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Will	Machines	Ever	Think	Like	Humans?	
	

by	Jeff	Riley	
	
Editor’s	Introduction	
 
What is “human intelligence?” What is thinking? What does it mean to “think like a human?” Is 
it possible for machines to display human intelligence, to think like humans? This article 
explores these questions, and gives a brief overview of some important features of the human 
brain, and how computer scientists are trying to simulate those features and their ability to 
“think.” The article answers some questions, but asks more—finishing with questions for 
readers to consider. 
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Will	Machines	Ever	Think	Like	Humans?	

	
by	Jeff	Riley	

	
	
What	does	it	mean	to	“think”?	
	
Alan	 Turing,	 mathematician,	 computer	 scientist,	 and	 philosopher,	 began	 his	 1950	 paper	
“Computing	 Machinery	 and	 Intelligence”	 [1]	 with	 the	 sentence:	 “I	 propose	 to	 consider	 the	
question,	‘Can	machines	think?’”	
	
Recognizing	 that	 the	 term	 “think”	 may	 be	 difficult	 to	 define,	 Turing	 instead	 proposed	 the	
“imitation	game”	as	a	means	to	determine:	“…whether	there	are	imaginable	computers	which	
would	do	well	(at	the	imitation	game)”	[1].	
	
Turing	 considered	 the	 imitation	 game,	 and	 this	 new	question,	 a	 proxy	 for	 the	 question	 “Can	
machines	 think?”	 The	 imitation	 game	 later	 became	 the	 “Turing	 test,”	 a	 test	 of	 a	 machine's	
ability	to	exhibit	intelligent	behaviour	indistinguishable	from	that	of	a	human.	The	details	of	the	
imitation	game	are	not	important	here—I	refer	interested	readers	to	Turing’s	1950	paper.	The	
salient	 point	 is	 that	 Turing	 considered	 a	 machine	 that	 displayed	 intelligent	 behavior	
indistinguishable	 from	 that	 of	 a	 human	 to	 be	 the	 same	 as,	 or	 a	 reasonable	 proxy	 for,	 the	
machine	“thinking.”	
	
The	 philosopher	 John	 Searle,	 in	 his	 1980	 paper	 “Mind,	 Brains,	 and	 Programs,”	 proposed	 the	
“Chinese	 room”	 thought	 experiment	 in	 order	 to	 challenge	 the	 notion	 that	 “strong	 artificial	
intelligence	(AI)”	could	enable	machines	to	think	[2].	As	for	the	 imitation	game,	the	details	of	
the	Chinese	room	are	not	important	here—interested	readers	should	refer	to	Searle’s	paper.	
	
The	point	Searle	was	making	with	the	Chinese	room	is	that,	 in	his	estimation,	however	well	a	
machine	 is	 constructed/programmed,	 it	 doesn’t	 really	 understand	 anything—it	 can	 only	
simulate	knowledge,	and	simulating	knowledge	is	different	from	thinking.	 In	his	article,	Searle	
asserts:	“…strong	AI	has	little	to	tell	us	about	thinking,	since	it	is	not	about	machines	but	about	
programs,	 and	 no	 program	 by	 itself	 is	 sufficient	 for	 thinking.”	 He	 also	 states:	 “Any	 attempt	
literally	 to	 create	 intentionality	 artificially	 (strong	 AI)	 could	 not	 succeed	 just	 by	 designing	
programs	but	would	have	to	duplicate	the	causal	powers	of	the	human	brain.”	
	
“Intentionality”	is	a	term	used	by	philosophers	to	describe	mental	states	(thought,	belief,	hope,	
rage,	 desire,	 etc.)	 that	 are	 “directed”	 at	 objects	 or	 ideas.	 In	 Searle’s	words:	 “Intentionality	 is	
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best	 thought	 of	 as	 ‘mental	 representation’…	 Intentionality	 is	 the	 capacity	 the	 mind	 has	 to	
represent	objects	and	states	of	affairs…	Contents	of	thoughts	are	intentional	states.”1	
	
To	 Searle,	 “strong	AI”	was	 AI	 that	 could	 create	 intentionality—effectively	 AI	 that	 thinks	 and,	
necessarily	according	to	Searle,	understands.	My	interpretation	of	this	is	that	Searle’s	definition	
of	thinking	embodies	the	mental	processes	that	manifest	intentional	states.	
	
A	 number	 of	 criticisms	 of	 Searle’s	 paper	 were	 printed	 immediately	 following	 the	 paper	 in	
Behavioral	and	Brain	Sciences,	under	the	banner	“Open	Peer	Commentary”	[3].	I	think	the	most	
illuminating,	perhaps	because	it	accords	with	my	own	beliefs	and	criticism	of	Searle’s	paper,	is	
the	commentary	by	Douglas	Hofstadter,	cognitive	scientist,	physicist,	and	Pulitzer	Prize-winning	
author,	 whose	 research	 includes	 concepts	 such	 as	 the	 sense	 of	 self,	 and	 consciousness.	 I	
encourage	those	interested	to	read	Hofstadter’s	criticism	in	its	entirety.	
	
Hofstadter	begins	his	reply	with:	“This	religious	diatribe	against	AI,	masquerading	as	a	serious	
scientific	argument,	is	one	of	the	wrongest,	most	infuriating	articles	I	have	ever	read	in	my	life.”	
	
He	goes	on	to	say:	“Searle's	trouble	is	…	he	has	deep	difficulty	in	seeing	how	mind,	soul,	‘I,’	can	
come	out	of	brain,	cells,	atoms.”	
	
I	 think	 Hofstadter	 understands,	 but	 Searle	 missed,	 an	 important	 point:	 Intelligence,	 or	 in	
Searle’s	terms,	intentionality,	isn't	in	the	structure	of	the	brain	alone—it	is	generally	accepted	
to	be	an	emergent	property	of	the	interaction	of	the	signals	propagated	through	the	networks	
of	 neurons	 in	 the	 human	 brain,	 and	 the	 cells	 that	 intercept	 and	 manipulate	 those	 signals.	
Thought,	intentionality,	and	intelligence—indeed	“mind,	soul,	‘I’”—are	generally	accepted	to	be	
in	the	“connectedness”	of	the	brain’s	neurons—in	the	signal	rates	and	strengths,	the	excitation	
levels,	and	firing	thresholds	of	the	neurons.	
	
What	Hofstadter	refers	to	as	“mind,	soul,	 ‘I’”	and	the	related	concepts	of	consciousness,	self-
awareness,	etc.	are	beyond	the	scope	of	this	article.	 I	will	restrict	discussion	here	primarily	to	
issues	surrounding	machines	displaying	intelligent	behavior.	
	
On	 the	question	of	 “What	does	 it	mean	 to	 ‘think?’”	 I	will	 follow	Turing.	Displaying	 intelligent	
behavior	 indistinguishable	 from	 that	 of	 a	 human	 is	 a	 reasonable	 proxy	 for	 (human)	 thinking,	
and,	 in	 keeping	with	 Turing,	 that	 changes	 the	 question	 asked	 at	 the	 beginning	 of	 this	 article	
from	 “Will	 machines	 ever	 think	 like	 humans?”	 to	 “Will	 machines	 ever	 display	 human	
intelligence?”	
	
	
	
	

                                                
1 What is Intentionality? | Closer to Truth 

https://www.closertotruth.com/series/what-intentionality
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HUMAN	INTELLIGENCE	
	
Turing	did	not	formally	define	what	he	meant	by	“intelligent	behaviour	indistinguishable	from	
that	of	a	human,”	and	that	deficiency	has	 led	to	some	debate	and	criticism.	Here	 I	will	 try	to	
define	 what	 I	 mean	 by	 “human	 intelligence.”	 Human	 intelligence	 is	 just	 intelligence	 as	 it	 is	
displayed	by	humans—but	what	is	intelligence?	There	seems	to	be	no	single,	generally	agreed	
upon	definition	of	 intelligence.	Robert	 J.	 Sternberg,	prominent	human	 intelligence	 researcher	
and	developer	of	the	Triarchic	Theory	of	Intelligence	[4],	is	quoted	as	saying:	“Viewed	narrowly,	
there	 seem	 to	 be	 almost	 as	many	 definitions	 of	 intelligence	 as	 there	were	 experts	 asked	 to	
define	it”	[5].		
	
Sternberg	defines	human	intelligence	as:	“[The]	mental	quality	that	consists	of	the	abilities	to	
learn	from	experience,	adapt	to	new	situations,	understand	and	handle	abstract	concepts,	and	
use	knowledge	to	manipulate	one’s	environment”	[6].	
	
What	 is	 it	 that	sets	human	 intelligence	apart	 from	(current)	machine	 intelligence?	 I	 think	 it	 is	
the	ability	to	create,	to	conceptualize,	and	to	contextualize;	the	ability	to	recognize	a	problem	
or	a	question	and	to	devise	a	solution	or	an	answer;	it	is	the	capacity	for	abstract	thought;	the	
ability	to	reflect	on	ideas	and	concepts	and	think	beyond	the	concrete	present.	But	where	does	
this	ability	come	from?	What	about	the	human	brain	is	so	different	from	the	various	AI	engines	
that	attempt	to	emulate	the	functionality	of	the	human	brain?	
	
The	Human	Brain	
The	feature	of	the	human	brain	most	obvious	to	us	is	its	physical	form,	particularly	its	structure.	
Following	is	a	brief	description,	at	a	fairly	high	level,	of	the	structure	and	features	of	the	human	
brain.	
	
The	human	brain	is	a	very	complex	organ,	comprising	several	structures	that	work	together	to	
produce	the	functionality	we	associate	with	“human	intelligence.”	The	three	main	structures	of	
the	brain	are	the	cerebrum,	the	cerebellum,	and	the	brainstem.		
	
The	brainstem,	as	well	as	connecting	the	cerebrum	and	the	cerebellum	to	the	spinal	cord	(the	
part	of	the	central	nervous	system	that	is	not	the	brain),	controls	or	orchestrates	a	number	of	
autonomic	 functions	 and	 states:	 heart	 rate,	 breathing,	 body	 temperature,	 wake	 (and	 sleep)	
cycles,	swallowing,	digestion,	sneezing,	coughing,	and	vomiting.	The	brainstem	contains	about	1	
billion	 of	 the	 brain’s	 approximately	 86–127	 billion	 neurons.2	 AI	 systems	 typically	 aren’t	
concerned	with	 simulating	 autonomic	 functions,	 so	 brainstem	 functionality	 is	 not	 usually	 the	
subject	of	AI	systems.		
	

                                                
2 Estimates of neurons vary. See Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate 
brain. Frontiers in Human Neuroscience 3, 31 (2009); doi: 10.3389/neuro.09.031.2009. 

https://doi.org/10.3389/neuro.09.031.2009
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The	cerebellum	orchestrates	voluntary	movements	(it	controls	and	coordinates	the	timing	and	
force	of	voluntary	muscle	movements),	and	maintains	posture	and	balance.	It	is	also	involved	in	
motor	 learning,	 adapting,	 and	 fine-tuning	 motor	 programs	 through	 trial-and-error	 (e.g.	 as	
children	learn	various	motor	skills).	The	cerebellum	is	thought	to	be	involved	in	some	cognitive	
functions—such	as	language,	attention,	and	emotional	responses	to	fear	and	pleasure—though	
the	 involvement	 of	 the	 cerebellum	 in	 these	 functions	 is	 not	 well	 understood.	 Most	 of	 the	
volume	of	the	cerebellum	is	taken	up	by	the	cerebellar	cortex,	and	although	much	smaller	than	
the	cerebrum	(in	human	brains)	with	about	70–101	billion	neurons,3	 the	cerebellum	contains	
the	vast	majority	of	the	brain’s	neurons.	
	
The	cerebrum	is	responsible	for	higher	functions	such	as	abstract	thought,	reasoning,	language	
and	 speech,	 sensory	 processing	 (vision,	 hearing,	 taste,	 smell,	 and	 touch),	 emotions,	 learning,	
and	 fine	 control	 of	 movement.	 The	 outer	 layer	 of	 the	 cerebrum	 is	 the	 cerebral	 cortex,	
containing	some	16–26	billion	neurons.4	
	
	

Figure	1.	The	human	brain.	
	
	

	
                                                
3 ibid. 
4 ibid. 
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The	 cerebral	 cortex	 expands,	 and	 subsequently	 folds,	 as	 our	 brains	 develop	 in	 the	 womb,	
resulting	 in	 the	 familiar	wrinkled	appearance	of	 the	human	brain.	The	 folding	of	 the	cerebral	
cortex	allows	a	larger	cortex	to	fit	inside	the	human	skull	than	would	otherwise	be	the	case,	and	
a	 larger	 cortex	means	more	neurons,	which	can,	but	doesn’t	always,	mean	a	more	advanced	
brain	 and	 increased	 cognitive	 abilities.	 Elephants,	 for	 example,	 have	a	physically	 bigger	brain	
than	 humans,	 and	 the	 cortex	 of	 the	 elephant	 brain	 is	 folded	 in	 a	 similar	way	 to	 the	 human	
brain,	 resulting	 in	 the	 average	 elephant	 brain	 containing	 about	 three	 times	 the	 number	 of	
neurons	 than	 the	 average	 human	 brain.	 Elephants	 are	 intelligent	 animals,	 but	 by	 most	
measures	human	intelligence	is	superior	to	elephant	intelligence.	
	
While	 the	 cortex	 of	 some	animal	 brains	 is	 folded	 (e.g.	 humans	 and	elephants),	 the	 cortex	 of	
most	animals'	brains	is	not—folding	tends	to	occur	in	animals	with	larger	brains.	The	growth	of	
the	cortex	and	the	limiting	volume	of	the	skull	are	not	the	only	factors	that	determine	whether	
folds	form	in	the	cortex,	the	physical	properties	of	the	cortex	can	also	make	a	difference,	with	
thinner	regions	folding	more	easily,	and	so	more	often.	The	physical	properties	and	patterns	of	
folding	 in	 different	 regions	 of	 the	 cortex	 are	 thought	 to	 be	 linked	 to	 the	 function	 of	 those	
regions.	 These	 patterns	 of	 folding	 are	 consistent	 across	 individuals,	 and	 even	 some	 species,	
leading	to	speculation	that	folding	has	some	underlying	function	or	meaning	not	yet	evident.	
	
The	Biological	Neuron	
The	biological	 neuron	 is	 the	 basic	 “processing	 element”	 of	 the	 human	brain.	 The	 role	 of	 the	
neuron,	in	very	simple	terms,	is	to	collect	and	collate	input	from	other	cells	(e.g.	other	neurons	
or	sensory	receptor	cells),	and,	 if	so	indicated	by	the	state	of	the	neuron	and	inputs,	transmit	
information	to	other	cells	(e.g.	other	neurons,	muscle,	or	gland	cells).	
	

Figure	2.	Biological	neuron	(pink)	showing	connection	to	another	cell	(yellow).	



Ubiquity,	an	ACM	publication	
	 June	2021	
	 	 	
 
	 	 	
 

http://ubiquity.acm.org	 7	 		 2021	Copyright	held	by	the	Owner/Author.		
	 	 	 	 	 Publication	rights	licensed	to	ACM.	

Neurons	 are	 connected	 to	 other	 cells	 via	 axons	 and	 dendrites,	 specialized	 projections	 of	
neurons	 that	 (respectively)	 deliver	 and	 collect	 information	 (signals).	 A	 neuron	 communicates	
with	other	cells	by	sending	very	fast	electrical	signals,	known	as	“action	potentials”	on	the	axon.	
These	signals,	the	fastest	form	of	intracellular	electrical	signal	in	biology,	are	either	transmitted	
directly	to	receiving	cells	(electrical	synapses)	or	stimulate	neurotransmitter	release	at	the	axon	
terminal,	allowing	the	signal	to	propagate	to	other	cells	(chemical	synapse).	
	
Neurons	gather	signals	from	a	number	of	other	cells,	perform	an	analysis	of	those	inputs,	and	
pass	a	signal	on	to	other	cells	 if	necessary.	The	analysis	of	the	input	signals	performed	by	the	
neuron	is	not	well	understood,	but	it	is	known	to	vary	depending	upon	the	nature	of	the	inputs.	
In	 fact,	 researchers	 have	 recently	 discovered	 a	 neuron’s	 dendrites	 not	 only	 gather	 the	 input	
signals,	they	functionally	work	together	in	a	way	that	is	adjusted	to	the	complexity	of	the	input	
[7].	Theories	of	the	operating	principles	of	biological	neurons	differ.	One	of	the	simpler,	high-
level	models	has	the	neuron	performing	a	weighted	sum	of	its	inputs,	and	sending	a	signal	out	
on	its	own	axon	(known	as	“firing”)	only	if	the	sum	exceeds	the	neuron’s	“firing	threshold”	(and	
remaining	quiescent	and	propagating	no	signal	if	not).	
	
Neurons	fire	in	discrete	pulses.	Whenever	the	electrical	potential	inside	the	cell	body	reaches	a	
certain	threshold,	a	pulse	is	transmitted	along	the	axon.	These	pulses	can	be	translated	into	a	
continuous	value—the	pulse	rate	directly	affects	the	rate	at	which	cells	connected	to	the	axon	
receive	 signal	 ions.	 The	 faster	 a	 biological	 neuron	 fires,	 the	 faster	 connected	 neurons	
accumulate	(or	lose	for	inhibitory	connections)	electrical	potential.		
	
Neurons	 are	 arranged	 in	 a	 complex	 series	 of	 interwoven	 networks	 of	 interconnected,	
functionally	related	neurons.	These	networks	of	neurons—the	biological	neural	networks—are	
the	 predominant	 functional	 features	 of	 the	 human	 brain,	 and	 are	 thought	 to	 be	 the	 seat	 of	
human	intelligence.	
	
How	Does	the	Brain	Work?	
While	we	know	a	little	about	the	structure	of	the	human	brain,	how	it	actually	works	remains	
largely	a	mystery.	We’ve	discussed	what	“thinking”	is,	but	how	do	human	brains	think?	What	is	
thought?	How	does	human	memory	work?	If	we	want	to	create	systems	that	mimic	(some	of)	
the	operation	of	the	human	brain,	we	first	need	to	understand,	at	 least	to	some	extent,	how	
the	human	brain	works.	
	
Neural	networks,	whether	biological	or	artificial,	are	effectively	“black	boxes,”	in	the	sense	that	
their	 operation	 can	 be	 viewed	 in	 terms	 of	 their	 inputs	 and	 outputs,	 without	 any	 real	
understanding	of	how	they	work	internally.	Neural	networks	are	not	“explainable.”	In	almost	all	
cases	it	is	not	possible	to	extract	rules	from	the	network	features	to	explain	how	the	network	
determines	its	output	from	the	inputs.	
	
We	can	experiment	to	try	to	get	a	better	understanding	of	how	the	human	brain	works.	We	can	
elicit	responses	from	the	human	brain	by	poking	and	prodding	it	with	electricity,	chemicals,	and	
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physical	probes,	and	by	doing	so	we	can	learn	a	little	about	the	brain’s	electrochemical	signaling	
and	 reaction	 to	 stimuli.	What	we	 learn	 from	such	experimentation	provides	hints	about	how	
the	 brain	 works,	 and	 we	 can	 generalize	 from	 those	 hints,	 but	 that’s	 a	 very	 long	 way	 from	
providing	any	real,	especially	detailed,	understanding	of	how	the	brain	actually	works—how	it	
engages	 in	abstract	thought	and	other	higher-level	thinking.	Even	if	we	were	able	to	map	the	
responses	of	every	neuron,	and	associated	connection	strengths	and	signaling	rates,	to	a	broad	
range	 of	 stimuli,	 we	 would	 still	 only	 have	 an	 (incomplete)	 instantaneous	 picture	 of	 a	 single	
example	 of	 a	 human	 brain.	 Humans	 are	 different,	 and	 each	 of	 us	 learns,	 remembers,	 and	
forgets.	Our	brains	are	dynamic,	constantly	changing	as	we	adapt	and	learn.	We	would	need	to	
experiment	with	many	human	brains	to	discover	generalized	functionality	that	we	could	then	
use	to	help	us	develop	systems	that	could	precisely	mimic	the	functionality	of	the	human	brain.	
Discovering	the	underlying	operations	of	the	human	brain	and	being	able	to	replicate	them	in	
detail	is	far	from	being	within	our	grasp	in	the	foreseeable	future,	but	replicating	in	detail	and	
simulating	 black-box	 functionality	 are	 very	 different	 things—we	 may	 only	 need	 to	 simulate	
black-box	functionality	in	order	for	machines	to	achieve	human	intelligence.	
	
Quantum	Processes	in	the	Human	Brain	
As	described	above,	the	conventional	view	is	that	intelligence,	thought,	consciousness,	etc.	are	
emergent	 properties	 resulting	 from	 the	 interaction	 of	 neurons	 and	 connections	 between	
neurons	(and	the	properties	of	the	neurons	and	connections,	such	as	signal	strength,	signaling	
rate,	 firing	thresholds,	etc.).	Other	 ideas	have	been	proposed	that	challenge	the	conventional	
view,	 and	 I’ll	 briefly	 discuss	 one	 of	 those,	 especially	 as	 it	 relates	 to	 the	 structure	 and	
functionality	of	the	human	brain.	
	
In	 a	 1987	 book,	 Ultimate	 Computing,	 anaesthesiologist	 Stuart	 Hameroff	 suggested	
consciousness	originates	from	quantum	states	in	neural	microtubules	present	inside	neurons	in	
the	 human	 brain	 [8].	 Roger	 Penrose—mathematical	 physicist,	mathematician,	 philosopher	 of	
science,	 and	Nobel	 Laureate	 in	 physics—argued	 in	 his	 1989	 book,	The	 Emperor's	 New	Mind,	
human	consciousness	cannot	be	 represented	by	an	algorithm,	and	so	 is	not	capable	of	being	
modeled	 by	 a	 conventional	 Turing	 machine	 (including	 current	 digital	 computers)	 [9].	
Furthermore,	Penrose	hypothesized	that	quantum	processes	in	the	human	brain	lead	to	human	
consciousness.	Penrose	and	Hameroff	later	collaborated	to	develop	a	biological	theory	of	mind	
known	as	Orchestrated	objective	reduction	(Orch	OR),	postulating	that	consciousness	originates	
at	 the	 quantum	 level	 inside	 neurons	 in	 the	 human	 brain	 [10].	 The	 Orch	 OR	 hypothesis	 has	
generated	some	criticism	and	its	validity	remains	controversial.	
	
While	 Orch	OR	 hypothesizes	 about	 the	 origin	 of	 human	 consciousness,	 and	 not	 about	 other	
cognitive	 processes	 (e.g.	 thinking,	 problem-solving,	 etc.),	 it	 is	 not	 directly	 relevant	 to	 this	
discussion	about	human	intelligence.	It	also	hypothesizes,	and	invites	hypotheses,	about	some	
specific	structures	and	functionality	of	the	human	brain.		
	
Bandyopadhyay	et	al.	 speculated	 in	2014	that	neurons	could	communicate	“wirelessly”—that	
microtubule-based	quantum	coherence	could	extend	between	neurons	that	are	not	physically	
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connected	[11].	Wireless	communication	between	neurons	 is	certainly	an	 intriguing	prospect,	
but	at	this	point	it	is	still	speculation.	Hameroff	and	Penrose	favor	their	original	“gap	junction”	
proposal,	 which	 requires	 communicating	 neurons	 be	 in	 physical	 contact,	 over	 the	 wireless	
transmission	mode	proposed	by	Bandyopadhyay	et	al.,	expressing	doubt	that	the	hypothesised	
wireless	 transmission	would	be	capable	of	 transmitting	 the	 required	superimposed	quantum-
states	[12].	
	
SIMULATING	HUMAN	INTELLIGENCE	
	
Much	of	the	work	 in	the	AI	community	related	to	simulating	human	 intelligence	has	 focused,	
and	 continues	 to	 focus,	 on	 artificial	 neural	 networks	 (ANNs)—mathematical	models	 that	 are	
inspired	by	 the	structure	of	animal	brains	and,	 in	 some	ways,	 the	 functionality	of	 the	human	
brain.	The	reason	for	the	focus	on	ANNs	is	fairly	clear:	Evolution	has	already	solved	the	problem	
of	 developing	 human	 intelligence.	Most	 of	 the	 human	 brain	 is	 composed	 of	many	 biological	
neural	networks	which,	as	stated	above,	are	thought	to	be	the	seat	of	human	intelligence.	
	
We	 should	 note,	 however,	 while	 evolution	 has	 found	 a	 solution	 that	 manifests	 human	
intelligence,	it	may	not	be	the	only	solution,	or	even	the	best	solution—we	only	need	to	look	at	
the	 placement	 of	 the	 optic	 nerve	 at	 the	 back	 of	 the	 eye	 to	 attest	 to	 that.	 Evolution	 doesn’t	
employ	 an	 exhaustive	 search—it	 stops	 looking	 after	 it	 has	 found	 a	 solution	 that	 conveys	 an	
evolutionary	advantage	over	competitors—so	any	solution	it	finds	may	not	be	the	best,	nor	the	
most	 efficient.	 (Both	 are	 somewhat	 subjective	 terms;	 what	 makes	 one	 solution	 better	 than	
another,	and	how	is	efficiency	measured?).	Moreover,	evolution	is	a	slow,	incremental	process,	
and	can	only	use	 the	 tools	and	building	blocks	at	 its	disposal,	with	any	modification	 to	 those	
tools	and	building	blocks	evolving	over	a	very	long	time.	Having	found	a	solution	that	works—
biological	 neurons	 and	 neural	 networks—evolution	 has	 spent	millions	 of	 years	 incrementally	
refining	 that	 solution.	 Humans,	 on	 the	 other	 hand,	 are	 able	 to	 rapidly	 (in	 comparison	 to	
evolutionary	timeframes)	develop	new	tools	and	building	blocks.	
	
ANNs	are	 just	one	of	the	tools	developed	by	humans,	and	while	the	result	of	evolution	 is	the	
only	 exemplar	 we	 have,	 there	 is	 no	 a	priori	 reason	 to	 suggest	 replicating	 the	 evolutionary	
solution	 is	the	best	method	of	developing	computers	that	can	display	human	intelligence	Is	 it	
possible	that	AI	with	a	different	architecture	from	that	of	the	human	brain	(that	is,	not	an	ANN)	
could	 display	 human	 intelligence?	 Or	 do	 we	 believe	 human	 intelligence	 is	 an	 artifact	 of	 the	
architecture	of	the	human	brain,	and	can	only	be	replicated	by	replicating	that	architecture?	Is	
the	 capacity	 for	 human	 intelligence	 confined	 to	 brains—natural	 or	 artificial—that	 look	 like	
human	 brains,	 or	 is	 it	 possible	 that	 other	 techniques,	 or	 combinations	 of	 techniques	 (e.g.	
decision	 trees,	 expert	 systems,	 etc.),	 might	 simulate	 human	 intelligence	 at	 least	 as	 well	 as	
ANNs?	Answering	these	questions	could	fill	an	entire	book,	and	I’ll	leave	them	for	another	time.	
For	now	I’ll	focus	on	ANNs;	there	are	good	reasons	for	doing	so	[13]:	
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• Expert	systems	that	use	symbolic	representations	usually	become	slower	with	a	 larger	
knowledge	 base,	 because	 larger	 sets	 of	 rules	 need	 to	 be	 traversed.	 Human	 experts,	
however,	usually	become	faster.	Maybe	a	non-symbolic	representation	(as	it	 is	used	in	
natural	neural	networks)	is	more	efficient.	
	

• Despite	 the	 fairly	 long	 switching	 time	 of	 natural	 neurons	 (in	 the	 order	 of	 several	
milliseconds)	essential	cognitive	tasks	(like	recognizing	an	object)	are	solved	in	a	fraction	
of	a	second.	If	neural	processing	were	sequential,	only	about	100	switching	operations	
could	 be	 performed	 (“100-step	 rule”).	 Hence,	 high	 parallelization	 must	 be	 present,	
which	 is	 easy	 to	achieve	with	neural	networks,	but	much	more	difficult	 to	 implement	
with	other	approaches.	

	
	

Artificial	Neural	Networks	
As	 described	 above,	 an	 artificial	 neural	 network	 is	 a	 mathematical	 model	 inspired	 by	 the	
structure	of	animal	brains	and,	in	some	ways,	the	functionality	of	the	human	brain.	As	discussed	
above,	animal	brains,	most	particularly	human	brains,	are	composed	of	a	number	of	biological	
neural	 networks,	 and	 those	 biological	 neural	 networks	 themselves	 are	 composed	 of	 large	
numbers	 of	 biological	 neurons.	 ANNs	 are	 constructed	 (most	 often	 in	 software	 simulations,	
though	hardware	ANNs	do	exist),	 using	artificial	 neurons	 that	model,	 to	 varying	degrees,	 the	
behavior	of	biological	neurons.	
	
The	 artificial	 neuron.	 The	 fundamental	 building	 block	 of	 ANNs	 is	 a	 crude	 analogue	 of	 a	
biological	neuron,	called	the	artificial	neuron.		
	
Based	on	the	Threshold	Logic	Unit	(TLU)	proposed	by	McCulloch	and	Pitts,	an	artificial	neuron	
takes	 one	 or	more	 inputs,	 each	 either	 excitatory	 or	 inhibitory,	 and	 tests	 a	 function	 of	 those	
inputs	 against	 a	 threshold	 value—if	 the	 threshold	 is	 exceeded,	 the	 artificial	 neuron	 “fires,”	
producing	an	output	signal	[14].	
	
Input(s)	 to	 the	 artificial	 neuron	 are	 analogous	 to	 the	 signals	 presented	 at	 the	 dendrites	 and	
synaptic	 terminals	 of	 the	 biological	 neuron,	 and	 are	 typically	 the	 product	 of	 the	 input	 signal	
strength	 and	 the	 input	weight	 (lower	 left	 box	 of	 Figure	3).	 The	 sum	of	 the	 input	 signals	 (for	
simplicity	we	 ignore	 the	bias	 input	often	seen	 in	artificial	neurons—refer	 to	 the	 literature	 for	
details)	 is	 passed	 through	 an	 “activation	 function”	 (sometimes	 “transfer	 function”)	 to	
determine	the	artificial	neuron	output.	Typical	outputs	of	an	artificial	neurons	are	0	(or	-1)	or	1	
for	neurons	that	use	step	functions	as	their	activation	function	(upper	right	box	of	Figure	3),	or	
a	 floating-point	value	between	0	(or	 -1)	and	1	for	neurons	that	use	sigmoid-type	functions	as	
their	activation	function	(lower	right	box	of	Figure	3),	but	other	types	of	activation	functions	are	
also	used.	An	artificial	neuron	is	a	linear	classifier;	it	predicts	whether	or	not	the	data	presented	
at	its	inputs	belong	to	a	particular	class	based	on	a	linear	combination	of	the	input	values	and	
weights.	The	output	of	an	artificial	neuron	is	analogous	to	the	signal	propagated	on	the	axon	of	
the	biological	neuron.	
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Figure	3.	Artificial	neuron.		
	

	
The	perceptron.	On	its	own	the	artificial	neuron	cannot	learn:	The	activation	function	and	input	
weights	are	predetermined	and	fixed.	Rosenblatt’s	perceptron	algorithm	describes	a	method	of	
iteratively	adjusting	 the	 input	weights	of	an	artificial	neuron	by	presenting	pre-classified	data	
(“training	examples”)	at	its	inputs	and	comparing	the	output	to	the	known	classification	[15].	If	
the	input	data	is	linearly	separable,	and	enough	training	examples	are	available,	the	perceptron	
algorithm	 guarantees	 that	 a	 set	 of	 input	 weights	 can	 be	 found	 that	 will	 cause	 the	 artificial	
neuron	to	successfully	predict	the	classification	of	unseen	data	(i.e.	data	that	is	not	part	of	the	
training	examples	used	to	“train”	the	input	weights).	In	the	context	of	ANNs,	a	perceptron	is	an	
ANN	with	a	single	artificial	neuron	that	uses	the	unit	step	function	as	its	activation	function	(the	
unit	step	function	results	in	values	of	0	or	1).	
	
In	1969	Marvin	Minsky,	cognitive	and	computer	scientist,	and	co-founder	of	the	Massachusetts	
Institute	of	 Technology's	 (MIT)	AI	 laboratory,	 and	Seymour	Papert,	mathematician,	 computer	
scientist,	and	MIT	researcher,	published	their	book	Perceptrons	[16].	The	book	discussed	some	
of	the	strengths	of	the	perceptron,	but	also	highlighted	some	major	 limitations.	 It	 is	generally	
thought	that	Minksy	and	Papert’s	criticism	of	the	perceptron	and	pessimistic	predictions	in	the	
book	contributed	to	the	so-called	“AI	winter”	of	the	1980s.	After	publication	of	the	book,	the	
direction	 of	 AI	 research	 changed,	 with	 focus	 shifting	 from	 the	 perceptron	 and	 ANNs	 to	
“symbolic”	AI	systems	such	as	expert	systems.	Later,	the	advent	of	the	"Hopfield	net"	[17]	and,	
separately,	 the	 multi-layer	 network	 training	 algorithm	 “backpropagation”	 [18]	 helped	 revive	
research	 into	 ANNs.	 Universal	 approximation	 theorems	 have	 since	 shown	 that	 ANNs	 are	
capable	of	representing	a	wide	variety	of	functions	when	given	appropriate	connection	weights.	
While	performance	ANNs	can	be	sensitive	to	small	changes	in	input	patterns,	careful	selection	
of	 network	 topology	 and	 training	 data	 goes	 a	 long	 way	 to	 alleviating	 those	 problems	 and	
allowing	ANNs	to	generalize	well.	
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In	2009,	neuroscientist	Henry	Markram,	claimed	he	was	going	to	simulate	the	human	brain	in	a	
computer.	 In	 2013,	 the	Human	Brain	 Project,	with	Markram	as	 one	 of	 the	 original	 executive	
committee	members,	was	 started	with	 funding	 of	 1	 billion	 euros.	 The	 project	 is	 a	 long-term	
research	 project	 to	 allow	 researchers	 to	 advance	 knowledge	 in	 the	 fields	 of	 neuroscience,	
computing,	and	brain-related	medicine.	More	 than	10	years	after	 the	 start	of	 the	project	we	
don’t	yet	have	a	human	brain	simulated	in	a	computer,	leading	to	some	criticism	of	the	project.	
The	failure	of	the	project	to	deliver	on	the	2009	claim	by	Markram	speaks	more	to	the	need	for	
realistic	expectations	than	it	does	to	the	efficacy	of	ANNs.		
	
ANNs	are	now	a	major	focus	of	AI	research,	particularly	in	the	reasonably	nascent	field	of	“deep	
learning.”	
	
The	network.	An	artificial	neural	network	is	an	interconnected	group	of	artificial	neurons	(see	
Figure	4).	When	used	 in	a	network,	an	artificial	neuron	 is	usually	referred	to	as	a	“processing	
element,”	or	more	 commonly	 simply	 as	 a	 “node.”	 The	nodes	 in	 an	ANN	are	most	 commonly	
arranged	in	sub-groups	referred	to	as	“layers.”	
	
An	important,	but	often	overlooked,	point	to	remember	is	that	it	 is	not	always	appropriate	to	
think	of	a	node	in	an	ANN	as	being	in	a	one-to-one	relationship	with	actual	biological	neurons	in	
a	biological	neural	network.	Often	 it	 is	more	 realistic	 to	 consider	a	 single	node	 in	an	ANN	as	
modeling	the	behavior	of	a	group	of	biological	neurons	in	a	biological	neural	network.	
	
While	current	ANN	architectures	aim	to	simulate	networks	in	which	the	neurons	are	physically	
connected	 (via	 axons	 and	 dendrites),	 there	 is	 no	 reason	 they	 couldn’t	 simulate	 wireless	
communications	between	neurons,	even	as	a	black-box	process.	But	 since	 the	concept	 is	 still	
very	much	 in	 the	realm	of	speculation	not	enough	 is	known	about	how	 it	might	be	modeled.	
Realistically	though,	one	would	guess	that	the	method	of	communication	is	not	as	significant	or	
important	as	the	content	or	parameters	of	the	communication—signal	strengths,	signal	rates,	
and	 timings	 could	 all	 be	 simulated	 via	 physical	 connections	 in	 the	 ANN	 mimicking	 wireless	
connections.	 I	 think	 it	 is	 unlikely,	 though	 not	 impossible,	 that	 the	 actual	 transmission	mode	
(wireless	vs	wired)	is	a	significant	factor	on	its	own.	
	
How	is	the	Human	Brain	Different	from	an	ANN?	
The	artificial	neuron	described	above	is	a	simple,	crude	analogue	of	a	biological	neuron.	While	
implementations	of	ANNs	and	artificial	neurons	vary	 in	many	ways,	 including	complexity,	 the	
operation	of	 the	biological	neuron	 is	 far	more	 sophisticated	 than	 that	of	 an	artificial	neuron.	
The	connections	between	neurons	 in	a	biological	neural	network,	and	the	signals	propagated	
across	 those	 connections,	 are	 far	 more	 nuanced	 than	 in	 an	 ANN.	 Biological	 neurons	 have	
different	types	of	synapses	that	operate	 in	different	ways	and	at	different	speeds,	the	signals	
passed	 between	 neurons	 can	 vary	 in	 both	 strength	 and	 timing.	 Biological	 neurons	 can,	 for	
example,	differentiate	input	signals	based	on	the	rate	of	arrival	of	the	signals,	whereas	(most)	
artificial	neurons	detect	and	act	on	the	strength	of	the	signal	only.	The	human	brain	is	different	
because	of	its	sophistication	and	nuanced	processes.	

https://www.humanbrainproject.eu/en/


Ubiquity,	an	ACM	publication	
	 June	2021	
	 	 	
 
	 	 	
 

http://ubiquity.acm.org	 13			 2021	Copyright	held	by	the	Owner/Author.		
	 	 	 	 	 Publication	rights	licensed	to	ACM.	

The	average	human	brain	is	composed	of	about	86	billion	neurons	that	are	interconnected	via	
about	 100	 trillion	 connections.	 Each	 neuron	 is,	 in	 simple	 terms,	 a	 tiny	 processor	 capable	 of	
some	limited	computation.	The	number	of	neurons	is	an	important	indicator	of	brain	capacity,	
but	there	is	good	evidence	that	connection	strengths—how	strongly	neurons	influence	neurons	
to	 which	 they	 are	 connected—are	 the	 real	 information	 stores	 of	 the	 brain.	 Google’s	 cat-
recognizing	 ANN	 from	 2012	 had	 one	 billion	 connections—10	 times	 more	 than	 any	 previous	
ANN,	 but	 100,000	 times	 fewer	 than	 the	 average	 human	 brain.	 Today	 supercomputers	 are	
struggling	with	ANNs	an	order	of	magnitude	or	so	bigger	than	Google’s	2012	ANN	(our	state-of-
the-art	 is	 still	more	 than	 four	orders	of	magnitude	 smaller	 than	 the	human	brain	 in	 terms	of	
connections).	The	human	brain	is	different	because	of	its	sheer	scale.	
	
Most	ANNs	are	constructed	with	a	layered	architecture	(see	Figure	4).	While	the	cerebral	cortex	
is	layered,	the	nature	of	the	layering	and	the	topology	of	the	networks	within	the	cortex	layers	
is	very	different	from	that	of	ANNs.	The	layered	architecture	of	ANNs	is	a	fixed,	rigid	structure,	
where	neurons	belong	to	a	particular	layer,	and,	in	general,	all	neurons	in	a	given	layer	“fire”	at	
the	same	time—so	signals	move	forward	(in	a	feed-forward	ANN)	layer-by-layer.		
	

Figure	4.	Artificial	Neural	Network	(ANN)	(weights	and	biases	not	shown).	
	

	
	
This	 layered	architecture	developed	at	a	 time	when	 the	actual	operation	of	 the	human	brain	
was	 less	 well	 understood	 than	 it	 is	 today.	 More	 recent	 studies	 indicate	 that	 neuronal	
functionality	 in	 the	 cerebral	 cortex	 can	 span	multiple	 layers,	 allowing	neural	 networks	 in	 the	
cortex	to	be	much	more	complex	and	nuanced	than	previously	thought	(e.g.	Larkum	et	al	[19]).	
The	 human	 brain	 is	 different	 because	 the	 topology	 of	 the	 biological	 neural	 networks	 in	 the	

https://blog.google/technology/ai/using-large-scale-brain-simulations-for/
https://blog.google/technology/ai/using-large-scale-brain-simulations-for/
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cerebral	 cortex	allows	 for	much	greater	 complexity,	diversity,	 and	nuance	 in	 the	 connections	
between	neurons	and	the	distribution	of	signals	throughout	the	network.	
	
The	average	human	brain	has	more	than	5,000	times	the	number	of	neurons	than	the	world’s	
largest	ANN	with	16	million	neurons.	We	can	simulate	neurons	in	software,	and	by	doing	that	
we	can	scale	to	very	large	sizes,	but	unless	the	code	to	fire	a	neuron	and	propagate	signals	over	
connections	 runs	on	a	separate	processor	 (or	core)	 for	each	neuron	and	connection,	 firing	of	
neurons	and	propagation	of	signals	through	the	network	is	done	largely	in	a	serial	fashion—and	
that	takes	time.	We	can	mitigate	that	by	splitting	the	code	across	many	processors	running	in	
parallel.	Our	largest	supercomputer	has	in	the	order	of	10	million	processors,	most	have	fewer	
than	1	million.	We	call	these	computers	“massively	parallel.”	In	the	human	brain,	neurons	fire	
and	 signals	 are	 propagated	 simultaneously—the	 human	 brain	 has	 the	 capacity	 to	 have	 86	
billion	processors	running	concurrently	with	100	trillion	propagating	signals.	The	human	brain	is	
different	because	it	is	breathtakingly	parallel.	
	
Current	supercomputers	require	somewhere	between	2	million	and	18	million	watts	of	power	
while	 they	 are	 running,	 depending	 upon	 the	 supercomputer	 and	 configuration,	 and	 fill	 large	
data	 centers.	 The	human	brain,	on	 the	other	hand,	 requires	about	20	watts	of	power	 to	 run	
(less	than	an	average	household	incandescent	light	globe),	and	fits	in	the	average	human	skull.	
Moreover,	 the	 human	 brain	 is	 atop	 a	 mobile	 enclosure	 that	 provides	 nuanced	 inputs	 from	
sensors	that	are	able	to	pre-process	input	data	before	forwarding	them	to	the	brain	for	further	
processing.	 The	 human	 brain	 is	 different	 because	 it	 is	 small,	 power-efficient,	 mobile,	 and	 is	
context-aware	with	respect	to	its	environment.	
	
Embodiment	and	Environment	
ANNs	are	typically	 implemented	in	software	and	are	trained	and	executed	in	the	context	of	a	
computing	 environment.	 Some	ANNs	 are	 implemented	 in	 hardware	 and	 are	 deployed	 into	 a	
working	 environment,	 but	 the	 network	 is	 usually	 trained	 offline,	 perhaps	 in	 a	 computer-
simulation	of	the	intended	working	environment,	and	it	is	the	trained	network,	implemented	in	
hardware,	that	is	deployed	into	the	real	working	environment.	
	
Working	human	brains,	on	the	other	hand,	are	physical,	and	are	always	present	in	the	human	
body,	 intimately	connected	to	the	body	and,	almost	always,	all	 its	sensory	capabilities.	 It	 is	 in	
the	 context	 of	 that	 embodiment,	 and	 connection	 to	 the	 body	 and	 sensory	 inputs,	 that	 the	
neural	networks	in	the	human	brain	learn	(i.e.	are	trained)	and	execute.	There	are,	of	course,	
issues	with	people	who	are,	for	example,	without	sight	and/or	hearing,	perhaps	from	birth,	or	
were	born	without,	or	have	 lost,	 limbs,	or	who	are	paralyzed	to	varying	degrees,	and	so	may	
lack	 some	 sensory	 inputs—but	 they	 are	 not	 the	 majority	 case,	 and	 for	 now	 I’ll	 leave	 those	
issues	aside.	Human	brains	are	always	immersed	in	their	environment	and	(generally)	receiving	
sensory	 inputs	 and,	 as	 a	 result,	 are	 always	updating	 their	 training	 (creating	new	 connections	
between	neurons,	updating	connection	characteristics,	etc.)	in	their	real	working	environment.	
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There	are	 several	 theories	 surrounding	 the	embodiment	of	 the	human	brain.	The	“embodied	
cognition”	 theory	posits	 that	many	 features	of	 cognition	are	 shaped	by	aspects	of	 the	entire	
body—other	theories	go	further	and	suggest	that	the	“mind”	doesn’t	reside	solely	in	the	brain,	
or	even	the	body,	but	extends	into	the	physical	world	(the	“extended	mind”	thesis).	
	
I	 think	 the	embodied	cognition	theory	 is	close	to	 the	reality	of	how	the	human	brain	uses	 its	
knowledge	 of	 its	 environment,	 through	 the	 body’s	 interaction	 with	 the	 environment	 and	
translation	of	those	interactions	into	sensory	inputs	to	the	brain,	to	construct	a	representation	
of	its	“world,”	and	gain	knowledge	and	understanding	from	that	representation.	
	
An	ANN	can	be	deployed	into	a	physical	robot	that	has	myriad	hardware	sensors	that	are	able	
to	provide	sensory	input	to	the	ANN.	Robots	can	sense	electromagnetic	radiation	in	frequencies	
not	 available	 to	 humans.	 They	 can	 “see”	 in	 the	 infrared	 and	 ultraviolet	 ranges	 or	 by	 sonar,	
radar,	or	 lidar;	 they	can	“hear”	microwave	and	AM	andFM	radio	 frequencies;	 they	can	“feel”	
using	pressure	sensors	and	temperature	sensors;	they	can	measure	moisture	content	in	the	air	
or	soil;	and	they	can	check	acidity	or	alkalinity	levels.	The	range	of	sensors	available	to	robots	is	
enormous—robots	 have	 access	 to	 much	 broader	 sensory	 information	 than	 those	 directly	
available	 to	 the	 human	 brain	 (humans	 can	 access	 the	 same	 hardware	 sensors,	 but	 the	
interfaces	are	somewhat	different,	and	access	to	the	information	is	likely	much	slower	than	for	
robots).	Not	only	is	the	range	of	available	sensors	enormous,	the	range	over	which	each	sensor	
measures	 the	 particular	 phenomenon	 for	which	 it	was	 constructed	 is	 likely	 to	 be	 far	 greater	
than	 the	 human	 body	 is	 capable	 of.	 For	 example,	 the	 human	 body	 can	 sense	 only	 a	
(comparatively)	narrow	range	of	temperatures	before	the	biological	sensors	in	the	body	fail,	or	
the	 brain	 instructs	 them	 to	 disengage,	 whereas	 robots	 are	 likely	 to	 be	 able	 to	 sense	 a	 far	
greater	range	before	their	temperature	sensors	start	to	melt	or	freeze.	
	
An	 important	 question	 is	 how	 the	 different	 modes	 of	 embodiment	 and	 sensory	 capabilities	
affect	how	the	human	brain	learns	and	perceives,	versus	how	an	ANN	inside	a	robot	learns	and	
perceives.	 Observation	 would	 suggest	 the	 human	 brain/body	 combination	 has	 far	 more	
nuanced	 control	 over/reactions	 to	 sensory	 input—whether	 that’s	 because	 the	 sensors	 have	
finer	 control	 and	 are	 more	 nuanced,	 or	 the	 brain’s	 reactions,	 learned	 over	 time,	 are	 more	
nuanced,	or,	more	 likely,	a	 combination	of	both,	 it	 is	hard	 to	gauge.	A	 simple	example	 is	 the	
difference	between	how	a	human	approaches	picking	up	a	glass	of	water,	especially	for	the	first	
few	 times.	 Humans	 generally	 have	 far	more	 finesse,	much	 greater	 nuanced	 control,	 than	 do	
most	 robots,	 simply	 because	 most	 humans	 have	 learned	 over	 time	 how	 to	 approach	 such	
situations.	ANNs	can	learn	too,	through	feedback	via	robotic	sensors,	but	humans	have	millions	
of	years	of	 learning	pre-encoded	 in	 (the	older	parts	of)	 their	brains	 that	 they	can	draw	on	to	
assess	both	familiar	and	unfamiliar	situations.	
	
I	 think	 it	 is	 fair	 to	 say	 that	although	we	can	 simulate,	 to	 some	degree,	 the	embodiment	of	 a	
human	brain	and	its	immersion	in	its	environment	via	its	connection	to	the	human	body,	how	
ANNs	 learn,	 how	 they	 develop	 “intelligence,”	 from	 knowledge	 of	 their	 environment	 will	 be	
qualitatively	different	from	the	human	brain.	
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Does	Thought	Require	Language?		
Language	 differentiates	 humans	 from	 all	 other	 animals.	 Language,	 at	 its	 simplest,	 is	 just	 a	
means	of	 communication,	but	 it	 is	a	 special	 form	of	 communication.	Most,	 if	not	all,	 animals	
communicate,	but	only	humans	use	language	to	convey	information.	Language	implies	syntax,	
in	which	word	order	determines	meaning,	and	grammar,	that	defines	rules	to	convey	meaning.	
While	 some	 species	 communicate	 in	 sophisticated	ways,	 some	of	which	 include	 vocalization,	
only	humans	use	 language	with	grammar	and	syntax	 (with	the	caveat	 that	some	species	may	
have	 languages	with	 syntax	 and	 grammar	 as	 yet	 undiscovered	 by	 humans).	Moreover,	 every	
known	 human	 society	 has	 used	 language	 to	 communicate—language	 is	 ubiquitous	 among	
humans.	All	of	this	raises	the	question	of	how	language	might	be	related	to	the	development	
and	maintenance	of	human	intelligence.	
	
Poet	and	playwright,	Oscar	Wilde,	wrote:5	“It	 is	only	by	language	that	we	rise	above	them,	or	
above	each	other—by	language,	which	is	the	parent,	and	not	the	child,	of	thought”	[20].	
	
Polymath	Bertrand	Russell	stated:	“Language	serves	not	only	to	express	thoughts,	but	to	make	
possible	thoughts	which	could	not	exist	without	it”	[21].		
	
At	face	value	both	seem	to	suggest	without	language,	thought	is	not	possible.	
	
Tufts	 University	 magazine,	 Tufts	 Observer,	 published	 an	 article	 by	 Tess	 Ross-Callahan	 that	
describes	 the	 experiences	 of	 a	 stroke	 victim	 left	without	 language	 for	 a	 period	 of	 time,	 and	
Hellen	Keller,	who	lost	her	sight	and	hearing	at	the	age	of	19	months,	and	did	not	begin	to	learn	
a	language	until	she	was	almost	seven	years	old	[22].	
	
In	that	article,	Ross-Callahan	reports	the	experience	of	neuroanatomist	Dr.	Jill	Bolte	Taylor	who,	
after	suffering	a	catastrophic	stroke	in	1996,	lived	for	almost	a	decade	without	language—she	
didn’t	just	lose	the	ability	to	speak,	but	actually	had	no	access	to	the	language	she	had	learned	
throughout	her	lifetime.	She	had	no	words	with	which	to	form	her	thoughts	(Bolte	Taylor’s	own	
recounting	of	the	story	can	be	found	in	her	2008	book,	My	Stroke	of	Insight	[23]).	Bolte	Taylor	
describes	 her	 experience	during	 that	 almost	 10-year	 period	 as	 being	without	words,	without	
reflection.	She	says	she	experienced	sensations	(such	as	the	sun	shining),	even	emotions	(“pure	
joy,”	 in	 her	 words,	 in	 a	 2010	 interview	 with	 RadioLab),	 but	 is	 not	 clear	 on	 whether	 she	
experienced	 thought.	Bolte	Taylor	 says	after	 some	of	her	memories	 returned,	 she	 thought	 in	
images,	rather	than	words.	
	
Ross-Callahan	quotes	Helen	Keller	as	saying:	“When	I	 learned	the	meaning	of	 ‘I’	and	‘me’	and	
found	that	I	was	something,	I	began	to	think.	Then	consciousness	first	existed	for	me”	[24].	
	

                                                
5 From Wilde’s essay “The Critic as an Artist” (1891). 

https://www.wnycstudios.org/podcasts/radiolab/segments/91729-a-world-without-words
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At	 face	 value	 this	 seems	 to	 suggest	 Keller	 believed	 that	 before	 learning	 a	 language,	 she	was	
devoid	of	all	thought.	But	in	the	Tufts	Observer	article,	Ross-Callahan	states:	“It’s	not	that	Keller	
wasn’t	 thinking	before	that	day.	She	may	have	been	volatile	and	violent,	but	she	was	able	to	
identify	people’s	faces	with	her	touch,	desire	ice	cream,	and	recognize	repeated	objects.”	
	
Indicating	that	whether	or	not	Keller	experienced	direct	thought,	she	did	experience	emotions	
and	desires.	
	
In	her	1903	autobiography,	Keller	recalled	the	moment	her	teacher,	Anne	Sullivan,	taught	her	
the	word	“water,”	her	first	word:	“I	stood	still,	my	whole	attention	fixed	upon	the	motions	of	
her	fingers.	Suddenly	I	felt	a	misty	consciousness	of	something	forgotten—a	thrill	of	returning	
thought;	 and	 somehow	 the	 mystery	 of	 language	 was	 revealed	 to	 me”	 [25].	 “Something	
forgotten,”	“a	thrill	of	returning	thought,”	is	at	least	suggestive	that	Keller	had	experienced	at	
least	one	thought	to	which	she	could	return	before	learning	language.	
	
Only	Hellen	Keller	and	Dr.	Jill	Bolte	Taylor	really	know	what	they	experienced,	but	 I	don’t	see	
how	it	 is	possible	to	 learn	a	 language,	to	 learn	words	and	their	meanings,	without	thinking.	 It	
may	be	that	before	learning	(or	re-learning/remembering	in	the	case	of	Bolte	Taylor)	words	and	
language,	 Keller	 and	 Bolte	Taylor	 couldn’t	 form	 complex	 thoughts,	 or	 carry	 on	 (mental)	
conversations	with	themselves,	but	the	notion	that	they	had	no	thought	at	all	is,	in	my	opinion,	
not	reasonable.		
	
Though	 language	 is	 important	 for	 developing	 thought,	 and	 especially	 engaging	 in	
communication	and	social	interaction	that	may	enhance	thought,	I	do	not	believe	language	is	a	
prerequisite	for	thought.	
	
Can	an	ANN	Match	the	Human	Brain?	
Might	we	one	day	construct	supercomputers	large	enough	to	run	ANNs	with	a	similar	number	
of	neurons	and	connections	as	the	human	brain?	Perhaps.	Is	 it	possible	that	in	the	future,	we	
could	 construct	 those	 supercomputers	 small	 enough	 to	 rival	 the	 power	 requirements	 and	
physical	size	of	the	human	brain,	and	mount	them	inside	mobile	enclosures	with	smart	sensors?	
Perhaps.	 But	 the	 likelihood	 we	 could	 do	 either	 of	 those	 things	 any	 time	 in	 the	 foreseeable	
future,	much	less	both,	is	vanishingly	small.	
	
For	 now	we	must	 be	 satisfied	with	 the	ANNs	we	 can	 construct	which,	 as	we	 have	 seen,	 are	
orders	 of	 magnitude	 smaller	 in	 terms	 of	 the	 number	 of	 neurons	 and	 connections	 than	 the	
human	brain.	But	the	brain	 isn’t	a	single,	monolithic	neural	network.	As	previously	described,	
the	brain	is	composed	of	many	interconnected	neural	networks,	each	(presumably)	performing	
separate,	 specific	 functions—one	 neural	 network	 inside	 the	 human	 brain	 may	 perform	 its	
function	and	 then	pass	 its	output(s)	onto	another	neural	network	 for	 further	processing,	 in	a	
divide-and-conquer	 fashion.	 The	 totality	 of	 those	many	 biological	 neural	 networks,	 and	 their	
interaction,	is,	at	least	in	part,	what	allows	humans	to	display	human	intelligence.	
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Consider	an	area	of	the	human	brain	known	as	the	“fusiform	face	area”	(FFA).	The	FFA,	located	
in	the	inferior	temporal	cortex,	is	part	of	the	human	visual	system	and	is	thought	to	be	one	of	
the	 areas	 of	 the	 brain	 specialized	 for	 facial	 recognition	 [26].	 The	 FFA	 is	 a	 localized	 group	 of	
interconnected	 neurons—a	 biological	 neural	 network.	 The	 human	 brain	 has	 several	 areas	
specialized	 for	 facial	 recognition	 (e.g.	 the	 occipital	 face	 area,	 OFA,	 and	 others)	 that	 work	 in	
concert	 to	 recognize	 faces	 in	different	circumstances,	at	different	ages,	etc.	We	already	have	
very	 good	 facial	 recognition	 systems—machines	 utilizing	 ANNs	 specialized	 for	 facial	
recognition—and	 there	 is	 every	 reason	 to	 believe	 that	 we	 could	 combine	 several	 of	 those	
systems	to	construct	a	divide-and-conquer	facial	recognition	machine	that	would	rival	the	facial	
recognition	ability	of	the	human	brain.	
	
Alan	 Turing	 believed	machines	 would,	 one	 day,	 think,	 and	 stated	 so	 in	 his	 1950	 paper:	 “…I	
believe	that	at	the	end	of	the	century	the	use	of	words	and	general	educated	opinion	will	have	
altered	so	much	that	one	will	be	able	 to	speak	of	machines	 thinking	without	expecting	 to	be	
contradicted.”	
	
The	 “end	 of	 the	 century”	 was,	 with	 hindsight,	 optimistic.	 I	 think	 it	 would	 be	 optimistic	 to	
suggest	that	we	will	be	capable	of	constructing	machines	that	could	rival	the	human	brain	even	
in	 the	 next	 few	 decades.	 But	 I	 do	 think	 we	 could	 quite	 correctly	 claim	 that	 by	 using	 ANN	
technology	 we	 are	 even	 now	 able	 to	 construct	 machines	 that	 can	 match	 some	 specific	
functionalities	of	the	human	brain.	
	
Human	brains	have	been	evolving	for	millions	of	years—hundreds	of	millions	if	we	include	our	
“reptilian	 brain”	 (the	 brainstem	 and	 the	 cerebellum).	 ANNs	 have	 been	 with	 us	 for	 only	 a	
handful	 of	 decades—and	 they	 are	 being	 helped	 along	 by	 a	 co-operative	 group	 of	 the	 most	
intelligent	and	complex	thinking	machines	in	the	known	universe.	We	should	wait	a	few	more	
decades	before	we	dismiss	ANNs	as	the	basis	of	intelligent	machines.	
	
WILL	MACHINES	EVER	DISPLAY	HUMAN	INTELLIGENCE?	
	
Categorically	yes.	Some	machines	already	do,	or	are	very	close—albeit	 in	specific,	constrained	
circumstances.	Some	examples	are	(not	an	exhaustive	list):	
	
● In	 2018,	 Google	 Duplex,	 an	 AI-powered	 system	 that	 carries	 on	 human-like	

conversations,	was	widely	reported	as	having	passed	the	Turing	test	[27].	
● Facial	 recognition	 software,	 coupled	 with	 state-of-the-art	 cameras,	 are	 very	 close	 to	

human	standards.	
● Some	of	the	game-playing	software	now	available,	particularly	games	such	as	chess	and	

Go,	matches	or	exceeds	human-level	playing.	
● AI-powered	chatbots	are	closing	in	on	human-level	performance	(such	as	IBM’s	Watson	

Assistant	and	Bold360	by	LogMeIn).	
● Intelligent	 automated	 systems	 (self-driving	 cars,	 home-automation	 systems,	 etc.)	 are	

very	close	to	human	standards,	and	will	probably	soon	be	ubiquitous.	

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://www.ibm.com/cloud/watson-assistant
https://www.ibm.com/cloud/watson-assistant
https://www.bold360.com/
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● AI	 has	 been	most	 prominent,	 and	has	 produced	 very	 promising	 results,	 over	 the	past	
decade	or	 so	 in	 the	 field	 of	 data	 science	 (“Big	Data”).	 The	 vast	 amounts	 of	 data	 now	
available,	especially	the	extraordinary	volumes	of	data	collected	by	digital	giants	such	as	
Google	 and	 Facebook,	 are	 almost	 impossible	 for	 humans	 to	 comprehend,	 let	 alone	
process	in	any	reasonable	timeframe.	
	

In	2018	Gerard	Doyle,	network	manager	for	Technology	Ireland	ICT	Skillnet,	asserted:	“Many	AI	
systems	are	displaying	intelligence	at	a	scale	that	is	far	beyond	that	of	a	human.	It	may	be	that	
in	 the	 future	 we	 will	 conclude	 that	 Turing	 picked	 the	 wrong	 benchmark—the	 human—and	
trying	 to	prove	 that	a	machine	can	answer	questions	 like	a	human	may	become	an	historical	
irrelevance”	[28].	
	
SOME	THOUGHTS	ON	“THINKING	LIKE	HUMANS”	
	
I	 stated	earlier	 that	what	Hofstadter	 refers	 to	as	“mind,	soul,	 ‘I’”	and	the	related	concepts	of	
consciousness,	 self-awareness,	 etc.	 were	 beyond	 the	 scope	 of	 this	 article,	 and	 that	 I	 would	
restrict	this	discussion	primarily	to	issues	surrounding	machines	displaying	intelligent	behavior.	
Now	 that	 the	 “primarily”	part	of	 the	discussion	 is	done,	 I	will	 indulge	 in	 some	speculation	of	
some	of	the	more	esoteric	philosophical	issues—namely	“mind,	soul,	‘I’”	and	the	like.	
	
The	(original)	question	posed	at	the	beginning	of	this	article	was	“Will	machines	ever	think	like	
humans?”.	
	
I’ve	 already	discussed,	 somewhat	 shallowly,	what	we	mean	by	 “thinking,”	 but	 let’s	 take	 that	
discussion	a	little	further.	What	do	we	mean	by	“thinking	like	humans?”	Humans	are	self-aware,	
conscious	of	their	existence,	of	their	“being.”	They	have	emotions—they	are	at	different	times	
happy,	 sad,	 angry,	 enraged,	 disappointed,	 elated,	 annoyed.	 They	 engage	 in	 free	 and	 original	
thought	and	daydreaming;	they	dream	during	their	sleep;	they	have	“aha!”	moments.	Humans	
are,	or	do,	all	those	things,	and	more.	Are	those	qualities	and	states	a	function	of	the	brain	and	
“thinking,”	 or	 are	 they	 somehow	 separate?	 As	 I	 stated	 earlier,	 I	 think	 they	 are	 all	 emergent	
properties	of	the	structure	and	function	of	the	brain.	
	
More	particularly	though,	can	a	machine	“think	like	a	human”	without	displaying	the	qualities	
and	states-of-mind	discussed	above?	Can	a	machine	think	like	a	human,	but	not,	for	example,	
engage	 in	 free	and	original	 thought,	even	daydreaming,	or	be	disappointed	by	 something,	or	
enraged	about	something?	Can	a	machine	that	thinks	like	a	human	not	be	conscious	and	self-
aware?	 Consider	 the	 reverse:	 Can	 we	 imagine	 a	 human	 that	 is	 not	 conscious	 of	 their	 own	
existence,	that	is	not	self-aware,	that	cannot	engage	in	free	and	original	thought,	be	said	to	be	
“thinking	like	a	human?”	Could	they	be	said	to	be	thinking	at	all?	 I	don’t	think	so,	and	I	don’t	
think	the	reverse	is	true.	I	think	a	machine	that	thinks	like	a	human	comes	with	all	the	qualities,	
emotions,	 and	 cognitive	 abilities	 (e.g.	 free	 and	 original	 thinking,	 daydreaming,	 etc.)	 that	 a	
thinking	human	does	(and	if	it	doesn’t,	it	can’t	be	said	to	think	like	a	human).	
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How	plausible	is	it	that	we	could	actually	create	machines	that	could	engage	in	free	and	original	
thought?	It’s	not	so	far-fetched.	As	way	back	as	1987,	Erik	T.	Mueller	published	his	Ph.D.	thesis	
[29]	“Daydreaming	and	Computation:	A	Computer	Model	of	Everyday	Creativity,	Learning,	and	
Emotions	in	the	Human	Stream	of	Thought,”	which	was	published	as	the	book	Daydreaming	in	
Humans	and	Machines	in	1990	[30].	The	thesis	and	book	describe	the	DAYDREAMER	cognitive	
architecture	 developed	 by	 Mueller,	 which	 models	 the	 human	 stream	 of	 thought	 and	 its	
triggering	and	direction	by	emotions—effectively	simulating	human	daydreaming.	
	
Leaving	aside	for	a	moment	the	question	of	whether	we	can	actually	create	machines	that	think	
like	humans	 in	 the	way	 just	described,	have	we	 thought	 this	 through?	Do	we	want	 to	create	
machines	that	think	like	humans	if	they	are	going	to	come	with	all	that	that	means?	Let’s	think	
about	that	for	a	moment.	
	
Why	 would	 we	 want	 to	 do	 that?	We	 already	 have	 more	 than	 seven	 billion	 humans	 on	 the	
planet,	many	of	whom	do	a	perfectly	satisfactory	job	of	thinking	like	humans.	Furthermore,	we	
already	know	how	to	create	more,	and	we	have	a	good	working	pipeline	already	in	progress,	so	
waiting	 the	 20	 years	 or	 so	 it	 takes	 for	 the	 human	 brain	 to	 reach	 maturity	 shouldn’t	 be	 a	
problem.	
	
Are	 we	 hoping	 one	 day	 artificial	 intelligence	 will	 surpass	 human	 intelligence,	 perhaps	 even	
augment	 our	 own	 (via	 prostheses	 or	 implants),	 and	 lead	 us	 to	 places	we	 couldn’t	 go	 on	 our	
own?		
	
Perhaps	 we	 think	 we	 need	 to	 do	 it—but	 do	 we?	 Do	 we	 really	 need	 machines	 that	 display	
human	intelligence?	Don’t	we	just	need	algorithms—smart	algorithms,	maybe	even	intelligent	
algorithms—to	allow	machines	to	do	the	jobs	for	which	they	are	intended	(the	jobs	we	can’t,	or	
don’t	want	to,	do)?	
	
Or	do	we	want	to	do	it	just	to	see	if	we	can—to	climb	the	metaphorical	mountain	just	because	
it’s	there?		
	
If	we	do	create	machines	that	think	just	like	humans,	that	are	self-aware	and	conscious	of	their	
existence,	do	we	afford	them	the	same	rights	as	any	other	sentient	being?	
	
Are	 we	 ready—willing—to	 deal	 with	 issues	 attendant	 to	 creating	 machines	 that	 think	 like	
humans?	

	
*****	

	
The	 following	 commentary	 is	 from	 members	 of	 the	 Ubiquity	 editorial	 board.	 Further	
commentary	from	interested	readers	is	invited.	
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From	Ted	Lewis:	
“You	affirm	your	belief	that	AI	can	equal	or	surpass	human	intelligence	without	addressing	the	
core	 issue	of	 awareness	 and	 consciousness.	 Perhaps	 intelligence	 is	 not	 one	 thing.	 It	might	 be	
levels.	My	dog	shows	signs	of	 intelligence	and	self-awareness	at	one	 level	while	my	12-yr	old	
shows	signs	at	another	level,	etc.	Most	“intelligences”	in	your	list	are	simply	fast	searches	over	
big	spaces	that	humans	cannot	compete	with	because	of	the	relatively	slow	human	brain.	This	
seems	to	imply	speed	=	intelligence,	which	is	not	cognition	or	consciousness.”	
	
Author’s	response:	
I	stated	in	the	opening	section	of	the	article	that	I	would	not	directly	address	consciousness	and	
self-awareness.	 I’m	not	convinced	either	 is	a	prerequisite	for,	or	at	the	core	of,	 intelligence—
that	would	depend	upon	your	definition	of	intelligence.	
	
There	may	well	 be—probably	 is—an	 “intelligence	 gradient,”	 or	 levels	 of	 intelligence.	 Solving	
most	 problems	 involves	 searching	 over	 large	 solution	 spaces	 looking	 for	 a	 good,	 if	 not	 “the	
best,”	solution—the	ability	to	construct	and	search	a	large	solution	space	quickly	might	well	be	
evidence	of	intelligent	behavior.	All	of	these	depend	upon	your	definition	of	intelligence.	
	
From	Peter	Denning:	
“…	consciousness	and	cognition	...	accompany	intelligence	and	may	even	be	preconditions.”	
	
“The	 things	 you	 list	 as	 recent	 developments	 foreshadowing	 machines	 that	 think	 are	 all	
simulations	of	intelligent	behavior.	Are	simulations	the	same	as	the	real	thing?”	
	
Author’s	response:	
Do	consciousness	and	cognition	accompany	intelligence?	If	they	do	in	all	examples	we	know	of,	
must	they?	Are	they	preconditions?	I	suggest	whether	that	proposition	is	true	depends	on	your	
definition	of	intelligence.	
	
I	 think	 that	by	 considering	 consciousness	 and	awareness	 to	be	at	 the	 core	of	 intelligence,	or	
that	they	accompany	intelligence,	you	are	assuming	a	definition	of	intelligence	that	implies	that	
it	 (intelligence)	 is	a	quality	or	 feature	that	 is	only	present	 in	sentient	beings—or	perhaps	at	a	
more	 basic	 level,	 beings	 that	 are	 conscious	 and	 self-aware.	 I	 think	 we	 can	 separate	
consciousness	and	awareness	from	intelligence	—certainly	from,	in	Turing’s	terms,	the	ability	to	
display	 intelligent	behavior	 (accepting	 that	whether	 there	 is	 a	qualitative	difference	between	
possessing	intelligence	and	displaying	intelligent	behavior	is	liable	to	be	contentious).	
	
Whether	simulations	are	the	same	as	the	real	thing	depends	on	your	definition	of	intelligence	
and	intelligent	behavior.	If	by	intelligent	behavior	you	mean	actual	human	intelligent	behavior,	
then	in	a	very	narrow	sense	I	agree,	they	are	all	simulations—how	could	they	not	be	if	they	are	
not	 human?	 But	 if	 by	 intelligent	 behaviour	 you	 mean,	 in	 Turing’s	 terms,	 behavior	 that	 is	
indistinguishable	 from	 human	 intelligent	 behavior	 (provided	 that	 behavior	 doesn’t	 actually	
require	flesh	and	blood…),	then	is	it	a	simulation?	The	machine	is	displaying	intelligent	behavior	
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indistinguishable	 from	human	 intelligent	behavior—apart	 from	humans	being	 flesh	and	blood	
and	machines	being	something	else,	how	are	the	behaviors	different?	If	I	learn	to	do	something	
that	you	can	do,	would	you	say	I	am	simulating	your	behaviour,	or	copying	it	(and	maybe	even	
improving	 upon	 it)?	 Do	 we	 call	 it	 a	 simulation	 because	 humans	 came	 first?	 Isn’t	 that	 just	
semantics?	 In	 the	 end,	 if	 the	 behaviour	 of	 the	 machine	 is	 indistinguishable	 from	 that	 of	 a	
human,	does	it	matter	what	we	call	it?	
	
From	Martin	Walker:	
“Intelligence	is	exhibiting	a	faculty	of	understanding.	When	an	intelligent	agent	has	understood	
a	situation	or	a	phenomenon,	then	that	agent	is	able	to	deal	satisfactorily	with	the	situation	or	
phenomenon,	independently	of	how,	precisely,	the	situation	or	phenomenon	is	presented	to	the	
agent.	This	is	manifestly	not	the	case	for	artificial	neural	networks.”	
	
“The	 inferences	 made	 by	 ANNs	 are	 fragile	 and	 unstable	 (think,	 for	 example,	 of	 the	 image	
classifier	that	interprets	a	STOP	sign	as	a	speed	limit	sign	after	a	few	slight	modifications	to	the	
original	image).”	
	
“I	would	suggest	therefore	that	ANNs,	as	useful	as	they	may	be,	do	not	exhibit	intelligence.”	
	
Author’s	response:	
Indeed,	 the	 “Chinese	 room”	 thought	 experiment	 was	 created	 to	 demonstrate	 John	 Searle’s	
belief	that	exhibiting	behaviour	that	one	might	initially	believe	to	be	intelligent	does	not	imply	
understanding,	and	that	intelligence	without	understanding	is	just	an	illusion.	To	buy	into	that	
argument	we	have	to	agree	with	Searle’s	belief	that,	in	Martin’s	words,	“exhibiting	a	faculty	of	
understanding”	is	a	necessary	condition	for	intelligence.	I	am	not	convinced	that	it	is—at	least	
not	until	I	know	what	is	meant	by	“understanding.”	Neither,	apparently,	was	Alan	Turing—the	
Turing	test	makes	no	reference	to	understanding.		
	
Consider	 an	 animal	 that	 is	 able	 to	 earn	 rewards,	 or	 elicit	 a	 predictable	 response	 from	 (say)	
humans,	by	learning	that	a	particular	sequence	of	actions	on	its	part	always	results	in	rewards	
or	 a	 particular	 action	 by	 humans.	 The	 animal	 almost	 certainly	 doesn’t	 understand	 why	 that	
happens—is	 it	not	exhibiting	 intelligent	behaviour	because	 it	 lacks	that	understanding?	Or	do	
we	consider	that	simply	understanding	that	 there	 is	a	correlation	between	 its	behavior	and	a	
human’s	 response	 (understanding	 at	 a	 level	 not	 too	 dissimilar	 from	 that	 of	 the	 translator	 in	
Searle’s	 Chinese	 room)	 a	 sufficient	 prerequisite	 for	 intelligence?	 What	 is	 meant	 by	
“understanding”?	What	 is	 the	nature	of	 “understanding”	 that	would	 support	 a	 judgement	of	
“intelligence?”	
	
I	 know	 many	 people	 who	 learn	 things,	 even	 very	 complex	 things,	 by	 rote	 and	 never	 really	
understand	them—how	would	I	know	(without	testing	them)	by	their	behavior	that	they	don’t	
understand?	Should	I	judge	their	behavior	as	any	less	intelligent	than	the	person	standing	next	
to	them	that	actually	understands	what	they	are	doing?	
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These	things	depend	on	our	definition	of	intelligence	(and	understanding).	I	think	we’re	proving	
Sternberg’s	 point:	 “Viewed	 narrowly,	 there	 seem	 to	 be	 almost	 as	 many	 definitions	 of	
intelligence	as	there	were	experts	asked	to	define	it.”	
	
While	it	is	true	that	some	Deep	Neural	Networks	(DNNs)	have	been	shown	to	be	vulnerable	to	
some	input	samples	designed	to	fool	the	network	[31],	I	think	it	is	over-reaching	to	claim	that	
“inferences	made	 by	 ANNs	 are	 fragile	 and	 unstable”—that	 tends	 to	 imply	 that	 all	 ANNs	 are	
fragile	and	unstable	by	nature,	which	is	not	the	case.		
	
It	 is	true	that	humans	generally	do	a	much	better	 job	of	 image	recognition	(probably	through	
experience	 gained	 over	 a	 long	 period	 of	 time	 by	 seeing	 the	 object	 in	 question	 from	 many	
different	angles	and	distances,	obscured	in	various	ways,	etc.,	or	by	transferring	generalizations	
learned	 from	 other,	 similar	 objects),	 but	 human	 brains	 are	 also	 vulnerable	 to	 some	 input	
samples	designed	to	 fool	 them—we	call	 such	 input	samples	“optical	 illusions.”	Until	a	human	
brain	has	learned	how	to	generalize	and	so	recognize	faulty/obscured	(or	otherwise	adversarial)	
images	(e.g.	human	infants),	the	inferences	it	makes	are	liable	to	be	fragile	and	unstable.	
	
ANNs	are	good	at	generalization—they	don’t	have	to	be	fragile	and	unstable.	There	are	ways	to	
mitigate	adversarial	input	images	(e.g.	training	a	network	with	adversarial	images),	and	work	is	
being	done	in	this	area	[32,	33,	34].	
	
The	human	brain	has	many	times	the	number	of	neurons	and	parallel	pathways	available	to	it	
than	any	ANN.	My	guess	 is	 that	 the	human	brain	may	have	evolved	multiple	networks	 in	 the	
cortex	 to	deal	with	 input	 images,	and	 that	might	allow	 it	 to	be	more	 robust	when	presented	
with	 adversarial	 images.	 As	 our	 ability	 to	 build	 faster	 ANNs	with	more	 nodes	 improves	 over	
time,	we	may	find	a	similar	approach	helps	ANNs	deal	with	adversarial	input	images.		
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