
Application performance pitfalls and TCP's Nagle algorithm

Greg Minshall minshall@siara.com
Siara Systems

Jeffrey C. Mogul mogul@pa.dec.com
Compaq Computer Corp. Western Research Lab.

250 University Ave., Palo Alto, CA, 94301

Yasushi Saito yasushi@cs.washington.edu
Department o/ Computer Science and Engineering

University o/ Washington

Ben Verghese verghese@pa.dec.com
Compaq Computer Corp. Western Research Lab.

Abstract

Performance improvements to networked applications
can have unintended consequences. In a study of the
performance of the Network News Transport Protocol
(NNTP), the initial results suggested it would be use-
ful to disable TCP's Nagle algorithm for this applica-
tion. Doing so significantly improved latencies. How-
ever, closer observation revealed that with the Nagle
algorithm disabled, the application was transmitting
an order of magnitude more packets. We found that
proper application buffer management significantly im-
proves performance, but that the Nagle algorithm still
slightly increases mean latency. We suggest that modi-
fying the Nagle algorithm would eliminate this cost.

1 Introduction

The performance of a client/server application depends
on the appropriate use of the transport protocol over
which it runs. In today's Internet, most applica-
tion protocols run over the Transport Control Protocol
(TCP) [12] or the User Datagram Protocol (UDP) [11].

Usenet, one of the main Internet applications, runs
over TCP using an application protocol known as the
Network News Transport Protocol (NNTP) [7]. Sev-
eral of us made a prior study [15] assessing the perfor-
mance of a popular NNTP implementation. We mea-
sured the response time for NNTP interactions, and
noticed a sharp peak in the response-time distribution
at exactly 200ms. We discovered that this 200ms delay
was a consequence of interactions between the appli-
cation and two TCP mechanisms: the Nagle algorithm
and delayed acknowledgments.

In this paper, we analyze this situation in more de-
tail. We show that, once we resolved several buffering

problems, use of the Nagle algorithm still leads to a
slight increase in mean latency for NNTP interactions,
and we analyze the mechanism behind this: Finally, we
describe a simple modification to the Nagle algorithm
that should eliminate the problem.

2 TCP and the Nagle Algorithm

TCP controls the transmission of data between the
client and server processes. It attempts to balance a
number of requirements, including fast responsiveness
(low latency), high throughput, protection against net-
work congestion, and observing the receiver's buffer lim-
its. As part of this balancing act, TCP attempts to in-
ject the fewest possible packets into the network, mainly
to avoid congesting the network, and to avoid adding
load to routers and switches.

In the early 1980s, terminal (telnet) traffic consti-
tuted a large amount of the traffic on the Internet. Of-
ten a client would send a sequence of short packets,
each containing a single keystroke, to the server. At
the time, these short packets placed a significant load
on Internet, especially given the relatively slow links,
routers, and servers.

To alleviate this glut of small packets, in 1984 John
Nagle proposed what has become known as the Na-
gle algorithm [9]. The algorithm applies when a TCP
sender is deciding whether to transmit a packet of data
over a connection. If it has only a "small" amount of
data to send, then the Nagle algorithm says to send the
packet only if all previously transmitted data has been
acknowledged by the TCP receiver at the other end of
the connection. In this situation, "small" is defined as
less data than the TCP Maximum Segment Size (MSS)
for the connection, the largest amount of data that can
be sent in one datagram.

The effect of the Nagle algorithm is that at most
one "small" packet will be transmitted on a given con-
nection per round trip time (RTT). Here, "round trip
time" means the time it takes to transmit data and
subsequently receive the acknowledgment for that data.

36

http://crossmark.crossref.org/dialog/?doi=10.1145%2F346000.346012&domain=pdf&date_stamp=2000-03-01

The algorithm imposes no limit on the number of large
packets transmitted within one round trip time.

The Nagle algorithm has been very effective in reduc-
ing the number of small packets in the Internet. Today,
most TCP implementations include this algorithm.

3 Delayed Acknowledgments

TCP data packets are acknowledged by the recipient. In
order to reduce the number of packets in the network,
the receiver can "delay" sending the acknowledgment
packet for a finite interval. This is done in the hope that
the delayed acknowledgment can be "piggy-backed" on
a data packet in the opposite direction. The delayed
acknowledgment can also carry window update infor-
mation, informing the TCP sender that the application
at the receiver has "read" the previously transmitted
data, and that the TCP sender can now send that many
more bytes of data. Delayed acknowledgments are par-
ticularly useful in client/server applications, where data
frequently flows in both directions.

Many TCP implementations are derived from the
4.x BSD code base (described in great detail by Wright
and Stevens [19]). These TCP stacks mark a connec-
tion that has just received new data by setting the
TF_DELACK flag, indicating that the connection needs
a delayed acknowledgment. Subsequent transmission of
an acknowledgment on the connection clears this flag.
A separate timer-driven background activity polls the
list of active TCP connections once every 200ms, send-
ing an acknowledgment for each connection that has
TF_DELACK set. This means that, on average, an
acknowledgment will be delayed for lOOms, and never
more than about 200ms.

TCP senders make use of returning acknowledgment
packets to "clock" the transmission of packets [5]. This
conflicts with the desire to reduce the number of pack-
ets in the network. For this reason, TCP receivers must
transmit at least one acknowledgment for every two full-
sized packets received. Thus, a typical transmission se-
quence (as seen from node B) might look like: A->B
(data), A->B (data), B->A (ack), A->B (data), ...

4 The Network News Transfer Protocol

The Network News Transfer Protocol (NNTP) [7] is
used to transfer Usenet articles between news servers,
and between news servers and news readers (clients).
NNTP is a request-response protocol. Similar to pro-
tocols such as SMTP [13] and FTP [14], requests and
responses in NNTP are expressed in ASCII, rather than
in a binary format. When used between a client and a
server, the client waits for one response before sending
the next request. (Server-to-server transfers are often
pipelined.)

5 The Original Experiment

In a prior study [15], several of us (Saito, Mogul, and
Verghese) measured the response time for NNTP trans-
actions (from the time the client sends its request to the
time the client receives the last byte of the response)
from a server running the popular INN [16] software.
We found a sharp peak at 200ms; figure 1 shows the cu-
mulative distribution function for article retrieval laten-
cies. Note that approximately 25% of the transactions
completed in almost exactly 200ms.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
o

original= server - -
I I I I I

100 200 300 400 500 600 7 0 0

r e s p o n s e t i m e (ms)

Figure 1: CDF for retrieval latencies: original code

We realized that this 200ms peak was an artifact
of an interaction between the Nagle algorithm and the
delayed-acknowledgment mechanism. When the server
application sends its response, part of the data is pre-
sented to the TCP stack in an amount smaller than the
MSS. Because the previous response packets have not
yet been acknowledged, the Nagle algorithm causes the
sender to refrain from sending the small packet until an
acknowledgment is received. However, the client appli-
cation has not read enough data to generate a window
update (because the server has not sent enough data
since the last acknowledgment from the client), so the
acknowledgment for the previous response packet(s) is
deferred until the timer expires for the delayed acknowl-
edgment mechanism.

Humans notice, and dislike, a 200ms delay in article
retrieval. This delay also increased the mean delay mea-
sured by a benchmark we were developing. In order to
reduce this delay, we modified the INN server to disable
the Nagle algorithm when communicating with clients.
(The TCP specification requires that an implementa-
tion allow an application to disable this algorithm [1].)
We were pleased to note, as shown in figure 2, that the
mode at 200ms had disappeared. The mean article re-
trieval latency dropped, in our benchmark, from 122ms
to 71ms.

37

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
I , original Iserver, Nagle turned off ,

1 O0 200 300 400 500 600 700
response time (ms)

Figure 2: CDF for latencies: Nagle algorithm disabled

Therefore, we recommended that NNTP servers dis-
able the Nagle algorithm for client connections [15].

6 A Closer Look

One of us (Minshall) reacted to this recommendation by
asking whether this 200ms latency was a fundamental
problem with the Nagle algorithm, or whether it was
in fact an aspect of the NNTP server software design
that could be corrected in the server software itself. We
therefore collected tcpdump [6] traces to investigate the
detailed behavior of the system.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

i
5OO

original server, Nagle turned off - -
, , , I °rigiral seTer - ' ,

1000 1500 2000 2500 3000 3500 4000 4500
packet size (bytes)

Figure 3: CDFs for packet sizes: original server

These traces revealed a new anomaly. The median
packet size (TCP payload) with the Nagle algorithm
enabled was 4312 bytes (equal to the MSS of the FDDI
LAN used in these tests), but was only 79 bytes with
the algorithm disabled (see figure 3). In the former case,
a trial transferred 26.7 Mbytes in 9,600 packets; in the

latter case, a trial transferred 20.1 Mbytes in 147,339
packets.

This discrepancy led us to discover that the INN
server (nnrpd), due to an unexpected consequence of the
way these experiments were run, was doing line-buffered
I/O on its NNTP sockets (rather than fully buffer-
ing each response). Therefore, the server was sending
each response using many write() system calls. With
the Nagle algorithm enabled, the TCP stack buffered
all but the first line of data until an acknowledgment
was received from the news reader, or until at least
a packet's worth of response data accumulated at the
server. The Nagle algorithm, as intended, prevented the
network from being flooded with tiny response packets.
However, with the Nagle algorithm disabled, there was
nothing to prevent the server TCP from sending a tiny
packet for each line written by nnrpd, and so it sent lots
of them.

7 Ensuring Buffering in the Server

We were surprised to learn that nnrpd was using line-
buffered I/O. Investigation revealed a subtle cause, spe-
cific to the particular experimental setup. When it ac-
cepts a new connection, nnrpd arranges for that socket's
file descriptor to be associated with the stdout stream,
closing the existing file descriptor initially associated
with that stream. This allows nnrpd to write its out-
put using the printfO library routine, which implicitly
names the stdout stream. It means, however, that the
network connection inherits its buffering mode from std-
out.

In normal use, nnrpd is automatically invoked at sys-
tem start-time from a script, and stdout is fully buffered.
However, in the original experiments, we had inserted
a debugging printfO to stdout, and started nnrpd from
from the command line of a terminal. The stdio library
causes terminal-output streams to be line-buffered, by
default. Thus, the nnrpd network connections inherited
this line-buffered mode, resulting in multiple writes per
news article.

We modified nnrpd to ensure that it always used
fully-buffered stdio streams, regardless of the circum-
stances of its invocation. Even so, we found responses
split into too many packets. We then discovered that
nnrpd uses a special buffer for some of its output, inter-
mingled with writes via stdout. This mingling required
the use of extraneous fflushO calls. We therefore modi-
fied nnrpd again, to use only stdio buffering. This elim-
inated all of the excess packet transmissions.

We refer to the original (accidentally line-buffered)
nnrpd as "poorly-buffered"; the first modified nnrpd as
"mostly-buffered" (this is the model that nnrpd would
normally use in practice), and our final modified nnrpd
as "fully-buffered."

38

] ~ - - I 1

0.9 / 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 mostly-buffered sewer, Nagle turned off 0.1
0 I t I m°stly]bufferedlserver i 0

0 1 O0 200 300 400 500 600 700 0 1 O0 200 300 400 500 600 700
response time (ms) response time (ms)

Figure 4: CDFs for latencies: mostly-buffered I/O Figure 6: CDFs for latencies: all six configurations

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

fully-buffered sewer, Nagle turned off
i i i fully]buffered t sewer .~

1 oo 200 300 400 500 600 7'00
response time (ms)

Figure 5: CDFs for latencies: fully-buffered I/O

Figure 4 shows the results for mostly-buffered I/O,
with and without the Nagle algorithm; figure 5 shows
the results for fully-buffered I/O. Figure 6 combines all
of the latency results into one figure, and table 1 shows
statistics for each of the six configurations.

From table 1, we see that the mostly-buffered server
with the Nagle algorithm disabled has the lowest la-
tency. However, the two fully-buffered server configu-
rations (with and without the Nagle algorithm disabled)
show better performance, and fewer packets, than the
original poorly-buffered server, even when the poorly-
buffered server was running with Nagle disabled.

We are still trying to understand why the mostly-
buffered server beats the fully-buffered server; this
might be a measurement artifact.

8 Analysis of algorithm interactions

As table 1 shows, even after we ensured the use of
fully-buffered I/O in nnrpd, our benchmark still yielded
better results with the Nagle algorithm disabled. The
Nagle algorithm increases mean latency by 19%, and
median latency by 4%. What causes this effect? We
present a somewhat simplified explanation (see also [4]).

Consider the number of full-sized TCP segments re-
quired to convey an NNTP response (such as a news ar-
ticle). If the response exactly fits an integral number of
segments, then the Nagle algorithm has no effect, and
the TCP stack sends each packet immediately. How-
ever, response sizes vary considerably, so most do not
exactly fit an integral number of segments.

Now consider an article that requires an odd num-
ber of segments; i.e., that requires 2N + 1 segments.
TCP will quickly dispose of the first 2N segments, since
each pair will result in an immediate acknowledgment;
the delayed-acknowledgment mechanism will not be in-
voked. When the time comes to send the last segment,
all previous segments will have been (or will quickly be)
acknowledged, so the Nagle algorithm also will not be
invoked; there will be no delay.

Finally, consider an article that requires, but does
not fill, an even number of segments, i.e., that requires
2N segments but contains less than 2N * MSS bytes
of data. TCP will quickly send the 2N - 1 full-sized
segments, because the Nagle algorithm is not invoked.
However, the receiver will delay its acknowledgment of
the final full-sized segment, since it is waiting for a
pair of segments. Simultaneously, the sender will de-
lay its transmission of the final, partial segment, since
the Nagle algorithm is triggered by the outstanding un-
acknowledged data and the lack of a full segment to
send.

With a uniform distribution of response sizes, this

39

Server Mean Median Mean Median
configuration response response packet packet

time (ms) time (ms) size size
poorly-buffered, Nagle enabled 122 135 2913 4312
poorly-buffered, Nagle disabled 71 27 143 79
mostly-buffered, Nagle enabled 53 28 3114 4312
mostly-buffered, Nagle disabled 28 20 3040 3864
fully-buffered, Nagle enabled 43 26 3192 4312
fully-buffered, Nagle disabled 36 25 3131 3864

Table 1: Response time and packet size statistics, one run of the benchmark for each configuration

analysis suggests that just under half of the responses
would be delayed by the interaction between the Nagle
algorithm and the delayed-acknowledgment mechanism.
In reality, the article size distribution is not at all uni-
form [15]. At least 50% of Usenet articles would fit into
a single Ethernet packet, and a substantially larger frac-
tion would fit into a single FDDI packet. Thus, most
Usenet articles require an odd number of segments and
do not encounter a delay. We found, for our bench-
mark runs, that 8.7% of the responses do require an
even number of FDDI segments, which explains why
disabling the Nagle algorithm leads to improved latency
statistics.

8.1 Results with Ethernet M T U

1

o °7° °°/iiii :!:::::::
0.5

0.4

0.3

0.2 uffered server, Nagle disabled -
[fully-buffered server, Nagle disabled

0.1 ~- fully-buffered server
0 mostly-buffered server

0 100 200 300 400 500 600 700

response time (ms)

Figure 7: CDFs for latencies with Ethernet MTU

Encouraged by our success in predicting the fre-
quency of packet delays using the FDDI segment size,
we decided to verify our model using a different packet
size. We ran trials over an FDDI network that had
been reconfigured to use the same MSS as would be
used on an Ethernet (1460 bytes). By using a recom
figured FDDI network, rather than an actual Ethernet
network, we avoided changing several irrelevant vari-
ables (primarily, the hardware implementation and the

associated kernel driver software) that might have af-
fected the results.

We ran trials using both the mostly-buffered and
fully-buffered servers, with and without the Nagle algo-
rithm enabled. Figure 7 shows the CDFs for these four
trials. Table 2 shows the mean and median latencies
and packet sizes.

Again, we found that the Nagle algorithm does
slightly increase latency. However, the increase was
much smaller than we expected, since the simple model
in Section 8, applied to the distribution of response
sizes, suggests that 45% of the responses should en-
counter delays. This clearly does not happen.

Indeed, our model is too simple. The BSD TCP
implementation of the Nagle algorithm never delays a
packet transmission if the connection was idle when the
tcp_output 0 function is called, so the first "cluster" of
data can be sent without delay. On our systems, the
cluster size is 8192 bytes, large enough to cover a sig-
nificant fraction of the NNTP responses.

8.2 Other contexts where this effect occurs

We are not the first to point out the performance im-
plications of the the interaction between the Nagle al-
gorithm and the delayed-acknowledgment mechanism.
The effect occurs in contexts besides NNTP.

Early examples including the use of multi-byte
"function keys" in interactive terminal sessions [18], and
the interactive X window system [17]. In both of these
cases, implementors quickly realized the need to disable
the Nagle algorithm [3].

More recently, the introduction in HTTP of "per-
sistent connections" (the use of a single TCP connec-
tions for several HTTP requests) has led several re-
searchers [4, 10] to similar conclusions.

In general, any application that uses TCP as a trans-
port for a series of reciprocal exchanges can suffer from
this interaction. The effect would not appear when an
entire request or response always fits in one TCP seg-
ment, but may be seen when the request or response is
so large as to need to be transmitted in more than one
packet.

40

Table 2: Response
MTU

Server Mean
configuration response

time (ms)

Median Mean Median
response packet packet

time (ms) size size
mostly-buffered, Nagle enabled 52
mostly-buffered, Nagle disabled 37
fully-buffered, Nagle enabled 38
fully-buffered, Nagle disabled 35

31 1283 1460
25 1236 1460
26 1294 1460
25 1247 1460

time and packet size statistics, one run of the benchmark for each configuration with Ethernet

9 Phase Effects in the Original Experiment

Figure 1 shows something odd. As we explained in sec-
tion 3, the BSD delayed acknowledgments mechanism
should produce delays uniformly distributed in the in-
terval [0...200] ms. A graph of the cumulative distri-
bution of response times should include a nearly linear
section starting at the undelayed response time, and
extending 200ms beyond this point. Instead, figure 1
shows a sharp jump at 200ms, as if the delayed ac-
knowledgment mechanism were waiting exactly 200ms
before sending the delayed acknowledgment.

While human users of NNTP servers often pause
for several seconds between articles, the benchmark
we used in these experiments sends client requests as
rapidly as possible; this allows us to measure worst-
case server behavior. When the delayed acknowledg-
ment first delays the completion of an interaction in a
series, we would indeed expect the delay to be uniformly
distributed. However, the subsequent interaction now
starts shortly after a 200ms timer "clock tick," and if
it is delayed, then it will complete upon the subsequent
timer expiration - almost exactly 200ms after it starts.

Floyd and Jacobson [2] discuss synchronization of
nodes in the Internet, in the context of periodic routing
messages. As they point out, such synchronization can
produce significant burst loads. In the case we analyzed
in this paper, the synchronization is based on the clock
of the news reader (client) host. In practice, many news
clients with independent clocks access one server, which
should reduce the overall synchronization effect. Our
benchmark, which uses multiple news reader processes
on a single client machine, leads to a worst-case synchro-
nization effect. We note, however, that if the bulk of
the data had been flowing from many senders to one re-
cipient, this might have synchronized the delays to the
recipient's clock, thereby inducing large synchronized
bursts of data arriving at the recipient. For example,
an HTTP proxy retrieving responses from many Inter-
net servers, using persistent connections, could create
synchronized bursts of incoming data through an inter-
action between Nagle's algorithm and delayed acknowl-
edgments.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

fully-buffered server, modified Nagle - -
fully-buffered server, original Nagle

mostly-buffered server, modified Nagle
mostly-buffered server, original Nagle

I f I I I "i

1 O0 200 300 400 500 600 700

response time (ms)

Figure 8: Effect of modified Nagle algorithm

10 A Proposed Solution

The Nagle algorithm, as we saw when running the "ac-
cidentally unbuffered" version of the NNTP software,
does as intended prevent the transmission of excessive
numbers of small packets. Can we preserve this feature
without adversely affecting the performance of properly
buffered applications? And can we avoid the need for
application programmers to determine whether or not
to disable the Nagle algorithm?

One of us (Minshall) has recently proposed a modi-
fication to the Nagle algorithm [8]. Instead of delaying
the transmission of a short packet when there is any
unacknowledged data, this modified version would de-
lay only if the unacknowledged data was itself sent in
a short packet. This approach would preserve the al-
gorithm's original intention, preventing a flood of small
packets, but would not add delay to the transmission of
responses requiring 2N segments.

10.1 Validation of proposed solution

To validate the proposed modifications to Nagle's algo-
rithm, we implemented a somewhat simplified version
of Minshall's approach. This version requires only one
bit of additional state per TCP connection, and allows

41

Server Mean
configuration response

time (ms)

Median Mean Median
response packet packet

time (ms) size size
mostly-buffered, original Nagle 50
mostly-buffered, modified Nagle 48
fully-buffered, original Nagle 36
fully-buffered, modified Nagle 34

26 3019 4312
28 2975 3864
21 3092 4312
21 3043 3864

Table 3: Response time and packet size statistics, with original and modified Nagle algorithms

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

- - - - - r ~ o s t l y - b u f f e r e d server, modifled-Nagle
. fully-buffered server, moclified-Nagle I
. mostly-buffered server]
................ fully-buffered server I
. mostly-buffered server, Nagle off J

fully-buffered sewer, Nagle off I
, I

500 1000 1500 2000 2500 3000 3500 4000 4500
packet size (bytes)

Figure 9: CDFs for packet sizes

two small packets in a row (without delay) if the first
one results from the kernel's use of a fixed cluster size
when filling the TCP output buffer. The modifications
are shown in Appendix A.

We ran trials using both the mostly-buffered and
fully-buffered servers, with either the standard or mod-
ified Nagle algorithms. Figure 8 shows the CDFs for
these four trials. Table 3 shows the mean and median
latencies and packet sizes.

Figure 8 shows that the fully-buffered server gen-
erally outperforms the mostly-buffered server, in that
the fully-buffered distributions are shifted towards lower
latencies. This figure also shows only a slight im-
provement from the modified Nagle algorithm, for ei-
ther buffering model. However, we ran additional trials
and found that, on the whole, the modified Nagle al-
gorithm generally provides a modest improvement for
both server buffering models. We intend to do a fur-
ther study using a careful statistical analysis of a large
set of trials (and apologize for the use of single trials in
this paper).

Figure 9 shows the packet size distributions for var-
ious configurations of server buffering model and the
Nagle algorithm, It is difficult to see this from the black
and white version of the figure, but generally the mod-
ified Nagle algorithm causes slightly more packets at
sizes under 3880 bytes, while entirely disabling the Na-

gle algorithm leads to the fewest such packets. However,
disabling the Nagle algorithm creates a large number of
3880-byte packets. This threshold corresponds to the
difference between MCLBYTES (8192) and the FDDI
MSS (4312); we are not entirely sure why the Nagle
algorithm specifically suppresses packets of that size.

11 Summary and conclusions

We identified a performance problem that appeared to
arise from an interaction between TCP's Nagle algo-
rithm and delayed acknowledgment policies. We found
that disabling the Nagle algorithm appeared to solve
this problem, but unleashed a torrent of small packets.
By fixing the buffering problem that caused this tor-
rent, we showed that the Nagle algorithm still causes
a slight increase in mean latency, and we analyzed the
causes behind this increase. This suggests that a sim-
ple modification to the Nagle algorithm would improve
latency without removing the protection against packet
floods.

We conclude that:

. Disabling the Nagle algorithm can greatly increase
network congestion, if application buffering is im-
perfect.

2. Even carefully-written applications can, on occa-
sion, exhibit sub-optimal buffering behavior.

. Even with optimal buffering, the interaction be-
tween the Nagle algorithm and delayed acknowl-
edgments can increase application latency, if only
slightly.

, The best solution would be the use of careful
buffering, combined with an improved Nagle algo-
rithm that defends the network against buffering
errors without adding much latency.

. Implementors who are tempted to disable the Na-
gle algorithm should take care not only to use care-
ful buffering, but also to measure the result to en-
sure that the buffering works as expected (perhaps
by inspecting the resulting packet stream using a
tool such as tcpdump [6]).

42

12 Acknowledgements

We would like to thank John Nagle for his insightful
comments. We would also like to thank the WISP re-
viewers for their suggestions.

A Modifications to the Nagle algorithm

Our modifications to the Nagle algorithm, a somewhat
simplified version of those proposed by Minshall [8], are
confined to the tcp_output 0 function from the BSD net-
working code. We show them as insertions to the code
given by Wright and Stevens [19], in Figure 10. Only
certain lines of the code are shown; the source line num-
bers are taken from Wright and Stevens, and our inser-
tions are shown with "***" instead of line numbers.

References

[1] R. Braden. Requirements for internet hosts - com-
munication layers. RFC 1122, Internet Engineering
Task Force, ftp://ftp.isi.edu/in-notes/rfcl122.txt.
October 1989.

[2] Sally Floyd and Van Jacobson. The synchroniza-
tion of periodic routing messages. IEEEJACM
Transactions on Networking, 2(2):122-136, April
1994.

[3] Jim Gettys. Personal communication. 1999.

[4] J. Heidemann. Performance interactions between
P-HTTP and TCP implementations. ACM Com-
puter Communication Review, 27(2):65-73, ht tp: / /
www.acm.org/sigcomm/ccr/archive/. April 1997.

[5] Van Jacobson. Congestion avoidance and con-
trol. In Proc. SIGCOMM '88, pages 314-32, Stan-
ford, CA, ftp://ftp.ee.lbl.gov/papers/congavoid.
ps.Z. August 1988.

[6] Van Jacobson et al. tcpdump(1), BPF, ftp://ftp.
ee.lbl.gov/tcpdump.tar.Z. 1990.

[7] B. Kantor and P. Lapsley. Network news trans-
fer protocol: A proposed standard for the stream-
based transmission of news. RFC 977, Internet
Engineering Task Force, ftp://ftp.isi.edu/imnotes/
rfc977.txt. February 1986.

[8] Greg Minshall. A suggested modification to nagle's
algorithm. Internet-Draft draft-minshall-nagle-00,
Internet Engineering Task Force, http://www.ietf.
org/internet- drafts/draft- minshall-nagle- 00.txt.
December 1998. This is a work in progress.

[9] J. Nagle. Congestion control in IP/TCP inter-
networks. RFC 896, Internet Engineering Task
Force, ftp://ftp.isi.edu/in-notes/rfc896.txt. Jan-
uary 1984.

[10] H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud'hommeaux, H. W. Lie, and C. Lilley. Net-
work performance effects of HTTP/1.1, CSS1, and
PNG. In Proc. SIGCOMM '97, pages 155-166,
Cannes, France, September 1997.

[11] J. Postel. User datagram protocol. RFC 768, In-
ternet Engineering Task Force, ftp://ftp.isi.edu/
in-notes/rfc768.txt. August 1980.

[12] J. Postel. Transmission control protocol. Request
for Comments (Standard) STD 7, RFC 793, Inter-
net Engineering Task Force, ftp://ds.internic.net/
rfc/rfc793.txt. September 1981.

[13] J. Postel. Simple mail transfer protocol. RFC 821,
Internet Engineering Task Force, ftp://ftp.isi.edu/
in-notes/rfc821.txt. August 1982.

[14] J. Postel and J. Reynolds. File transfer protocol.
RFC 959, Internet Engineering Task Force, ftp://
ftp.isi.edu/in-notes/rfc959.txt. October 1985.

[15] Yasushi Saito, Jeffrey C. Mogul, and Ben
Verghese. A Usenet Performance Study,
http://www.research.digital.com/wrl/projects/
newsbench/usenet.ps. November 1998.

[16] Rich SMz. InterNetNews: Usenet Transport for
Internet Sites. In USENIX Conference Proceedings,
pages 93 - 98, San Antonio, TX, Summer 1992.
USENIX.

[17] R.W. Scheifier and J. Gettys. The X Window Sys-
tem. ACM Trans. on Graphics, 5(2):79-109, April
1986.

[18] W.R. Stevens. TCP//IP Illustrated Volume 1.
Addison-Wesley, Reading, MA, 1994.

[19] G.R. Wright and W.R. Stevens. TCP//IP Illus-
trated Volume 2. Addison-Wesley, Reading, MA,
1995.

43

Define a new flag value for the tcp_flags fiel~ in tep_var.h:

*** #define TF_SMALL_PREV OxSO0

On entry to tcp_output 0 ~n particula5 before the a g a i n labeO, record the number of bytes in the socket buffer:

47 struct socket *so = inp->inp_socket;
*** int start_cc = so->so_snd.sb_cc;

After the check made by the traditional Nagle a~omthm, which sends a small packet at the end of the socket buffer
in certain situations, allow sending in one more situation: ~ the previous packet was not '%mall" (note that these
two conditional statements could be merged):

144 if ((idle II tp->t_flags ~ TF_NODELAY) ~
145 len + off >= so->so_snd.sb_cc)
146 goto send;
*** if (((tp->t_flags ~ TF_SMALL_PREV) == O) ~
*** (len ~ off >= so->so_snd.sb_cc)) {
*** / * end-of-buffer ~ previous packet was not "small" * /

*** goto send;
*** }

Just before sending a packer remember that it was '~mall" ~ the length is less than the MSS, and ~ the original
buffer s~e was not a multiple of the cluster size:

222 send:

*** /* Remember end of most recent "small" output packet */

*** if ((len < tp->t_maxseg) ~ ((start_cc ~ MCLBYTES) != 0)) {

*** tp->t_flags l = TF_SMALL_PKEV;
*** }

*** else

*** tp->t_flags ~= ~TF_SMALL_PREV;

F i g u r e 10: M o d i f i c a t i o n s t o tcp_output 0

44

