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Abstract 

Performance improvements to networked applications 
can have unintended consequences. In a study of the 
performance of the Network News Transport Protocol 
(NNTP), the initial results suggested it would be use- 
ful to disable TCP's Nagle algorithm for this applica- 
tion. Doing so significantly improved latencies. How- 
ever, closer observation revealed that with the Nagle 
algorithm disabled, the application was transmitting 
an order of magnitude more packets. We found that 
proper application buffer management significantly im- 
proves performance, but that the Nagle algorithm still 
slightly increases mean latency. We suggest that modi- 
fying the Nagle algorithm would eliminate this cost. 

1 Introduction 

The performance of a client/server application depends 
on the appropriate use of the transport protocol over 
which it runs. In today's Internet, most applica- 
tion protocols run over the Transport Control Protocol 
(TCP) [12] or the User Datagram Protocol (UDP) [11]. 

Usenet, one of the main Internet applications, runs 
over TCP using an application protocol known as the 
Network News Transport Protocol (NNTP) [7]. Sev- 
eral of us made a prior study [15] assessing the perfor- 
mance of a popular NNTP implementation. We mea- 
sured the response time for NNTP interactions, and 
noticed a sharp peak in the response-time distribution 
at exactly 200ms. We discovered that this 200ms delay 
was a consequence of interactions between the appli- 
cation and two TCP mechanisms: the Nagle algorithm 
and delayed acknowledgments. 

In this paper, we analyze this situation in more de- 
tail. We show that, once we resolved several buffering 

problems, use of the Nagle algorithm still leads to a 
slight increase in mean latency for NNTP interactions, 
and we analyze the mechanism behind this: Finally, we 
describe a simple modification to the Nagle algorithm 
that should eliminate the problem. 

2 TCP and the Nagle Algorithm 

TCP controls the transmission of data between the 
client and server processes. It attempts to balance a 
number of requirements, including fast responsiveness 
(low latency), high throughput, protection against net- 
work congestion, and observing the receiver's buffer lim- 
its. As part of this balancing act, TCP attempts to in- 
ject the fewest possible packets into the network, mainly 
to avoid congesting the network, and to avoid adding 
load to routers and switches. 

In the early 1980s, terminal (telnet) traffic consti- 
tuted a large amount of the traffic on the Internet. Of- 
ten a client would send a sequence of short packets, 
each containing a single keystroke, to the server. At 
the time, these short packets placed a significant load 
on Internet, especially given the relatively slow links, 
routers, and servers. 

To alleviate this glut of small packets, in 1984 John 
Nagle proposed what has become known as the Na- 
gle algorithm [9]. The algorithm applies when a TCP 
sender is deciding whether to transmit a packet of data 
over a connection. If it has only a "small" amount of 
data to send, then the Nagle algorithm says to send the 
packet only if all previously transmitted data has been 
acknowledged by the TCP receiver at the other end of 
the connection. In this situation, "small" is defined as 
less data than the TCP Maximum Segment Size (MSS) 
for the connection, the largest amount of data that can 
be sent in one datagram. 

The effect of the Nagle algorithm is that at most 
one "small" packet will be transmitted on a given con- 
nection per round trip time (RTT). Here, "round trip 
time" means the time it takes to transmit data and 
subsequently receive the acknowledgment for that data. 
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The algorithm imposes no limit on the number of large 
packets transmitted within one round trip time. 

The Nagle algorithm has been very effective in reduc- 
ing the number of small packets in the Internet. Today, 
most TCP implementations include this algorithm. 

3 Delayed Acknowledgments 

TCP data packets are acknowledged by the recipient. In 
order to reduce the number of packets in the network, 
the receiver can "delay" sending the acknowledgment 
packet for a finite interval. This is done in the hope that 
the delayed acknowledgment can be "piggy-backed" on 
a data packet in the opposite direction. The delayed 
acknowledgment can also carry window update infor- 
mation, informing the TCP sender that the application 
at the receiver has "read" the previously transmitted 
data, and that the TCP sender can now send that many 
more bytes of data. Delayed acknowledgments are par- 
ticularly useful in client/server applications, where data 
frequently flows in both directions. 

Many TCP implementations are derived from the 
4.x BSD code base (described in great detail by Wright 
and Stevens [19]). These TCP stacks mark a connec- 
tion that has just received new data by setting the 
TF_DELACK flag, indicating that the connection needs 
a delayed acknowledgment. Subsequent transmission of 
an acknowledgment on the connection clears this flag. 
A separate timer-driven background activity polls the 
list of active TCP connections once every 200ms, send- 
ing an acknowledgment for each connection that has 
TF_DELACK set. This means that, on average, an 
acknowledgment will be delayed for lOOms, and never 
more than about 200ms. 

TCP senders make use of returning acknowledgment 
packets to "clock" the transmission of packets [5]. This 
conflicts with the desire to reduce the number of pack- 
ets in the network. For this reason, TCP receivers must 
transmit at least one acknowledgment for every two full- 
sized packets received. Thus, a typical transmission se- 
quence (as seen from node B) might look like: A->B 
(data), A->B (data), B->A (ack), A->B (data), ... 

4 The Network News Transfer Protocol 

The Network News Transfer Protocol (NNTP) [7] is 
used to transfer Usenet articles between news servers, 
and between news servers and news readers (clients). 
NNTP is a request-response protocol. Similar to pro- 
tocols such as SMTP [13] and FTP [14], requests and 
responses in NNTP are expressed in ASCII, rather than 
in a binary format. When used between a client and a 
server, the client waits for one response before sending 
the next request. (Server-to-server transfers are often 
pipelined.) 

5 The Original Experiment 

In a prior study [15], several of us (Saito, Mogul, and 
Verghese) measured the response time for NNTP trans- 
actions (from the time the client sends its request to the 
time the client receives the last byte of the response) 
from a server running the popular INN [16] software. 
We found a sharp peak at 200ms; figure 1 shows the cu- 
mulative distribution function for article retrieval laten- 
cies. Note that approximately 25% of the transactions 
completed in almost exactly 200ms. 
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Figure 1: CDF for retrieval latencies: original code 

We realized that this 200ms peak was an artifact 
of an interaction between the Nagle algorithm and the 
delayed-acknowledgment mechanism. When the server 
application sends its response, part of the data is pre- 
sented to the TCP stack in an amount smaller than the 
MSS. Because the previous response packets have not 
yet been acknowledged, the Nagle algorithm causes the 
sender to refrain from sending the small packet until an 
acknowledgment is received. However, the client appli- 
cation has not read enough data to generate a window 
update (because the server has not sent enough data 
since the last acknowledgment from the client), so the 
acknowledgment for the previous response packet(s) is 
deferred until the timer expires for the delayed acknowl- 
edgment mechanism. 

Humans notice, and dislike, a 200ms delay in article 
retrieval. This delay also increased the mean delay mea- 
sured by a benchmark we were developing. In order to 
reduce this delay, we modified the INN server to disable 
the Nagle algorithm when communicating with clients. 
(The TCP specification requires that an implementa- 
tion allow an application to disable this algorithm [1].) 
We were pleased to note, as shown in figure 2, that the 
mode at 200ms had disappeared. The mean article re- 
trieval latency dropped, in our benchmark, from 122ms 
to 71ms. 
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Figure 2: CDF for latencies: Nagle algorithm disabled 

Therefore, we recommended that NNTP servers dis- 
able the Nagle algorithm for client connections [15]. 

6 A Closer Look 

One of us (Minshall) reacted to this recommendation by 
asking whether this 200ms latency was a fundamental 
problem with the Nagle algorithm, or whether it was 
in fact an aspect of the NNTP server software design 
that could be corrected in the server software itself. We 
therefore collected tcpdump [6] traces to investigate the 
detailed behavior of the system. 
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Figure 3: CDFs for packet sizes: original server 

These traces revealed a new anomaly. The median 
packet size (TCP payload) with the Nagle algorithm 
enabled was 4312 bytes (equal to the MSS of the FDDI 
LAN used in these tests), but was only 79 bytes with 
the algorithm disabled (see figure 3). In the former case, 
a trial transferred 26.7 Mbytes in 9,600 packets; in the 

latter case, a trial transferred 20.1 Mbytes in 147,339 
packets. 

This discrepancy led us to discover that the INN 
server (nnrpd), due to an unexpected consequence of the 
way these experiments were run, was doing line-buffered 
I/O on its NNTP sockets (rather than fully buffer- 
ing each response). Therefore, the server was sending 
each response using many write() system calls. With 
the Nagle algorithm enabled, the TCP stack buffered 
all but the first line of data until an acknowledgment 
was received from the news reader, or until at least 
a packet's worth of response data accumulated at the 
server. The Nagle algorithm, as intended, prevented the 
network from being flooded with tiny response packets. 
However, with the Nagle algorithm disabled, there was 
nothing to prevent the server TCP from sending a tiny 
packet for each line written by nnrpd, and so it sent lots 
of them. 

7 Ensuring Buffering in the Server 

We were surprised to learn that nnrpd was using line- 
buffered I/O. Investigation revealed a subtle cause, spe- 
cific to the particular experimental setup. When it ac- 
cepts a new connection, nnrpd arranges for that socket's 
file descriptor to be associated with the stdout stream, 
closing the existing file descriptor initially associated 
with that stream. This allows nnrpd to write its out- 
put using the printfO library routine, which implicitly 
names the stdout stream. It means, however, that the 
network connection inherits its buffering mode from std- 
out. 

In normal use, nnrpd is automatically invoked at sys- 
tem start-time from a script, and stdout is fully buffered. 
However, in the original experiments, we had inserted 
a debugging printfO to stdout, and started nnrpd from 
from the command line of a terminal. The stdio library 
causes terminal-output streams to be line-buffered, by 
default. Thus, the nnrpd network connections inherited 
this line-buffered mode, resulting in multiple writes per 
news article. 

We modified nnrpd to ensure that it always used 
fully-buffered stdio streams, regardless of the circum- 
stances of its invocation. Even so, we found responses 
split into too many packets. We then discovered that 
nnrpd uses a special buffer for some of its output, inter- 
mingled with writes via stdout. This mingling required 
the use of extraneous fflushO calls. We therefore modi- 
fied nnrpd again, to use only stdio buffering. This elim- 
inated all of the excess packet transmissions. 

We refer to the original (accidentally line-buffered) 
nnrpd as "poorly-buffered"; the first modified nnrpd as 
"mostly-buffered" (this is the model that nnrpd would 
normally use in practice), and our final modified nnrpd 
as "fully-buffered." 
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Figure 4: CDFs for latencies: mostly-buffered I/O Figure 6: CDFs for latencies: all six configurations 
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Figure 5: CDFs for latencies: fully-buffered I/O 

Figure 4 shows the results for mostly-buffered I/O, 
with and without the Nagle algorithm; figure 5 shows 
the results for fully-buffered I/O. Figure 6 combines all 
of the latency results into one figure, and table 1 shows 
statistics for each of the six configurations. 

From table 1, we see that the mostly-buffered server 
with the Nagle algorithm disabled has the lowest la- 
tency. However, the two fully-buffered server configu- 
rations (with and without the Nagle algorithm disabled) 
show better performance, and fewer packets, than the 
original poorly-buffered server, even when the poorly- 
buffered server was running with Nagle disabled. 

We are still trying to understand why the mostly- 
buffered server beats the fully-buffered server; this 
might be a measurement artifact. 

8 Analysis of algorithm interactions 

As table 1 shows, even after we ensured the use of 
fully-buffered I/O in nnrpd, our benchmark still yielded 
better results with the Nagle algorithm disabled. The 
Nagle algorithm increases mean latency by 19%, and 
median latency by 4%. What causes this effect? We 
present a somewhat simplified explanation (see also [4]). 

Consider the number of full-sized TCP segments re- 
quired to convey an NNTP response (such as a news ar- 
ticle). If the response exactly fits an integral number of 
segments, then the Nagle algorithm has no effect, and 
the TCP stack sends each packet immediately. How- 
ever, response sizes vary considerably, so most do not 
exactly fit an integral number of segments. 

Now consider an article that requires an odd num- 
ber of segments; i.e., that requires 2N + 1 segments. 
TCP will quickly dispose of the first 2N segments, since 
each pair will result in an immediate acknowledgment; 
the delayed-acknowledgment mechanism will not be in- 
voked. When the time comes to send the last segment, 
all previous segments will have been (or will quickly be) 
acknowledged, so the Nagle algorithm also will not be 
invoked; there will be no delay. 

Finally, consider an article that requires, but does 
not fill, an even number of segments, i.e., that requires 
2N segments but contains less than 2N * MSS bytes 
of data. TCP will quickly send the 2N - 1 full-sized 
segments, because the Nagle algorithm is not invoked. 
However, the receiver will delay its acknowledgment of 
the final full-sized segment, since it is waiting for a 
pair of segments. Simultaneously, the sender will de- 
lay its transmission of the final, partial segment, since 
the Nagle algorithm is triggered by the outstanding un- 
acknowledged data and the lack of a full segment to 
send. 

With a uniform distribution of response sizes, this 
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Server Mean Median Mean Median 
configuration response response packet packet 

time (ms) time (ms) size size 
poorly-buffered, Nagle enabled 122 135 2913 4312 
poorly-buffered, Nagle disabled 71 27 143 79 
mostly-buffered, Nagle enabled 53 28 3114 4312 
mostly-buffered, Nagle disabled 28 20 3040 3864 
fully-buffered, Nagle enabled 43 26 3192 4312 
fully-buffered, Nagle disabled 36 25 3131 3864 

Table 1: Response time and packet size statistics, one run of the benchmark for each configuration 

analysis suggests that just under half of the responses 
would be delayed by the interaction between the Nagle 
algorithm and the delayed-acknowledgment mechanism. 
In reality, the article size distribution is not at all uni- 
form [15]. At least 50% of Usenet articles would fit into 
a single Ethernet packet, and a substantially larger frac- 
tion would fit into a single FDDI packet. Thus, most 
Usenet articles require an odd number of segments and 
do not encounter a delay. We found, for our bench- 
mark runs, that 8.7% of the responses do require an 
even number of FDDI segments, which explains why 
disabling the Nagle algorithm leads to improved latency 
statistics. 

8.1 Results with Ethernet M T U  
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Figure 7: CDFs for latencies with Ethernet MTU 

Encouraged by our success in predicting the fre- 
quency of packet delays using the FDDI segment size, 
we decided to verify our model using a different packet 
size. We ran trials over an FDDI network that had 
been reconfigured to use the same MSS as would be 
used on an Ethernet (1460 bytes). By using a recom 
figured FDDI network, rather than an actual Ethernet 
network, we avoided changing several irrelevant vari- 
ables (primarily, the hardware implementation and the 

associated kernel driver software) that might have af- 
fected the results. 

We ran trials using both the mostly-buffered and 
fully-buffered servers, with and without the Nagle algo- 
rithm enabled. Figure 7 shows the CDFs for these four 
trials. Table 2 shows the mean and median latencies 
and packet sizes. 

Again, we found that the Nagle algorithm does 
slightly increase latency. However, the increase was 
much smaller than we expected, since the simple model 
in Section 8, applied to the distribution of response 
sizes, suggests that 45% of the responses should en- 
counter delays. This clearly does not happen. 

Indeed, our model is too simple. The BSD TCP 
implementation of the Nagle algorithm never delays a 
packet transmission if the connection was idle when the 
tcp_output 0 function is called, so the first "cluster" of 
data can be sent without delay. On our systems, the 
cluster size is 8192 bytes, large enough to cover a sig- 
nificant fraction of the NNTP responses. 

8.2 Other contexts where this effect occurs 

We are not the first to point out the performance im- 
plications of the the interaction between the Nagle al- 
gorithm and the delayed-acknowledgment mechanism. 
The effect occurs in contexts besides NNTP. 

Early examples including the use of multi-byte 
"function keys" in interactive terminal sessions [18], and 
the interactive X window system [17]. In both of these 
cases, implementors quickly realized the need to disable 
the Nagle algorithm [3]. 

More recently, the introduction in HTTP of "per- 
sistent connections" (the use of a single TCP connec- 
tions for several HTTP requests) has led several re- 
searchers [4, 10] to similar conclusions. 

In general, any application that uses TCP as a trans- 
port for a series of reciprocal exchanges can suffer from 
this interaction. The effect would not appear when an 
entire request or response always fits in one TCP seg- 
ment, but may be seen when the request or response is 
so large as to need to be transmitted in more than one 
packet. 
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Table 2: Response 
MTU 

Server Mean 
configuration response 

time (ms) 

Median Mean Median 
response packet packet 

time (ms) size size 
mostly-buffered, Nagle enabled 52 
mostly-buffered, Nagle disabled 37 
fully-buffered, Nagle enabled 38 
fully-buffered, Nagle disabled 35 

31 1283 1460 
25 1236 1460 
26 1294 1460 
25 1247 1460 

time and packet size statistics, one run of the benchmark for each configuration with Ethernet 

9 Phase Effects in the Original Experiment 

Figure 1 shows something odd. As we explained in sec- 
tion 3, the BSD delayed acknowledgments mechanism 
should produce delays uniformly distributed in the in- 
terval [0...200] ms. A graph of the cumulative distri- 
bution of response times should include a nearly linear 
section starting at the undelayed response time, and 
extending 200ms beyond this point. Instead, figure 1 
shows a sharp jump at 200ms, as if the delayed ac- 
knowledgment mechanism were waiting exactly 200ms 
before sending the delayed acknowledgment. 

While human users of NNTP servers often pause 
for several seconds between articles, the benchmark 
we used in these experiments sends client requests as 
rapidly as possible; this allows us to measure worst- 
case server behavior. When the delayed acknowledg- 
ment first delays the completion of an interaction in a 
series, we would indeed expect the delay to be uniformly 
distributed. However, the subsequent interaction now 
starts shortly after a 200ms timer "clock tick," and if 
it is delayed, then it will complete upon the subsequent 
timer expiration - almost exactly 200ms after it starts. 

Floyd and Jacobson [2] discuss synchronization of 
nodes in the Internet, in the context of periodic routing 
messages. As they point out, such synchronization can 
produce significant burst loads. In the case we analyzed 
in this paper, the synchronization is based on the clock 
of the news reader (client) host. In practice, many news 
clients with independent clocks access one server, which 
should reduce the overall synchronization effect. Our 
benchmark, which uses multiple news reader processes 
on a single client machine, leads to a worst-case synchro- 
nization effect. We note, however, that if the bulk of 
the data had been flowing from many senders to one re- 
cipient, this might have synchronized the delays to the 
recipient's clock, thereby inducing large synchronized 
bursts of data arriving at the recipient. For example, 
an HTTP proxy retrieving responses from many Inter- 
net servers, using persistent connections, could create 
synchronized bursts of incoming data through an inter- 
action between Nagle's algorithm and delayed acknowl- 
edgments. 
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Figure 8: Effect of modified Nagle algorithm 

10 A Proposed Solution 

The Nagle algorithm, as we saw when running the "ac- 
cidentally unbuffered" version of the NNTP software, 
does as intended prevent the transmission of excessive 
numbers of small packets. Can we preserve this feature 
without adversely affecting the performance of properly 
buffered applications? And can we avoid the need for 
application programmers to determine whether or not 
to disable the Nagle algorithm? 

One of us (Minshall) has recently proposed a modi- 
fication to the Nagle algorithm [8]. Instead of delaying 
the transmission of a short packet when there is any 
unacknowledged data, this modified version would de- 
lay only if the unacknowledged data was itself sent in 
a short packet. This approach would preserve the al- 
gorithm's original intention, preventing a flood of small 
packets, but would not add delay to the transmission of 
responses requiring 2N segments. 

10.1 Validation of proposed solution 

To validate the proposed modifications to Nagle's algo- 
rithm, we implemented a somewhat simplified version 
of Minshall's approach. This version requires only one 
bit of additional state per TCP connection, and allows 
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Server Mean 
configuration response 

time (ms) 

Median Mean Median 
response packet packet 

time (ms) size size 
mostly-buffered, original Nagle 50 
mostly-buffered, modified Nagle 48 
fully-buffered, original Nagle 36 
fully-buffered, modified Nagle 34 

26 3019 4312 
28 2975 3864 
21 3092 4312 
21 3043 3864 

Table 3: Response time and packet size statistics, with original and modified Nagle algorithms 
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Figure 9: CDFs for packet sizes 

two small packets in a row (without delay) if the first 
one results from the kernel's use of a fixed cluster size 
when filling the TCP output buffer. The modifications 
are shown in Appendix A. 

We ran trials using both the mostly-buffered and 
fully-buffered servers, with either the standard or mod- 
ified Nagle algorithms. Figure 8 shows the CDFs for 
these four trials. Table 3 shows the mean and median 
latencies and packet sizes. 

Figure 8 shows that the fully-buffered server gen- 
erally outperforms the mostly-buffered server, in that 
the fully-buffered distributions are shifted towards lower 
latencies. This figure also shows only a slight im- 
provement from the modified Nagle algorithm, for ei- 
ther buffering model. However, we ran additional trials 
and found that, on the whole, the modified Nagle al- 
gorithm generally provides a modest improvement for 
both server buffering models. We intend to do a fur- 
ther study using a careful statistical analysis of a large 
set of trials (and apologize for the use of single trials in 
this paper). 

Figure 9 shows the packet size distributions for var- 
ious configurations of server buffering model and the 
Nagle algorithm, It is difficult to see this from the black 
and white version of the figure, but generally the mod- 
ified Nagle algorithm causes slightly more packets at 
sizes under 3880 bytes, while entirely disabling the Na- 

gle algorithm leads to the fewest such packets. However, 
disabling the Nagle algorithm creates a large number of 
3880-byte packets. This threshold corresponds to the 
difference between MCLBYTES (8192) and the FDDI 
MSS (4312); we are not entirely sure why the Nagle 
algorithm specifically suppresses packets of that size. 

11 Summary and conclusions 

We identified a performance problem that appeared to 
arise from an interaction between TCP's Nagle algo- 
rithm and delayed acknowledgment policies. We found 
that disabling the Nagle algorithm appeared to solve 
this problem, but unleashed a torrent of small packets. 
By fixing the buffering problem that caused this tor- 
rent, we showed that the Nagle algorithm still causes 
a slight increase in mean latency, and we analyzed the 
causes behind this increase. This suggests that a sim- 
ple modification to the Nagle algorithm would improve 
latency without removing the protection against packet 
floods. 

We conclude that: 

. Disabling the Nagle algorithm can greatly increase 
network congestion, if application buffering is im- 
perfect. 

2. Even carefully-written applications can, on occa- 
sion, exhibit sub-optimal buffering behavior. 

. Even with optimal buffering, the interaction be- 
tween the Nagle algorithm and delayed acknowl- 
edgments can increase application latency, if only 
slightly. 

, The best solution would be the use of careful 
buffering, combined with an improved Nagle algo- 
rithm that defends the network against buffering 
errors without adding much latency. 

. Implementors who are tempted to disable the Na- 
gle algorithm should take care not only to use care- 
ful buffering, but also to measure the result to en- 
sure that the buffering works as expected (perhaps 
by inspecting the resulting packet stream using a 
tool such as tcpdump [6]). 
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A Modifications to the Nagle algorithm 

Our modifications to the Nagle algorithm, a somewhat 
simplified version of those proposed by Minshall [8], are 
confined to the tcp_output 0 function from the BSD net- 
working code. We show them as insertions to the code 
given by Wright and Stevens [19], in Figure 10. Only 
certain lines of the code are shown; the source line num- 
bers are taken from Wright and Stevens, and our inser- 
tions are shown with "***" instead of line numbers. 
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Define a new flag value for the tcp_flags fiel~ in tep_var.h: 

*** #define TF_SMALL_PREV OxSO0 

On entry to tcp_output 0 ~n particula5 before the a g a i n  labeO, record the number of bytes in the socket buffer: 

47 struct socket *so = inp->inp_socket; 
*** int start_cc = so->so_snd.sb_cc; 

After the check made by the traditional Nagle a~omthm, which sends a small packet at the end of the socket buffer 
in certain situations, allow sending in one more situation: ~ the previous packet was not '%mall" (note that these 
two conditional statements could be merged): 

144 if ((idle II tp->t_flags ~ TF_NODELAY) ~ 
145 len + off >= so->so_snd.sb_cc) 
146 goto send; 
*** if ( ((tp->t_flags ~ TF_SMALL_PREV) == O) ~ 
*** (len ~ off >= so->so_snd.sb_cc)) { 
***  / *  end-of-buffer ~ previous packet was not "small" * /  

***  goto send; 
*** } 

Just before sending a packer remember that it was '~mall" ~ the length is less than the MSS, and ~ the original 
buffer s~e was not a multiple of the cluster size: 

222  send: 

*** /* Remember end of most recent "small" output packet */ 

*** if ((len < tp->t_maxseg) ~ ((start_cc ~ MCLBYTES) != 0)) { 

***  tp->t_flags l = TF_SMALL_PKEV; 
*** } 

***  else 

***  tp->t_flags ~= ~TF_SMALL_PREV; 

F i g u r e  10: M o d i f i c a t i o n s  t o  tcp_output 0 
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