
Understanding and Utilizing
Hardware Transactional Memory Capacity

Zixian Cai
zixian.cai@anu.edu.au

Australian National University
Canberra, ACT, Australia

Stephen M. Blackburn
steve.blackburn@anu.edu.au

Australian National University
Canberra, ACT, Australia

Michael D. Bond
mikebond@cse.ohio-state.edu

Ohio State University
Columbus, OH, USA

Abstract

Hardware transactional memory (HTM) provides a simpler
programming model than lock-based synchronization. How-
ever, HTM has limits that mean that transactions may suffer
costly capacity aborts. Understanding HTM capacity is there-
fore critical. Unfortunately, crucial implementation details
are undisclosed. In practice HTM capacity can manifest in
puzzling ways. It is therefore unsurprising that the literature
reports results that appear to be highly contradictory, report-
ing capacities that vary by nearly three orders of magnitude.
We conduct an in-depth study into the causes of HTM ca-
pacity aborts using four generations of Intel’s Transactional
Synchronization Extensions (TSX). We identify the apparent
contradictions among prior work, and shed new light on the
causes of HTM capacity aborts. In doing so, we reconcile
the apparent contradictions. We focus on how replacement
policies and the status of the cache can affect HTM capacity.

One source of surprising behavior appears to be the cache
replacement policies used by the processors we evaluated.
Both invalidating the cache and warming it up with the
transactional working set can significantly improve the read
capacity of transactions across the microarchitectures we
tested. A further complication is that a physically indexed
LLC will typically yield only half the total LLC capacity. We
found that methodological differences in the prior work led
to different warmup states and thus to their apparently con-
tradictory findings. This paper deepens our understanding
of how the underlying implementation and cache behavior
affect the apparent capacity of HTM. Our insights on how
to increase the read capacity of transactions can be used to
optimize HTM applications, particularly those with large
read-mostly transactions, which are common in the context
of optimistic parallelization.

ISMM ’21, June 22, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8448-3/21/06.

https://doi.org/10.1145/3459898.3463901

CCSConcepts: ·Computer systems organization→ Par-

allel architectures; · Software and its engineering →

Memory management; Concurrency control.

Keywords: hardware transactional memory, CPU caches,
Intel Transactional Synchronization Extensions

ACM Reference Format:

Zixian Cai, Stephen M. Blackburn, and Michael D. Bond. 2021. Un-

derstanding and Utilizing Hardware Transactional Memory Capac-

ity. In Proceedings of the 2021 ACM SIGPLAN International Sympo-

sium on Memory Management (ISMM ’21), June 22, 2021, Virtual,

Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3459898.3463901

1 Introduction

Transactional memory (TM) is a concurrency control mecha-
nism that executes a sequence of instructions atomically [22,
24].1 To achieve this behavior, a TM implementation exe-
cutes transactions speculatively and detects conflicts, which
it resolves by undoing the side effects of aborted transactions.
Much of the prior work on TM is arguably impractical.

Software transactional memory (STM) implementations in-
cur high run-time overhead to maintain read and write sets
in order to detect conflicts [10, 21, 22, 41]. Hardware trans-
actional memory (HTM), on the other hand, minimizes per-
formance costs by implementing conflict detection and res-
olution mechanisms in hardware [22, 24]. However, hard-
ware support for unbounded transactions requires substan-
tial changes to cache and memory subsystems [6, 8], and
such support has not been commercially implemented.

In recent years, so-called commodity HTM has arisen as a
compelling alternative to impractical STM and unbounded
HTM implementations. Commodity HTM, which the rest
of the paper refers to simply as łHTM,ž is now a pervasive
hardware feature, available notably as Intel Transactional
Synchronization Extensions (TSX) [43].

Traditionally, HTM provides atomic execution of program-
mer-specified transactions.While programmers can useHTM
directlyÐwith a fallback that ensures progress such as syn-
chronization on a global lock [43]Ðprogrammers are more

1Transactional memory provides the same semantics as non-durable trans-

actions in the database literature: atomic, consistent, and isolated (ACI)

semantics [31].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3459898.3463901
https://doi.org/10.1145/3459898.3463901
https://doi.org/10.1145/3459898.3463901
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459898.3463901&domain=pdf&date_stamp=2021-06-22


ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

likely to utilize HTM indirectly: as part of hybrid hardwareś
software TM [13, 30] or to execute critical sections on the
same lock speculatively in parallel [32, 37], for example.
Additionally, HTM provides a variety of potential ben-

efits to software. Prior work has employed HTM for a va-
riety of uses, including implementing concurrent garbage
collectors [5, 7, 9, 25, 33, 39], strong memory model enforce-
ment [40], data race detection [45], cache side-channel de-
fense [20], and persistent memory store ordering [17]. In
such łnontraditionalž contexts, transactions may experience
relatively few conflicts, and the system developer can craft
transactions to avoid writes as much as possible. In other
words, the capability of many such transactions is bounded
by the read set size. Compared with the traditional use of
providing atomicity of programmer-specified regions, maxi-
mizing a transaction’s read set size is arguably even more
important in these nontraditional contexts.
Considering these diverse uses, it is especially critical to

understand how to utilize HTM fully. However, practical
limits on the size of the supporting hardware structures
bound the size of transactions. Transactions that cannot be
run within those bounds are aborted. To make effective use
of HTM, transactions must avoid exceeding the capacity
of the underlying hardware. Unfortunately, the details of
how the underlying hardware mechanisms work are both
proprietary and subtle, making it difficult to reason about
the capacity of the hardware and therefore difficult to make
use of HTM. The behavior of HTM is subtle because its
implementations exploit existing cache structures whose
state is dependent not only on reads and writes that occurred
prior to the transaction, but on the cache replacement policy,
which is proprietary and not exactly LRU.

These factors have no doubt contributed to confusion in
the literature. For example, studies of the maximum transac-
tion read capacity on the Intel Core i7-4770 vary by nearly
three orders of magnitude, from 16KB [38] to 7.5MB [14]. In
Section 2.4 we note nine different studies of Intel’s TSX, none
of which appear to be consistent. This lack of clarity under-
mines the ability of developers using HTM to reason about
the performance impact of their design choices, particularly
in the aforementioned nontraditional contexts.
This paper makes the following key contributions:

• We identify significant contradictions among existing
empirical evaluations of HTM capacity.

• We conduct an in-depth study of HTM behavior across
four generations of Intel’s Transactional Synchroniza-
tion Extension (TSX) hardware: Haswell, Broadwell,
Skylake, and Coffee Lake. We use and extend prior
methodologies for evaluating transaction capacity, build-
ing on Ritson and Barnes [38].

• We reproduce prior findings, and in doing so, reconcile
their vastly different observations, shedding new light
on HTM behavior.

• We confirm and refine prior understanding of how
TSX is implemented [20] and how this relates to In-
tel’s cache replacement policies, and make actionable
findings on how to maximize HTM capacity.

We find that TSXwrite capacity is closely tied to L1 residency,
consistent with prior studies. We find that read capacity is
closely tied to LLC residency (not LLC size). We observe that
LLC cache replacement policies can result in LLC evictions
for surprisingly small read sets, depending on the prior state
of the cache. This insight reconciles prior work that sug-
gested that TSX read capacity was as small as the L1 size
with work that suggested that it was as large as the LLC size.
We find that read set capacity can be maximized by mitigat-
ing LLC evictions, either by flushing the cache or warming
the cache prior to starting the transaction.

These findings will help programmers develop performant
HTM code on modern hardware. Furthermore, by recon-
ciling, clarifying, and extending prior methodologies, they
create a solid foundation for future investigations of other
HTM implementations.
The code we used in this work is publicly available:

https://github.com/caizixian/rtm-bench

2 Background and Related Work

This section motivates both the challenge and importance of
understanding how transactional memory is implemented.
We first overview transactional memory and related pro-
cessor cache mechanisms, before describing contradictory
results reported by prior work, showing the need for a deeper
understanding of how transactional memory is implemented.

2.1 Hardware Transactional Memory

Transactional memory (TM) executes code sections auto-
matically using optimistic parallelism: Marked sections of
code execute as transactions, and the TM system detects con-
flicts between transactions, which it resolves by aborting one
or more transactions and rolling back their effects [22, 24].
Software TM (STM) detects and resolves conflicts in soft-
ware, permitting support for unbounded transactions and
sophisticated conflict resolution policies, but STM adds high
run-time overhead [10, 21, 41]. Hardware TM (HTM), on the
other hand, detects and resolves conflicts in hardware, which
achieves low overhead but either requires complex hardware
or places limits on transactional execution [6, 8, 24, 43].

HTM implementations typically track a transaction’s read
and write sets in processor caches, and piggyback on per-
vasive eager-invalidation-based cache coherence protocols
(e.g., MESI and its variants) to detect conflicts. HTM simi-
larly uses caches to maintain a transaction’s modified state;
it aborts a transaction by invalidating cache lines modified
by the transaction without writing them back.

2

https://github.com/caizixian/rtm-bench


Understanding and Utilizing Hardware Transactional Memory Capacity ISMM ’21, June 22, 2021, Virtual, Canada

Unbounded HTM requires substantial hardware structures
and logic to maintain read and write sets and to detect con-
flicts even for data that has been evicted from caches [6, 8].
In contrast, so-called commodity HTM performs best-effort
tracking of transactional state, aborting transactions that
overflow the cache(s) that track transactional state.

2.2 Intel Transactional Synchronization Extensions

Intel added HTM to its processors starting in 2013, acces-
sible through ISA extensions called Transactional Synchro-

nization Extensions (TSX). TSX consists of two programming
models: Hardware Lock Elision (HLE) for speculative lock
elision [37] and Restricted Transactional Memory (RTM) for
general-purpose transactions. While we focus on RTM in
this paper, our results should apply to HLE as well since they
use the same microarchitectural implementation.

RTM provides XBEGIN and XEND instructions to demarcate
transactions.2 XBEGIN takes a parameter that is the address
of an abort handler. In the event of an abort, all changes to
the memory and architectural registers are reversed, control
is transferred to the specified abort handler, and eax is set to
a code that indicates the cause of the abort.

RTM is best effort and provides no progress guarantee, so
programmers or runtime developers must provide a fallback
mechanism to handle transactions that repeatedly abort. Two
common fallbacks are synchronization on a single global
lock (e.g., [43]) and STM execution in the context of hybrid
softwareśhardware TM [11, 13, 30]. RTM transactions abort
for the following reasons [28, Vol. 1: Chapters 16.3.5, 16.3.8]:

• Conflicts with other transactions or non-transactional
instructions. These aborts are essential for ensuring
atomicity of transactions.

• Synchronous conditions such as instructions that are
illegal in transactions (e.g., system calls), debug break-
points, and page faults. Programmers or language/run-
time implementers should avoid these conditions.

• Asynchronous events such as timer interrupts. While
longer transactions run an increasing risk of such an
abort, in practice internal buffer overflows are the big-
ger threat to transaction progress.

• An internal buffer overflow, including eviction of a
cache line accessed by the transaction.

We focus on the last abort cause because it is critical for
executing large transactions (transactions with large read or
write sets), and prior work is ambiguous about the maximum
size of transactions that can commit, as well as guidance
for how to execute large transactions successfully. Next we
explain the connection between cache evictions and aborts.

2RTM also provides instructions for aborting a transaction explicitly and

testing whether the core is executing a transaction, but we do not use them

in this paper.

2.3 Cache Capacity and Transaction Aborts

HTM conflict detection typically piggybacks on existing pro-
cessor cache mechanisms (Section 2.1), and cannot track data
once it departs the cache. For example, suppose commodity
HTM tracks the read set in the L1 and L2 caches and the
write set in the L1 cache. Then a transaction must abort if a
line written by the transaction is evicted from the L1, or if a
line read by the transaction is evicted from the L2.
Hasenplaugh et al. showed experimentally that transac-

tion capacity is limited not only by cache capacity but by
the capacity of each associative set [23]. That is, if a line is
evicted from the last cache level that tracks transactional
state, the transaction will abort, regardless of whether the
eviction was due to a capacity miss or a conflict miss.

A complicating factor is cache replacement policies, which
select lines to evict in set-associative caches. Since perfect
least recently used (LRU) is computationally expensive, mod-
ern processors use a pseudo-LRU algorithm. Reverse engi-
neering [1ś3] indicates that the processors we evaluate use
tree-based pseudo-LRU [4] in the L1 and L2 caches, and vari-
ations on re-reference interval prediction (RRIP) [29] includ-
ing quad-age LRU (QLRU) and Bimodal RRIP (BRRIP) [29]
in their LLCs. Because the LLC replacement policies are so
important to HTM read set capacity, we describe the policies
used in the hardware we evaluate in more detail.
In QLRU, each cache line has a two-bit re-reference pre-

diction value (RRPV) where a value of 0 indicates imminent
reuse, and a value of 3 indicates distant reuse. When a miss
occurs, QLRU chooses a line with an RRPV of 3 as the victim;
to break a tie, it chooses the leftmost line with an RRPV of 3.
If no line has an RRPV of 3, all lines’ RRPVs are incremented
until one reaches 3. QLRU instantiates new lines with an
RRPV of 1, and on a hit, sets the RRPV to 0 for lines with
an RRPV of 1, or to 1 if the RRPV was 2 or 3. The left half
of Figure 1 shows the operation of QLRU on an 8-way set
with a sequence of ten reads to eight unique lines. The red
boxes indicate the line that is due to be evicted next. In this
small example, QLRU gives LRU behavior.
BRRIP is a variation on QLRU that gives new lines an

RRPV of either 3 or 1. The rationale for using an RRPV of
3 is that it protects the cache from displacement caused by
streaming workloads [36]. The right half of Figure 1 shows
BRRIP with one out of every four instantiations receiving an
RRPV of 1 and the remainder receiving 3. Unlike QLRU, BR-
RIP will frequently evict recently accessed lines in streaming
workloads. Notice that for this workload the most recently
used cache line is evicted 7 out of 10 times.

The processors we evaluate use different combinations of
QLRU and BRRIP [2]. Haswell and Broadwell both use an
adaptive technique called set dueling, where 64 sets each
are dedicated to QLRU and BRRIP, respectively, and the re-
mainder of the sets (followers) adaptively switch between
the two policies according to which one is working most

3



ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3

3 3 3 3 3 3 3

3
1
1
3 3 3 3 3 3 31

3 3 3 3 3 3 3

3 3 3 3 3 3 31
1 3 3 3 3 3 31
1 3 3 3 3 3 31
1 3 3 3 3 3 31

1
1
1

1

3 3 3 3 3 3 3
1 3 3 3 3 3 3
11 3 3 3 3 3

1 3 3 3 3
3 3 3

1 3 3
1 31 1 1 1 1
1 1 1 1
1 1 1
1 1 1

1
1
1

1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1

3 3 3 3 3 3 3 3

QLRU BRRIP-4

ti
m
e

Figure 1. QLRU and BRRIP-4 replacement policies [29, 36]
used in the LLC of every microarchitecture we evaluate. We
show an 8-way set with a sequence of 10 accesses to 8 distinct
cache lines. Numbers indicate the two-bit RRPV for each line.
The illustration shows the moment prior to each access. The
red box shows the line due to be evicted nextÐthe leftmost
line with the highest RRPV. QLRU sets the RRPV to 1 for
new lines, while BRRIP-4 only sets it to 1 for one in four new
lines, and to 3 otherwise. In this example, QLRU does not
evict any new lines while BRRIP-4 evicts 7/10 new lines.

effectively. Haswell and Broadwell appear to use BRRIP-16
(1/16 instantiations receive an RRPV of 1) [3]. Skylake and
Coffee Lake have 64 and 128 of their sets respectively imple-
menting QLRU and the remainder appear to use an adaptive
variation of BRRIP that only occasionally places lines in the
most-recently-used (MRU) position.
A further complication is the hash function used by the

hardware to map addresses to sets. In the simple case, a
cache with 2𝐿 lines arranged into 2𝑆 sets uses 𝑆 bits in the
address as the hash. In the best case, a process can have a
footprint the same as the cache capacity and see no capacity
misses because the data maps uniformly to the 2𝑆 sets. In
the worst case, the data maps to a single set, leading to
an effective cache capacity of just 1/2𝑆 the actual capacity.
When a cache is virtually addressed and the program has
good spatial locality, the cache will be well utilized. However,
when the cache is physically addressed (and small pages
are used) the mapping of addresses to sets will tend to be
effectively random. As Hasenplaugh et al. note, this setup,
together with the theoretical result by Gonnet [19], tells
us that for a given process we should expect the effective
capacity of a physically indexed cache to be about half of its
actual capacity [23].

2.4 Related Work

The rest of this section surveys relatedwork that has reported
on the transaction capacity of Intel TSX implementations.
The point of this comparison is to identify significant incon-
sistencies in the results and develop hypotheses based on

the methodologies and configurations used by prior work
that might explain the apparent contradictions.

Table 1 summarizes the transaction capacities reported by
prior work. The prior work agrees that write set capacity is
bounded by the L1 data cache size: The reported write set ca-
pacities range from 22KB [34] to 31 KB [42]. However, there
is wild disagreement about the effective read set capacity
of Intel TSX transactions: The reported read set capacities
range from 22KB [34] to 7.5MBÐboth on the Core i7-4770
(Haswell microarchitecture).

Based on their results, Ritson and Barnes [38] and Diegues
et al. [15] surmised that transactional work tracking is per-
formed only in the L1 data cache. In contrast, Dice et al. [14]
stated that the CPU tracks the read set in the L3 cache, but
the write set is tracked in the L1 cache, while Gruss et al.
[20] speculated that read set tracking uses a probabilistic
structure, such as a Bloom filter.
Yoo et al. of Intel make it clear that write state is tracked

(only) in the L1 cache:

The first implementation of Intel TSX on the 4th
Generation Core™ microarchitecture uses the
first level (L1) data cache to track transactional
states. All tracking and data conflict detection
are done at the granularity of a cache line, using
physical addresses and the cache coherence pro-
tocol. Eviction of a transactionally written line
from the data cache will cause a transactional
abort. However, evictions of lines that are only
transactionally read do not cause an abort; they
are moved into a secondary structure for track-
ing, and may result in an abort at some later
time. [43, ğ2]

Their description about the handling of lines read during
a transaction is opaque, but not inconsistent with findings
that the read set is bounded by the LLC sizeÐit appears to
refer to L1 evictions and is ambiguous about what happens
after that. Relatedly, the Intel optimization manual states
that ł[n]ewer microarchitectures are expected to have an
improved second-level structure that tracks evicted read set
addressesž [27, Chapter 16.2.4.2].
Most of the prior work constructed microbenchmarks

that reused the same memory region for testing transactions
of different sizes [20, 23, 34, 42].3 While that work reports
relatively high read capacities, we show that these results
are likely due to reusing memory across transactions and
retrying failed transactions many timesÐand thus high read
capacity may not translate automatically to real workloads.
In particular, Ritson and Barnes [38] explicitly chose distinct
memory areas for different transactions, aiming to minimize
the effects of L2 and LLC processor caches, and reported

3Some prior work does not describe execution configuration details [14,

18], while other work used transactional memory benchmarks instead of

microbenchmarks [15, 35].

4



Understanding and Utilizing Hardware Transactional Memory Capacity ISMM ’21, June 22, 2021, Virtual, Canada

Table 1.Maximum observed read and write capacities (last two columns) reported in prior work, relative to the L1 or LLC size.
For Diegues et al. [15] and Pereira et al. [35], the reported maximum capacity is for transactions that perform a mix of reads
and writes, since their evaluations used transactional benchmark suites (STAMP [12] and Eigenbench [26]).

Year Architecture Model L1 LLC Write Read

Ritson and Barnes [38] 2013 Haswell Core i7-4770 32 KB 8MB 0.81 × L1 0.81 × L1

Diegues et al. [15] 2014 Haswell Xeon E3-1275 v3 32 KB 8MB 1.0 × L1

Goel et al. [18] 2014 Haswell Core i7-4770 32 KB 8MB 0.50 × L1 0.50 × LLC

Pereira et al. [35] 2014 Haswell Xeon E3-12?? v3 32 KB 8MB 1.0 × L2

Wang et al. [42] 2014 Haswell Core i7-4770 32 KB 8MB 0.97 × L1 0.50 × LLC

Dice et al. [14] 2015 Haswell Core i7-4770 32 KB 8MB Ð 0.94 × LLC

Hasenplaugh et al. [23] 2015 Haswell Core i7-4770 32 KB 8MB 0.78 × L1 0.58 × LLC

Nakaike et al. [34] 2015 Haswell Core i7-4770 32 KB 8MB 0.69 × L1 0.50 × LLC

Gruss et al. [20] 2017 Skylake Core i7-6600U 32KB 4MB 1.00 × L1 1.00 × LLC

dramatically lower read capacity. We use configurations that
represent both approaches, and also introduce new configu-
rations for executing transactions (Section 3).

3 Analyzing HTM Capacity

To investigate the discrepancies in HTM capacity reported
by prior work, we set out to reproduce their results, make a
hypothesis about the causes of the discrepancies, and iden-
tify configurations (i.e., run-time techniques) for maximizing
HTM capacity. Prior work has agreed that write set capacity
is bounded by the L1 size, so we focus on read set capacity,
which prior work reports as varying between the L1 and LLC
sizes. (We also evaluated write set capacity using our new
configurations for maximizing HTM capacity and, consistent
with prior work, found that write set capacity is bounded by
L1 size. For brevity we omit these results from the paper.)
By reproducing the results of prior work, we find that

a key issue is whether transactions access memory that
was accessed by prior attempted transactions (regardless
of whether they aborted or committed). From these results,
we hypothesize that the LLC replacement policy evicts lines
read by the transaction, in some cases, before cached lines
that were last accessed earlier. We test this hypothesis by
developing two new configurationsÐinvalidating the entire
cache and łwarming upž the cache before each transactionÐ
and find that they both increase apparent HTM read capacity
up to 91ś97% of LLC capacity. These results both validate
our hypothesis and show that the configurations are promis-
ing avenues for maximizing HTM capacity in real-world
settings.

Execution methodology. We extended rtm-bench, devel-
oped by Ritson and Barnes [38].4,5 The benchmark evaluates
the success rates of simple read- and write-only transactions.
A read-only transaction of a given size, for example, accesses

4The original rtm-bench: https://github.com/perlfu/rtm-bench
5Our code that extends rtm-bench: https://github.com/caizixian/rtm-bench

every 64-bit word in address order consecutively in a cache-
line-aligned contiguous region of memory of the target size,
all inside of an RTM transaction. To establish HTM capacity,
each execution of the benchmark explores the success rate of
a range of sizes, yielding a success rate curve (see Section 4).
The HTM capacity is evaluated to be the largest transaction
size for which htm-bench reports a nonzero success rate.
Each time rtm-bench is invoked, it acquires a 512MB re-

gion ofmemory via mmap. As wewill see later, it is noteworthy
that while mmap assures that this region will be virtually con-
tiguous, the regionwill generally be physically discontiguous
(assuming pages are small, i.e., 4 KB). For each transaction
size, rtm-bench runs 𝑁 consecutive transactions, where 𝑁
is the size of the region divided by the transaction size (e.g.,
at size 2MB, 𝑁 =

512MB
2MB = 256), with an upper bound of

𝑁 = 217. Each transaction uses memory that has not been
used by any previous transaction of that size. We refer to
this procedure as the Baseline configuration.

We extended rtm-bench to support three other configura-
tions that affect the potential HTM capacity. Reuse reuses
the same memory for all transactions of a given size and
treats 𝑁 as an independent variable. Invalidation invali-
dates all levels of the cache6 before each transaction.Warmup

repeatedly reads the memory that will be read by the trans-
action, 128 times for Haswell and 5 times for the other archi-
tectures,7 prior to the transaction being executed.
We also extended rtm-bench to step the transaction sizes

logarithmically rather than linearly. This was necessary as
we explored transaction sizes that were orders of magnitude
larger than those explored by Ritson and Barnes [38].

6We invalidate all lines in all caches using the x86 wbinvd instruction.

Since wbinvd is privileged, we use a kernel module to invoke it (https:

//github.com/batmac/wbinvd). For the Invalidation configuration, we use

an upper bound of 𝑁 = 212 because the time taken to invalidate the caches

would make larger bounds impractical to evaluate.
7We empirically determined the number of iterations at which more itera-

tions provides diminishing returns (Section 4.2).

5

https://github.com/perlfu/rtm-bench
https://github.com/caizixian/rtm-bench
https://github.com/batmac/wbinvd
https://github.com/batmac/wbinvd


ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

Table 2. Machines used in the evaluation. Each column describes an evaluation machine, which we refer to using its
microarchitecture name (column header).

Haswell Broadwell Skylake Coffee Lake

Model Core i7-4770 Xeon D-1540 Core i7-6700K Core i9-9900K

Year 2013 2015 2015 2018

Technology 22 nm 14 nm 14 nm 14 nm

Clock 3.4GHz 2.0GHz 4.0GHz 3.6GHz

SMT × Cores 2 × 4 2 × 8 2 × 4 2 × 8

L1 Data Cache 32 KB × 4 32 KB × 8 32 KB × 4 32 KB × 8

L2 Cache 256 KB × 4 256 KB × 8 256 KB × 4 256 KB × 8

LLC 8MB 12MB 8MB 16MB

Sets 8 K 16K 8K 16K

Memory Size 16GB 16GB 16GB 32GB

Memory Type DDR3-1600 DDR4-2133 DDR3-1600 DDR4-2133

The Baseline configuration represents the methodology
of Ritson and Barnes [38], while Reuse represents that used
by Wang et al. [42], Hasenplaugh et al. [23], Nakaike et al.
[34], Gruss et al. [20] (Section 2.4).
We retain all other elements of rtm-bench, including pin-

ning of software threads to hardware threads. Ritson and
Barnes published results for the Core i7-4770 [38], which we
also use, allowing us to validate our measurements.

In each of our experiments, we invoke rtm-bench 50 times.
For each transaction size, we plot the average success rate
and 95% confidence intervals from the 50 trials. We initially
found that rebooting each machine prior to each set of exper-
iments led to more consistent and higher apparent capacity.
We hypothesized that this was due to the greater likelihood
of physical contiguity in the region returned by mmap after a
reboot, the physical indexing of the LLC, and the consequent
impact on effective LLC capacity (Section 2.3). To test our hy-
pothesis, we ran experiments with 1GB huge page support
enabled, so that the virtually contiguous 512MB region is
also physically contiguous (Section 4.3). This removed vari-
ability and consistently yielded higher capacities for each
configuration, supporting the hypothesis.

Platforms. Table 2 describes the machines used in our
evaluation. We use a diverse set of microarchitectures be-
cause we expect the implementation of TSX to have evolved
over time. On all machines, we enable simultaneous multi-
threading (i.e., Intel Hyper-Threading) and disable frequency
scaling (i.e., Intel Turbo Boost Technology). To minimize ex-
perimental noise, we run the experiments in isolation, with
as many background daemons disabled as possible.
All machines used in the evaluation run the same disk

image. Each machine runs Ubuntu 18.04.5 with kernel ver-
sion 5.4.0-64-generic and microcode version 20201110. We
compiled rtm-benchwith GCC version 7.5.0 with the -O2 flag.

4 Evaluation

This section presents experimental results using the method-
ology described in Section 3. Our results using the Baseline
andReuse configurations reproduce results from prior work.
The Invalidation and Warmup configurations both vali-
date our hypothesis about the LLC replacement policy and
serve as techniques for executing transactions with large
read sets. Table 3 summarizes our results.

4.1 Reproducing Prior Work’s Results

Using the Baseline and Reuse configurations, we repro-
duced the prior work’s results.

Baseline configuration. Figure 2 shows the results for
the Baseline configuration. For each microarchitecture, the
figure plots a success rate curve (a representation introduced
by Ritson and Barnes [38]). The success rate curve shows,
for each attempted transaction size, the fraction of all trans-
actions that successfully Committed and the fraction that
experienced an Overflow abort. Any remaining fraction (not
shown in the plot) is due to transactions that aborted for
other reasonsÐgenerally asynchronous aborts such as timer
interrupts. Each fraction is computed based on the mean
of 50 trials of extended rtm-bench, each of which executes
512MB
txn_size transactions (Section 3). The plot shows the variabil-

ity across the 50 trials using a 95% confidence interval.
Figure 2 and the summary in Table 3 show that for Haswell,

transactions larger than 32 KB cannot complete successfully.
This reproduces the results of Ritson and Barnes [38]. Note
that 32 KB happens to be the size of the L1 cache on all of
the machines. However, the other microarchitectures show
roughly double (Broadwell) and quadruple (Skylake and Cof-
fee Lake) the read capacity with this methodology, even
though all four microarchitectures share the same L1 size,
associativity, and replacement policy [3].

These results on Haswell and later microarchitectures are
consistent with our hypothesis that the LLC replacement

6



Understanding and Utilizing Hardware Transactional Memory Capacity ISMM ’21, June 22, 2021, Virtual, Canada

Table 3.Maximum observed read capacity from 50 trials for each microarchitectureśconfiguration combination. For each
reported range [𝑙, 𝑢), 𝑙 is the size of the maximum-sized committed transaction, and 𝑢 is the next-highest size attempted
(which always aborted). For the Reuse configuration, the result reports maximum capacity across all 𝑁 . The log of the commit
frequency for each achieved capacity is shown in a small gray font. For example, −4.9 means that 10−4.9 of the attempts at that
capacity successfully committed. For the Reuse configuration, if multiple 𝑁 s can achieve the same maximum capacity, we
report the frequency for the 𝑁 with the highest frequency. This table summarizes the detailed results shown in Figures 2ś5.

Architecture Haswell Broadwell Skylake Coffee Lake

LLC 8MB 12MB 8MB 16MB

Baseline/L1 [1.00, 1.04) −4.9 [2.00, 2.07) −5.3 [3.73, 3.86) −5.0 [3.86, 4.00) −5.3

Baseline/LLC [0.00, 0.00) −4.9 [0.01, 0.01) −5.3 [0.01, 0.02) −5.0 [0.01, 0.01) −5.3

Reuse/LLC [0.76, 0.78) −1.8 [0.74, 0.77) −2.2 [0.76, 0.78) −1.8 [0.84, 0.87) −2.6

Invalidation/LLC [0.87, 0.90) −0.7 [0.88, 0.91) −3.1 [0.87, 0.90) −1.5 [0.87, 0.90) −0.9

Warmup/LLC [0.93, 0.97) −0.8 [0.91, 0.94) −2.1 [0.97, 1.00) −2.7 [0.93, 0.97) −2.8

Table 4. The impact of huge page support. These numbers reflect the same methodology as Table 3, but with huge page support
enabled. Improvements relative to Table 3 are shown in green, and the one case of degradation is shown in red. Improvements
are most pronounced with Reuse.

Architecture Haswell Broadwell Skylake Coffee Lake

LLC 8MB 12MB 8MB 16MB

Baseline/L1 [1.00, 1.04) −4.4 [2.00, 2.07) −5.0 [3.73, 3.86) −5.3 [4.29, 4.44) −4.8

Baseline/LLC [0.00, 0.00) −4.4 [0.01, 0.01) −5.0 [0.01, 0.02) −5.3 [0.01, 0.01) −4.8

Reuse/LLC [0.93, 0.97) −0.9 [0.88, 0.91) −2.5 [0.93, 0.97) −1.1 [0.90, 0.93) −1.5

Invalidation/LLC [0.90, 0.93) −2.2 [0.85, 0.88) −1.2 [0.90, 0.93) −2.2 [0.90, 0.93) −3.2

Warmup/LLC [0.97, 1.00) −1.6 [0.91, 0.94) −1.4 [0.97, 1.00) −1.3 [0.93, 0.97) −1.2

policy sometimes evicts lines read by the transaction instead
of lines in the same associative set that were last accessed
before the transaction. A plausible cause for the different
transaction read sizes achieved on the microarchitectures
is differences in the replacement policy and number of LLC
setsÐand not because of inherent limitations in HTM read
capacity, as results in the rest of this section show. Broadwell
and Haswell share the same LLC replacement policy, each
with 64 dedicated BRRIP sets, which will evict the MRU line
with high probability (see Section 2.3). However, our Broad-
well is 12-way associative with 16 K sets, while our Haswell
is 16-way with 8 K sets [3]. We do not have a concrete expla-
nation for Broadwell seeing twice the effective read set size
of Haswell under the Baseline configuration. However, we
hypothesize that this is due to the fraction of sets dedicated
to BRRIP on Broadwell being half that of Haswell. For this
explanation to make sense, the follower sets, which account
for the majority, would have to be adopting the QLRU policy,
which is plausible since although the workload is streaming,
it is run in isolation so BRRIP will not lead to a lower miss
rate than QLRU. Skylake and Coffee Lake share a slightly
different LLC design, where none of the sets are dedicated to
BRRIP but most will occasionally instantiate a new line into
the MRU state (RRPV=3). This uniformity helps explain why

they yield very close to the same capacity despite Coffee
Lake having twice as many sets as Skylake.

Reuse configuration. Figure 3 shows success rate plots
using the Reuse configuration, which corresponds to prior
work that repeatedly executed transactions of a given size
in the same memory region (Section 3). The Reuse configu-
ration’s plots differ from the other configurations’ plots be-
cause Reuse treats 𝑁 (the number of transactions attempted
consecutively in the same memory region) as an indepen-
dent variable. The plots show only the fraction of committed
transactions (omitting the fraction of transactions aborted
for overflowing capacity) for visual simplicity.
As the figure shows, at 𝑁 = 1, when there is no reuse,

the maximum transaction size is not much different than
for the Baseline configuration. At 𝑁 = 4096, the maximum
transaction size achievable is orders of magnitude larger:
between 74% and 84% of the LLC size.
These results support our hypothesis about the replace-

ment policy. Repeated accesses to a BRRIP cache set will
eventually displace stale data with the transactional data as
shown in the right half of Figure 1, where the stale (grey)
lines are gradually displaced from the set. This allows the
transaction read set to eventually be resident in the cache

7



ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(a) Haswell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(b) Broadwell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(c) Skylake

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(d) Coffee Lake

Figure 2. Success rate curves on different microarchitectures when using our Baseline configuration, which corresponds to
rtm-bench with default parameters [38]. We conduct 50 trials and plot the mean with 95% confidence intervals. Transaction
sizes are shown on a log scale. Haswell and Broadwell show capacities of 32 KB and 64KB, respectively, while Skylake and
Coffee Lake show capacities of about 120 KB.

with no misses (or evictions). Each prior aborted transac-
tion makes it less likely that the memory it accessed will be
evicted by a future attempted transaction. Even so, it takes
manyÐthousands ofÐrepeated attempted transactions to get
close to maximizing HTM capacity. This behavior makes
sense because each attempted transaction presumably only
accesses one or a few lines more than the prior aborted
transaction before being aborted for evicting a line that the
transaction already accessed.

In summary, the results for the Baseline and Reuse con-
figurations help reproduce and clarify inconsistent results
from prior work. Furthermore, these results are consistent
with our hypothesis about the impact of cache replacement
policies on effective HTM capacity. Next we show results
for the Invalidation andWarmup configurations, which
further validate our hypothesis and, in essence, show how to
get the benefits of the Reuse configuration more fully and
efficiently.

4.2 Configurations for Maximizing HTM Capacity

This section evaluates our new configurations that aim to
validate our hypothesis about the LLC replacement policy
and to provide a technique for maximizing HTM capacity.

Figure 4 shows results for the Invalidation configuration,
and Figure 5 shows results for theWarmup configuration.
Table 3 summarizes the capacity results. Both configurations
yield transaction read sizes that approach the LLC size.
The ability of both configurations to enable large trans-

actionsÐlarger than the transactions of the Baseline con-
figuration or even the Reuse configuration with many iter-
ationsÐis interesting, especially since invalidating andwarm-
ing the cache are essentially opposite actions. However, both
make sense given the behavior of BRRIP. Cache invalidation
removes all prior data, allowing the transaction read set to
fill the set without evictions until the set is full. Warmup will
pre-fill the set, albeit gradually, given the slow fill behavior
of BRRIP under such workloads.

8



Understanding and Utilizing Hardware Transactional Memory Capacity ISMM ’21, June 22, 2021, Virtual, Canada

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Attempts (95% CI)
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

(a) Haswell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Attempts (95% CI)
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

(b) Broadwell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Attempts (95% CI)
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

(c) Skylake

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Attempts (95% CI)
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

(d) Coffee Lake

Figure 3. Success rate curves on different microarchitectures when using our Reuse configuration, which differs from Baseline
by performing all of the 𝑁 transaction attempts of a given size on the same memory region. We conduct 50 trials and plot the
mean with 95% confidence intervals for each 𝑁 . Transaction sizes are shown on a log scale. Haswell, Broadwell, and Skylake
show capacities of about 75% of their LLC (6MB, 9MB, and 6MB respectively) while Coffee Lake shows a capacity of 85% of
its LLC (13.4MB).

Figure 6 presents the results of an experiment to determine
how many warmup iterations theWarmup configuration
uses. OnHaswell, diminishing returns are only achieved after
128 warmup iterations, while for the other architectures,
returns tailed off after 2 iterations. For the Warmup results
we present in Figure 5 and Table 2, we use 128 warmup
iterations for Haswell and 5 for the other architectures.

4.3 Effects of Physical Indexing of LLC

The results presented so far use the default page size (4 KB).
Under these circumstances, the 512MB virtually contiguous
region used by the experiments is unlikely to be be phys-
ically contiguous (Section 3), and furthermore, the degree
of contiguity is not easy to measure or control since it is a
function of the underlying state of the machine at the start of
the experiment. Since the LLC is physically indexed, page al-
location patterns will affect the probability of conflict misses

in the LLC. This is easiest to understand by considering vir-
tually contiguous accesses using an initially empty LLC. If
the accesses are physically contiguous, a region as large as
the LLC can be accessed before any of the sets in the LLC suf-
fers a conflict miss. However, if the accesses are essentially
random, some sets will fill faster than others, approximately
halving the number of accesses before one of the sets incurs
a conflict miss, thus halving the effective LLC capacity. This
is particularly subtle on recent architectures where the LLC
is divided into slices, and a hash function is used to map
physical addresses to different slices [16].

To explore the effect of physical indexing of the LLC and
its interaction with the page allocator, we repeat all four
configurations, but with huge page support enabled. Table 4
shows the capacity findings reported in this setting. Reuse
benefits substantially from larger page size, with capacities
increased to more than or on par with Invalidation across

9



ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(a) Haswell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(b) Broadwell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(c) Skylake

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(d) Coffee Lake

Figure 4. Success rate curves on different microarchitectures when using our Invalidation configuration, which differs from
Baseline by invalidating all cache levels prior to every transaction. We conduct 50 trials and plot the mean with 95% confidence
intervals. Transaction sizes are shown on a log scale. All processors show capacities between 85% and 90% of their LLC (7MB,
10.2MB, 7MB, and 14.4MB).

all platforms. Both Invalidation andWarmup benefit from
huge page support on all microarchitectures as well, albeit
less pronounced, with the exception of Invalidation on
Broadwell. We believe that this is because of the noise in
the experiment, noting the extremely low frequency (∼10−3)
of 0.88 LLC capacity of Invalidation on Broadwell with
small pages. Interestingly, Coffee Lake is the only microar-
chitecture where Baseline benefits from larger pages, for
unknown reasons. This result confirms our hypothesis that,
with small pages, virtually contiguous memory is gener-
ally discontiguous and reduces effective transaction read set
sizes.

5 Discussion

This section overviews our findings and discusses their mean-
ing, and then makes recommendations based on the findings.

5.1 Findings and Meaning

The prior work all pointed to write capacity on Intel’s TSX
being limited by the L1 size, and we confirm that here.
The prior work painted a very confusing picture of TSX

read capacity, varying from 16KB to 7.5MB on the same
i7-4770 processor, which leads to contradictory conclusions
about how HTM works and how to use it (Section 2.4).
In contrast, we found that TSX read capacity is linked to

LLC size, and the LLC replacement policy is a key determiner
of the effective read capacity of a transaction. Prior work did
not take the replacement policy into account.
Furthermore, physical indexing in caches is important

because it affects effective capacity in ways that are difficult
to control or predict. We empirically showed its effects by
using huge pages (Section 4.3).
A broad point is that researchers generally view cache

behavior through a performance lens, where misses are the

10



Understanding and Utilizing Hardware Transactional Memory Capacity ISMM ’21, June 22, 2021, Virtual, Canada

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(a) Haswell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(b) Broadwell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(c) Skylake

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Committed (95% CI)

Overflow abort (95% CI)

(d) Coffee Lake

Figure 5. Success rate curves on different microarchitectures when using ourWarmup configuration, which differs from
Baseline by warming up the cache 128 times (Haswell) or 5 times (other microarchitectures) with a non-transactional execution
of the workload. We conduct 50 trials and plot the mean with 95% confidence intervals. Transaction sizes are shown on a log
scale. Haswell, Broadwell, and Coffee Lake show capacities of just over 90% of their LLCs (7.4MB, 10.9MB, and 14.9MB), while
Skylake shows a capacity of 97% of its LLC (7.7MB).

focus, and common case behavior is what matters. Here, evic-
tions are what matter, and the average or common case is
irrelevant: A single eviction aborts the transaction. This is
why the arcane cache replacement policies matter and why
the physical indexing of the cache is relevant.

Bloom filter or other secondary structure. We did not
find any evidence for a Bloom filter or secondary proba-
bilistic structure that was mentioned by some prior work
(Section 2.4). However, our results do not imply that such
a structure does not exist. HTM conflict detection typically
piggybacks on existing processor cache mechanisms (Sec-
tion 2.1), so if any such secondary structure did exist, it could
not extend the read capacity beyond the size of the LLC.

5.2 Recommendations

Our results not only shed light on how TSX is implemented,
but also suggest how to make best use of TSX.

As we motivated in Section 1, many diverse uses for TSX
exist, including nontraditional uses that are likely to result in
large, low-conflict, mostly-read transactions. For such trans-
actions, to maximize effective read capacity, systems should
warm up the cache before executing the transaction. It is
important to note that the goal is not to speed up the trans-
action, but to enable the transaction to commit instead of
aborting due to a cache eviction. As such, we expect warmup
to be an effective mechanism for improving HTM effective-
ness in practice, but we leave evaluation of warmup in the
context of a real application to future work.

In contrast, invalidating all cache lines before a transaction
is probably impractical, although invalidating periodically
might be worthwhile in some cases.
At the system configuration level, our results show that

large pages are likely to help with the capacity challenges
posed by a physically indexed LLC. Evenmedium-sized pages

11



ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Warmup (95% CI)

1

2

4

8

16

32

64

128

(a) Haswell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Warmup (95% CI)

1

2

4

8

16

32

64

128

(b) Broadwell

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Warmup (95% CI)

1

2

4

8

16

32

64

128

(c) Skylake

100 101 102 103 104 105 106 107

Attempted transaction size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
it

te
d 

tr
an

sa
ct

io
ns

 / 
A

tt
em

pt
ed

 t
ra

ns
ac

ti
on

s

Warmup (95% CI)

1

2

4

8

16

32

64

128

(d) Coffee Lake

Figure 6. Success rate curves on different microarchitectures for various numbers of non-transactional warmup iterations.
These results were used to determine iteration count for ourWarmup configuration. Transaction sizes are shown on a log
scale, with 95% confidence intervals indicated.

such as 2MB pages (the other option on Intel x86-64 besides
4 KB and 1GB pages) should give more consistent and higher
capacity compared with the default 4 KB page size.
We can also make recommendations for microprocessor

designers. Future Intel microarchitectures could extend cache
replacement policies to preferentially evict lines not accessed
by an ongoing transaction. In the related context of region
conflict detection, Zhang et al. showed how a modest exten-
sion to a simple pseudo-LRU policy can avoid eviction of
lines accessed by an executing code region [44].

6 Conclusion

The practicality of applications relying on HTM is predicated
on successfully exploiting the capacity of HTM transactions.
In this paper, we explored how different factors can affect the
capacity of transactions. In particular, we demonstrated how
the cache status affects HTM capacity, and how both warm-
ing up or invalidating the cacheÐtwo seemingly opposite
operationsÐcan help large read-only transactions commit.

The results resolve the apparent contradiction in the capac-
ity numbers reported by prior work. The insights can help
HTM programmers avoid transactional capacity aborts and
maximize read capacity, and influence future studies of HTM
behavior and future implementations of HTM.

Acknowledgments

We thank the anonymous reviewers for their detailed feed-
back and insightful suggestions for improving the paper.
Thanks to Roman Dementiev, Kaan Genç, Tim Harris, Kon-
rad Lai, Carl Ritson, Tomoharu Ugawa, and Rui Zhang for
help understanding TSX capacity. This material is based
upon work supported by the Australian Research Council
under Grant No. DP190103367 and National Science Founda-
tion under Grant No. XPS-1629126. Zixian Cai is supported
by an Australian Government Research Training Program
Scholarship.

12



Understanding and Utilizing Hardware Transactional Memory Capacity ISMM ’21, June 22, 2021, Virtual, Canada

References
[1] Andreas Abel and Jan Reineke. 2014. Reverse engineering of cache

replacement policies in Intel microprocessors and their evaluation. In

2014 IEEE International Symposium on Performance Analysis of Sys-

tems and Software, ISPASS 2014, Monterey, CA, USA, March 23-25, 2014.

IEEE Computer Society, 141ś142. https://doi.org/10.1109/ISPASS.2014.

6844475

[2] Andreas Abel and Jan Reineke. 2020. nanoBench: A Low-Overhead

Tool for Running Microbenchmarks on x86 Systems. In 2020 IEEE Inter-

national Symposium on Performance Analysis of Systems and Software

(ISPASS).

[3] Andreas Abel and Jan Reineke. 2021. uops.info. https://uops.info.

[4] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic.

2004. Performance evaluation of cache replacement policies for the

SPEC CPU2000 benchmark suite. In Proceedings of the 42nd Annual

Southeast Regional Conference, 2004, Huntsville, Alabama, USA, April

2-3, 2004, Seong-Moo Yoo and Letha H. Etzkorn (Eds.). ACM, 267ś272.

https://doi.org/10.1145/986537.986601

[5] Maria Carpen Amarie, Yaroslav Hayduk, Pascal Felber, Christof Fetzer,

Gaël Thomas, and Dave Dice. 2017. Towards an Efficient Pauseless

Java GC with Selective HTM-Based Access Barriers. In Proceedings of

the 14th International Conference on Managed Languages and Runtimes,

ManLang 2017, Prague, Czech Republic, September 27 - 29, 2017. ACM,

85ś91. https://doi.org/10.1145/3132190.3132208

[6] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.

Leiserson, and Sean Lie. 2005. Unbounded Transactional Memory. In

Proceedings of the 11th International Symposium on High-Performance

Computer Architecture (HPCA ’05). IEEE Computer Society, 316ś327.

https://doi.org/10.1109/HPCA.2005.41

[7] Todd Anderson, Melissa O’Neill, and John Sarracino. 2015. Chihuahua:

A Concurrent, Moving, Garbage Collector using Transactional Mem-

ory. In 10th ACM SIGPLAN Workshop on Transactional Computing,

TRANSACT 2015, June 15, 2015, Portland, OR, USA, Victor Luchangco

(Ed.).

[8] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K.

Martin. 2007. Making the Fast Case Common and the Uncommon

Case Simple in Unbounded Transactional Memory. In Proceedings of

the 34th Annual International Symposium on Computer Architecture

(San Diego, California, USA) (ISCA ’07). ACM, 24ś34. https://doi.org/

10.1145/1250662.1250667

[9] Maria Carpen-Amarie. 2017. Efficient Memory Management with Hard-

ware Transactional Memory: A Focus on Java Garbage Collectors and

C++ Smart Pointers. Ph.D. Dissertation. Université de Neuchâtel.

[10] Calin Cascaval, Colin Blundell, Maged M. Michael, Harold W. Cain,

Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software

Transactional Memory: Why Is It Only a Research Toy? ACM Queue

6, 5 (2008), 46ś58. https://doi.org/10.1145/1454456.1454466

[11] Keith Chapman, Antony L. Hosking, and J. Eliot B. Moss. 2016. Extend-

ing OpenJDK to support hybrid STM/HTM: preliminary design. In

Proceedings of the 8th International Workshop on Virtual Machines and

Intermediate Languages, VMIL@SPLASH 2016, Amsterdam, Netherlands,

October 31, 2016, Antony L. Hosking andWitawas Srisa-an (Eds.). ACM,

1ś5. https://doi.org/10.1145/2998415.2998417

[12] CaoMinh Chí, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-

tun. 2008. STAMP: Stanford Transactional Applications for Multi-

Processing. In 2008 IEEE International Symposium on Workload Char-

acterization. 35ś46. https://doi.org/10.1109/IISWC.2008.4636089

[13] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark

Moir, and Daniel Nussbaum. 2006. Hybrid transactional memory. In

Proceedings of the 12th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS 2006,

San Jose, CA, USA, October 21-25, 2006, John Paul Shen and Margaret

Martonosi (Eds.). ACM, 336ś346. https://doi.org/10.1145/1168857.

1168900

[14] Dave Dice, Tim Harris, Alex Kogan, and Yossi Lev. 2015. The Influence

of Malloc Placement on TSX Hardware Transactional Memory. arXiv

e-prints (April 2015). arXiv:1504.04640 [cs.OS] https://arxiv.org/abs/

1504.04640v2

[15] Nuno Diegues, Paolo Romano, and Luís Rodrigues. 2014. Virtues

and Limitations of Commodity Hardware Transactional Memory. In

Proceedings of the 23rd International Conference on Parallel Architectures

and Compilation (Edmonton, AB, Canada) (PACT ’14). Association for

Computing Machinery, New York, NY, USA, 3ś14. https://doi.org/10.

1145/2628071.2628080

[16] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostic.

2019. Make the Most out of Last Level Cache in Intel Processors. In Pro-

ceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany,

March 25-28, 2019, George Candea, Robbert van Renesse, and Christof

Fetzer (Eds.). ACM, 8:1ś8:17. https://doi.org/10.1145/3302424.3303977

[17] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu. 2020. Crafty:

Efficient, HTM-Compatible Persistent Transactions. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation (London, UK) (PLDI 2020). ACM, 59ś74. https:

//doi.org/10.1145/3385412.3385991

[18] B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom. 2014.

Performance and Energy Analysis of the Restricted Transactional

Memory Implementation on Haswell. In 2014 IEEE 28th International

Parallel and Distributed Processing Symposium. 615ś624. https://doi.

org/10.1109/IPDPS.2014.70

[19] Gaston H. Gonnet. 1981. Expected Length of the Longest Probe

Sequence in Hash Code Searching. J. ACM 28, 2 (1981), 289ś304.

https://doi.org/10.1145/322248.322254

[20] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan

Haller, and Manuel Costa. 2017. Strong and Efficient Cache Side-

Channel Protection using Hardware Transactional Memory. In 26th

USENIX Security Symposium (USENIX Security 17). USENIX Associa-

tion, Vancouver, BC, 217ś233. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/gruss

[21] Tim Harris and Keir Fraser. 2003. Language Support for Lightweight

Transactions. In Proceedings of the 18th Annual ACM SIGPLAN Con-

ference on Object-Oriented Programing, Systems, Languages, and Ap-

plications (Anaheim, California, USA) (OOPSLA ’03). ACM, 388ś402.

https://doi.org/10.1145/949305.949340

[22] Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional Memory,

2nd Edition (2nd ed.). Morgan and Claypool Publishers.

[23] William Hasenplaugh, Andrew Nguyen, and Nir Shavit. 2015. Quanti-

fying the Capacity Limitations of Hardware Transactional Memory.

In 7th Workshop on the Theory of Transactional Memory (Donostia-San

Sebastián, Spain) (WTTM 2015). http://www.gsd.inesc-id.pt/~salaa/

wttm2015/html/abstracts/Hasenplaugh.pdf

[24] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:

Architectural Support for Lock-Free Data Structures. In Proceedings

of the 20th Annual International Symposium on Computer Architecture

(San Diego, California, USA) (ISCA ’93). Association for Computing

Machinery, New York, NY, USA, 289ś300. https://doi.org/10.1145/

165123.165164

[25] M. Teresa Higuera-Toledano. 2011. Using Transactional Memory to

Synchronize an Adaptive Garbage Collector in Real-Time Java. In 14th

IEEE International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing Workshops, ISORC Workshops 2011,

Newport Beach, CA, USA, March 28-31, 2011. IEEE Computer Society,

152ś161. https://doi.org/10.1109/ISORCW.2011.24

[26] Sungpack Hong, Tayo Oguntebi, Jared Casper, Nathan Bronson, Chris-

tos Kozyrakis, and Kunle Olukotun. 2010. Eigenbench: A simple

exploration tool for orthogonal TM characteristics. In IEEE Inter-

national Symposium on Workload Characterization (IISWC’10). 1ś11.

https://doi.org/10.1109/IISWC.2010.5648812

13

https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1109/ISPASS.2014.6844475
https://uops.info
https://doi.org/10.1145/986537.986601
https://doi.org/10.1145/3132190.3132208
https://doi.org/10.1109/HPCA.2005.41
https://doi.org/10.1145/1250662.1250667
https://doi.org/10.1145/1250662.1250667
https://doi.org/10.1145/1454456.1454466
https://doi.org/10.1145/2998415.2998417
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1145/1168857.1168900
https://doi.org/10.1145/1168857.1168900
https://arxiv.org/abs/1504.04640
https://arxiv.org/abs/1504.04640v2
https://arxiv.org/abs/1504.04640v2
https://doi.org/10.1145/2628071.2628080
https://doi.org/10.1145/2628071.2628080
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3385412.3385991
https://doi.org/10.1145/3385412.3385991
https://doi.org/10.1109/IPDPS.2014.70
https://doi.org/10.1109/IPDPS.2014.70
https://doi.org/10.1145/322248.322254
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://doi.org/10.1145/949305.949340
http://www.gsd.inesc-id.pt/~salaa/wttm2015/html/abstracts/Hasenplaugh.pdf
http://www.gsd.inesc-id.pt/~salaa/wttm2015/html/abstracts/Hasenplaugh.pdf
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
https://doi.org/10.1109/ISORCW.2011.24
https://doi.org/10.1109/IISWC.2010.5648812


ISMM ’21, June 22, 2021, Virtual, Canada Zixian Cai, Stephen M. Blackburn, and Michael D. Bond

[27] Intel Corporation. 2020. Intel® 64 and IA-32 Architectures Optimization

Reference Manual.

[28] Intel Corporation. 2020. Intel® 64 and IA-32 Architectures Software

Developer’s Manual.

[29] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel S. Emer.

2010. High performance cache replacement using re-reference in-

terval prediction (RRIP). In 37th International Symposium on Com-

puter Architecture (ISCA 2010), June 19-23, 2010, Saint-Malo, France,

André Seznec, Uri C. Weiser, and Ronny Ronen (Eds.). ACM, 60ś71.

https://doi.org/10.1145/1815961.1815971

[30] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu,

and Anthony D. Nguyen. 2006. Hybrid transactional memory. In

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPOPP 2006, New York, New York, USA, March

29-31, 2006, Josep Torrellas and Siddhartha Chatterjee (Eds.). ACM,

209ś220. https://doi.org/10.1145/1122971.1123003

[31] D. B. Lomet. 1977. Process Structuring, Synchronization, and Recov-

ery Using Atomic Actions. In Proceedings of an ACM Conference on

Language Design for Reliable Software (Raleigh, North Carolina). As-

sociation for Computing Machinery, New York, NY, USA, 128ś137.

https://doi.org/10.1145/800022.808319

[32] Hassan Salehe Matar, Ismail Kuru, Serdar Tasiran, and Roman Demen-

tiev. 2014. Accelerating Precise Race Detection Using Commercially-

Available Hardware Transactional Memory Support. InWorkshop on

Determinism and Correctness in Parallel Programming.

[33] Phil McGachey, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Vijay

Menon, Bratin Saha, and Tatiana Shpeisman. 2008. Concurrent GC

leveraging transactional memory. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPOPP 2008, Salt Lake City, UT, USA, February 20-23, 2008,

Siddhartha Chatterjee and Michael L. Scott (Eds.). ACM, 217ś226.

https://doi.org/10.1145/1345206.1345238

[34] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael,

and Hisanobu Tomari. 2015. Quantitative Comparison of Hardware

Transactional Memory for Blue Gene/Q, ZEnterprise EC12, Intel Core,

and POWER8. In Proceedings of the 42nd Annual International Sym-

posium on Computer Architecture (Portland, Oregon) (ISCA ’15). As-

sociation for Computing Machinery, New York, NY, USA, 144ś157.

https://doi.org/10.1145/2749469.2750403

[35] M. M. Pereira, M. Gaudet, J. N. Amaral, and G. Araújo. 2014. Multi-

dimensional Evaluation of Haswell’s Transactional Memory Perfor-

mance. In 2014 IEEE 26th International Symposium on Computer Archi-

tecture and High Performance Computing. 144ś151. https://doi.org/10.

1109/SBAC-PAD.2014.33

[36] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely

Jr., and Joel S. Emer. 2007. Adaptive insertion policies for high per-

formance caching. In 34th International Symposium on Computer Ar-

chitecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA,

Dean M. Tullsen and Brad Calder (Eds.). ACM, 381ś391. https:

//doi.org/10.1145/1250662.1250709

[37] Ravi Rajwar and James R. Goodman. 2001. Speculative lock elision:

enabling highly concurrent multithreaded execution. In Proceedings of

the 34th Annual International Symposium on Microarchitecture, Austin,

Texas, USA, December 1-5, 2001, Yale N. Patt, Josh Fisher, Paolo Fara-

boschi, and Kevin Skadron (Eds.). ACM/IEEE Computer Society, 294ś

305. https://doi.org/10.1109/MICRO.2001.991127

[38] Carl G. Ritson and Frederick R.M. Barnes. 2013. An Evaluation of

Intel’s Restricted Transactional Memory for CPAs. In Communicating

Process Architectures 2013 Proceedings of the 35th WoTUG Technical

Meeting, Peter H. Welch, Frederick R.M. Barnes, Jan F. Broenink, Kevin

Chalmers, Jan B. Pedersen, and AdamT. Sampson (Eds.). Open Channel

Publishing, 271ś291. https://kar.kent.ac.uk/36939/

[39] Carl G. Ritson, Tomoharu Ugawa, and Richard E. Jones. 2014. Explor-

ing garbage collection with Haswell hardware transactional memory.
In International Symposium on Memory Management, ISMM ’14, Ed-

inburgh, United Kingdom, June 12, 2014, David Grove and Samuel Z.

Guyer (Eds.). ACM, 105ś115. https://doi.org/10.1145/2602988.2602992

[40] Aritra Sengupta, Man Cao, Michael D. Bond, and Milind Kulkarni.

2017. Legato: End-to-End Bounded Region Serializability Using Com-

modity Hardware Transactional Memory. In Proceedings of the 2017

International Symposium on Code Generation and Optimization (Austin,

USA) (CGO ’17). IEEE Press, 1ś13.

[41] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory.

In Proceedings of the Fourteenth Annual ACM Symposium on Principles

of Distributed Computing, Ottawa, Ontario, Canada, August 20-23, 1995,

James H. Anderson (Ed.). ACM, 204ś213. https://doi.org/10.1145/

224964.224987

[42] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. 2014. Us-

ing Restricted Transactional Memory to Build a Scalable In-Memory

Database. In Proceedings of the Ninth European Conference on Com-

puter Systems (Amsterdam, The Netherlands) (EuroSys ’14). Association

for Computing Machinery, New York, NY, USA, Article 26, 15 pages.

https://doi.org/10.1145/2592798.2592815

[43] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.

2013. Performance Evaluation of Intel® Transactional Synchronization

Extensions for High-Performance Computing. In Proceedings of the

International Conference on High Performance Computing, Network-

ing, Storage and Analysis (Denver, Colorado) (SC ’13). Association

for Computing Machinery, New York, NY, USA, Article 19, 11 pages.

https://doi.org/10.1145/2503210.2503232

[44] Rui Zhang, Swarnendu Biswas, Vignesh Balaji, Michael D. Bond, and

Brandon Lucia. 2020. Peacenik: Architecture Support for Not Failing

under Fail-Stop Memory Consistency. In ASPLOS ’20: Architectural

Support for Programming Languages and Operating Systems, Lausanne,

Switzerland, March 16-20, 2020, James R. Larus, Luis Ceze, and Karin

Strauss (Eds.). ACM, 317ś333. https://doi.org/10.1145/3373376.3378485

[45] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2016. TxRace: Ef-

ficient Data Race Detection Using Commodity Hardware Transac-

tional Memory. In Proceedings of the Twenty-First International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association

for Computing Machinery, New York, NY, USA, 159ś173. https:

//doi.org/10.1145/2872362.2872384

14

https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1122971.1123003
https://doi.org/10.1145/800022.808319
https://doi.org/10.1145/1345206.1345238
https://doi.org/10.1145/2749469.2750403
https://doi.org/10.1109/SBAC-PAD.2014.33
https://doi.org/10.1109/SBAC-PAD.2014.33
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1109/MICRO.2001.991127
https://kar.kent.ac.uk/36939/
https://doi.org/10.1145/2602988.2602992
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/2592798.2592815
https://doi.org/10.1145/2503210.2503232
https://doi.org/10.1145/3373376.3378485
https://doi.org/10.1145/2872362.2872384
https://doi.org/10.1145/2872362.2872384

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Hardware Transactional Memory
	2.2 Intel Transactional Synchronization Extensions
	2.3 Cache Capacity and Transaction Aborts
	2.4 Related Work

	3 Analyzing HTM Capacity
	4 Evaluation
	4.1 Reproducing Prior Work's Results
	4.2 Configurations for Maximizing HTM Capacity
	4.3 Effects of Physical Indexing of LLC

	5 Discussion
	5.1 Findings and Meaning
	5.2 Recommendations

	6 Conclusion
	Acknowledgments
	References

