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ABSTRACT
In order to manage the public health crisis associated with COVID-
19, it is critically important that healthcare workers can quickly
identify high-risk patients in order to provide effective treatment
with limited resources. Statistical learning tools have the poten-
tial to help predict serious infection early-on in the progression
of the disease. However, many of these techniques are unable to
take full advantage of temporal data on a per-patient basis as they
handle the problem as a single-instance classification. Furthermore,
these algorithms rely on complete data to make their predictions.
In this work, we present a novel approach to handle the temporal
and missing data problems, simultaneously; our proposed Simul-
taneous Imputation-Multi Instance Support Vector Machine method
illustrates how multiple instance learning techniques and low-rank
data imputation can be utilized to accurately predict clinical out-
comes of COVID-19 patients. We compare our approach against
recent methods used to predict outcomes on a public dataset with a
cohort of 361 COVID-19 positive patients. In addition to improved
prediction performance early on in the progression of the disease,
our method identifies a collection of biomarkers associated with the
liver, immune system, and blood, that deserve additional study and
may provide additional insight into causes of patient mortality due
to COVID-19. We publish the source code for our method online.1
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1 INTRODUCTION
Predicting mortality of a COVID-19 patient early in their hospital
stay would allow adequate time and resources to care for high-risk
patients. However, this prediction problem presents two unique
challenges. First, the clinical data provided is not necessarily the
same size for each patient. For example, a patient that has been
in critical care for many days will have more data available than
another patient who has recently been admitted. We refer to this
type of data asmulti-instance datawhere a single patient can contain
multiple clinical observations observed over time. Second, these
clinical data inevitably contain many missing entries [11] due to the
physical constraints of a caregiver in a hospital setting. The variable
size of the input data and incompleteness are significant challenges
for the modern statistical learning toolbox and are solved using
a variety of pre-processing methods. For example, Ma et al. [16],
utilized random forests to identify clinical outcomes of COVID-
19 patients by aggregating data into a single vector per-patient
before the algorithm is applied. These techniques may miss-out
on the temporal changes evident across the clinical data. Another
recent approach, proposed by Yan et al. [23], drops instances with
missing records to ensure that the algorithms operate on dense data;
although, this approach may inadvertently lead to the removal of
valuable information.

In this work we propose a Simultaneous Imputation-Multi In-
stance Support Vector Machine method that handles the temporal
prediction and incomplete data challenges at the same time for
clinical outcome prediction. Our approach relies on combining
techniques from multi-instance learning [6, 15, 18–20], as well as
matrix completion [5], to handle missing data across an entire
patient cohort. In this work we present the following scientific
contributions:

• A detailed derivation of a novel multi-instance support vec-
tor machine, in its primal form, that is explicitly designed to
handle temporal and missing data at the same time.

• Experimental results illustrating how multi-instance learn-
ing techniques can identify serious COVID-19 cases earlier
than traditional single-instance learning methods.

• Biomarkers, validated by current literature and identified by
our approach, that may be predictive of serious outcomes
related to COVID-19.

2 METHODS
In this manuscript we represent matrices M as bold uppercase let-
ters, vectors m as bold lowercase letters, and scalars𝑚 as lowercase
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Figure 1: A visualization of the Simultaneous Imputation-Multi Instance Support Vector Machine method applied to temporal
clinical data. Our method takes as input incomplete temporal data in Z of which 𝐿 patients have known clinical outcomes.
The model is jointly optimized to perform both a classification and imputation task to learn a dense matrix X (green). The
trace-norm regularization, ∥X∥∗, ensures that the completed data matrix captures patterns across all labeled and unlabeled
clinical data with possible corruptions/outliers captured by S (red ×’s). The unlabeled patient data, X𝑝 (𝑢) ∈ X, which is imputed
from the original data, Z(𝑢) , is classified once the joint optimization has finished.

letters. The 𝑖-th row and 𝑗-th column of a matrix M are denoted
as m𝑖 and m𝑗 , respectively. Similarly, 𝑚𝑖

𝑗
is the scalar value in-

dexed by the 𝑖-th row and 𝑗-th column of the matrix M. The matrix
M𝑝 corresponds to the 𝑝-th column-block of the matrix M. Given
the 𝐾 × 𝑇 matrix M, {𝑚, 𝑡} = argmax𝑚′,𝑡 ′ (M) gives the row-by-
column coordinates for the maximum element in the matrix M.
The row and column indices are given by argmax𝑚′,𝑡 ′ (M)𝑚 and
argmax𝑚′,𝑡 ′ (M)𝑡 , respectively.

2.0.1 Building the Objective. We begin with the following general
loss function:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + L𝑖𝑚𝑝𝑢𝑡𝑒 , (1)

which, when optimized, is designed to jointly perform a clinical
outcome prediction when provided with incomplete/missing data.
Following the multi-task learning paradigm, we expect that the
data imputation task should guide the classification task and vice
versa, thus we optimize them simultaneously.

In a hospital setting, clinical data will usually contain a varied
number of temporal records per-patient (e.g. some patients may
have been in the hospital longer than other patients). Thus, a clas-
sification problem using clinical data can naturally be formulated
as a multi-instance classification. In order to classify a patient rep-
resented by multi-instance data, and/or to learn from patients who
have been discharged, we define a decision function that operates

on a patient matrix X𝑝 ∈ R𝐷×𝑛𝑝 representing 𝑛𝑝 clinical measure-
ments with 𝐷 features as

𝑦𝑝 = argmax
{𝑚′,𝑡 ′ }

(
W𝑇X𝑝 + b𝑇 1𝑝

)𝑚
, (2)

where W ∈ R𝐷×𝐾 and b ∈ R𝐾 are the predictors and intercepts
for 𝐾 classes and 𝑦𝑝 ∈ 𝐾 is the predicted class index.2 Intuitively,
Eq. (2) returns the class index𝑚 ∈ 𝐾 from which the 𝑡 ′-th instance
in X𝑝 provides the largest output from the parameterized model.
Note that Eq. (2) is defined even if 𝑛𝑝 is different for each patient.
In order to learn a model parameterized by W and b we turn to the
multi-instance classifier and support vector machine formulations
presented in [1], and [22] and propose the following ℓ2-regularized
multi-instance support vector machine (MISVM)

min
W,b

1
2

𝐾∑︁
𝑚=1

∥w𝑚 ∥22 +𝐶
𝑃∑︁
𝑝=1

𝐾∑︁
𝑚=1

(
1 − [max(w𝑇𝑚X𝑝

+ 1𝑏𝑚) −max(w𝑇𝑦X𝑝 + 1𝑏𝑦)]𝑦𝑚𝑝
)
+ ,

(3)

where 𝐶 is a tuning parameter, 𝑃 is the total number of patients
and (·)+ = max(·, 0). The 𝑚-th class label for the 𝑝-th patient is
captured by 𝑦𝑚𝑝 ∈ {−1, 1}. The hyperplane w𝑦 and intercept 𝑏𝑦 are

2In Eq. (2) we explicitly provide the size of the row-vector 1𝑝 as the number of instances
in X𝑝 , for clarity. Although, for the remainder of this manuscript, we will omit this
subscript to simplify notation.
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associated with the positive class label for X𝑝 . We refer to Eq. (3)
as the “Weston & Watkins MISVM.” This formulation allows us to
handle the 𝐾-classification problem as a single optimization instead
of one-vs-all approaches. The SVM proposed by Weston & Watkins
has been shown to provide [10] higher accuracies on benchmark
datasets than other formulations.

Frequently, the temporal data collected for a given patient during
a hospital stay is incomplete. Since data is collected across multiple
features at different times it is practically impossible to collect a
complete data matrix. Thus, we propose a data imputation approach
that can ensure that the multi-instance classification task in Eq. (3)
is well defined evenwhen providedwith incomplete data. Motivated
by [5], we formulate the data imputation task as

min
X,S

∥X∥∗ + 𝛽 ∥PΩ (S)∥1 subject to X + S = Z , (4)

where 𝛽 is a tuning parameter and Z ∈ R𝐷×(𝑛1+···+𝑛𝑃 ) is a hori-
zontal concatenation of the patient data with missing entries. The
function PΩ (·) is an orthogonal projection onto the data available
in Z. By optimizing over Eq. (4), we intend to uncover a complete
data matrix X that captures a low-rank representation across all
patient observations within our cohort. The trace norm regular-
ization on X will discover underlying patterns across all clinical
observations. The matrix S in the second term, allows for possible
outliers present in the original data matrix Z.

Combining Eq. (3) and Eq. (4) together gives us our proposed
objective

min
X,S,
W,b

1
2

𝐾∑︁
𝑚=1

∥w𝑚 ∥22 +𝐶
𝑃∑︁
𝑝=1

𝐾∑︁
𝑚=1

(1 − [max(w𝑇𝑚X𝑝 (𝑙)

+ 1𝑏𝑚) −max(w𝑇𝑦X𝑝 (𝑙) + 1𝑏𝑦)]𝑦𝑚𝑝 )+ + 𝛼 ∥X∥∗
+ 𝛽 ∥PΩ (S)∥1 subject to X + S = Z ,

(5)

where Z and X are explicitly separated into labeled-unlabeled pairs
by Z(𝑙) , Z(𝑢) , X(𝑙) and X(𝑢) (see Figure 1). We call Eq. (5) the Simul-
taneous Imputation-Multi Instance Support Vector Machine objective.
We note that although we only handle the binary clinical outcome
prediction task in this manuscript, our formulation allows us to clas-
sify any number (𝐾 ≥ 2) of case severities. While our final objective
is clearly motivated, it is difficult to solve efficiently due to term
coupling by X. For this, we use the alternating direction method of
multipliers (ADMM) framework to design an algorithm. The idea
of the ADMM is to decouple a larger problem that is difficult to
solve into collection of smaller parts

min
𝑥𝑖

𝑓1 (𝑥1) + 𝑓2 (𝑥2) + · · · + 𝑓𝑁 (𝑥𝑁 )

subject to E1𝑥1 + E2𝑥2 + · · · + E𝑁 𝑥𝑁 = 𝑐 ,
(6)

that are easier to solve. Once an appropriately decoupled problem
has been defined, the constraints in the decoupled form are incorpo-
rated into the objective via an augmented Lagrangian. The updates
for the primal variables 𝑥𝑖 follow a Douglas-Rachford splitting strat-
egy followed by a dual variable update. See [3] for further details
on the ADMM.

Inspired by [17], [21], and themultiblock extension of the ADMM
[3] we introduce constraints 𝑒𝑚𝑝 = 𝑦𝑚𝑝 − 𝑞𝑚𝑝 + 𝑟𝑚𝑝 , 𝑞𝑚𝑝 = max(t𝑚𝑝 ),
t𝑚𝑝 = w𝑇𝑚X𝑖 +1𝑏𝑚 , 𝑟𝑚𝑝 = max

(
u𝑚𝑝

)
, u𝑚𝑝 = w𝑇𝑦X𝑖 +1𝑏𝑦 , and F = X to

decouple the optimization variables in Eq. (5). Then, the augmented
Lagrangian can be written as

L(p𝑣𝑎𝑟𝑠 , d𝑣𝑎𝑟𝑠 ) =
1
2

𝐾∑︁
𝑚=1

∥w𝑚 ∥22 +
𝑃∑︁
𝑝=1

𝐾∑︁
𝑚=1

𝐶

(
𝑦𝑚𝑝 𝑒

𝑚
𝑝

)
+

+ 𝛼 ∥F∥∗ + 𝛽 ∥PΩ (S)∥1 +
`

2

𝑃∑︁
𝑝=1

𝐾∑︁
𝑚=1

[ (
𝑒𝑚𝑝 − 𝑛𝑚𝑝

)2
+
(
𝑞𝑚𝑝 −max

(
t𝑚𝑝

)
+ 𝜎𝑚𝑝 /`

)2
+
(
𝑟𝑚𝑝 −max

(
u𝑚𝑝

)
+ 𝜔𝑚𝑝 /`

)2 + t𝑚𝑝 −
(
w𝑇𝑚X𝑝 + 1𝑏𝑚

)
+ 𝜽𝑚𝑝 /`

2
2

+
u𝑚𝑝 −

(
w𝑇𝑦X𝑝 + 1𝑏𝑦

)
+ 𝝃𝑚𝑝 /`

2
2

]
+ `

2
∥F − X + Π/`∥2𝐹 + `

2
∥Z − (X + S) + ∆/`∥2𝐹

where 𝑛𝑚𝑝 = 𝑦𝑚𝑝 − 𝑞𝑚𝑝 + 𝑟𝑚𝑝 − _𝑚𝑝 /` ,

(7)

p𝑣𝑎𝑟𝑠 = {W, b,X, E,Q, T,R,U, F, S} are the primal variables, d𝑣𝑎𝑟𝑠 =
{Λ,Σ,Θ,Ω,Ξ,Π,∆} are the dual variables and ` > 0 is a tuning pa-
rameter. Given the augmented Lagrangian, we derive an algorithm
by differentiating Eq. (7) with respect to each primal variable, set-
ting the derivative equal to zero, and solving for the differentiating
variable; this process is repeated for each primal variable in p𝑣𝑎𝑟𝑠 .
After each primal variables has been updated the dual variables
are updated accordingly and ` is increased by a factor 𝜌 > 1 for
the next round. The algorithm terminates when the residuals of
the constraints introduced before Eq. (7) are less than a predefined
tolerance, which equivalently solves the original problem in Eq. (5).

For the remainder of this section we derive the primal variable
updates for optimizing the Weston & Watkins MISVM followed
by the proposed Simultaneous Imputation-Multi Instance Support
Vector Machine method; this is done to increase the clarity of our
derivation as Eq. (3) is a subset (e.g. without data imputation) of
Eq. (5). Finally, we provide Algorithm 1 and Algorithm 2 which
clearly specifies the initializations, assorted hyperparameters, dual
updates, and the sequence in which each primal variable is updated
in the associated code.

W update Removing all terms from Eq. (7) that do not include
W and decoupling across columns of W gives the following 𝐾
problems to solve

w𝑚 = argmin
w𝑚

1
2
∥w𝑚 ∥22 +

`

2

𝑃∑︁
𝑝=1

[t𝑚𝑝 −
(
w𝑇𝑚X𝑝 + 𝑏𝑚

)
+ \𝑚𝑝 /`

2
2

]
+

𝑃 ′∑︁
𝑝′=1

𝐾∑︁
𝑚=1

[ `
2
u𝑚𝑝′ − (

w𝑇𝑚X𝑝′ + 𝑏𝑚
)
+ b𝑚𝑝′/`

2
2

]
,

(8)

where 𝑝 ′ indicates the column blocks in X (and the corresponding
columns of U and Ξ) that belong to the 𝑚-th class. Taking the
derivative of Eq. (8) with respect to w𝑘 and setting it equal to zero
gives the closed form solution

w𝑇𝑚 =

( ∑𝑃
𝑝=1

[(
t𝑚𝑝 − 1𝑏𝑚 + 𝜽𝑚𝑝 /`

)
X𝑇𝑝

]
+∑𝑃 ′

𝑝′=1
∑𝐾
𝑚=1

[
(u𝑚
𝑝′ − 1𝑏𝑚 + 𝝃𝑚

𝑝′/`)X
𝑇
𝑝′
] )

∗
(
I/` +∑𝑃

𝑝=1 X𝑝X𝑇𝑝 + 𝐾 ∑𝑃 ′
𝑝′=1 X𝑝′X𝑇𝑝′

)−1
.

(9)
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Algorithm 1 Multiblock ADMM for Optimizing Eq. (3)

1: Data: X ∈ R𝐷×(𝑛1+···+𝑛𝑃 ) and Y ∈ {−1, 1}𝐾×𝑃 .
2: Hyperparameters:𝐶 > 0, ` > 0, 𝜌 > 1 and 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 > 0.
3: Initialize: primal W, b, E,Q,R,T,U and dual variables Λ,Σ,Θ,Ω,Ξ.
4: while residual > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 do
5: for𝑚 ∈ 𝑀 do
6: Update w𝑚 ∈ W by Eq. (9)
7: Update 𝑏𝑚 ∈ b by Eq. (11)
8: end for
9: for (𝑝,𝑚) ∈ {𝑃,𝑀 } do
10: Update 𝑒𝑚𝑝 ∈ E by Eq. (13)
11: Update 𝑞𝑚𝑝 ∈ Q by Eq. (15)
12: Update 𝑟𝑚𝑝 ∈ R by Eq. (16)
13: for 𝑗 ∈ 𝑛𝑝 do
14: Update 𝑡𝑚𝑝,𝑗 ∈ T by Eq. (19)
15: Update 𝑢𝑚𝑝,𝑗 ∈ U by Eq. (20)
16: end for

17:

Update _𝑚𝑝 , 𝜎
𝑚
𝑝 , 𝜔

𝑚
𝑝 , 𝜽

𝑚
𝑝 , 𝝃

𝑚
𝑝 by _𝑚𝑝 = _𝑚𝑝 + ` (𝑒𝑚𝑝 − (𝑦𝑚𝑝

− 𝑞𝑚𝑝 + 𝑟𝑚𝑝 )) ;𝜎𝑚𝑝 = 𝜎𝑚𝑝 + ` (𝑞𝑚𝑝 −max(t𝑚𝑝 )) ;𝜔𝑚𝑝 = 𝜔𝑚𝑝

+ ` (𝑟𝑚𝑝 −max(u𝑚𝑝 )) ;𝜽𝑚𝑝 = 𝜽𝑚𝑝 + ` (t𝑚𝑝 − (w𝑇𝑚X𝑝 + 1𝑏𝑚)) ;

𝝃𝑚𝑝 = 𝝃𝑚𝑝 + ` (u𝑚𝑝 − (w𝑇𝑦X𝑝 + 1𝑏𝑦 )) .
18: end for
19: Update ` = 𝜌`

20: end while
21: return (w𝑚, . . . ,w𝐾 ) ∈ W and (𝑏1, . . . , 𝑏𝐾 ) ∈ b.

b update Removing terms that do not include b from Eq. (7) and
decoupling across each element of b gives 𝐾 problems to solve

𝑏𝑚 = argmin
𝑏𝑚

𝑃∑︁
𝑝=1

[t𝑚𝑝 −
(
w𝑇𝑚X𝑝 + 𝑏𝑚

)
+ \𝑚𝑝 /`

2
2

]
+

𝑃 ′∑︁
𝑝′=1

𝐾∑︁
𝑚=1

[u𝑚𝑝′ − (
w𝑇𝑚X𝑝′ + 𝑏𝑚

)
+ b𝑚𝑝′/`

2
2

]
.

(10)

Once again, 𝑝 ′ indicates the column blocks that belong to the𝑚-th
class are chosen from X. Taking the derivative of Eq. (10) with
respect to 𝑏𝑚 , setting the derivative equal to zero, and solving for
𝑏𝑚 gives

𝑏𝑚 =

( 𝑃∑︁
𝑝=1

[
t𝑚𝑝 − w𝑇𝑚X𝑝 + 𝜽𝑚𝑝 /`

]
+

𝑃 ′∑︁
𝑝′=1

𝐾∑︁
𝑚=1

[
u𝑚𝑝′

− w𝑇𝑚X𝑝′ + 𝝃𝑚𝑝′/`
] )
/
(
𝑃 + 𝐾𝑃 ′

)
,

(11)

where 𝑃 ′ is the total number of patients belonging to the𝑚-th class.
E update Dropping terms from Eq. (7), that do not contain E

and decoupling element-wise gives 𝐾 × 𝑃 problems

𝑒𝑚𝑝 = argmin
𝑒𝑚𝑝

𝐶

(
𝑦𝑚𝑝 𝑒

𝑚
𝑝

)
+
+ `

2

(
𝑒𝑚𝑝 − 𝑛𝑚𝑝

)2
, (12)

where 𝑛𝑚𝑝 = 𝑦𝑚𝑝 −𝑞𝑚𝑝 +𝑟𝑚𝑝 − _𝑚𝑝
` . Equation (12) can be differentiated

with respect to 𝑒𝑚𝑝 , set equal to zero, and solved in three cases

𝑒𝑚𝑝 =


𝑛𝑚𝑝 − 𝐶

` 𝑦
𝑚
𝑝 when 𝑦𝑚𝑝 𝑛

𝑚
𝑝 > 𝐶

`

0 when 0 ≤ 𝑦𝑚𝑝 𝑛𝑚𝑝 ≤ 𝐶
`

𝑛𝑚𝑝 when 𝑦𝑚𝑝 𝑛
𝑚
𝑝 < 0

. (13)

Algorithm 2 Multiblock ADMM for Optimizing Eq. (5)

1: Data: Z(𝑙 ) ∈ R𝐷×(𝑛1+···+𝑛𝐿 ) , Y ∈ {−1, 1}𝐾×𝐿 , Z(𝑢) ∈ R𝐷×(𝑛1+···+𝑛𝑈 ) ,
and a masking function PΩ indicating whether an entry in Z ∈
R𝐷×(𝑛1+···+𝑛𝑃 ) is available/missing.

2: Hyperparameters: 𝐶 > 0, 𝛼 > 0, 𝛽 > 0, ` > 0, 𝜌 > 1 and
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 > 0.

3: Initialize: primal W, b,X, E,Q,R,T,U, F, S and dual variables
Λ,Σ,Θ,Ω,Ξ,Π,∆.

4: while residual > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 do
5: for𝑚 ∈ 𝑀 do
6: Update w𝑚 and 𝑏𝑚 by line 6 and 7 in Alg. 1
7: end for
8: for 𝑝 ∈ 𝑃 do
9: Update X𝑝 (𝑙 ) ∈ X by Eq. (23)
10: Update X𝑝 (𝑢) ∈ X by Eq. (24)
11: Update 𝑒𝑚𝑝 , 𝑞

𝑚
𝑝 , 𝑟

𝑚
𝑝 , 𝑡

𝑚
𝑝,𝑗 ,𝑢

𝑚
𝑝,𝑗 by lines 10-15 in Alg. 1

12: Update _𝑚𝑝 , 𝜎𝑚𝑝 , 𝜔𝑚𝑝 , 𝜽
𝑚
𝑝 , 𝝃

𝑚
𝑝 by line 17 in Alg. 1

13: end for
14: Update F by Eq. (26)
15: Update 𝑠𝑑𝑛 ∈ S by Eq. (28)
16: Update Π,∆ by Π = Π + ` (F − X) ; ∆ = ∆ + ` (Z − (X + S))
17: Update ` = 𝜌`

18: end while
19: return

[
𝑦𝑝 (𝑢) = argmax𝑚′,𝑡′ (W𝑇X𝑝 (𝑢) + b𝑇 1𝑝 (𝑢) )𝑚 : 𝑢 ∈

{1, 2, . . . ,𝑈 }
]
.

Q update Keeping only terms with Q in Eq. (7) and decoupling
element-wise gives 𝐾 × 𝑃 problems

𝑞𝑚𝑝 = argmin
𝑞𝑚𝑝

(
𝑒𝑚𝑝 − 𝑦𝑚𝑝 + 𝑞𝑚𝑝 − 𝑟𝑚𝑝 + _𝑚𝑝 /`

)2
+
(
𝑞𝑚𝑝 −max

(
t𝑚𝑝

)
+ 𝜎𝑚𝑝 /`

)2
.

(14)

Taking the derivative of Eq. (14) with respect to 𝑞𝑚𝑝 , setting the
result equal to zero, and solving for 𝑞𝑚𝑝 gives the update

𝑞𝑚𝑝 =

(
𝑦𝑚𝑝 − 𝑒𝑚𝑝 + 𝑟𝑚𝑝 − _𝑚𝑝 /` +max

(
t𝑚𝑝

)
− 𝜎𝑚𝑝 /`

)
2

. (15)

R update Following a similar strategy to Eq. (15) the element-
wise updates for R are derived as

𝑟𝑚𝑝 =

(
𝑒𝑚𝑝 − 𝑦𝑚𝑝 + 𝑞𝑚𝑝 + _𝑚𝑝 /` +max

(
u𝑚𝑝

)
− 𝜔𝑚𝑝 /`

)
2

. (16)

T update Keeping terms in Eq. (7) containing T and decoupling
across 𝐾 and 𝑃 gives the following

t𝑚𝑝 = argmin
t𝑚𝑝

(
𝑞𝑚𝑝 −max

(
t𝑚𝑝

)
+ 𝜎𝑚𝑝 /`

)2
+
t𝑚𝑝 −

(
w𝑇𝑚X𝑝 + 1𝑏𝑚

)
+ \𝑚𝑝 /`

2
2
,

(17)

which can be further decoupled element-wise for each 𝑡𝑚
𝑝,𝑗

∈ t𝑚𝑝
giving 𝐾 × 𝑃 × (𝑛1 + · · · + 𝑛𝑃 ) problems

𝑡𝑚𝑝,𝑗 = argmin
𝑡𝑚
𝑝,𝑗


(
𝑞𝑚𝑝 − 𝑡𝑚

𝑝,𝑗
+ 𝜎𝑚𝑝 /`

)2
+
(
𝑡𝑚
𝑝,𝑗

− 𝜙𝑚
𝑝,𝑗

)2
when 𝑡𝑚

𝑝,𝑗
= max

(
t𝑚𝑝

)
,(

𝑡𝑚
𝑝,𝑗

− 𝜙𝑚
𝑝,𝑗

)2
else ,

(18)
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Model Precision Recall F1-score Accuracy
k-NN 0.846±0.027 0.936±0.060 0.872±0.023 0.875±0.017
XGBoost 0.769±0.068 0.932±0.069 0.819±0.068 0.814±0.064
LightGBM 0.728±0.033 0.945±0.038 0.800±0.036 0.784±0.035
SVM 0.837±0.025 0.941±0.039 0.867±0.048 0.873±0.029
MISVM 0.854±0.078 0.827±0.085 0.822±0.052 0.837±0.049
SimMISVM 0.900±0.032 0.862±0.034 0.872±0.012 0.884±0.015

Table 1: Identifying COVID-19 clinical outcomes within the
first twenty-four hours of patient admission. Average perfor-
mance and standard deviations for eachmetric are calculated
across a six-fold cross validation experiment.

where 𝝓𝑚𝑝 = w𝑇𝑚X𝑝 +1𝑏𝑚 −𝜽𝑚𝑝 /`. Taking the derivative of Eq. (18)
with respect to 𝑡𝑚

𝑝,𝑗
, setting the result equal to zero, and solving for

𝑡𝑚
𝑝,𝑗

, gives the updates

𝑡𝑚𝑝,𝑗 =

{max(𝝓𝑚𝑝 )+𝑞𝑚𝑝 +𝜎𝑚𝑝 /`
2 if 𝑗 = argmax(𝝓𝑚𝑝 )

𝜙𝑚
𝑝,𝑗

else
. (19)

U update Following the steps used to derive Eq. (19) the element-
wise updates of U are derived as

𝑢𝑚𝑝,𝑗 =

{max(𝝍𝑚𝑝 )+𝑟𝑚𝑝 +𝜔𝑚𝑝 /`
2 if 𝑗 = argmax(𝝍𝑚𝑝 )

𝜓𝑚
𝑝,𝑗

else
, (20)

where 𝝍𝑚𝑝 = w𝑇𝑦X𝑝 +1𝑏𝑦 −𝝃𝑚𝑝 /`. This completes the primal updates
for Algorithm 1. The final three primal updates are for Algorithm 2.

X update The update for X is decoupled across column blocks
associated with the 𝑝-th patient. Since some patients have labels
and others do not we have two sets of minimization problems. First,
are the 𝐿 sub-problems for each patient with labels

X𝑝 (𝑙) = argmin
X𝑝 (𝑙 )

F𝑝 − X𝑝 + Π𝑝/`
2
𝐹

+
𝐾∑︁
𝑚=1

[ t𝑚𝑝 −
(
w𝑇𝑚X𝑝 + 1𝑏𝑚

)
+ 𝜽𝑚𝑝 /`

2
2

+
u𝑚𝑝 −

(
w𝑇𝑦X𝑝 + 1𝑏𝑦

)
+ 𝝃𝑚𝑝 /`

2
2

]
+
Z𝑝 −

(
X𝑝 + S𝑝

)
+ ∆𝑝/`

2
𝐹
.

(21)

Second, are the𝑈 problems associated with the unlabeled patients
in Z

X𝑝 (𝑢) = argmin
X𝑝 (𝑢)

F𝑝 − X𝑝 + Π𝑝/`
2
𝐹

+
Z𝑝 −

(
X𝑝 + S𝑝

)
+ ∆𝑝/`

2
𝐹
.

(22)

Taking the derivatives of Eq. (21) and Eq. (22) with respect to X𝑝 ,
setting the result equal to zero, and solving for the corresponding
X𝑝 gives the updates

X𝑝 (𝑙) =
(
2I +∑𝐾

𝑚=1 w𝑚w𝑇𝑚 + 𝐾w𝑦w𝑇𝑦
)−1 ∗ (

F𝑝 + Π𝑝/`

+ Z𝑝 − S𝑝 + ∆𝑝/` +
∑𝐾
𝑚=1 [w𝑚 (t𝑚𝑝 − 1𝑏𝑚 + 𝜽𝑚𝑝 /`)

+ w𝑦 (u𝑚𝑝 − 1𝑏𝑦 + 𝝃𝑚𝑝 /`)]
)
,

(23)

for the patients with labels and

X𝑝 (𝑢) =
F𝑝 + Π𝑝/` + Z𝑝 − S𝑝 + ∆𝑝/`

2
, (24)

for patients without labels.

F Update Keeping terms in Eq. (7) that contain F gives

min
F

𝛼 ∥F∥∗ +
`

2
∥F − X + Π/`∥2𝐹 , (25)

which can be solved via the soft-thresholding operation [4] on the
singular values

F = Û diag ((�̂� − 𝛼/`)+) V̂𝑇 , (26)

where 𝑠𝑣𝑑 (X − Π/`) = {Û, Σ̂, V̂𝑇 } and �̂� are the singular values
along Σ̂.

S Update Keeping terms in Eq. (7) that contain S gives

S = argmin
S

𝛽 ∥PΩ (S)∥1 +
`

2
∥Z − X − S + ∆/`∥2𝐹 (27)

which, following [5] is updated by

𝑠𝑑𝑛 =


𝑚𝑑𝑛 if PΩ (𝑧𝑑𝑛) is missing
𝑚𝑑𝑛 − 𝛽

` if PΩ (𝑧𝑑𝑛) is available and𝑚𝑑𝑛 >
𝛽
`

0 if PΩ (𝑧𝑑𝑛) is available and
���𝑚𝑑𝑛 ��� ≤ 𝛽

`

𝑚𝑑𝑛 + 𝛽
` if PΩ (𝑧𝑑𝑛) is available and𝑚𝑑𝑛 < − 𝛽`

(28)

where𝑚𝑑𝑛 ∈ M = Z − X + ∆/`.

3 EXPERIMENTS & RESULTS
We compare our method against an array of statistical learning tech-
niques that have recently been used to predict COVID-19 clinical
outcomes followed by a discussion of identified biomarkers.

3.0.1 Data. We obtained the clinical data and associated outcomes
for 375 COVID-19 cases included in Yan et al. [23]. Patients without
timestamped clinical observations were removed. The remaining
data were then normalized by feature and a missing data mask was
calculated for each patient. The final dataset included 73 features
derived from blood tests across an average of ≈ 16.9 observations
for 361 patients of which 195 survived and 166 died. The average
age of patients in our dataset was ≈ 58.9 years where 205 patients
were between 33-65 years and 156 patients were 65 years and older.
The proportion of missing data was ≈ 87.6%.

3.0.2 Experiment settings. We compared our method to 𝑘-nearest
neighbors (k-NN ), gradient boosted trees with the XGBoost [8],
LightGBM [12] libraries, a linear support vector machine SVM im-
plemented in LIBSVM [7], and our implementation in Algorithm 1
of a multi-instance support vector machine (MISVM) as a baseline.
For the compared methods we handled missing data by following a
similar approach to [23] the most recent observation available was
used at prediction time. The hyperparameters for the SimMISVM
method are 𝐶 = 10, 𝛼 = 10−2, 𝛽 = 10−2, ` = 10−4, searched over
[10𝑝 : 𝑝 ∈ {−5, . . . , 5}] for each parameter. Competing methods
and grid-search codes and implemented using the MLJ library [2].

3.0.3 Classification performance. In Table 1, we report the perfor-
mance of our method in predicting COVID-19 clinical outcomes on
the Tongji Hospital data. In each case, the models are provided with
all clinical data available during training, while at test-time the mod-
els were only provided with clinical data from the first twenty-four
hours. Table 1 shows that our method has higher precision, F1-
score, and accuracy than the compared methods. Our method also
shows improvement over the baseline MISVM method. In Figure 2,
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Figure 2: Precision and accuracy results of the compared
methods when provided with patient readings every two
hours after the first patient data is collected. The width of the
ribbons for each method represent the standard deviations
across the six-fold cross validation experiment at that time.
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Index Biomarker Function
1 total bilirubin liver
2 neutrophils(%) immune
3 direct bilirubin liver
4 lymphocyte(%) immune
5 total protein blood
6 albumin liver
7 mean corpuscular hemoglobin blood
8 globulin liver
9 mean corpuscular volume blood
10 mean corpuscular hemoglobin conc. blood
11 indirect bilirubin liver

Figure 3: Top-10 biomarkers predictive of a clinical COVID-
19 outcome identified by the proposed SimMISVM method.
Weight (𝑦-axis) is derived from the absolute row-sum of W.

we show how the performance metrics of the compared methods
change as the number clinical observations provided increase. The
far-left side of the two panels in Figure 2 highlight that both multi-
instance approaches provide increased performance with limited
clinical data. This may be due to the fact that our method, since
it operates on the instance level, can identify trends in previous
clinical data which can generalize to new patients early in their
hospital stay.

3.0.4 Biomarker identification. In addition to improved predictive
performance our method can be analyzed to identify biomarkers
from the Tongji hospital data that is discriminative of a fatal COVID-
19 outcome. In Figure 3, we show the top-10 biomarkers identified
by our approach across two patient cohorts. Liver function, in-
cluding bilirubin, albumin, and globulin are studied in [13] and
were found to be predictive of a serious COVID-19 infection by
our approach. Additionally, a high neutrophil to lymphocyte ratio,
two biomarkers also identified by our model, have been found to
predict mortality [14] for critically ill COVID-19 patients. Finally,
[9] also report that higher levels of mean corpuscular volume and
hemoglobin were higher in general COVID-19 cases. These iden-
tified biomarkers may provide additional insights into COVID-19
mortality and warrant further investigation.

4 CONCLUSION
This work presents a novel Simultaneous Imputation-Multi Instance
Support Vector Machine approach applied to COVID-19 clinical out-
come prediction. Our method shows improved prediction early in
the progression of the disease and identifies clinical biomarkers that
are validated in current literature; this demonstrates the utility of
multi-instance learning techniques for clinical outcome prediction.
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