𝐾
𝑘=1

, (6)

where ℎ, 𝑤 denotes the height and width of the attribute-kernel
respectively, 𝐶 denotes the number of channels in 𝑓 (x), and 𝐾
denotes the number of attributes.

Interestingly, we do not initialize our attribute-kernel with ran-
dom or normal distribution. Instead, we leverage semantic knowl-
edge of each attribute as auxiliary information to initialize the
attribute kernels, which aims to mitigate the problem of domain
shift. As a result, the image encoder can tolerate visual variance
of an attribute. Concretely, for the text description of the 𝑘-th at-
tribute, we obtain its vector representation by averaging the word
embedding of all the words appearing in the text:

E𝑘 =
1

𝑁𝑘

𝑁𝑘∑︁
𝑛=1

ekn, (7)

where𝑁𝑘 denotes the number of words in the text description of the
𝑘-th attribute, and 𝑒𝑘𝑛 ∈ R𝑑 denotes the GloVe [41] representation
of the 𝑛-th word in the former, which has a dimensionality of 𝑑 .

Then, we initialize our attribute kernels with the aforementioned
embedding by first applying a fully-connected layer to the em-
bedding and then performing a "reshape" operation to adjust the
parameters to the size of the kernels:

ℎ𝑘 = Reshape(𝐸𝑘W, ℎ,𝑤), (8)

where Reshape denotes an operation to resize the parameters to
Rℎ×𝑤 . Then the 𝑘-th attribute map is obtained by convolving the
feature map with attribute-kernels:

𝐴𝑘 = 𝜎 (Conv(𝑣 (x), ℎ𝑘 )) ∈ R𝐶×(𝐻−ℎ+1)×(𝑊 −𝑤+1) , (9)

where Conv(𝑖𝑛𝑝𝑢𝑡, 𝑘𝑒𝑟𝑛𝑒𝑙) denotes a convolution operation with
no padding and stride=1, 𝜎 () denotes an activation function to
provide non-linearity.

For the attribute regression, firstly we obtain the estimated 𝑘-th
attribute value of x by applying a max pooling layer in the attribute
map:

𝑎
𝑟𝑒𝑔

𝑘
= Maxpool(𝐴𝑘 ). (10)

Finally we utilize Mean Square Error (MSE) to minimize 𝐿2-distance
between 𝑎𝑟𝑒𝑔 and its corresponding semantic description 𝑎(y):

L𝑅𝑒𝑔 = ∥𝑎𝑟𝑒𝑔 − 𝑎(𝑦)∥22 . (11)

3.5 Joint Both Branches for ZSL Recognition
As described above, the Region Semantically Aligned Network
consists of two subbranches. Fine-grained Recognition branch is
learned through optimizing the Classification loss L𝐶𝑙𝑠 and the
Concentrate loss L𝐶𝑜𝑛 . Attribute Constraint branch is learned
through optimizing the Regression loss L𝑅𝑒𝑔 . Thus, the overall
objective can be written as follows:

L = L𝐶𝑙𝑠 + 𝜆1L𝐶𝑜𝑛 + 𝜆2L𝑅𝑒𝑔, (12)

where 𝜆1, 𝜆2 are hyper-parameters. The joint of Fine-grain Recog-
nition branch and Attribute Constraint branch enables the model to
correctly map the image regions of an unseen sample to its semantic
attributes.



Zero-shot prediction. After the full model is trained, we exploit
our trained Region-based Mapping module to predict the semantic
representation of the image sample (denoted as𝜓𝑅𝑀 (x𝑢 )) and then
utilize the Cosine Embedding module to discriminate the test image
samples. Given a test sample x, in ZSL setting, the prediction ŷ is
made by finding the best match ground truth semantic description
in unseen classes via

ŷ = argmax
y∈Y𝑈

cos (𝜓𝑅𝑀 (x) , 𝑎(y)) . (13)

Besides, GZSL settings use both seen and unseen samples for
testing and suffer from the bias problem [7, 60]. We exploit the
calibrated stacking [7] to alleviate this problem. Therefore, the
GZSL prediction can be defined as

ŷ = argmax
𝑦∈Y𝑈 ∪Y𝑆

(
𝜎 cos (𝜓𝑅𝑀 (x) , 𝑎(y)) − 𝛾I

[
y ∈ Y𝑆

] )
, (14)

where 𝛾 is a calibration factor and I = 1 while 𝑦 is a seen class
and 0 while 𝑦 is an unseen class. To avoid vanishing gradient prob-
lem, we also adopt a scaling factor 𝜎 during the cosine similarity
computation.

4 EXPERIMENT
We evaluate our proposed method on three benchmark datasets,
including Caltech-UCSD Birds 200 (CUB) [50], Animals with At-
tributes 2 (AWA2) [52] and Scene UNderstanding (SUN) database
[39]. Below, we discuss the datasets, evaluation metrics and imple-
menting details. After that, we compare our method with state-of-
the-art ZSL methods. Then we perform ablation studies to demon-
strate the effectiveness of different components in our model. Next
we analyse the effect of hyper-parameters on the performance of
our method. Finally we examine our method’s abilities to discrimi-
nate between similar categories and to localize semantic attributes
accurately.

4.1 Experiment Setup
Datasets. Following [34, 56], we conduct experiments on three
benchmark datasets: CUB, AWA2, SUN. CUB [50] contains fine-
grained bird images from 150 seen and 50 unseen classes with 312
attributes. SUN [39] is a dataset of visual scenes having 645 seen
and 72 unseen classes with 102 attributes and it has the largest
number of classes among all datasets. However, it only contains 16
training images per class due to its small overall training set. AWA2
[52] has been proposed for animal classification with 40 seen and
10 unseen classes and each of which is described by 85 attributes. It
has a medium size of 37,322 samples in total. For CUB, SUN, AWA2,
we follow the proposed training, validation and testing splits in
[52].
Evaluation protocols. The performance of ZSL is evaluated by
average perclass Top-1 (T1) accuracy. In GZSL, since the test set
is composed of seen and unseen images, the Top-1 accuracy evalu-
ated respectively on seen classes, denoted as S, and unseen classes,
denoted as U. Their harmonic mean [52], defined as H = (2 × S ×
U)/(S +U).
Implementing details. Following the canonical setting in [34],
We use a pretrained ResNet-101 with the input size of 448×448 for
feature extraction.We extract a featuremap at the last convolutional

layer whose size is 14 × 14 × 2048 and treat it as a set of features
from 14 × 14 regions. The SGD optimizer is adopted in the model
training. The momentum is set to 0.9, and the weight decay is 10−5.
The learning rate is initialized as 10−3 and decreased every ten
epochs by a factor of 0.5. Other hyper parameters in our model are
obtained by grid search on the validation set [52]. We set 𝜆1 and 𝜆2
as 0.1, 1.0 for three datasets. For attribute kernel sizes, we choose 1,
5, 3 for CUB, SUN and AWA2 respectively. The factor for Calibrated
Stacking is set to 0.7 for CUB and SUN, and 3.75 for AwA2. We use
an episode-based training method to sample𝑀 categories and 𝑁
images for each category in a minibatch, we iterate 300 batches
for each epoch, and train the model 20 epochs. We set𝑀 = 16 and
𝑁 = 2 for all three datasets.

4.2 Comparison with the State-of-the-Art
Models

We compare RSAN with two groups of state-of-the-art models. On
the one hand, f-CLSWGAN [53], LisGAN [29], OCD-CVAE [22],
LsrGAN [55], Composer [19], CE-GZSL [17] and GCM-CF [59]
learn generative models to approximate the distribution of class
images as a function of class semantic descriptions. Thus, given
semantic descriptions of unseen classes, these models augments
features of seen classes with generated features from the unseen
ones and learn a discriminative classifier in the fully supervised
setting. On the other hand, ALE [2], AREN [54], DAZLE [20], DVBE
[36], RGEN [55], APN [56], DCEN [51], Class-Norm [45] and GEM-
ZSL [34] through various methods, embed the visual features of
the test samples into a semantic representation aligned with the
attribute space where the final classification is performed.

Table 1 shows the results of our RSAN and the methods men-
tioned above on three datasets. Our RSAN achieves the state-of-
the-art or competitive results in both ZSL and GZSL settings. On
CUB dataset, RSAN outperforms all the compared methods with a
large margin in both ZSL and GZSL settings. Since CUB is a more
challenging fine-grained dataset which requires local discrimina-
tive attributes, the results prove the effectiveness of our model. For
AWA2 dataset, our RSAN can achieve state-of-the-art result in GZSL
settings.We also report competitive results on ZSL settings. On SUN
dataset, the feature generation based models significantly outper-
formmost other methods in GZSL settings. As SUN dataset contains
more than 700 categories, the generative model can bring more
features for generalization to unseen classes. However, generative-
based methods require ground truth unseen semantic description
during training which is unrealistic for real world applications.
Compared with the other non-generation based methods in GZSL
settings, the performance of our RSAN is competitive. Moreover,
thanks to the significant effect of our Region-based Mapping, RSAN
still outperforms other methods in ZSL settings.

4.3 Ablation Study
Fine-grained Recognition branch. In Table 2, we illustrate the
effect of our Fine-grained Recognition branch. First, we respectively



Table 1: Results (%) of the state-of-the-art ZSL and GZSL. The first part is generative methods, the second part is semantic
embedding methods. The best results are marked in red.

Method
CUB AWA2 SUN

ZSL GZSL ZSL GZSL ZSL GZSL
T1 S U H T1 S U H T1 S U H

f-CLSWGAN(CVPR’18) [53] 57.3 57.7 43.7 49,7 68.2 61.4 57.9 59.6 60.8 36.6 42.6 39.4
LisGAN(CVPR’19) [29] 58.8 57.9 46.5 51.6 70.6 76.3 52.6 62.3 61.7 37.8 42.9 40.2

OCD-CVAE(CVPR’20) [22] 60.3 59.9 44.8 51.3 71.3 73.4 59.5 65.7 63.5 42.9 44.8 43.8
LsrGAN(ECCV’20)[55] 60.3 59.1 48.1 53.0 - - - - 62.5 37.7 44.8 40.9

Composer(NeurIPS’20) [19] 69.4 56.4 63.8 59.9 71.5 77.3 62.1 68.8 62.6 22.0 55.1 31.4
CE-GZSL(CVPR’21) [17] 77.5 66.8 63.9 65.3 70.4 78.6 63.1 70.0 63.3 38.6 48.8 43.1
GCM-CF(CVPR’21) [59] - 59.7 61.0 60.3 - 75.1 60.4 67.0 - 37.8 47.9 42.2
ALE(TPAMI’16) [2] 54.9 62.8 23.7 34.4 59.9 76.1 16.8 27.5 58.1 33.1 21.8 26.3
AREN(CVPR’19) [54] 71.8 69.0 63.2 66.0 67.9 79.1 54.7 64.7 60.6 32.3 40.3 35.9
DAZLE(CVPR’20) [20] 65.9 59.6 56.7 58.1 - 75.7 60.3 67.1 - 24.3 52.3 33.2
DVBE(CVPR’20) [36] - 73.2 64.4 68.5 - 77.5 62.7 69.4 - 41.6 44.1 42.8
RGEN(ECCV’20) [55] 76.1 73.5 60.0 66.1 73.6 76.5 67.1 71.5 63.8 31.7 44.0 36.8
APN(NeurIPS’20) [56] 72.0 69.3 65.3 67.2 68.4 78.0 56.5 65.5 61.6 34.0 41.9 37.6

Class-Norm(ICLR’21) [45] - 50.7 49.9 50.3 - 73.4 63.1 67.8 - 41.6 44.7 43.1
GEM-ZSL(CVPR’21) [34] 77.8 77.1 64.8 70.4 67.3 77.5 64.8 70.6 62.8 35.7 38.1 36.9

RSAN(ours) 79.7 78.5 67.6 72.6 69.9 80.4 65.0 71.8 64.9 34.0 43.1 38.0

Table 2: Results (%) of ZSL and GZSL ablation study on CUB,
SUN and AWA2. The baseline is the image encoder with
global average pooling layer followed by a linear layer and
a dot product to compute cross-entropy loss. RM and CE
denote Region-based Mapping module without the concen-
trate loss and Cosine Embedding module respectively.

Components CUB SUN AWA2
T1 H T1 H T1 H

Baseline 58.8 51.3 56.1 30.8 51.5 57.7
+RM (without L𝐶𝑜𝑛) 71.7 65.6 60.3 28.0 63.1 65.2

+L𝐶𝑜𝑛 74.6 66.8 61.4 30.9 65.5 69.6
+CE 76.3 70.8 62.8 30.5 67.4 70.5

Table 3: Results (%) of ZSL and GZSL ablation study on CUB,
SUN and AWA2. Upon the architecture of an image encoder
and the Fine-grained Recognition branch, which is the base-
line of this experiment, we evaluate the effectiveness of the
components of Attribute Constraint branch.

Components CUB SUN AWA2
T1 H T1 H T1 H

Baseline 76.3 70.8 62.8 30.5 67.4 70.5
+L𝑅𝑒𝑔 77.6 71.8 63.7 31.0 68.5 71.0

+Semantic knowledge (RSAN) 79.7 72.6 64.9 38.0 69.9 71.8

evaluate two kinds of mapping methods, global feature mapping,
i.e., applying global average pooling to the feature map followed by
a linear layer defined in Eq. (1) and Eq. (2) and Region-based Map-
ping as stated in section 3.3. Then, we complete our Region-based
Mapping module with L𝐶𝑜𝑛 , a constraint that provides locality for
each attribute to demonstrate its effect. Finally, we compare Cosine

Embedding module defined in Eq. (5) that tolerates the intra-class
variance with its counterpart dot product to show how it improves
the performance. To obtain a fair and general evaluation of every
module, average perclass Top-1 (T1) accuracy for ZSL and harmonic
mean for GZSL are adopted.

The results show that our method is highly effective: Region-
based Mapping module (without concentrate loss) has improved
(T1) accuracy for ZSL by 9.6% among which CUB contributes
the most. This agrees with our expectation and the nature of the
datasets: CUB is a fine-grain dataset with easily localized attributes
like "bill_shape:needle", thus it perfectly suits for our Region-based
Mapping; AWA2 shares similar type of attributes as CUB but it
also has holistic attributes which could be hard to localize and
detect, e.g, "domestic" and "solitary"; most of the attributes in SUN
are abstract and descriptive texts like "socializing" and "playing",
but our method still improves the (T1) accuracy by 4%. Then we
evaluate the effectiveness of L𝐶𝑜𝑛 , results on AWA2 show that
it has improved the (T1) accuracy by 2.4% and harmonic mean
by 4.4%. At last, we verify the effectiveness of Cosine Embedding
module. Results show that it has improved the (T1) accuracy by
1.7% and harmonic mean by 4.0% on CUB.
Attribute Constraint branch. In Table 3, we demonstrate the ef-
fect of our Attribute Constraint branch. We use the architecture
mentioned above, i.e., an image encoder with a complete Fine-
grained Recognition branch as baseline. Upon that, we examine
the effectiveness of the components in Attribute Constraint branch.
At first, we just initialize our attribute kernels with no heuristic
semantic knowledge, only a regression loss L𝑅𝑒𝑔 in Eq. (11) is ap-
plied to guide the learning of image encoder. Then we complete our
model with a language-prior-enabled initialization as described in
Eq. (8). We use the same evaluation protocol as the former ablation
study.
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Figure 4: the performance of RSAN on three datasets under
the influence of different sizes of kernels 1, 3, 5 and 7. Figure
4(a) is the result evaluated by T1 accuracy while Figure 4(b)
is the result evaluated by (H) harmonic mean

Through experimental results, our Attribute Constraint branch
has been proved to be effective. Since L𝑅𝑒𝑔 enables the image en-
coder to extract attribute-related visual features, the Fine-grained
Recognition branch could handle the feature map more easily.
Therefore, there is steady and considerable improvement among
three datasets. Finally, when semantic knowledge is added to this
branch, performance among three datasets has been significantly
improved. Specifically, the harmonic mean on SUN has been im-
proved by 7.0%. This agrees with the nature of the dataset given
that SUN is a dataset that suffers the most from domain shift prob-
lem.

4.4 Parameter Analysis
Effect of the size of attribute kernels. In section 3.4, we learn a
set of attribute kernels to guide the learning of image encoder. Now
we evaluate the effect of attribute kernel size on the performance
of our model. As stated in section 4.4, we expect that because CUB
has localized attribute, a relatively smaller kernel size is appro-
priate, and for AWA2 and SUN, an increasingly larger kernel size
should be applied. Figure 4 shows under different size of kernels
the (T1) accuracy and harmonic mean of our model. It confirms our
assumption. For the CUB, AWA2 and SUN datasets, they achieve
their best performance in (T1) accuracy with kernel size 1, 3 and
5, respectively, and their best harmonic mean with kernel size 1, 3
and 7.
Training method analysis. An episode-based training method
is used in our experiments to make the model gain better gen-
eralization ability. For each mini-batch, we sample 𝑀 categories
and 𝑁 images for each category. We vary the value of 𝑀 with
{8, 12, 16} and the value of N with {2, 3, 4}, and observe the (T1)
accuracy under these values. To further analyze the performance
of the episode-based training method, we compare its performance
with the random sampling training method with a mini-batch of
64. Table 4 shows that the episode-based training method has bet-
ter performance than the random sampling training method. The
model can be generalized to the recognition of all categories (seen

Table 4: Influence of training method on ZSL results (%).
R represents random sampling training method with mini-
batch of 64, E represents episode-based training method.

Training Method 𝑀 -way 𝑁 -shot CUB SUN AWA2
R − − 72.0 59.2 63.5

8 2 74.4 56.7 67.7
8 3 74.0 53.1 66.8
8 4 74.5 51.4 66.4

E 12 2 73.4 61.1 67.2
12 3 76.2 63.6 66.9
12 4 75.1 63.9 67.1
16 2 79.7 64.9 69.9
16 3 72.4 63.9 66.9
16 4 72.3 59.4 68.2

(a) bobcat (b) leopard (c) lion

Figure 5: Three categories of "cats" from AWA2 share a lot
visual features and can be hard to distinguish. "Bobcat" is
from the unseen domain while others are all from the seen
domain.
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Figure 6: (%) proportion that samples of the unseen category
"bobcat" are classified into its own category and three simi-
lar categories from seen domain. "Other" denotes the rest of
AWA2 categories, i.e., dissimilar categories.

and unseen categories) only by learning the seen categories. When
M = 16 and N = 2, the model can get the highest accuracy.
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Figure 7: Results of body part localization. Here each sample is selected from one of the three categories: "Mallard", "Cliff
swallow" and "Blue jay". Then we pick five main parts of an bird body: eye, nape, breast, belly and wing. The results show that
our method is capable of localizing those body parts accurately for the four samples.

4.5 Discriminability Evaluation
Fine-grained Recognition branch enables RSAN to discern fine-
grained differences between similar classes. We in depth demon-
strate this advantage by showing how our model outperforms oth-
ers’ by reducing misclassifications to similar classes. Specifically,
in AWA2, among ten categories from the unseen domain according
to the proposed splits [52], we further expect samples from unseen
category "bobcat" would not be misclassified into those from similar
seen categories like "leopard’, "lion" in Figure 5. To demonstrate,
here we choose two models GEM [34], APN [56] for comparison,
and for all the samples from an unseen category, we compute the
proportion that they are classified into their own category and the
similar seen categories. Figure 6 shows the results. Our method
(RSAN) achieves the largest proportion on "bobcat" while suppress-
ing the proportion on other seen categories. GEM yields similar but
less sharper results. APN not only fails to distinguish between its
own category and three similar categories, it misclassifies "bobcat"
into other dissimilar categories.

4.6 Visualization of Attribute Localization
As stated in Section 3.3, our method is capable of localizing seman-
tic attributes through attribute saliency maps. Now we demonstrate
the locality of our method via overlapping the original image with
the min-max normalized saliency map. Figure 7 shows the results
of three samples. Since in CUB dataset, attributes are organized in
groups (e.g., a group of attributes describe the same part of a bird
body but from different perspectives), we show the effect of body
part localization for demonstration. Apparently, RSAN could not

only localize the fine-grain attributes like "eye", but only localize
the discriminative part of the coarse-grain attribute like "wing".
Compared to the previous works [34, 56], RSAN achieves a remark-
able improvement on localization ability as each body part has been
localize to a precise small region of the image. Meanwhile, we also
observe that our model may have some imperfects in specific situa-
tions. For instance, our model localizes two discrete discriminative
regions for the belly of "Cliff swallow" in Figure 7(e).

5 CONCLUSION
In this paper, we propose a novel ZSL framework named Region
Semantically Aligned Network (RSAN), which transfers region-
attribute alignment from seen classes to unseen classes. Specifically,
Fine-grained Recognition branch is developed to obtain each at-
tribute from a specific region of the image sample and exploit these
attributes for recognition. Besides, Attribute Constraint branch is
employed to regularize the image encoder shared with Fine-grained
Recognition branch to extract robust and attribute-related visual
features through attribute regressions with semantic knowledge.
Experiments on several standard ZSL datasets reveal the benefit
of our RSAN method, outperforming state-of-the-art methods. Be-
sides, further experiments prove our model’s locality of attributes
and discriminability in face of similar classes.
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